Package opennlp.tools.ml.perceptron
Class SimplePerceptronSequenceTrainer
- java.lang.Object
-
- opennlp.tools.ml.AbstractTrainer
-
- opennlp.tools.ml.AbstractEventModelSequenceTrainer
-
- opennlp.tools.ml.perceptron.SimplePerceptronSequenceTrainer
-
- All Implemented Interfaces:
Trainer,EventModelSequenceTrainer<Event>
public class SimplePerceptronSequenceTrainer extends AbstractEventModelSequenceTrainer
Trainsmodelswith sequences using the perceptron algorithm.Each outcome is represented as a binary perceptron classifier. This supports standard (integer) weighting as well average weighting.
Sequence information is used in a simplified was to that described in: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with the Perceptron Algorithm. Michael Collins, EMNLP 2002.
Specifically only updates are applied to tokens which were incorrectly tagged by a sequence tagger rather than to all feature across the sequence which differ from the training sequence.
- See Also:
PerceptronModel,AbstractEventModelSequenceTrainer
-
-
Field Summary
Fields Modifier and Type Field Description static StringPERCEPTRON_SEQUENCE_VALUE-
Fields inherited from class opennlp.tools.ml.AbstractTrainer
ALGORITHM_PARAM, CUTOFF_DEFAULT, CUTOFF_PARAM, ITERATIONS_DEFAULT, ITERATIONS_PARAM, TRAINER_TYPE_PARAM, VERBOSE_DEFAULT, VERBOSE_PARAM
-
Fields inherited from interface opennlp.tools.ml.EventModelSequenceTrainer
SEQUENCE_VALUE
-
-
Constructor Summary
Constructors Constructor Description SimplePerceptronSequenceTrainer()Instantiates aSimplePerceptronSequenceTrainerwith a default configuration of training parameters.
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description AbstractModeldoTrain(SequenceStream<Event> events)booleanisValid()Deprecated.Usevalidate()instead.voidnextIteration(int iteration)AbstractModeltrainModel(int iterations, SequenceStream<Event> sequenceStream, int cutoff, boolean useAverage)Trains aPerceptronModelwith given parameters.voidvalidate()Checks the configuredparameters.-
Methods inherited from class opennlp.tools.ml.AbstractEventModelSequenceTrainer
train
-
Methods inherited from class opennlp.tools.ml.AbstractTrainer
getAlgorithm, getCutoff, getIterations, init, init
-
-
-
-
Field Detail
-
PERCEPTRON_SEQUENCE_VALUE
public static final String PERCEPTRON_SEQUENCE_VALUE
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
SimplePerceptronSequenceTrainer
public SimplePerceptronSequenceTrainer()
Instantiates aSimplePerceptronSequenceTrainerwith a default configuration of training parameters.
-
-
Method Detail
-
validate
public void validate()
Checks the configuredparameters. If a subclass overrides this, it should callsuper.validate();.- Overrides:
validatein classAbstractTrainer- Throws:
IllegalArgumentException- Thrown if the algorithm name is not equal to {PERCEPTRON_SEQUENCE_VALUE}.
-
isValid
@Deprecated public boolean isValid()
Deprecated.Usevalidate()instead.- Overrides:
isValidin classAbstractTrainer- Returns:
trueif the validation of the internal configuration succeeds,falseotherwise.
-
doTrain
public AbstractModel doTrain(SequenceStream<Event> events) throws IOException
- Specified by:
doTrainin classAbstractEventModelSequenceTrainer- Throws:
IOException
-
trainModel
public AbstractModel trainModel(int iterations, SequenceStream<Event> sequenceStream, int cutoff, boolean useAverage) throws IOException
Trains aPerceptronModelwith given parameters.- Parameters:
iterations- The number of iterations to use for training.sequenceStream- TheSequenceStreamused as data input.cutoff- The {AbstractTrainer.CUTOFF_PARAM} value to use for training.useAverage- Whether to use 'averaging', or not.- Returns:
- A valid, trained
perceptron model. - Throws:
IOException
-
nextIteration
public void nextIteration(int iteration) throws IOException- Throws:
IOException
-
-