Apache Karaf
Version 2.2.4

Apache Karaf
Users' Guide

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Copyright 2011 The Apache Software Foundation

The PDF format of the Karaf Manual has been generated by Prince XML
(http://www.princexml.com).

Table of contents

Overview

Quick Start

Users Guide
Developers Guide

4 OVERVIEW

Apache Karaf is a small OSGi based runtime which provides a lightweight
container onto which various components and applications can be deployed.

Here is a short list of features supported by the Karaf:

Hot deployment: Karaf supports hot deployment of OSGi bundles
by monitoring jar files inside the [home]/deploy directory. Each time
a jar is copied in this folder, it will be installed inside the runtime. You
can then update or delete it and changes will be handled
automatically. In addition, Karaf also supports exploded bundles and
custom deployers (Blueprint and Spring ones are included by
default).

Dynamic configuration: Services are usually configured through
the ConfigurationAdmin OSGi service. Such configuration can be
defined in Karaf using property files inside the [home]/etc directory.
These configurations are monitored and changes on the properties
files will be propagated to the services.

Logging System: using a centralized logging back end supported by
Log4), Karaf supports a number of different APIs (JDK 1.4, JCL, SLF4],
Avalon, Tomcat, OSGi)

Provisioning: Provisioning of libraries or applications can be done
through a number of different ways, by which they will be
downloaded locally, installed and started.

Native OS integration: Karaf can be integrated into your own
Operating System as a service so that the lifecycle will be bound to
your Operating System.

Extensible Shell console: Karaf features a nice text console where
you can manage the services, install new applications or libraries and
manage their state. This shell is easily extensible by deploying new
commands dynamically along with new features or applications.
Remote access: use any SSH client to connect to Karaf and issue
commands in the console

Security framework based on JAAS

Managing instances: Karaf provides simple commands for
managing multiple instances. You can easily create, delete, start and
stop instances of Karaf through the console.

Supports the latest OSGi 4.2 containers: Apache Felix Framework 3.0
and Eclipse Equinox 3.6

KARAF OVERVIEW

6 QUICK START

If you are in a hurry to have Apache Karaf up and running right away, this
section will provide you with some basic steps for downloading, building
(when needed) and running the server in no time. This is clearly not a
complete guide so you may want to check other sections of this guide for
further information.

All you need is 5 to 10 minutes and to follow these basic steps.
e Background
* Getting the software
* Start the server
* Deploy a sample application

BACKGROUND

Apache Karaf is a small and lightweight OSGi based runtime. This provides a
small lightweight container onto which various bundles can be deployed.

Apache Karaf started life as the Apache ServiceMix kernel and then moved
as a Apache Felix subproject before becoming a top level project.

GETTING THE SOFTWARE

At this time you have one option to get the software. The fastest and easiest
way is to get the binary directly from the Apache site. Since this article is
intended to help you to have Apache Karaf up and running in the fastest way
only the binary download will be covered at this time.

Prerequisites
Although this installation path is the fastest one, you will still need to install
some software before installing Karaf.

Karaf requires a Java SE 5 environment to run. Refer to
http://www.oracle.com/technetwork/java/javase/ for details on how to
download and install Java SE 1.5 or greater.

1. QUICK START

http://servicemix.apache.org
http://felix.apache.org
http://www.oracle.com/technetwork/java/javase/

8

Download binaries

You will need to select the appropriate installation image for the platform
you're using to run Karaf. Open a Web browser and access the following URL,
there you will find the available packages for download (binaries and source
code).

http://karaf.apache.org/index/community/download.html

Select the file compression format compatible with your system (zip for
windows, tar.gz for unixes) by clicking directly on the link, download it and
expand the binary to your hard drive in a new directory; for example in
z:\karaf - from now on this directory will be referenced as <KARAF_HOME>.
Please remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

The installation of Karaf is as simple as uncompressing the .zip or .tar.gz
files. The next step is to start the server.

START THE SERVER

With Karaf already installed, open a command line console and change
directory to <KARAF_HOME>. To start the server, run the following command
in Windows:

bin\karaf.bat
respectively on Unix:
bin/karaf

You should see the following information on the command line console:

You can now run your first command. Simply type the <tab> key in the
console.

karaf@root>

admin:change-port admin:connect
admin:create admin:destroy
admin:list admin:start

admin:stop config:cancel
config:edit config:list
config:propappend config:propdel
config:proplist config:propset
config:update dev:dynamic-import
dev: framework dev:print-stack-traces

1. QUICK START

http://karaf.apache.org/index/community/download.html

dev:show-tree
features:info
features:list
features:refreshurl
features:uninstall
log:display-exception
log:set
0sgi:headers
osgi:list
osgi:refresh
osgi:restart
osgi:start
osgi:stop
0sgi:update
packages:imports
shell:clear
shell:echo
shell:grep
shell:if
shell:java
shell:new
shell:sleep
shell:tac
ssh:sshd

clear

echo

grep

if

java

new

sleep

tac

headers

list

refresh

restart

start

stop

karaf@root>

features:adduUrl
features:install
features:listUrl
features: removeUrl
log:display
log:get
osgi:bundle-level
osgi:install
0sgi:ls
osgi:resolve
0sgi:shutdown
osgi:start-level
osgi:uninstall
packages:exports
shell:cat
shell:each
shell:exec
shell:history
shell:info
shell:logout
shell:printf
shell:sort
ssh:ssh

cat

each

exec

history

info

logout

printf

sort
bundle-level
install

1s

resolve

shutdown
start-level

uninstall update

You can then grab more specific help for a given command using the --help

option for this command:

1. QUICK START

10

karaf@root> admin:create --help
DESCRIPTION
admin:create

Create a new instance.

SYNTAX
admin:create [options] name
ARGUMENTS
name
The name of the new container instance
OPTIONS
--help

Display this help message
-f, --feature
Initial features. This option can be specified
multiple times to enable multiple initial

features
-p, --port

Port number for remote shell connection
-1, --location

Location of the new container instance in the
file system
-furl, --featureURL
Additional feature descriptor URLs. This option
can be specified multiple times to add
multiple URLs

karaf@root>

Note that the console supports tab completion, so you just need to enter ad
<tab> cr <tab> instead of admin:create.

DEPLOY A SAMPLE APPLICATION

While you will learn in the Karaf user's guide how to fully use and leverage
Apache Karaf, let's install a sample Apache Camel application for now:

In the console, run the following commands:

1. QUICK START

http://camel.apache.org

features:addurl mvn:org.apache.camel/camel-example-0sgi/2.7.0/
xml/features
features:install camel-example-osgi

The example installed is using Camel to start a timer every 2 seconds and
output a message on the console.

The previous commands download the Camel features descriptor and install
the example feature.

>>>> SpringDSL set body: Fri Jan 07 11:59:51 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:53 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:55 CET 2011

Stopping and uninstalling the sample application
To stop this demo, run the following command:

features:uninstall camel-example-osgi

Common Problems

1. Launching Karaf can result in a deadlock in Felix during module
dependency resolution.
This is often a result of sending a SIGINT (control-C) to the process
when it will not cleanly exit.
This can corrupt the caches and cause startup problems in the very
next launch. It is fixed by emptying the component cache:

rm -rf data/cache/*

STOPPING KARAF

To stop Karaf from the console, enter D in the console:
~D
Alternatively, you can also run the following command:

0sgi:shutdown

1. QUICK START

11

SUMMARY

This document showed how simple it is to have Apache Karaf up and running.
The overall time for getting the server running should be less than five
minutes if you have the prerequisite (Java 1.5) already installed. Additionally,
this article also showed you how to deploy and test a simple

Apache Camel application.

12 1. QUICK START

USERS GUIDE 13

14

This chapter describes how to install Apache Karaf for both Unix and
Windows platforms, including

prerequisite software and necessary download links.

PRE-INSTALLATION REQUIREMENTS

Hardware:
¢ 20 MB of free disk space for the Apache Karaf x.y binary distribution.
Operating Systems:

¢ Windows: Windows Vista, Windows XP SP2, Windows 2000.

¢ Unix: Ubuntu Linux, Powerdog Linux, MacOS, AlIX, HP-UX, Solaris, any
Unix platform that supports Java.

Environment:

* Java SE Development Kit 1.5.x or greater (http://www.oracle.com/
technetwork/java/javase/).

* The JAVA_HOME environment variable must be set to the directory
where the Java runtime is installed, e.g., c:\Program
Files\jdk.1.5.0 06. To accomplish that, press Windows key and
Break key together, switch to "Advanced" tab and click on
"Environment Variables". Here, check for the variable and, if
necessary, add it.

BUILDING FROM SOURCES

If you intend to build Karaf from the sources, the requirements are a bit
different:
Hardware:
e 200 MB of free disk space for the Apache Karaf x.y source
distributions or SVN checkout, the Maven build and the dependencies
Maven downloads.
Environment:
* Java SE Developement Kit 1.5.x or greater (http://www.oracle.com/
technetwork/java/javase/).
* Apache Maven 2.2.1 (http://maven.apache.org/download.html).

INSTALLATION

http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://maven.apache.org/download.html

Building on Windows

This procedure explains how to download and install the source distribution
on a Windows system. NOTE: Karaf requires Java 5 is compile, build and run.

1.

2.

From a browser, navigate to http://karaf.apache.org/index/
community/download.html.

Scroll down to the "Apache Karaf" section and select the desired
distribution.

For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.zip.

Extract Karaf from the ZIP file into a directory of your choice. Please
remember the restrictions concerning illegal characters in Java paths,
e.g. !, % etc.

Build Karaf using Maven 2.2.1 or greater and Java 5.

The recommended method of building Karaf is the following:

cd [karaf install dir]\src

where [karaf install dir] is the directory in which Karaf was
installed.

mvn
Both steps take around 10 to 15 minutes.

Unzip the distribution using your favorite zip tool. The windows
distribution is available at

[karaf install dir]\assembly\target\apache-karaf-x.y.zip

Proceed to the Starting Karaf chapter.

Building on Unix

This procedure explains how to download and install the source distribution
on a Unix system. This procedure assumes the Unix machine has a browser.
Please see the previous Unix Binary Installation section for ideas on how to
install Karaf without a browser. NOTE: Karaf requires Java 5 to compile, build
and run.

1. From a browser, navigate to http://karaf.apache.org/download.html.

2.

Scroll down to the "Apache Karaf" section and select the desired
distribution.

For a source distribution, the filename will be similar to: apache-
karaf-x.y-src.tar.gz.

Extract the files from the ZIP file into a directory of your choice. For
example:

INSTALLATION

15

http://karaf.apache.org/index/community/download.html
http://karaf.apache.org/index/community/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
http://karaf.apache.org/download.html

16

6.

gunzip apache-karaf-x.y-src.tar.gz
tar xvf apache-karaf-x.y-src.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.g. !, % etc.

Build Karaf using Maven:

The preferred method of building Karaf is the following:

cd [karaf install dir]/src

where [karaf_install_dir] is the directory in which Karaf was installed.
mvn

Uncompress the distribution that has just been created

cd [karaf install dir]/assembly/target
gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

Proceed to the Starting Karaf chapter.

INSTALLATION PROCEDURE FOR WINDOWS

This procedure explains how to download and install the binary distribution
on a Windows system.

1.

2.

From a browser, navigate to http://karaf.apache.org/index/
community/download.html.

Scroll down to the "Apache Karaf" section and select the desired
distribution.

For a binary distribution, the filename will be similar to: apache-
karaf-x.y.zip.

Extract the files from the ZIP file into a directory of your choice.
Please remember the restrictions concerning illegal characters in
Java paths, e.qg. !, % etc.

4. Proceed to the Starting Karaf chapter.
5. Optional: see enabling Colorized Console Output On Windows

Handy Hint

containing illegal characters for Java paths, e.g. !, % etc., you may
add a bat file to start |-> startup that executes

In case you have to install Karaf into a very deep path or a path

INSTALLATION

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
http://karaf.apache.org/index/community/download.html
http://karaf.apache.org/index/community/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/colorized-console.html

subst S: "C:\your very % problematic path!\KARAF"

so your Karaf root directory is S: - which works for sure and is short
to type.

INSTALLATION PROCEDURE FOR UNIX

This procedure explains how to download and install the binary distribution
on a Unix system.
1. From a browser, navigate to http://karaf.apache.org/download.html.
2. Scroll down to the "Apache Karaf" section and select the desired
distribution.
For a binary Unix distribution, the filename will be similar to: apache-
karaf-x.y.tar.gz.
3. Extract the files from the gzip file into a directory of your choice. For
example:

gunzip apache-karaf-x.y.tar.gz
tar xvf apache-karaf-x.y.tar

Please remember the restrictions concerning illegal characters in
Java paths, e.qg. !, % etc.
4. Proceed to the Starting Karaf chapter.

POST-INSTALLATION STEPS

Thought it is not always required, it is strongly advised to set up the

JAVA HOME environment property to point to the DK you want Karaf to use
before starting it.

This property is used to locate the java executable and should be configured
to point to the home directory of the Java SE 5 or 6 installation.

INSTALLATION

17

http://karaf.apache.org/download.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf.html

The directory layout of a Karaf installation is as follows:

e /bin: startup scripts

e /etc: configuration files

e /data: working directory
o /cache: OSGi framework bundle cache
o /generated-bundles: temporary folder used by the deployer
o /log: log files

e /deploy: hot deploy directory

* /instances: directory containing child instances

¢ /1lib: contains the bootstrap libraries
o /lib/ext: directory for JRE extensions
o /lib/endorsed: directory for endorsed libraries

e /system: OSGi bundles repository, laid out as a Maven 2 repository

The data folder contains all the working and temporary files for
Karaf. If you want to restart from a clean state, you can wipe out this
directory, which has the same effect as using the clean option.

18 DIRECTORY STRUCTURE

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/child-instances.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/start-stop#Starting Karaf from clean.html

This chapter describes how to start and stop Apache Karaf and the various
options that are available.

STARTING KARAF

On Windows

From a console window, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf install dir]

where karaf_install dir is the directory in which Karaf was installed, e.g.,
c:\Program Files\apache-karaf-x.y.

Then type:

bin\karaf.bat

On Unix

From a command shell, change to the installation directory and run Karaf.
For the binary distribution, go to

cd [karaf install dir]

where karaf install dir is the directory in which Karaf was installed, e.qg.,
/usr/local/apache-karaf-x.y.

Then type:

bin/karaf

Warning

Do NOT close the console or shell in which Karaf was started, as
that will terminate Karaf (unless Karaf was started with nohup).

STARTING AND STOPPING KARAF

19

20

STARTING KARAF WITHOUT CONSOLE

Karaf can be started without the console if you don't intend to use it (one can
always connect using the remote ssh access) using the following command:

bin\karaf.bat server
or, on Unix:

bin\karaf server

STARTING KARAF IN THE BACKGROUND

Karaf can be easily started as a background process using the following
command:

bin\start.bat
or, on Unix:

bin\start

STARTING KARAF FROM CLEAN

Karaf can be reset to a clean state by simply deleting the
[karaf install dir]/data folder.
For convenience, a parameter on the karaf and start scripts is available:

bin/start clean

STOPPING KARAF

For both Windows and Unix installations, you can perform a clean shutdown
of Karaf by using the following command when inside a Karaf console:

0sgi:shutdown
or simply:

shutdown

STARTING AND STOPPING KARAF

The shutdown command asks you to confirm that you really want to
shutdown. If you are sure about the shutdown and avoid the confirmation
message, you can use the -f or --force option:

osgi:shutdown -f

It's also possible to delay the shutdown using the time argument. The time
argument can have different formats. First, it can be an absolute time in the
format hh:mm, in which hh is the hour (1 or 2 digits) and mm is the minute of
the hour (in two digits). Second, it can be in the format +m, in which m is the
number of minutes to wait. The work now is an alias for +0.

The following command will shutdown Karaf at 10:35am:
0sgi:shutdown 10:35
The following command will shutdown Karaf in 10 minutes:
osgi:shutdown +10

If you're running from the main console, exiting the shell using lLogout or
Ctrl+D will also terminate the Karaf instance.

From a command shell, you can run the following command:
bin\stop.bat
or, on Unix:

bin/stop

STARTING AND STOPPING KARAF

21

22

VIEWING AVAILABLE COMMANDS

To see a list of the available commands in the console press the <tab> key at

the prompt.

root@root> Display all 182 possibilities? (y or n)

*:help

addurl
admin:change-rmi-registry-port
admin:change-ssh-port
admin:create
admin:destroy
admin: rename
admin:start
bundle-level
cancel

change-opts
change-rmi-registry-port
clear

commandlist
config:edit
config:list
config:propdel
config:proplist
config:update
connect
create-dump
destroy
dev:dynamic-import
dev:framework
dev:restart
dev:show-tree
display
display-exception
each

echo

exec

exports

USING THE CONSOLE

admin:change-opts
admin:connect
admin:list
admin:stop

cat
change-ssh-port
config:cancel
config:propappend
config:propset
create
dev:create-dump
dev:print-stack-traces
dev:watch
dynamic-import
edit

features:addurl

features:info
features:install
features:listrepositories
features:listurl
features:refreshurl
features: removerepository
features:uninstall
framework

grep

head

help

history

imports

info

jaas:cancel
jaas:commandlist
jaas:manage
jaas:roleadd
jaas:update
jaas:useradd
jaas:userlist
java
listrepositories
listurl
log:clear
log:display
log:get

log:set

logout

1s

more

new

0sgi:headers
osgi:info
osgi:list
0sgi:ls
osgi:resolve
osgi:restart
osgi:start
osgi:start-level
osgi:uninstall
0sgi:update
packages:imports

features:list
features:listversions
features: removeurl
get

headers

if

install

jaas:list
jaas:roledel
jaas:userdel

list

listversions
log:display-exception
log:tail

manage
osgi:bundle-level
osgi:install
osgi:refresh
0sgi:shutdown
osgi:stop

packages:exports

USING THE CONSOLE

23

24

print-stack-traces printf
propappend

propdel proplist
propset

refresh refreshurl
removerepository

removeurl rename
resolve

restart roleadd
roledel

set shell:cat
shell:clear

shell:each shell:echo
shell:exec

shell:grep shell:head
shell:history

shell:if shell:info
shell:java

shell:logout shell:more
shell:new

shell:printf shell:sleep
shell:sort

shell:tac shell:tail
show-tree

shutdown sleep

sort

ssh ssh:ssh
ssh:sshd

sshd start
start-level

stop tac

tail

uninstall update
useradd

userdel userlist
watch

root@root>

The <tab> key toggles autocompletion anywhere on the line, so if you want
to see the commands in the osgi group, type the first letters and hit <tab>.
Depending on the commands, autocompletion may be available for options
and arguments too.

USING THE CONSOLE

GETTING HELP FOR A COMMAND

To view help on a particular command, type the command followed by - -
help or use the help command followed by the name of the command:

karaf@root> features:list --help
DESCRIPTION
features:list

Lists all existing features available from the defined
repositories.

SYNTAX
features:list [options]

OPTIONS
--help
Display this help message
-i, --installed
Display a list of all installed features
only

MORE...

The list of all available commands and their usage is also available in a
dedicated section.

You'll find a more in-depth guide to the shell syntax in the developers
guide.

The console can also be easily extended by creating new commands as
explained in the developers guide.

USING THE CONSOLE

25

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/commands.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/shell-syntax.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/shell-syntax.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/extending-console.html

The default Karaf installation does not produce colorized console output on
Windows like it does on Unix based systems. To enable it, you must install
LGPL licensed library JNA. This can be done using a few simple commands in
the Karaf console:

You first need to install the JNA library:

karaf@root> osgi:install wrap:mvn:http://download.java.net/
maven/2'net.java.dev.jna/jna/3.1.0

Next you need either restart karaf or you run the following Karaf commands
to refresh the Karaf Console:

karaf@root> osgi:list | grep "Apache Karaf :: Shell Console"
Take note of the ID of the bundle, in my case it was 14 and then run:

osgi:refresh 14

| TODO: refactor that using a nicer script to find the correct bundle |

ENABLING COLORIZED CONSOLE ON WINDOWS

https://jna.dev.java.net/

INTRODUCTION

The Karaf Wrapper (for service wrapper) makes it possible to install Karaf as
a Windows Service. Likewise, the scripts shipped with Karaf also make it very
easy to install Karaf as a daemon process on Unix systems.

The Wrapper correctly handles "user's log outs" under Windows, service
dependencies, and the ability to run services which interact with the desktop.

SUPPORTED PLATFORMS

The following platforms are supported by the Karaf Wrapper:
e AIX

FreeBSD

HP-UX, 32-bit and 64-bit versions

SGI Irix

Linux kernels 2.2.x, 2.4.x, 2.6.x. Known to work with Debian, Ubuntu,

and Red Hat, but should work with any distribution. Currently

supported on both 32-bit and 64-bit x86, Itanium, and PPC systems.

¢ Macintosh OS X

e Sun OS, Solaris 9 and 10. Currently supported on both 32-bit and
64-bit sparc, and x86 systems.

* Windows - Windows 2000, XP, 2003, Vista, 2008 and Windows 7.
Currently supported on both 32-bit and 64-bit x86 and Itanium
systems. Also known to run on Windows 98 and ME, however due the
lack of support for services in the OS, the Wrapper can be run only in
console mode.

INSTALLATION

Karaf Wrapper is an optional feature. To install it, simply type:
karaf@root> features:install wrapper

Once installed, wrapper feature will provide wrapper:install new command
in the Karaf shell:

SERVICE WRAPPER

27

28

karaf@root> wrapper:install --help
DESCRIPTION
wrapper:install

Install the container as a system service in the 0S.

SYNTAX
wrapper:install [options]

OPTIONS
-s, --start-type
Mode in which the service is installed.
AUTO_START or DEMAND START (Default: AUTO START)
(defaults to AUTO START)
--help
Display this help message
-n, --name
The service name that will be used when
installing the service. (Default: karaf)
(defaults to karaf)

-d, --display
The display name of the service.
-D, --description

The description of the service.
(defaults to)

Using wrapper:install, you can install Karaf as a service.

For instance, to register Karaf as a service (depending of the running OS),
in automatic start mode, simply type:

karaf@root> wrapper:install -s AUTO START -n KARAF -d Karaf -D
"Karaf Service"

For instance, on Linux, wrapper:install command will do:

karaf@root> wrapper:install -s AUTO START -n KARAF -d Karaf -D
"Karaf Service"

Creating file: /home/onofreje/apache-karaf-2.1.3/bin/

KARAF -wrapper

Creating file: /home/onofreje/apache-karaf-2.1.3/bin/
KARAF-service

Creating file: /home/onofreje/apache-karaf-2.1.3/etc/

KARAF -wrapper.conf

Creating file: /home/onofreje/apache-karaf-2.1.3/1ib/

SERVICE WRAPPER

libwrapper.so

Creating file: /home/onofreje/apache-karaf-2.1.3/1ib/
karaf-wrapper.jar

Creating file: /home/onofreje/apache-karaf-2.1.3/1ib/
karaf-wrapper-main.jar

Setup complete. You may wish to tweak the JVM properties in

the wrapper configuration file:
/home/onofreje/apache-karaf-2.1.3/etc/KARAF-wrapper.conf

before installing and starting the service.

The way the service is installed depends upon your flavor of
Linux.

On Redhat/Fedora/Cent0S Systems:
To install the service:
$ ln -s /home/onofreje/apache-karaf-2.1.3/bin/KARAF-service
/etc/init.d/
$ chkconfig KARAF-service --add

To start the service when the machine is rebooted:
$ chkconfig KARAF-service on

To disable starting the service when the machine is rebooted:
$ chkconfig KARAF-service off

To start the service:
$ service KARAF-service start

To stop the service:
$ service KARAF-service stop

To uninstall the service :
$ chkconfig KARAF-service --del
$ rm /etc/init.d/KARAF-service

On Ubuntu/Debian Systems:
To install the service:
$ ln -s /home/onofreje/apache-karaf-2.1.3/bin/KARAF-service
/etc/init.d/

To start the service when the machine is rebooted:
$ update-rc.d KARAF-service defaults

SERVICE WRAPPER

29

To disable starting the service when the machine is rebooted:
$ update-rc.d -f KARAF-service remove

To start the service:
$ /etc/init.d/KARAF-service start

To stop the service:
$ /etc/init.d/KARAF-service stop

To uninstall the service :
$ rm /etc/init.d/KARAF-service

30 SERVICE WRAPPER

The Karaf web console provides a graphical overview of the runtime.
You can use it to:
¢ install and uninstall features
start, stop, install bundles
create child instances
configure Karaf
view logging informations

INSTALLING THE WEB CONSOLE

The web console is not installed by default. To install it, run the following
command from the Karaf prompt:

root@karaf> features:install webconsole

ACCESSING THE WEB CONSOLE

To access the console for an instance of Karaf running locally, enter the
following address in your web browser:

http://localhost:8181/system/console

Log in with the username karaf and the password karaf. If you have
changed the default user or password, use the one you have configured.

CHANGING THE WEB CONSOLE PORT NUMBER

By default, the console runs on port 8181. You can change the port number
by creating the properties file, etc/org.ops4j.pax.web.cfg, and adding the
following property setting (changing the port number to whatever value
desired):

org.osgi.service.http.port=8181

WEB CONSOLE

31

32

CONFIGURING REMOTE INSTANCES

It does not always make sense to manage an instance of Karaf using its local
console. You can manage Karaf remotely using a remote console.

When you start Karaf, it enables a remote console that can be accessed
over SSH from any other Karaf console or plain SSH client. The remote
console provides all the features of the local console and gives a remote user
complete control over the container and services running inside of it.

The SSH hostname and port number is configured in the
[karaf _install dir]/etc/org.apache.karaf.shell.cfg configuration file
with the following default values:

sshPort=8101

sshHost=0.0.0.0

sshRealm=karaf
hostKey=${karaf.base}/etc/host.key

You can change this configuration using the config commands or by editing
the above file, but you'll need to restart the ssh console in order for it to use
the new parameters.

define helper functions

bundle-by-sn = { bm = new java.util.HashMap ; each (bundles) {
$bm put ($it symbolicName) $it } ; $bm get $1 }
bundle-id-by-sn = { b = (bundle-by-sn $1) ; if { $b } { $b
bundleld } { -1 } }

edit config

config:edit org.apache.karaf.shell

config:propset sshPort 8102

config:update

force a restart

osgi:restart --force (bundle-id-by-sn
org.apache.karaf.shell.ssh)

USING REMOTE INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/configuration.html

CONNECTING AND DISCONNECTING REMOTELY

Using the ssh:ssh command
You can connect to a remote Karaf's console using the ssh:ssh command.

karaf@root> ssh:ssh -1 karaf -P karaf -p 8101 hostname

The default password is karaf but we recommend changing it. See
the security section for more informations.

To confirm that you have connected to the correct Karaf instance, type
shell:info at the karaf> prompt. Information about the currently
connected instance is returned, as shown.

Karaf
Karaf home /local/apache-karaf-2.0.0
Karaf base /local/apache-karaf-2.0.0
0SGi Framework org.eclipse.osgi -
3.5.1.R35x v20090827
JVM
Java Virtual Machine Java HotSpot(TM) Server VM

version 14.1-b02

Using the Karaf client

The Karaf client allows you to securely connect to a remote Karaf instance
without having to launch a Karaf instance locally.

For example, to quickly connect to a Karaf instance running in server
mode on the same machine, run the following command from the karaf-
install-dir directory:
bin/client

More commonly, you would provide a hostname, port, username and
password to connect to a remote instance. And, if you were using the client
within a larger script, you could append console commands as follows:

bin/client -a 8101 -h hostname -u karaf -p karaf
features:install wrapper

To display the available options for the client, type:

USING REMOTE INSTANCES

33

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/ssh-ssh.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/users-guide/security.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/shell-info.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

> bin/client --help
Apache Karaf client

-a [port] specify the port to connect to

-h [host] specify the host to connect to

-u [user] specify the user name

-p [password] specify the password

--help shows this help message

-V raise verbosity

-r [attempts] retry connection establishment (up to attempts
times)

-d [delay] intra-retry delay (defaults to 2 seconds)

[commands] commands to run

If no commands are specified, the client will be put in an
interactive mode

Using a plain SSH client
You can also connect using a plain SSH client from your *nix system or
Windows SSH client like Putty.

~$ ssh -p 8101 karaf@localhost
karaf@localhost's password:

Disconnecting from a remote console

To disconnect from a remote console, press Ctrl+D, shell:logout or simply
logout at the Karaf prompt.

STOPPING A REMOTE INSTANCE

Using the remote console

If you have connected to a remote console using the ssh:ssh command or
the Karaf client, you can stop the remote instance using the osgi:shutdown
command.

Pressing Ctrl+D in a remote console simply closes the remote
connection and returns you to the local shell.

34 USING REMOTE INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/ssh-ssh.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/osgi-shutdown.html

Using the Karaf client

To stop a remote instance using the Karaf client, run the following from the
karaf-install-dir/1lib directory:

bin/client -u karaf -p karaf -a 8101 hostname osgi:shutdown

USING REMOTE INSTANCES 35

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

36

A child instance of Karaf is a copy that you can launch separately and deploy
applications into. An instance does not contain the full copy of Karaf, but only
a copy of the configuration files and data folder which contains all the
runtime information, logs and temporary files.

USING THE ADMIN CONSOLE COMMANDS

The admin console commands allow you to create and manage instances of
Karaf on the same machine. Each new runtime is a child instance of the
runtime that created it. You can easily manage the children using names
instead of network addresses. For details on the admin commands, see the
admin commands.

CREATING CHILD INSTANCES

You create a new runtime instance by typing admin:create in the Karaf
console.

As shown in the following example, admin:create causes the runtime to
create a new runtime installation in the active runtime's {{instances/name}
directory. The new instance is a new Karaf instance and is assigned an SSH
port number based on an incremental count starting at 8101 and a RMI
registry port number based on an incremental count starting at 1099.

karaf@root> admin:create finn

Creating new instance on SSH port 8106 and RMI port 1100 at:
/home/fuse/esb4/instances/finn

Creating dir: /home/fuse/esb4/instances/finn/bin
Creating dir: /home/fuse/esb4/instances/finn/etc
Creating dir: /home/fuse/esb4/instances/finn/system
Creating dir: /home/fuse/esb4/instances/finn/deploy
Creating dir: /home/fuse/esb4/instances/finn/data
Creating file: /home/fuse/esb4/instances/finn/etc/
config.properties

Creating file: /home/fuse/esb4/instances/finn/etc/
java.util.logging.properties

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.felix.fileinstall-deploy.cfg

MANAGING CHILD INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-create.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/name.html

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.log.cfg

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.features.cfg

Creating file: /home/fuse/esb4/instances/finn/etc/
org.ops4j.pax.logging.cfg

Creating file: /home/fuse/esb4/instances/finn/etc/
org.ops4j.pax.url.mvn.cfg

Creating file: /home/fuse/esb4/instances/finn/etc/
startup.properties

Creating file: /home/fuse/esb4/instances/finn/etc/
system.properties

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.shell.cfg

Creating file: /home/fuse/esb4/instances/finn/etc/
org.apache.karaf.management.cfg

Creating file: /home/fuse/esb4/instances/finn/bin/karaf
Creating file: /home/fuse/esb4/instances/finn/bin/start
Creating file: /home/fuse/esb4/instances/finn/bin/stop
karaf@root>

CHANGING A CHILD'S PORTS

You can change the SSH port number assigned to a child instance using the
admin:change-ssh-port command. The syntax for the command is:

admin:change-ssh-port instance port

Note that the child instance has to be stopped in order to run this command.
In the same way, you can change the RMI registry port number assigned

to a child instance using the admin:change-rmi-registry-port command.
The syntax for the command is:
admin:change-rmi-registry-port instance port

Note that the child instance has to be stopped in order to run this command.

STARTING CHILD INSTANCES

New instances are created in a stopped state. To start a child instance and
make it ready to host applications, use the admin:start command. This

MANAGING CHILD INSTANCES

37

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-change-port.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-change-rmi-registry-port.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-start.html

38

command takes a single argument instance-name that identifies the child
you want started.

LISTING ALL CONTAINER INSTANCES

To see a list of all Karaf instances running under a particular installation, use
the admin:1list command.

karaf@root>admin:list
SSH Port RMI Port State Pid Name

[8107] [1106] [Started] [10628] harry
[8101] [1099] [Started] [20076] root
[8106] [1105] [Stopped 1 [15924] dick
[8105] [1104] [Started] [18224] tom
karaf@root>

CONNECTING TO A CHILD INSTANCE

You can connect to a started child instance's remote console using the
admin:connect command which takes three arguments:

admin:connect [-u username] [-p password] instance

Once you are connected to the child instance, the Karaf prompt changes to
display the name of the current instance, as shown:

karaf@harry>

STOPPING A CHILD INSTANCE

To stop a child instance from within the instance itself, type osgi:shutdown
or simply shutdown.

To stop a child instance remotely, in other words, from a parent or sibling
instance, use the admin:stop:

admin:stop instance

DESTROYING A CHILD INSTANCE

You can permanently delete a stopped child instance using the
admin:destroy command:

MANAGING CHILD INSTANCES

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/instance-name.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-list.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-connect.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-stop.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-destroy.html

admin:destroy instance

Note that only stopped instances can be destroyed.

USING THE ADMIN SCRIPT

You can also manage the local instances of Karaf. The admin script in the
karaf-install-dir/bin directory provides the same commands as the
admin console commands, apart from admin: connect

> bin/admin
Available commands:
change-ssh-port - Changes the secure shell port of an
existing container instance.
change-rmi-registry-port - Changes the RMI registry port
(used by management layer) of an existing container instance.
create - Creates a new container instance.
destroy - Destroys an existing container instance.
list - List all existing container instances.
start - Starts an existing container instance.
stop - Stops an existing container instance.
Type 'command --help' for more help on the specified command.

For example, to list all the instances of Karaf on the local machine, type:

bin/admin list

MANAGING CHILD INSTANCES 39

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/admin-connect.html

40

MANAGING USERS AND PASSWORDS

The default security configuration uses a property file located at karaf -
install-dir/etc/users.properties to store authorized users and their
passwords.

The default user name is karaf and the associated password is karaf too.
We strongly encourage you to change the default password by editing the
above file before moving Karaf into production.

The users are currently used in three different places in Karaf:

* access to the SSH console
e access to the JMX management layer
* access to the Web console
Those three ways all delegate to the same JAAS based security
authentication.
The users.properties file contains one or more lines, each line
defining a user, its password and the associated roles.

user=password[,role][,role]...

MANAGING ROLES

JAAS roles can be used by various components. The three management
layers (SSH, JMX and WebConsole) all use a global role based authorization
system. The default role name is configured in the etc/system.properties
using the karaf.admin. role system property and the default value is admin.
All users authenticating for the management layer must have this role
defined.

The syntax for this value is the following:
[classname:]Iprincipal

where classname is the class name of the principal object (defaults to
org.apache.karaf.jaas.modules.RolePrincipal) and principal is the name of the
principal of that class (defaults to admin).

Note that roles can be changed for a given layer using ConfigAdmin in the
following configurations:

Layer PID Value

SECURITY

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

SSH org.apache.karaf.shell sshRole

JMX org.apache.karaf.management jmxRole

Web org.apache.karaf.webconsole role

ENABLING PASSWORD ENCRYPTION

In order to not keep the passwords in plain text, the passwords can be stored
encrypted in the configuration file.
This can be easily enabled using the following commands:

edit config

config:edit org.apache.karaf.jaas
config:propset encryption.enabled true
config:update

force a restart

dev:restart

The passwords will be encrypted automatically in the etc/
users.properties configuration file the first time the user logs in.
Encrypted passwords are prepended with {CRYPT} so that are easy to
recognize.

MANAGING REALMS

More information about modifying the default realm or deploying new realms
is provided in the developers guide.

DEPLOYING SECURITY PROVIDERS

Some applications require specific security providers to be available, such as
BouncyCastle. The JVM impose some restrictions about the use of such jars:
they have to be signed and be available on the boot classpath. One way to
deploy those providers is to put them in the JRE folder at $JAVA HOME/jre/
lib/ext and modify the security policy configuration ($JAVA HOME/jre/1lib/
security/java.security) in order to register such providers.

While this approach works fine, it has a global effect and requires you to
configure all your servers accordingly.

Karaf offers a simple way to configure additional security providers:

e put your provider jar in karaf-install-dir/lib/ext

SECURITY

41

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/developers-guide/security-framework.html
http://www.bouncycastle.org
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

42

* modify the karaf-install-dir/etc/config.properties
configuration file to add the following property

org.apache.karaf.security.providers = xxx,yyy
The value of this property is a comma separated list of the provider class
names to register.

For example:

org.apache.karaf.security.providers =
org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those
providers from the system bundle so that all bundles can access those. It can
be done by modifying the org.osgi.framework.bootdelegation property in
the same configuration file:

org.osgi.framework.bootdelegation = ...,org.bouncycastle*

SECURITY

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/karaf-install-dir.html

Karaf provides failover capability using either a simple lock file system or a
JDBC locking mechanism. In both cases, a container-level lock system allows
bundles to be preloaded into the slave Karaf instance in order to provide
faster failover performance.

SIMPLE LOCK FILE

The simple lock file mechanism is intended for failover configurations where
instances reside on the same host machine.

To use this feature, edit the $KARAF_HOME/etc/system.properties file as
follows on each system in the master/slave setup:

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.SimpleFileLock
karaf.lock.dir=<PathToLockFileDirectory>
karaf.lock.delay=10

Note: Ensure that the karaf.lock.dir property points to the same directory
for both the master and slave instance, so that the slave can acquire the lock
only when the master releases it.

JDBC LOCKING

The JDBC locking mechanism is intended for failover configurations where
instances exist on separate machines. In this deployment, the master
instance holds a lock on a Karaf locking table hosted on a database. If the
master loses the lock, a waiting slave process gains access to the locking
table and fully starts its container.
To use this feature, do the following on each system in the master/slave

setup:

¢ Update the classpath to include the JDBC driver

* Update the $KARAF _HOME/bin/karaf script to have a unique JMX

remote port set if instances reside on the same host
* Update the $KARAF HOME/etc/system.properties file as follows:

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.DefaultJDBCLock

FAILOVER DEPLOYMENTS

43

44

karaf.
karaf.
karaf.
karaf.
karaf.
karaf.
karaf.
karaf.
karaf.

Note:

lock.
lock.
lock.
lock.
lock.
lock.
lock.
lock.
lock.

level=50

delay=10
jdbc.url=jdbc:derby://dbserver:1527/sample
jdbc.driver=org.apache.derby.jdbc.ClientDriver
jdbc.user=user

jdbc.password=password

jdbc.table=KARAF LOCK

jdbc.clustername=karaf

jdbc.timeout=30

This process will fail if a JDBC driver is not on the classpath.
The "sample" database referred to above will be created if it does not

exist.

The first Karaf instance to acquire the locking table is the master
instance.
If the connection to the database is lost, the master instance tries to
gracefully shutdown, allowing a slave instance to become master
when the database service is restored. The former master will require
a manual restart.

JDBC locking on Oracle

If you are using Oracle as your database for JDBC locking, the
karaf.lock.class property in the $KARAF_HOME/etc/system.properties
file must point to org.apache.karaf.main.OracleJDBCLock.

Otherwise, configure the system.properties file as normal for your setup,
for example:

karaf
karaf

karaf

karaf

karaf

. lock=
.lock.
karaf.
.lock.
karaf.
.lock.
karaf.
.lock.
karaf.

lock.

lock.

lock.

lock.

true

class=org.apache.karaf.main.OracleJDBCLock

jdbc.
jdbc.
jdbc.
jdbc.
jdbc.
jdbc.
jdbc.

url=jdbc:oracle:thin:@hostname:1521:XE
driver=oracle.jdbc.OracleDriver
user=user

password=password

table=KARAF LOCK

clustername=karaf

timeout=30

As with the default JDBC locking setup, the Oracle JDBC driver JAR file must
be in your classpath. You can ensure this by copying the ojdbc14.jar into
Karaf's 1ib folder before starting Karaf.

FAILOVER DEPLOYMENTS

Note: The karaf.lock.jdbc.url requires an active SID, which means you
must manually create a database instance before using this particular lock.

Derby

| TODO

MySQL

| TODO

CONTAINER-LEVEL LOCKING

Container-level locking allows bundles to be preloaded into the slave kernel

instance in order to provide faster failover performance. Container-level

locking is supported in both the simple file and JDBC locking mechanisms.
To implement container-level locking, add the following to the

$KARAF HOME/etc/system.properties file on each system in the master/

slave setup:

karaf.lock=true
karaf.lock.level=50
karaf.lock.delay=10

The karaf.lock. level property tells the Karaf instance how far into the
boot process to bring the OSGi container. All bundles with an ID equal or
lower to this start level will be started in that Karaf instance.

Bundle start levels are specified in $KARAF_HOME/etc/
startup.properties, in the format jar.name=1level. The core system
bundles have levels below 50, where user bundles have levels greater than
50.

Level Behavior

A 'cold' standby instance. Core bundles are not loaded into

1 container. Slaves will wait until lock acquired to start server.
A 'hot' standby instance. Core bundles are loaded into the
<50 container. Slaves will wait until lock acquired to start user level

bundles. The console will be accessible for each slave instance at
this level.

FAILOVER DEPLOYMENTS

45

46

This setting is not recommended as user bundles will end up being

>30 started.
Note: When using a 'hot' spare on the same host you need to set the JMX
remote port to a unique value to avoid bind conflicts. You can edit the Karaf

start script to include the following:

DEFAULT JAVA OPTS="-server $DEFAULT_ JAVA OPTS
-Dcom.sun.management. jmxremote.port=1100
-Dcom. sun.management. jmxremote.authenticate=false"

FAILOVER DEPLOYMENTS

Karaf provides a powerful logging system based on OPS4j Pax Logging.
In addition to being a standard OSGi Log service, it supports the following
APlIs:

Apache Commons Logging

SLF4)

Apache Log4j

Java Util Logging

Karaf also comes with a set of console commands that can be used to
display, view and change the log levels.

CONFIGURATION

Configuration file

The configuration of the logging system uses a standard Log4j configuration
file at the following location:

[karaf _install dir]/etc/org.ops4j.pax.logging.cfg

You can edit this file at runtime and any change will be reloaded and be
effective immediately.

Configuring the appenders

The default logging configuration defines three appenders:

¢ the stdout console appender is disabled by default. If you plan to
run Karaf in server mode only (i.e. with the locale console disabled),
you can turn on this appender on by adding it to the list of configured
appenders using the log4j.rootLogger property

¢ the out appender is the one enabled by default. It logs events to a
number of rotating log files of a fixed size. You can easily change the
parameters to control the number of files using maxBackupIndex and
their size size maxFileSize

¢ the sift appender can be used instead to provide a per-bundle log
file. The default configuration uses the bundle symbolic name as the
file name to log to

LOGGING SYSTEM

47

http://team.ops4j.org/wiki/display/paxlogging/Pax+Logging
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html

48

Changing the log levels

The default logging configuration sets the logging levels so that the log file
will provide enough information to monitor the behavior of the runtime and
provide clues about what caused a problem. However, the default
configuration will not provide enough information to debug most problems.

The most useful logger to change when trying to debug an issue with Karaf
is the root logger. You will want to set its logging level to DEBUG in the
org.ops4j.pax.logging.cfg file.

log4j.rootLogger=DEBUG, out, osgi:VmLogAppender

When debugging a problem in Karaf you may want to change the level of
logging information that is displayed on the console. The example below
shows how to set the root logger to DEBUG but limiting the information
displayed on the console to WARN.

log4j.rootLogger=DEBUG, out, stdout, osgi:VmLogAppender
log4j.appender.stdout.threshold=WARN

CONSOLE LOG COMMANDS

The log subshell comes with the following commands:
* log:clear: clear the log
* log:display: display the last log entries
* log:display-exception: display the last exception from the log
* log:get: show the log levels
* log:set: set the log levels
¢ log:tail: continuous display of the log entries
For example, if you want to debug something, you might want to run the
following commands:

> log:set DEBUG
. do something ...
> log:display

Note that the log levels set using the log: set commands are not persistent

and will be lost upon restart.
To configure those in a persistent way, you should edit the configuration file

LOGGING SYSTEM

/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-clear.html
/x1/asf/karaf-2.2.x/target/checkout/manual/target/manual/commands/log-display.html
