juDDI User Guide

A guide to using JUDDI

by Tom Cunningham, Kurt Stam, Jeff Faath, and The jUDDI Community

and thanks to Darrin Mison






=Y 7= o Vii

I B o Tox 0 o T=T o | @0 0 NVZ=T o1 i o o F- PP vii

1.1. Typographic CONVENLIONS ......ccuuuiiiiiiiiieei e e e e e e e e e eanas vii

1.2. PUll-QUOLE CONVENTIONS ....iiiiiieieiii ettt ix

1.3. NOtes and WaArININGS ......ovvinieiiiieiii e e e e e e e e e e e e e ea e eeaaes iX

2. We Need Feedback! ... X

L. UDDI REGISTIY iiiiiiiiii ittt e et e e e e e e e e e et e e e e e et e e e e e e e e e aaes 1
IS I 1 o o [3 o3 1o o [PPSR 1

R U 1 T =T £ 1S 1

2. GettiNG STAMEA ...eeiiiiiii e e ettt e e e aee 3
2.1. What Should | DOWNIOAA? .......ooiiiiiiieiii e 3

2.2, USING the JAR oo e et e 3

2.3. USING the WAR FlE ...oouiiiii e e 3

2.4. Using the Tomcat BUNIE .........ooiiiiiii e 3

2.5. USING JUDDI WED SEIVICES ....cevviiiiiiieiii ettt e e e e e 4

3. AUTNENTICALION oo e 7
1 0 I 1 1 £ To 11X 1o ) o IR 7

3.2. JUDDI AUTNENTICALION ...eeuiiiiiii e e 8

3.3, XMLDOCAULNENTICALION ..vuiiiiiiiiee et e e 8

3.4. CryptedXMLDOCAUNENTICALION ... .ccvvtieiiiiiei e 9

3.5. LDAP AULNENLICATION ...uiiiiiiiieeiiii et e e et e e e et s e e e eneneeeees 9

3.6. JB0OSS AUheNtiCAtiON .........oiiiiii e 10

E R B -1 2= Lo - ET TS T =Y U | o N 11
4.1. Derby OUt-Of-The-BOX ....ooiiiiiieii e 11

4.2, SWItCH 10 MYSQL ..ottt 13

4.3, SWILCH 10 POSIGIES ...ieiiieiiii et 14

A4, SWILCH 10 OFACIE ...t 15

4.5, SWItCH 10 HSQL ..ouiiiiiiiiii e e e e e e e e e e e e aa e 15

4.6. SWItCh t0 <Other AD> .oooiii e e 17

LT S (o To ] AT T=To [ I - | - P 19
L% I T 1 £ To 11X 1o ) o I PP 19

5.2, S0 DAt FllES ... 19

5.3. TOKEN N the SEEA DALaA ......oiiviiiiieiiii e e e e e 22

5.4, CUStOMEr SEEA Dal@ ..uiivniiiiieii e 22

6. JUDDI_CONFIQUIALION ..iitiiiii i e e e e e e e e e e e e et e e e e e eanns 23
LS 7% I T a1 o o [¥ Tox i o) IS PP 23

LI T 1 =T o (T =1 (o] o I PRSP 23

ORI r= 11 (1 o PP 23

L @ 11 =4 = 25

6.5, PrOXY SEINGS ...iieiiniiiiit ettt e 26

LSRN V=T a1 1o T o P 27

B.7. SUDSCIIPLION ..ttt ettt e e et e et et e e e et e e eenaaeaees 27

LS T = 10 ) = PP 28

7. USING the JUDDI-CHENT ...ttt e e e 29




jUDDI User Guide

4% T T 1 (o To 11X 1o ) o 1R PP 29

R o] 1T 0] =1 1] o PP P PR UPPPTT 29
7.2.1. JAX-WS TranSPOIT ..vuieiiiiiiiee et e e e e e e e anaas 32

7.2.2. RMI TFANSPOIT ..ottt ettt e e 33

7.2.3. INVM TTANSPOIT «.eiitiiiiiie e e e e e 34

7.3. UDDI ANNOTALIONS ....uiiieiiteeee et e e e e e e e e e e e e e e eenaeeeen 35
4% 5 T 1o o [T 1 o] o S PP 35

7.3.2. UDDISEervice ANNOALION .......occeueiiiiiiiieee e e e e 35

7.3.3. UDDIServiceBinding ANNOatioN ...........coceuuiiiiiiiiiieeii e 36

7.3.4. WebService EXamPIE ......cooouuiiiiiiieiee et 37

7.3.5. TeMPIAtNG KEYS ..vuiiiiiiiiii e e e e 38

7.4, ProgramiMAatiC USE .......u.ieiiuuueeeiiti ettt e ettt e et et e e et e e e et e e et et e e et et e e e eata s 38
7.4.1. WSDL REQISIIAtiON .....iiiiiiiiiieiii e e e e e e e e e 39

7.4.2. BPEL Process RegiStration ...........ccc.uiiiiiiiiiiiiiiiiieeeci e 40

7.4.3. Conventions around UDDIV3 registration ............c.ccceveiiiieiiiieeiineeiiieeeieens 40

7.5. Dynamic UDDI ServiCe LOOKUP ....c.uuuiiiiiiiiiiiiiiie ettt 42

ST 1T o= To 1= Uod = 42

7.7, SAMPIE COUL ... 43

7.8, RETEIENCES ..ot e et e e et e e et e e e et e aaea 43

8. Simple Publishing Using the jUDDI API .........iiiiiii e 45
8.1. UDDI Data MOUEI ......uiiiiiiiieiiii et e et e 45

8.2. JUDDI Additions to the MOdEl .........ccoouiiiiiiiii e 46

8.3. UDDI @nd JUDDI AP ..eeiiei ettt 47

8.4. GEtliNG STAMEA ....ccovtiiiiiii e e e e e 48
8.4.1. Simple Publishing EXample .........ccccoiiiiiiiiii e, 48

S TR T O] T 11 ] T o I PP 51

0. SUDB S CIIPIION o e 53
LS 200 1o o o 18 od 1T o I PP 53

9.2. Two node example setup: Sales and Marketing .........ccccceeeviieviiieeiin e, 53

9.3. Deploy the HelloSaleS SerVICE .....ccoouuiiiiiiiiiiii e 57

9.4. Configure a user to create SUDSCHPLIONS .........ovviiiiiiiiiii e 59

9.5. Synchronous NOHFICALIONS .......ccuuuiiiiiiii e 61

O o o T T =1 4 o PP 67
0 R [ g1 1o o [T o o PP 67
10.2. Changing the LIStENer POt ........coiiiiiii e e 67
10.3. Changing the Oracle SEqUENCE NAIME .........ccouuiiiiiiiiieieii et 67
OB T T ST =] o = SR 73

11. Deploying to JBOSS 6.0.0.GA ..o 75
500 O g1 o T [T 1 o o ISP 75
11.2. AAd JUAIV.WAL «.oeieeeiii e e et e ettt e e et e e e e e e eaes 75
11.3. Change WED.XMI ..o e e a e 75
11.4. CoNfiIUIe DAASOUITE ......uuiiiiiti ettt ettt e et e ettt e e e et e e e enaa e eeens 75

12. Deploying to GIassfish 2.1.1 ... 77
22 I [ 1 1o o [T o o PP 77




12.2. GIASSTISN JAIS ...cvvniiii i 77

12.3. Configure the JUDDI dat@SOUICE ........cccouuiiiiiiiiieiiii e 77
2 Yo o BT Co [ YA B o Y7 | 78
12.5. RUN JUOAD coeinieii ettt e et e e e e e aa s 79
F N =YY YT I 13 (o] YA P 81




vi



Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention
to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://
fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if
the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:
Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to
highlight key caps and key-combinations. For example:

To see the contents of the file ny_next _bestsel |i ng_novel in your current
working directory, enter the cat ny_next _best sel | i ng_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced
Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a
key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of
three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono- spaced Bol d. For example:

File-related classes include fi | esyst emfor file systems, fi | e for files, and di r
for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application nhames; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.
For example:

Vii


https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Choose System > Preferences > Mouse from the main menu bar to launch
Mouse Preferences. In the Buttons tab, click the Left-handed mouse check
box and click Close to switch the primary mouse button from the left to the right
(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >
Accessories > Character Map from the main menu bar. Next, choose Search
> Find from the Character Map menu bar, type the name of the character in the
Search field and click Next. The character you sought will be highlighted in the
Character Table. Double-click this highlighted character to place it in the Text
to copy field and then click the Copy button. Now switch back to your document
and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-
specific menu names; and buttons and text found within a GUI interface, all presented in
Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to
avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu
of the main menu bar' approach.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending
on circumstance. For example:

To connect to a remote machine using ssh, type ssh user nane@onai n. nanme
at a shell prompt. If the remote machine is exanpl e. comand your username on
that machine is john, type ssh j ohn@xanpl e. com

The mount -0 renount file-systemcommand remounts the named file
system. For example, to remount the / hone file system, the command is nount
-0 renount /hone.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package- ver si on-rel ease.

Note the words in bold italics above username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new
and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as

viii



Pull-quote Conventions

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from
the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono- spaced Ronan and presented thus:

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{

public static void main(String argsl[])
throws Exception

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

System.out.printin("Created Echo");

System.out.printin("Echo.echo('Hello") =" + echo.echo("Hello"));

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be
overlooked.




Preface

Note

A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring Important boxes won't cause data loss but may cause irritation
and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data
loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you!

For any issues you find, or improvements you have, please sign up for a JIRA account at https://
issues.apache.orgl/jira/secure/Dashboard.jspa and file a bug under the "jJUDDI" component.

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.




Chapter 1.

UDDI Registry

1.1. Introduction

The Universal Description, Discovery and Integration (UDDI) protocol is one of the major building
blocks required for successful Web services. UDDI creates a standard interoperable platform that
enables companies and applications to quickly, easily, and dynamically find and use Web services
over the Internet. UDDI also allows operational registries to be maintained for different purposes in
different contexts. UDDI is a cross-industry effort driven by major platform and software providers,
as well as marketplace operators and e-business leaders within the OASIS standards consortium.
UDDI has gone through 3 revisions and the latest version is 3.0.2. Additional information regarding
UDDI can be found at http://uddi.xml.org.

1.2. UDDI Registry

The UDDI Registry implements the UDDI specification. UDDI is a Web-based distributed directory
that enables businesses to list themselves on the Internet and discover each other, similar to a
traditional phone book's yellow and white pages. The UDDI registry is both a white pages business
directory and a technical specifications library. The Registry is designed to store information about
Businesses and Services and it holds references to detailed documentation.

UDDI Registry

1. Register 2. Lookup

Client

Figure 1.1. Invocation Pattern using the UDDI Registry



http://uddi.xml.org

Chapter 1. UDDI Registry

A business publishes services to the UDDI registry. A client looks up the service in the registry and
receives service binding information. The client then uses the binding information to invoke the
service. The UDDI APIs are SOAP based for interoperability reasons. The UDDI v3 specification
defines 9 APIs:

1. UDDI _Security_Port Type, defines the API to obtain a security token. With a valid security
token a publisher can publish to the registry. A security token can be used for the entire session.

2. UDDI _Publ i cation_Port Type, defines the API to publish business and service information to
the UDDI registry.

3. UDDI _I nqui ry_Port Type, defines the API to query the UDDI registry. Typically this APl does
not require a security token.

4. UDDI _Cust odyTr ansf er _Port Type, this API can be used to transfer the custody of a business
from one UDDI node to another.

5. UDDI _Subscri ption_Port Type, defines the APl to register for updates on a particular business
of service.

6. UDDI _Subscri ptionLi st ener _Port Type, defines the API a client must implement to receive
subscription notifications from a UDDI node.

7. UDDI _Repl i cati on_Port Type, defines the API to replicate registry data between UDDI nodes.

8. UDDI _Val ueSet Val i dati on_Port Type, by nodes to allow external providers of value set
validation. Web services to assess whether keyedReferences or keyedReferenceGroups are
valid.

9. UDDI _Val ueSet Cachi ng_Port Type, UDDI nodes may perform validation of publisher
references themselves using the cached values obtained from such a Web service.




Chapter 2.

Getting Started

2.1. What Should | Download?

The jUDDI server deploys as a WebARchive (war) named j uddi v3. war . Within jUDDI, there
are three downloadable files (j uddi - core. j ar,j uddi . war, andj uddi - t ontat . zi p). You should
determine which one to use depending on what level of integration you want with your application
and your platform / server choices.

JUDDI also ships with client side code, the j uddi - cl i ent . j ar. The jJUDDI server depends on the
juddi-client.jar in situations where one server communicates to another server. In this setup
one server acts as a client to the other server. The juddi-client.

2.2. Using the JAR

The juddi-core module produces a JAR which contains the jUDDI source and a jUDDI
persistence.xml configuration. jUDDI's persistence is being actively tested with both OpenJPA and
with Hibernate. If you are going to use only the JAR, you would need to directly insert objects into
jUDDI through the database back end or persistence layer, or configure your own Web Service
provider with the provided WSDL files and classes.

2.3. Using the WAR File

As with the JAR, you need to make a decision on what framework you would like to use when
building the WAR. jUDDI's architecture supports any JAX-WS compliant WS stack (Axis, CXF,
etc). The jUDDI 3.0.GA release ships with CXF in the Tomcat bundle, but any docs or descriptors
to support other WS stacks would be welcome contributions. Simply copy the WAR to the deploy
folder of your server (this release has been tested under Apache Tomcat 6.0.20), start your server,
and follow the directions under “using jUDDI as a Web Service”.

2.4. Using the Tomcat Bundle

The jUDDI Tomcat bundle packages up the jUDDI WAR, Apache Derby, and a few necessary
configuration files and provides the user with a pre-configured jUDDI instance. By default,
Hibernate is used as the persistence layer and CXF is used as a Web Service framework. To get
started using the Tomcat bundle, unzip the j uddi - t ontat - bundl e. zi p, and start Tomcat :

It is suggested that you use JDK 1.6 with the Tomcat 6 bundle. On Mac OS X you can either
change your JAVA_HOME settings or use / Appl i cations/Uilities/Java Preferences. app
to change your current JDK.




Chapter 2. Getting Started

Once the server is up and running can make sure the root data was properly installed by browsing
to http://localhost:8080/juddiv3

You should see the screen show in Figure 2.1, “jJUDDI Welcome Page”.

o« NN Apache jUDDI Registry

| | >} + [Fnup://localhost: 8080 juddiv3/ ¢ pla-

iEE Apple Yahoo! GoogleMaps YouTube Wikipedia MNews (92)* Popular~

jUDDi@Apache

Apache jUDDI version 3.0.0.SNAPSHOT

Welcome to Apache jUDDI!

jUuDDI Documentation

: ’ELTHE:;E listing Podd Lt b
— ivDDl Developer Guide
o Visit the Apache-jUDDI Home Page : :Dm 3.0.2 ;Dﬂi;;cmm
b M a b“g ™ LII.:'UI wik]
« Participate! We need you. . 1—'L.DD| Blog
o DD library et

UDDI Installation
jUDDI has been successfully installed!

Node Information

Root Partition: wddi:juddi.apache.org

Hode la: uddi: juddi. apache.org: businesses-asf

Mame: An Apache jUDDI Node

Description:  This is a UDDI v3 registry node as implemented by Apache jUDDI

Figure 2.1. jJUDDI Welcome Page

2.5. Using jUDDI Web Services

Once the jUDDI server is started, you can inspect the UDDI WebService API by browsing to http://
localhost:8080/juddiv3/services

You should see an overview of all the Services and their WSDLs.



http://localhost:8080/juddiv3
http://localhost:8080/juddiv3/services
http://localhost:8080/juddiv3/services

Using jUuDDI Web Services

a0 CXF - Service list
| > ] @http:.r,.FIn-::alhus.t:&tl-ﬂﬂ.fjuddivlfiewi:es & O Coogle
Available services: E
JUDDI_ Api_ Portl'yvpe Endpoint address:
o save_publisher hip:/localhost:R8080/juddiv 3/services/juddi-api
# delete_ClientSubscriptionlnfo Wsdl: {um;uddi-apache-
= deletc_publisher orgapi v3 pornTyvpe H JUDDIApiService
o adminDelete_tmodel Targetl namespace: urn;juddi-apache-
= save MNode org:api_v3i_pontTvpe
s gel_publisherDetail
& save_ ClientSubscriptionInfo
= invoke_SyncSubscription
s gei_allPublisherDenail
» save Clerk -
F
w

_—— — —— — — — — — — X% ‘.-I;I-i-f:;':

Figure 2.2. UDDI Services Overview

The services page shows you the available endpoints and methods available. Using any SOAP
client, you should be able to send some sample requests to jUDDI to test:




Chapter 2. Getting Started

File Tools Desktop Help

Bae 08 4 KX e
= ¢ Request 1 Wﬁ”?ﬂ”?ﬂ”?”&ﬁ”& ¥ B
29| Prajects
%Jlnuuirv l' b § Oo: http: fflocalhost: BOBO fjuddivg fservices fsecuri
P . . P <sgpapenviinvelope xZmlns: scapenv="http:/ schemas.xnlsoap,orgds

= I UDDlinguinServiceSoapBinding | | 2 ?;up-wmngub ar B B Orges) Al
& find_binding = | <scapenviBody>
E‘:‘ find business g . -curn:get_x:hmnken neerIn=w=rgat! r:red-"rnnl.r.i':-
1 — 4f FoapenviBo
5':' find_relatedBusinesses </ spapanviEnvelopes
=4 find_serice
&} Request 1
- find_thodel
® & get_bindingDetail —
3-S oot busnasinatal I —— I
B2 get_operationallnfo
EE,-;*_, get_serdceDetall Aut Headers (01 Amachments (09 W5-A
B2 get_thodelDetail L
— - - .
<spapifnvelope xmlns:scap= hitp://schemas.xmlsoap. or g/ soap/ en
E] Security =| <soap:Body> |
B8-I UDDISEEUHI‘,,EENEESDE;]BIHEIIH = <anthToken xmlns:nsli=*urn:uddi-orgipolicy w3_instancer
<authInforauthtokent £965eibl-E1ET-4604-9530-Focialsd
B_Il & discard_authTaoken E </ anthTPoken=
- lgeLauhToken s B
b ELthUkEn </ soaprEnvelope>
+ Feguest 1
|« N N | | <
Operation Properties Lo I D
Property | Value | Headers (5] Attachments (00 o0 000 055 (0
Description : respanse time. 299ms (560 bytes) 1:1
_ soapll log  http log  jettylog errorlog  memory log y

Figure 2.3. Getting an authToken using SoapUl




Chapter 3.

Authentication

3.1. Introduction

In order to enforce proper write access to jUuDDI, each request to jUDDI needs a valid aut hToken.
Note that read access is not restricted and therefore queries into the registries are not restricted.

To obtain a valid aut hToken a get Aut hToken() request must be made, where a Get Aut hToken
object is passed. On the Get Aut hToken object a userid and credential (password) needs to be set.

org.uddi.api_v3.GetAuthToken ga = new org.uddi.api_v3.GetAuthToken();
ga.setUserID(publd);
ga.setCred(™);

org.uddi.api_v3.AuthToken token = securityService.getAuthToken(ga);

The property juddi.auth in the j uddi . properties configuration file can be used to configure
how jUDDI is going to check the credentials passed in on the Get Aut hToken request. By default
jUDDI uses the JUDDI Aut hent i cat or implementation. You can provide your own authentication
implementation or use any of the ones mention below. The implementation needs to implement
the or g. apache. j uddi . aut h. Aut hent i cat or interface, and juddi.auth property should refer to
the implementation class.

There are two phases involved in Authentication. The authenticate phase and the identify phase.
Both of these phases are represented by a method in the Aut hent i cat or interface.

The authenticate phase occurs during the Get Aut hToken request as described above. The goal of
this phase is to turn a user id and credentials into a valid publisher id. The publisher id (referred to
as the “authorized name” in UDDI terminology) is the value that assigns ownership within UDDI.
Whenever a new entity is created, it must be tagged with ownership by the authorized name of
the publisher. The value of the publisher id can be completely transparent to jUDDI — the only
requirement is that one exists to assign to new entities. Thus, the authenticate phase must return
a non-null publisher id. Upon completion of the Get Aut hToken request, an authentication token
is issued to the caller.

In subsequent calls to the UDDI API that require authentication, the token issued from the
Get Aut hToken request must be provided. This leads to the next phase of jJUDDI authentication
— the identify phase.

The identify phase is responsible for turning the authentication token (or the publisher id
associated with that authentication token) into a valid Uddi EntityPublisher object. The
Uddi Enti t yPubl i sher object contains all the properties necessary to handle ownership of UDDI
entities. Thus, the token (or publisher id) is used to “identify” the publisher.




Chapter 3. Authentication

The two phases provide compliance with the UDDI authentication structure and grant flexibility
for users that wish to provide their own authentication mechanism. Handling of credentials and
publisher properties can be done entirely outside of jUDDI. However, jUDDI provides the Publisher
entity, which is a sub-class of Uddi Ent i t yPubl i sher, to persist publisher properties within jUDDI.
This is used in the default authentication and is the subject of the next section.

3.2. jJUDDI Authentication

The default authentication mechanism provided by jUDDI is the JUDDI Aut henti cator. The
authenticate phase of the JUDDI Aut hent i cat or simply checks to see if the user id passed in
has an associated record in the Publisher table. No credentials checks are made. If, during
authentication, the publisher does not exist, it the publisher is added on the fly.

A Warning

Do not use jUDDI authentication in production.

The identify phase uses the publisher id to retrieve the Publisher record and return it. All necessary
publisher properties are populated as Publisher inherits from Uddi Ent i t yPubl i sher.

juddi.auth = org.apache.juddi.auth.JUDDIAuthentication

3.3. XMLDocAuthentication

The XM.DocAut hentication implementation needs a XML file on the classpath. The
j uddi . properti es file would need to look like

juddi.auth = org.apache.juddi.auth.XMLDocAuthentication
juddi.usersfile = juddi-users.xml

where the name of the XML can be provided but it defaults to j uddi - users. xnmi , and the content
of the file would looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<juddi-users>

<user userid="anou_mana" password="password" />

<user userid="bozo" password="clown" />

<user userid="sviens" password="password" />
</juddi-users>




CryptedXMLDocAuthentication

The authenticate phase checks that the user id and password match a value in the XML file. The
identify phase simply uses the user id to populate a new Uddi Enti t yPubl i sher.

3.4. CryptedXMLDocAuthentication

The Crypt edXM.DocAut henti cati on implementation is similar to the XM_DocAut henti cati on
implementation, but the passwords are encrypted

juddi.auth = org.apache.juddi.auth.CryptedXMLDocAuthentication
juddi.usersfile = juddi-users-encrypted.xml
juddi.cryptor = org.apache.juddi.cryptor.DefaultCryptor

where the name user credential file is j uddi - user s- encrypt ed. xnl , and the content of the file
would looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<juddi-users>

<user userid="anou_mana" password="+j/kXkZJftwTFTBH6Cf61Q=="/>

<user userid="bozo" password="Na2Ait+2aW0="/>

<user userid="sviens" password="+j/kXkZJftwTFTBH6Cf61Q=="/>
</juddi-users>

The Defaul t Cryptor implementation uses BEWt hMD5ANdDES and Base64 to encrypt the
passwords. Note that the code in the Aut henti cat or Test can be used to learn more about
how to use this Authenticator implementation. You can plugin your own encryption algorithm
by implementing the org. apache.juddi.cryptor. Cryptor interface and referencing your
implementation class in the juddi.cryptor property.

The authenticate phase checks that the user id and password match a value in the XML file. The
identify phase simply uses the user id to populate a new Uddi Ent i t yPubl i sher.

3.5. LDAP Authentication

LdapSi npl eAut henti cator provides a way of authenticating users using Ldap simple
authentication. It is fairly rudimentary and more LDAP integration is planned in the future, but this
class allows you to authenticate a user based on an LDAP prinicipal, provided that the principal
and the juddi publisher ID are the same.

To use this class you must add the following properties to the j uddi . properti es file:

juddi.auth=org.apache.juddi.auth.LdapSimpleAuthenticator
juddi.auth.url=Idap://localhost:389




Chapter 3. Authentication

The j uddi . aut h. ur| property configures the LdapSi npl eAut hent i cat or class so that it knows
where the LDAP server resides. Future work is planned in this area to use the LDAP uid rather
than the LDAP principal as the default publisher id.

3.6. JBoss Authentication

Finally is it possible to hook up to third party credential stores. If for example jUDDI is deployed
to the JBoss Application server it is possible to hook up to it's authentication machinery. The
JBossAut henti cat or class is provided in the docs/ exanpl es/ aut h directory. This class enables
jUDDI deployments on JBoss use a server security domain to authenticate users.

To use this class you must add the following properties to the j uddi . properti es file:

juddi.auth=org.apache.juddi.auth.JBossAuthenticator
juddi.securityDomain=java:/jaas/other

The juddi.auth property plugs the JbossAut henti cat or class into the jUDDI the Authenticator
framework. The j uddi . sercui ty. domai n, configures the JBossAut henti cat or class where it
can lookup the application server's security domain, which it will use to perform the authentication.
Note that JBoss creates one security domain for each application policy element on the
$IBOSS_HOME/ server/ defaul t/ conf/ 1 ogi n-config.xm file, which gets bound to the server
JNDI tree with name j ava:/j aas/ <appl i cati on-policy-nanme>. If a lookup refers to a non
existent application policy it defaults to a policy named other.

10



Chapter 4.

Database Setup

4.1. Derby Out-of-the-Box

By default jUDDI uses an embedded Derby database. This allows us to build a downloadable
distribution that works out-of-the-box, without having to do any database setup work. We
recommend switching to an enterprise-level database before going to production. JUDDI uses the
Java Persistence API (JPA) in the back end and we've tested with both OpenJPA and Hibernate.
To configure which JPA provider you want to use, you will need to edit the configuration in
the persi st ence. xnil . This file can be found in the j uddi . war/ WVEB- | NF/ cl asses/ META- | NF/
persi stence. xm

For Hibernate the content of this file looks like

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmins="http://java.sun.com/xml/ns/persistence"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemal.ocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1 0.xsd"

version="1.0">

<persistence-unit name="juddiDatabase" transaction-type="RESOURCE_LOCAL">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>
<!-- entity classes -->
<class>org.apache.juddi.model.Address</class>
<class>org.apache.juddi.model.AddressLine</class>
<class>org.apache.juddi.model.AuthToken</class>
<class>org.apache.juddi.model.BindingCategoryBag</class>
<class>org.apache.juddi.model.BindingDescr</class>
<class>org.apache.juddi.model.BindingTemplate</class>
<class>org.apache.juddi.model.BusinessCategoryBag</class>
<class>org.apache.juddi.model.BusinessDescr</class>
<class>org.apache.juddi.model.BusinessEntity</class>
<class>org.apache.juddi.model.Businessldentifier</class>
<class>org.apache.juddi.model.BusinessName</class>
<class>org.apache.juddi.model.BusinessService</class>
<class>org.apache.juddi.model.CategoryBag</class>
<class>org.apache.juddi.model.Contact</class>
<class>org.apache.juddi.model.ContactDescr</class>
<class>org.apache.juddi.model.DiscoveryUrl</class>
<class>org.apache.juddi.model.Email</class>
<class>org.apache.juddi.model.InstanceDetailsDescr</class>
<class>org.apache.juddi.model.InstanceDetailsDocDescr</class>

11



Chapter 4. Database Setup

<class>org.apache.juddi.model.KeyedReference</class>
<class>org.apache.juddi.model.KeyedReferenceGroup</class>
<class>org.apache.juddi.model.OverviewDoc</class>
<class>org.apache.juddi.model.OverviewDocDescr</class>
<class>org.apache.juddi.model.PersonName</class>
<class>org.apache.juddi.model.Phone</class>
<class>org.apache.juddi.model.Publisher</class>
<class>org.apache.juddi.model.PublisherAssertion</class>
<class>org.apache.juddi.model.PublisherAssertionld</class>
<class>org.apache.juddi.model.ServiceCategoryBag</class>
<class>org.apache.juddi.model.ServiceDescr</class>
<class>org.apache.juddi.model.ServiceName</class>
<class>org.apache.juddi.model.ServiceProjection</class>
<class>org.apache.juddi.model.Subscription</class>
<class>org.apache.juddi.model.SubscriptionChunkToken</class>
<class>org.apache.juddi.model.SubscriptionMatch</class>
<class>org.apache.juddi.model. Tmodel</class>
<class>org.apache.juddi.model. TmodelCategoryBag</class>
<class>org.apache.juddi.model. TmodelDescr</class>
<class>org.apache.juddi.model. Tmodelldentifier</class>
<class>org.apache.juddi.model. Tmodelinstancelnfo</class>
<class>org.apache.juddi.model. TmodelinstancelnfoDescr</class>
<class>org.apache.juddi.model.TransferToken</class>
<class>org.apache.juddi.model.TransferTokenKey</class>
<class>org.apache.juddi.model.UddiEntity</class>
<class>org.apache.juddi.model.UddiEntityPublisher</class>

<properties>

<property name="hibernate.archive.autodetection" value="class"/>

<property name="hibernate.hbm2ddl.auto" value="update"/>

<property name="hibernate.show_sql" value="false"/>

<property name="hibernate.dialect"
value="org.hibernate.dialect.DerbyDialect"/>

</properties>
</persistence-unit>
</persistence>

The persistence. xm

reference a datasource “java:comp/env/jdbc/JuddiDS”. Datasource

deployment is Application Server specific. If you are using Tomcat, then the datasource is defined
in j uddi / META- | NF/ cont ext . xml which by default looks like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

12



Switch to MySQL

<WatchedResource>WEB-INF/web.xml</WatchedResource>

<l-- -->

<Resource name="jdbc/JuddiDS" auth="Container"
type="javax.sql.DataSource" username="" password=
driverClassName="org.apache.derby.jdbc.EmbeddedDriver"
url="jdbc:derby:juddi-derby-test-db;create=true"
maxActive="8"
/>

</Context>

4.2. Switch to MySQL

To switch over to MySQL you need to add the mysql driver (i.e. The mysgl - connect or -
java-5. 1. 6. j ar) to the classpath and you will need to edit the per si st ence. xm

<property name="hibernate.dialect" value="org.hibernate.dialect. MySQLDialect"/>
and the datasource. For tomcat you the cont ext . xm should look something like

<?xml version="1.0" encoding="UTF-8"?>
<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<Resource hame="jdbc/JuddiDS" auth="Container"
type="javax.sql.DataSource" username="root" password=
driverClassName="com.mysql.jdbc.Driver"
url="jdbc:mysql://localhost:3306/juddiv3"
maxActive="8"/>
</Context>

Warning

Tomcat copies the cont ext.xnl to conf/ CATALI NA/ | ocal host /j uddi v3. xni ,
and if you update the cont ext . xnl it may not update this copy. You should simply
delete the j uddi v3. xm file after updating the cont ext . xni .

To create a MySQL database name j uddi v3 use

and finally you probably want to switch to a user which is a bit less potent then 'r oot '.

13



Chapter 4. Database Setup

4.3. Switch to Postgres

This was written from a JBoss - jUDDI perspective. Non-JBoss-users may have to tweak this a
little bit, but for the most part, the files and information needed is here.

Logged in as postgres user, access psql:

Note, for this example, my database is called juddi, as is the user who has full privileges to the
database. The user 'juddi' has a password set to 'password'.

<datasources>
<local-tx-datasource>
<jndi-name>JuddiDS</jndi-name>
<connection-url>jdbc:postgresql://localhost:5432/juddi</connection-url>
<driver-class>org.postgresql.Driver</driver-class>
<user-name>juddi</user-name>
<password>password</password>
<!-- sgl to call when connection is created. Can be anything,
select 1 is valid for PostgreSQL
<new-connection-sql>select 1</new-connection-sql>
-->
<!-- sgl to call on an existing pooled connection when it is obtained
from pool. Can be anything, select 1 is valid for PostgreSQL
<check-valid-connection-sqgl>select 1</check-valid-connection-sql>
-->
<l-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->
<metadata>
<type-mapping>PostgreSQL 8.0</type-mapping>
</metadata>
</local-tx-datasource>
</datasources>

In persi stence. xm , reference the correct INDI nhame of the datasource and remove the derby
Dialect and add in the postgresql Dialect:

<jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>

14



Switch to Oracle

<property name="hibernate.dialect" value="org.hibernate.dialect.PostgreSQLDialect"/>

Be sure to have post gresql - 8. 3- 604. j dbc4. j ar intheli b folder!

4.4. Switch to Oracle

To switch over to Oracle you need to add the oracle driver (i.e. thecl asses12. j ar ) to the classpath
and you will need to edit the per si st ence. xni

<property name="hibernate.dialect” value="org.hibernate.dialect.Oracle10gDialect"/>

To create a Oracle database name juddiv3 with the ultimate in minimalism use

sqlplus> create database juddiv3;

then you probably want to switch to a user which is a bit less potent then 'root' and set the
appropriate password.

A Warning

Tomcat copies the context.xml to conf/CATALINA/localhost/juddiv3.xml, and if you
update the context.xml it may not update this copy. You should simply delete the
juddiv3.xml file after updating the context.xml.

Please check the Section 10.3, “Changing the Oracle Sequence name” if you want to change the
Oracle Sequence name.

4.5. Switch to HSQL

First make sure you have a running hsqgldb. For a standalone server startup use:

java -cp hsqgldb.jar org.hsgldb.server.Server --port 1747 --database.O file:juddi --dbname.0 juddi

Next, connect the client manager to this instance using:

15



Chapter 4. Database Setup

java -classpath hsgldb.jar org.hsqldb.util. DatabaseManagerSwing --driver org.hsqldb.jdbcDriver
--url jdbc:hsqldb:hsql://localhost:1747/juddi -user sa

and create the juddi user:

CREATE USER JUDDI PASSWORD "password" ADMIN;
CREATE SCHEMA JUDDI AUTHORIZATION JUDDI;
SET DATABASE DEFAULT INITIAL SCHEMA JUDDI;
ALTER USER juddi set initial schema juddi;

From now on, one can connect as JUDDI user to that database and the database is now ready
to go.

To switch over to HSQL you need to add the hsql driver (i.e. The hsql db. j ar) to the classpath
and you will need to edit the per si st ence. xm

<property name="hibernate.dialect" value="org.hibernate.dialect. HSQLDialect"/>

and the datasource. For tomcat you the cont ext . xm should look something like

<?xml version="1.0" encoding="UTF-8"?>
<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<!-- HSQL data source -->
<Resource hame="jdbc/JuddiDS" auth="Container"
type="javax.sql.DataSource" username="JUDDI" password="password"
driverClassName="org.hsqldb.jdbcDriver"
url="jdbc:hsqldb:hsql://localhost:1747/juddi"
maxActive="8"
/>
</Context>

16



Switch to <other db>

Warning

Tomcat copies the cont ext.xnl to conf/ CATALI NA/ | ocal host/j uddi v3. xni ,
and if you update the cont ext . xn it may not update this copy. You should simply
delete the j uddi v3. xm file after updating the cont ext . xni .

4.6. Switch to <other db>

If you use another database, please document, and send us what you had to change to make it
work and we will include it here.

17



18



Chapter 5.

Root Seed Data

5.1. Introduction

As of UDDI v3, each registry need to have a “r oot " publisher. The root publisher is the owner
of the UDDI services (inquiry, publication, etc). There can only be one root publisher per node.
JUDDI ships some default seed data for the root account. The default data can be found in the
j uddi - core- 3. x.jar, under j uddi _i nstal | _dat a/. By default jUDDI installs two Publishers:
“root” and “uddi ”. Root owns the root partition, and uddi owns all the other seed data such as
pre-defined tModels.

5.2. Seed Data Files

For each publisher there are four seed data files that will be read the first time you start jUDDI:

For example the content of the r oot _Publ i sher. xm looks like

<publisher xmIns="urn:juddi-apache-org:api_v3" authorizedName="root">
<publisherName>root publisher</publisherName>
<isAdmin>true</isAdmin>

</publisher>

Each publisher should have its own key generator schema so that custom generated keys cannot
end up being identical to keys generated by other publishers. It is therefor that the each publisher
need to define their own KenGenerator tModel. The tModel Key Generator is defined in the file
root _t Model KeyGen. xm and the content of this file is

<tModel tModelKey="uddi:juddi.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">
<name>uddi-org:keyGenerator</name>
<description>Root domain key generator</description>
<overviewDoc>
<overviewURL useType="text">
http://uddi.org/pubs/uddi_v3.htm#keyGen
</overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:types"

19



Chapter 5. Root Seed Data

keyName="uddi-org:types:keyGenerator"
keyValue="keyGenerator" />
</categoryBag>
</tModel>

This means that the legal format of keys used by the root publisher need to be in the form
uddi : j uddi . apache. or g: <t ext - of - chi oce> The use of other types of format will lead to an
'illegal key' error. The root publisher can only own one KeyGenerator while any other publisher
can own more then one KeyGenerator. KeyGenerators should not be shared unless there is a
good reason to do so. If you want to see your publisher with more then just the one KeyGenerator
tModel, you can use the <publ i sher>_t Model s. xni file.

Finally, in the <publ i sher >_Busi nessEntity. xnl file can be used to setup Business and Service
data. In the root _Busi nessEntity. xm we specified the ASF Business, and the UDDI services;
Inquiry, Publish, etc.:

<businessEntity xmIns="urn:uddi-org:api_v3"
xmlns:xml="http://www.w3.0rg/XML/1998/namespace”
businessKey="uddi:juddi.apache.org:businesses-asf"'>
<!I-- Change the name field to represent the name of your registry -->
<name xml:lang="en">An Apache jUDDI Node</name>
<I-- Change the description field to provided
a brief description of your registry -->
<description xml:lang="en">
This is a UDDI v3 registry node as implemented by Apache jUDDI.
</description>
<discoveryURLs>
<I-- This discovery URL should point to the home installation URL of jUDDI -->
<discoveryURL useType="home">
http://${juddi.server.name}:${juddi.server.port}/juddiv3
</discoveryURL>
</discoveryURLs>
<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:nodes" keyValue="node" />
</categoryBag>

<businessServices>
<!I-- As mentioned above, you may want to provide user-defined keys for
these (and the services/bindingTemplates below. Services that you
don't intend to support should be removed entirely -->
<businessService serviceKey="uddi:juddi.apache.org:services-inquiry"
businessKey="uddi:juddi.apache.org:businesses-asf">
<name xml:lang="en">UDDI Inquiry Service</name>

20



Seed Data Files

<description xml:lang="en">Web Service supporting UDDI Inquiry APl</description>
<bindingTemplates>
<bindingTemplate bindingKey="uddi:juddi.apache.org:servicebindings-inquiry-ws"
serviceKey="uddi:juddi.apache.org:services-inquiry">
<description>UDDI Inquiry API V3</description>
<!-- This should be changed to the WSDL URL of the inquiry API.
An access point inside a bindingTemplate will be found for every service
in this file. They all must point to their API's WSDL URL -->
<accessPoint useType="wsdIDeployment">
http://${juddi.server.name}:${juddi.server.port}/juddiv3/services/inquiry?wsdl
</accessPoint>
<tModellnstanceDetails>
<tModellnstancelnfo tModelKey="uddi:uddi.org:v3_inquiry">
<instanceDetails>
<instanceParms>
<I[CDATA[
<?xml version="1.0" encoding="utf-8" ?>
<UDDlinstanceParmsContainer
xmins="urn:uddi-org:policy_v3_instanceParms">
<defaultSortOrder>
uddi:uddi.org:sortorder:binarysort
</defaultSortOrder>
</UDDlinstanceParmsContainer>
11>
</instanceParms>
</instanceDetails>
</tModellnstancelnfo>
</tModellnstanceDetails>
<categoryBag>
<keyedReference keyName="uddi-org:types:wsdl" keyValue="wsdIDeployment"
tModelKey="uddi:uddi.org:categorization:types"/>
</categoryBag>
</bindingTemplate>
</bindingTemplates>
</businessService>
<businessService serviceKey="uddi:juddi.apache.org:services-publish"
businessKey="uddi:juddi.apache.org:businesses-asf">
<name xml:lang="en">UDDI Publish Service</name>
</businessService>
</businessServices>
</businessEntity>

21



Chapter 5. Root Seed Data

Note that the seeding process only kicks off if no publishers exist in the database. So this will only
work with a clean database, unless you set j uddi . seed. al ways to true. Then it will re-apply all
files with the exception of the root data files. Note that this can lead to losing data that was added
to entities that are re-seeded, since data is not merged.

5.3. Token in the Seed Data

You may have noticed the tokens in the root_BusinessEntity.xn file
(${j uddi . server. baseurl }. The value of this tokens can set in the j uddi v3. properti es file.
The value substitution takes place at runtime, so that different nodes can do the substitution with
their own value if needed.

5.4. Customer Seed Data

In your deployment you probably do not want to use the Seed Data shipped with the
default jUDDI install. The easiest way to overwrite this data is to add it to a directory call
juddi _custom.install _data in the j uddi v3. war/WEB- | NF/ cl asses/ directory. That way you
don't have to modify the j uddi - cor e- 3. x. j ar . Additionally if your root publisher is not called
“root” you will need to set the juddi.root.publisher property in the j uddi v3. properti es file to
something other then

juddi.root.publisher=root

The j uddi v3. war ships with two example data directory. One for the Sales Affiliate, and one for
the Marketing Affiliate. To use the Sales Seed Data, in the j uddi v3. war / VEB- | NF/ ¢l asses/,
rename the directory

before you start jJUDDI the first time. It will then use this data to populate the database. If you want
to rerun you can trash the database it created and restart tomcat. Don't forget to set the tokens
in the j uddi v3. properti es file.

22



Chapter 6.

JUDDI_Configuration

6.1. Introduction

jUDDI will look for a juddiv3.properties file on the root of the classpath. In the j uddi v3. war you
can find it in j uddi v3. war/ WEB_| NF/ cl asses/j uddi v3. properties

6.2. Authentication

# Specifies whether the inquiry API requires authentication
juddi.authenticate.Inquiry=false

This flag determines whether authentication (the presence of a getAuthToken) is required on
queries invoking the Inquiry API. By default, jUDDI sets this to false for ease of use.

# jUDDI Authentication module to use
juddi.authenticator = org.apache.juddi.v3.auth.JUDDIAuthenticator

The jUDDI authenticator class to use. See Chapter 3 of the Userguide for the choices provided.

6.3. Startup

# The ${juddi.server.baseurl} token can be referenced in accessPoints and will be resolved at
runtime.
juddi.server.baseurl=http://localhost:8080

Token that can be accessed in accessPointURLSs and resolved at runtime.

#
juddi.root.publisher=root

The username for the jUDDI root publisher. This is usually just set to "root".

#
juddi.seed.always=false

23



Chapter 6. jUDDI_Configuration

Forces seeding of the jJUDDI data. This will re-apply all files with the exception of the root data
files. Note that this can lead to losing data that was added to the entities that are re-seeded, since
data is not merged.

#
juddi.load.install.data=false

This property allows you to cancel loading of the jUDDI install data.

# Default locale
juddi.locale=en_US

The default local to use.

# Name of the persistence unit to use (the default, "juddiDatabase” refers to the unit compiled
into the juddi library)
juddi.persistenceunit.name=juddiDatabase

The persistence name for the jUDDI database that is specified in the per si st ence. xmi file.

# Check-the-time-stamp-on-this-file Interval in milli seconds
juddi.configuration.reload.delay=2000

The time in milliseconds in which juddiv3.properties is polled for changes.

# These two tokens are referenced in the install data. Note that you
# can use any tokens, and that their values can be set here or as

# System parameters.

juddi.server.name=macdaddy

juddi.server.port=8080

The server name and port number of the server.

#The UDDI Operator Contact Email Address
juddi.operatorEmailAddress=admin@juddi.org

24



Queries

The jUDDI operator email address.

6.4. Queries

# The maximum number of UDDI artifacts allowed
# per publisher. A value of '-1' indicates any

# number of artifacts is valid (These values can be
# overridden at the individual publisher level).
juddi.maxBindingsPerService=10

The maximum number of bindings that can be specified per service.

# The maximum number of UDDI artifacts allowed
# per publisher. A value of -1' indicates any

# number of artifacts is valid (These values can be
# overridden at the individual publisher level).
juddi.maxBusinessesPerPublisher=25

The maximum number of businesses that can be registered per publisher.

# The maximum number of "IN" clause parameters. Some RDMBS limit the number of
# parameters allowed in a SQL "IN" clause.
juddi.maxInClause=1000

The maximum number of parameters within an IN clause.

# The maximum name size and maximum number
# of name elements allows in several of the

# FindXxxx and SaveXxxx UDDI functions.
juddi.maxNameElementsAllowed=5

Maximum number of hame elements allowed in a jJUDDI query.

# The maximum name size and maximum number
# of name elements allows in several of the
# FindXxxx and SaveXxxx UDDI functions.

25



Chapter 6. jUDDI_Configuration

juddi.maxNameLength=255
Maximum name size within a jUDDI query.

# The maximum number of rows returned in a find_* operation. Each call can set
# this independently, but this property defines a global maximum.
juddi.maxRows=1000

Maximum number of rows within a response.

# The maximum number of UDDI artifacts allowed
# per publisher. A value of '-1' indicates any

# number of artifacts is valid (These values can be
# overridden at the individual publisher level).
juddi.maxServicesPerBusiness=20

Maxmimum number of services in a business.

# The maximum number of UDDI artifacts allowed
# per publisher. A value of '-1' indicates any

# number of artifacts is valid (These values can be
# overridden at the individual publisher level).
juddi.maxTModelsPerPublisher=100

Maximum number of TModels a publisher can create.

6.5. Proxy Settings

#only used by RMITransport

#juddi.proxy.factory.initial  =org.jnp.interfaces.NamingContextFactory
#juddi.proxy.provider.url =jnp://localhost:1099
#juddi.proxy.factory.url.pkg  =org.jboss.naming

This is the upper boundary set by the registry. Between the user defined endDate of a Subscription
and this value, the registry will pick the earliest date.

26



KeyGeneration

6.6. KeyGeneration

# jUDDI Cryptor implementation to use
juddi.cryptor = org.apache.juddi.cryptor.DefaultCryptor

Cryptor implementation that jUDDI will use.

# jUDDI Key Generator to use
juddi.keygenerator=org.apache.juddi.keygen.KeyGenerator

Key generator implementation that jJUDDI will use.

# juDDI UUIDGen implementation to use
juddi.uuidgen = org.apache.juddi.uuidgen.DefaultUUIDGen

UUID generation implementation that jUDDI will use.

6.7. Subscription

# Minutes before a "chunked" subscription call expires
juddi.subscription.chunkexpiration.minutes=5

This is the expiration time of a subscription “chunk”.

#
# Days before a subscription expires
juddi.subscription.expiration.days=30

This is the upper boundary set by the registry. Between the user defined endDate of a Subscription
and this value, the registry will pick the earliest date.

# Specifies the interval at which the notification timer triggers
juddi.notification.interval=3000000

Specifies the interval at which the notification timer triggers.

27



Chapter 6. jUDDI_Configuration

# Specifies the amount of time to wait before the notification timer initially fires
juddi.natification.start.buffer=20000

Specifies the amount of time to wait before the notification timer initially fires.

6.8. Transfer

# Days before a transfer request expires
juddi.transfer.expiration.days=3

Days before a transfer request expires.

28



Chapter 7.

Using the jJUDDI-Client

7.1. Introduction

The jUDDI project includes UDDI Client code (j uddi -client-3.x.jar), which is Java client
library to connect to a UDDI Registry, and to manipulate it. The client uses the UDDI v3 API and
can be configured to connect to any UDDI v3 compliant registry (it has been tested against juDDI
v3 itself as well as against HP Systenet). This library can be embedded in your own application
and used programmatically or by using annotations.

7.2. Configuration

For the client to connect to the UDDI server we need to provide it with the correct connection
settings, which we call "Transport' settings. In addition to these transport settings there are other
client features that can be configured using the client configuration file META- | NF/ uddi . xm . You
can deploy one of these client configuration files in your deployment archive that is interacting
with the UDDI client code. To make sure the configuration is read you need to either call

UDDIClerkManager clerkManager = new UDDIClerkManager("META/myuddi.xml");
clerkManager.start();

or you if your application deploys are a war archive, you can add your client config
in yourwar/ META- I NF/ myuddi . xm , add in the web.xml specify the context parameters
uddi . cl i ent. manager. name and uddi.client.xnl . In the following example both context
parameters are set and on deployment the UDDIClerkServiet takes care of reading the
configuration.

<!l-- required -->
<context-param>
<param-name>uddi.client. manager.name</param-name>
<param-value>example-manager</param-value>
</context-param>

<!-- optional override -->

<context-param>
<param-name>uddi.client.xml</param-name>
<param-value>META-INF/myuddi.xml</param-value>

</context-param>

<servlet>

29



Chapter 7. Using the jUDDI-Client

<servlet-name>UDDIClerkServlet</servlet-name>
<display-name>Clerk Servlet</display-name>
<servlet-class>org.apache.juddi.v3.client.config.UDDIClerkServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

The following is an example of a simple client configuration file:

<?xml version="1.0" encoding="1SO-8859-1" ?>
<uddi>
<reloadDelay>5000</reloadDelay>
<manager name="example-manager">
<nodes>
<node isHomeJUDDI="true">
<name>default</name>
<description>jUDDI node</description>
<properties>
<property name="serverName" value="www.myuddiserver.com"/>
<property name="serverPort" value="8080"/>
<property name="keyDomain" value="mydepartment.mydomain.org"/>
<property name="department" value="mydepartment" />
</properties>
<l-- InVM -->
<proxyTransport>org.apache.juddi.v3.client.transport.InVMTransport</proxyTransport>
<custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferimpl</
custodyTransferUrl>
<inquiryUrl>org.apache.juddi.api.impl.UDDIInquirylmpl</inquiryUrl>
<publishUrl>org.apache.juddi.api.impl.UDDIPublicationimpl</publishUrl|>
<securityUrl>org.apache.juddi.api.impl.UDDISecuritylmpl</securityUr|>
<subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionimpl</subscriptionUrl>
<subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerimpl</
subscriptionListenerUrl>
<juddiApiUrl>org.apache.juddi.api.impl.JUDDIApilmpl</juddiApiUrl>
<I-- JAX-WS Transport
<proxyTransport>org.apache.juddi.v3.client.transport. JAXWSTransport</proxyTransport>
<custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer</
custodyTransferUrl>
<inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry</inquiryUrl>
<publishUrl>http://${serverName}.${serverPort}/juddiv3/services/publish</publishUrl>
<securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security</securityUrl>
<subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription</
subscriptionUrl>

30



Configuration

<subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-
listener</subscriptionListenerUrl>
<juddiApiUrl>http://${serverName}:${serverPort}/juddiv3/services/juddi-api?wsdI</
juddiApiUrl>
-->
<!-- RMI Transport Settings
<proxyTransport>org.apache.juddi.v3.client.transport. RMITransport</proxyTransport>
<custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>
<inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>
<publishUrl>/juddiv3/UDDIPublicationService</publishUrI>
<securityUrl>/juddiv3/UDDISecurityService</securityUrl>
<subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrl>
<subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</
subscriptionListenerUrl>
<juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>
<javaNamingFactorylnitial>org.jnp.interfaces.NamingContextFactory</
javaNamingFactorylnitial>
<javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>
<javaNamingProviderUrl>jnp://${serverName}:1099</javaNamingProviderUrl>
-->
</node>
</nodes>
<clerks registerOnStartup="true">
<clerk name="BobCratchit" hode="default" publisher="bob" password="bob">
<class>org.apache.juddi.samples.HelloWorldimpl</class>
</clerk>
</clerks>
</manager>
</uddi>

The manager element is required element, and the name attribute 'example-manager' should
be unique in your deployment environment. The nodes element may contain one or more node
elements. Typically you would only need one node, unless you are using subscriptions to transfer
updates of entities from one UDDI registry to another. For the 'local' registry you would set
isHomeJUDDI="true", while for the 'remote’ registries you would set isHomeJUDDI="false".

Table 7.1.
element name description required
name name of the node yes
description description of the node no
properties container for properties that no

will be passed into the clerk

31



Chapter 7. Using the jUDDI-Client

proxyTransport The transport protocol used by yes
the client to connect to the
UDDI server

custodyTransferUrl Connection settings  for no

custody transfer

inquiryUrl Connection location settings yes
for inquiries
publishUrl Connection location settings yes

for publishing

securityUrl Connection location settings yes
for obtaining security tokens

subscriptionUrl Connection location settings no
for registering subscription
requests

subscriptionListenerUrl Connection location settings no
receiving subscription
notifications

juddiApiUrl Connection location settings no

for the jUDDI specific API
for things like publisher
management

Finally the manager element can contain a ‘clerks' element in which one can define one or more
clerks.

Table 7.2.
attribute name description required
name name of the clerk yes
node name reference to one of the yes
nodes specified in the same
manager
publisher name of an existing publisher yes
password password credential of the yes
publisher

7.2.1. JAX-WS Transport

Using the settings in the uddi . xnl file from above, the client will use JAX-WS to communicate
with the (remote) registry server. This means that the client needs to have access to a JAX-WS
compliant WS stack (such as CXF, Axis2 or JBossWS). Note that the juddiApiUrl is a reference
to the WSDL endpoint while the others should reference the actual endpoints.

32



RMI Transport

<!-- JAX-WS Transport -->

<proxyTransport>org.apache.juddi.v3.client.transport. JAXWSTransport</proxyTransport>
<custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer</
custodyTransferUrl>
<inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry</inquiryUrl>
<publishUrl>http://${serverName}:${serverPort}/juddiv3/services/publish</publishUrl>
<securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security</securityUrl>
<subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription</
subscriptionUrl>
<subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-
listener</subscriptionListenerUrl>
<juddiApiUrl>http://${serverName}.${serverPort}/juddiv3/services/juddi-api?wsdl</juddiApiUrl>

pros: Standard way of UDDI communication, should work with all UDDIv3 server implementations.

cons: If the server is deployed on the same application server this may lead to issues when auto-
registration on deployment/undeployment is used, since the WS stack may become unavailable
during undeployment. A workaround is to host the UDDI server on a different server.

7.2.2. RMI Transport

If jJUDDI server is deployed to an Application Server it is possible to register the UDDI Services
as RMI services. If this is desired you need to edit the juddi v3. war/WEB- | NF/ cl asses/
j uddi v3. properti es file, on the server. Add the following setting

juddi.jndi.registration=true

At deployment time the RMI based UDDI services are bound into the Global JNDI hamespace.

juddi (class: org. j np. i nterfaces. Nami ngCont ext)
« UDDIPublicationService (class: or g. apache. j uddi . rmi . UDDI Publ i cati onSer vi ce)

« UDDICustodyTransferService (class:
org. apache. j uddi . rmi . UDDI Cust odyTr ansf er Ser vi ce)

» UDDISubscriptionListenerService (class:

org. apache. juddi . rmi . UDDI Subscri pti onLi st ener Ser vi ce)
» UDDISecurityService (class: or g. apache. j uddi . rmi . UDDI Securi t yServi ce)
» UDDISubscriptionService (class: or g. apache. j uddi . rmi . UDDI Subscri pti onServi ce)

» UDDIInquiryService (class: or g. apache. j uddi . rni . UDDI | nqui r ySer vi ce)

33



Chapter 7. Using the jUDDI-Client

Next, on the client side you need to comment out the JAXWS section in the uddi . xn file and use
the RMI Transport section instead. Optionally you can set the j ava. nani ng. * properties. In this
case we specified setting for connecting to jUDDIv3 deployed to a JBoss Application Server. You
can set the j ava. nam ng. * properties in aj ndi . xm file, or as System parameters.

<!l-- RMI Transport Settings -->

<proxyTransport>org.apache.juddi.v3.client.transport. RMITransport</proxyTransport>
<custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>
<inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>
<publishUrl>/juddiv3/UDDIPublicationService</publishUrl>
<securityUrl>/juddiv3/UDDISecurityService</securityUrl>
<subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrI>
<subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</subscriptionListenerUrl>
<juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>
<javaNamingFactoryInitial>org.jnp.interfaces.NamingContextFactory</
javaNamingFactorylnitial>
<javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>
<javaNamingProviderUrl>jnp://${serverName}:1099</javaNamingProviderUrl>

pros: Leight weight, and faster since it does not need a WS stack.

cons: Will only work with a jUDDIv3 server implementation.

7.2.3. InVM Transport

If you choose to use InVM Transport this means that the jUDDIv3 server is running in the same
VM as you client. If you are deploying to j uddi . war the embedded server will be started by
the or g. apache. j uddi . Regi strySer vl et, but if you are running outside any container, you are
responsible for starting and stopping the or g. apache. j uddi . Regi st ry Service yourself. Make
sure to call

Registry.start()

before making any calls to the Registry, and when you are done using the Registry (on shutdown)
call

Registry.stop()

so the Registry can release any resources it may be holding. To use InVM Transport uncomment
this section in the uddi . properties while commenting out the JAXWS and RMI Transport
sections.

34



UDDI Annotations

<I-- InVM -->
<proxyTransport>org.apache.juddi.v3.client.transport.InVMTransport</proxyTransport>
<custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferimpl</
custodyTransferUrl>
<inquiryUrl>org.apache.juddi.api.impl.UDDIInquirylmpl</inquiryUrl>
<publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUr|>
<securityUrl>org.apache.juddi.api.impl.UDDISecuritylmpl</securityUrl>
<subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionimpl</subscriptionUr|>
<subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerimpl</
subscriptionListenerUrl>
<juddiApiUrl>org.apache.juddi.api.impl.JUDDIApilmpl</juddiApiUrl>

pros: Lightest weight, and best performant communication, and no deployment order issues when
using auto-registration of services during deployment and undeployment.

cons: Will only work with a jUDDIv3 server implementation. Typically one would use ajUDDI server
for each application server sharing one common database.

7.3. UDDI Annotations

7.3.1. Introduction

Conventionally Services (BusinessService) and their EndPoints (BindingTemplates) are
registered to a UDDI Registry using a GUI, where an admin user manually adds the necessary
info. This process tends to make the data in the Registry rather static and the data can grow stale
over time. To make the data in the UDDI more dynamic it makes sense to register and EndPoint
(BindingTemplate) when it comes online, which is when it gets deployed. The UDDI annotations
are designed to just that: register a Service when it get deployed to an Application Server. There
are two annotations: UDDIService, and UDDIServiceBinding. You need to use both annotations
to register an EndPoint. Upon undeployment of the Service, the EndPoint will be de-registered
from the UDDI. The Service information stays in the UDDI. It makes sense to leave the Service
level information in the Registry since this reflects that the Service is there, however there is
no EndPoint at the moment ("Check back later"). It is a manual process to remove the Service
information. The annotations use the juddi-client library which means that they can be used to
register to any UDDIv3 registry.

7.3.2. UDDIService Annotation

The UDDIService annotation is used to register a service under an already existing business in
the Registry. The annotation should be added at the class level of the java class.

35



Chapter 7. Using the jUDDI-Client

Table 7.3. UDDIService attributes

attribute

serviceName

description

The name of the service, by
default the clerk will use the
one name specified in the
WebService annotation

required

no

description

serviceKey

businessKey

Human readable description of
the service

UDDI v3 Key of the Service

UDDI v3 Key of the Business
that should own this Service.
The business should exist
in the reqistry at time of
registration

yes

yes

yes

lang

categoryBag

Language locale which will
be used for the name and
description, defaults to "en" if
omitted

Definition of a CategoryBag,
see below for details

no

no

7.3.3. UDDIServiceBinding Annotation

The UDDIServiceBinding annotation is used to register a BindingTemplate to the UDDI registry.
This annotation cannot be used by itself. It needs to go along side a UDDIService annotation.

Table 7.4. UDDIServiceBinding attributes

attribute description required

bindingKey UbDlI v3 Key of the yes
ServiceBinding

description Human readable description of yes
the service

accessPointType UDDI v3 AccessPointType, no
defaults to wsdlDeployment if
omitted

accessPoint Endpoint reference yes

lang Language locale which will no

be used for the name and
description, defaults to "en" if
omitted

36




WebService Example

attribute description required

tModelKeys Comma-separated list of no
tModelKeys key references

categoryBag Definition of a CategoryBag, no
see below for further details

7.3.3.1. CategoryBag Attribute

The CategoryBag attribute allows you to reference tModels. For example the following
categoryBag

<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:wsdl" keyValue="wsdIDeployment" />
<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:wsdI2" keyValue="wsdIDeployment2" />
</categoryBag>

can be put in like

categoryBag="keyedReference=keyName=uddi-org:types:wsdl;keyValue=wsdIDeployment;" +
"tModelKey=uddi:uddi.org:categorization:types," +
"keyedReference=keyName=uddi-org:types:wsdI2;keyValue=wsdIDeployment2;" +
"tModelKey=uddi:uddi.org:categorization:types2",

7.3.4. WebService Example

The annotations can be used on any class that defines a service. Here they are added to a
WebService, a POJO with a JAX-WS 'WebService' annotation.

package org.apache.juddi.samples;

import javax.jws.WebService;
import org.apache.juddi.v3.annotations.UDDIService;
import org.apache.juddi.v3.annotations.UDDIServiceBinding;

37



Chapter 7. Using the jUDDI-Client

@UDDIService(businessKey="uddi:myBusinessKey", serviceKey="uddi:myServiceKey",
description = "Hello World test service")
@UDDIServiceBinding(bindingKey="uddi:myServiceBindingKey", description="WSDL endpoint
for the helloWorld Service. This service is used for "
+ "testing the jUDDI annotation functionality",

accessPointType="wsdIDeployment", accessPoint="http://localhost:8080/juddiv3-samples/
services/helloworld?wsdI")
@WebService(endpointinterface = "org.apache.juddi.samples.HelloWorld", serviceName =
"HelloWorld")

public class HelloWorldimpl implements HelloWorld {
public String sayHi(String text) {
System.out.printin("sayHi called");
return "Hello " + text;

On deployment of this WebService, the juddi-client code will scan this class for UDDI annotations
and take care of the registration process. In the configuration file uddi . xm , in the clerk section
you need to reference the Service class 'org.apache.juddi.samples.HelloWorldimpl':

<clerks registerOnStartup="true">
<clerk name="BobCratchit" node="default" publisher="bob" password="bob">
<class>org.apache.juddi.samples.HelloWorldimpl</class>
</clerk>
</clerks>

which means that Bob is using the node connection setting of the node with name "default”, and
that he will be using the "bob" publisher, for which the password it "bob". There is some analogy
here as to how datasources for database access are defined.

7.3.5. Templating keys

The business, service and binding keys can contain property references. This allows you to define
a keyTemplate in the annotation attribute for the key and the value of the properties used in the
template will be resolved at registration time.

7.4. Programmatic use

It is also possible to use the jUDDI client code in your application. The first thing to do is to read
the client config file, and get a handle to a clerk

38



WSDL Registration

UDDIClerkManager clerkManager = new UDDIClerkManager("META/myuddi.xml");
clerkManager.start();

UDDIClerk clerk = clerkManager.getClientConfig().getUDDIClerks().get(clerkName);

A UDDIClerk will allow you do make authenticated requests to a UDDI server.

7.4.1. WSDL Registration

The OASIS UDDI spec TC put out a Techical Note on "Using WSDL in a UDDI Registry" [WSDL-
UDDI]. The jUDDI client implements the UDDI v3 version of the WSDL2UDDI mapping as
described in this technical note. The registration process registers a BindingTemplate for
each WebService EndPoint and if the BusinessService for this BindingTemplate does not
yet exist it also registers the BusinessService along with a WSDLPortType TModel for each
portType, and a WSDLBinding TModel for each binding. To use it you can use the code in
the 'org.apache.juddi.v3.client.mapping' package [WSDL2UDDI] and make the following call to
asynchronously register your WebService EndPoint.

/IAdd the properties from the uddi.xml
properties.putAll(clerk.getUDDINode().getProperties());
Registrationinfo registrationinfo = new Registrationinfo();
registrationinfo.setServiceQName(serviceQName);
registrationinfo.setVersion(version);
registrationinfo.setPortName(portName);
registrationinfo.setServiceUrl(serviceUrl);
registrationinfo.setWsdlUrl(wsdIURL);
registrationinfo.setWsdIDefinition(wsdIDefinition);
registrationinfo.setRegistrationType(RegistrationType.WSDL);
registration = new AsyncRegistration(clerk, urlLocalizer, properties, registrationinfo);
Thread thread = new Thread(registration);

thread.start();

This does assume that you can pass in a URL to the WSDL file as well as the WSDLDefinition. In
most cases you will need to package up the WSDL file you are trying to register in your deployment.
You can get a WSDLDefinition using

39



Chapter 7. Using the jUDDI-Client

ReadWSDL readWSDL = new ReadWSDLY();
Definition definition = readWSDL.readWSDL("wsdl/HelloWorld.wsdl");

where you would pass in the path to the WSDL on the classpath.

To remove a WSDL binding from the Registry you would use

BPEL2UDDI bpel2UDDI = new BPEL2UDDI(clerk, urlLocalizer, properties);
String serviceKey = bpel2UDDI.unRegister(serviceName, portName, serviceURL);

If this is the last BindingTemplate for the BusinessService it will also remove the BusinessService
along with the WSDLPortType and WSDLBIinding TModels. The lifecycle is registration on
Endpoint deploy and unregistration on Endpoint undeploy.

7.4.2. BPEL Process Registration

Similar to the WSDL to UDDI mapping there is a BPEL to UDDI mapping Technical Note
[BPEL-UDDI]. The juDDI client also implements this mapping. Using it is very similar to code
fragment listed for the WSDL Registration, with the only change being that in this case the
RegistrationInfo.RegistrationType should be RegistrationType.BPEL. See To use it you can use
the code in the 'org.apache.juddi.v3.client. mapping' package [BPEL2UDDI] for more information
on the implementation. For an example use of the registration process see the JBoss RiftSaw
project [RFTSW-UDDI].

7.4.3. Conventions around UDDIv3 registration

7.4.3.1. Key Templates

Both the WSDL and BPEL registration code use a key format convention to construct UDDI
v3 keys. The format of the keys can be defined in the properties section of the uddi . xm , but
they have reasonable defaults. Note that the both the serviceName and portName are obtained
from the Registrationinfo. The nodeName can be obtained from the environment, or set in the
uddi . xnl .

Table 7.5.
Property Description Required Default Value
lang The language setting no en

used by the
registration.

40



Conventions around UDDIv3 registration

businessName The business name yes
which is used by.

keyDomain The key domain key yes
part (used by the key
formats)
businesskeyFormat  Key format used to no uddi:
contruct the Business ${keyDomain}:business_
Key ${businessName}
serviceKeyFormat Key format used no uddi:
to contruct the ${keyDomain}:service_
BusinessService Key ${serviceName}
bindingKeyFormat Key format used no uddi:
to contruct the ${keyDomain}:binding_
TemplateBinding Key ${nodeName}
${serviceName} _
${portName}
serviceDescription Default no Default service
BusinessService description when
description no <wsdl:document>
element is defined
inside the
<wsdl:service>
element.
bindingDescription Default no Default binding
BindingTemplate description when
description no <wsdl:document>
element is defined
inside the
<wsdl:binding>
element.

7.4.3.2. Specification of service and binding descriptions in the
WSDL

The UDDI spec allows for setting a human readable description on both the BusinessService and
TemplateBinding. Theses description fields are important if humans are browsing the registry. A
default description can be specific in the uddi . xnl , however it makes a lot more sense to have
a specific description for each service and binding, and so the registration code tries to obtain
these descriptions from the <wsdl:document> tags in the WSDL, which can be nested as a child
element inside the <wsdl:service> and <wsdl:binding> elements.

41



Chapter 7. Using the jUDDI-Client

7.4.3.3. URLLocalizer

The setting of the EndPoint URL is obtained from provided WSDL in the <soap:addressbinding>
of the <wsdl:port>. The issue with this is that this URL is static, and you it is very useful
if it can be made more dynamic. For this reason you can implement your own version
of the URLLocalizer interface [http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/
javalorg/apache/juddi/v3/client/mapping/URLLocalizer.java]. In for example the version shipped
with RiftSaw [http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/
soa/bpel/uddi/JBossURLLocalizer.java] the protocol and the host parts of the URL are overriden
with the settings obtain from the local WebService Stack.

7.5. Dynamic UDDI Service Lookup

For a client application to invoke a Service it needs to know the actual binding information of the
WebService EndPoint. This information can be statically stored at the clientside but this will make
the system very rigid. For example if a service moves from one server to another the client will not
pick up this change. It therefor makes sense to do a lookup into the UDDI registry to obtain fresh)
binding information. This will make the solution dynamic, and allows for clients simply following
the changes that occur in the service deployment topology.

.1. Service Locator

The serviceLocator [SERV-LOC] can be used to locate a service binding knowing the service and
port name. The following piece of code demonstrates how to do a lookup:

ServiceLocator serviceLocator = new ServiceLocator(clerk, urlLocalizer, properties);
String endPointURL = lookupEndpoint(serviceQName, String portName);

When the above UDDI v3 serviceKey conventions are followed, then all the client needs to know is
the serviceName and portName it want to invoke and the The downside of doing a service lookup
before each service invokation is that it will have a performance inpact.

7.6. Dependencies

The UDDI client depends on uddi - ws- 3. x. j ar, conmons- confi guration-1.5.jar, conmons-
collection-3.2.1.jar and | og4j -1.2.13.jar, plus

« libraries for JAXB if you are not using JDK5.

* JAXWS client libraries when using JAXWS transport (like CXF).

* RMI and JNDI client libraries when using RMI Transport.

42


http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java

Sample Code

7.7. Sample Code

Sample code on how to use the UDDI client can be found in the uddi - cl i ent module on the
jUDDIv3 project. Usually the first thing you want to is to make a call to the Registry to obtain an
Authentication Token. The following code is taken from the unit tests in this module.

public void testAuthToken() {

try {
String clazz = ClientConfig.getConfiguration().getString(

Property.UDDI_PROXY_TRANSPORT,Property.DEFAULT_UDDI_PROXY_TRANSPORT);

Class<?> transportClass = Loader.loadClass(clazz);

if (transportClass!=null) {
Transport transport = (Transport) transportClass.newlnstance();
UDDISecurityPortType securityService = transport.getSecurityService();
GetAuthToken getAuthToken = new GetAuthToken();
getAuthToken.setUserID("root");
getAuthToken.setCred("");
AuthToken authToken = securityService.getAuthToken(getAuthToken);
System.out.printin(authToken.getAuthinfo());
Assert.assertNotNull(authToken);

}else {
Assert.fail();

}

} catch (Exception e) {
e.printStackTrace();
Assert.fail();

Make sure that the publisher, in this case “root” is an existing publisher in the Registry and that
you are supplying the correct credential to get a successful response. If needed check Chapter 3,
Authentication to learn more about this subject.

Another place to look for sample code is the docs/ exanpl es/ hel | owor d directory. Alternatively
you can use annotations.

7.8. References

[WSDL-UDDI] by John Colgrave and Karsten Januszewski. Using WSDL in a UDDI Registry,
Version 2.0.2 [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-
wsdl-v2.htm]. OASIS UDDI Spec TC. 2004.

43


http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

Chapter 7. Using the jUDDI-Client

[WSDL2UDDI] Apache jJUuDDI WSDL2UDDI Javadoc [http://juddi.apache.org/apidocs/org/apache/
juddi/v3/client/mapping/WSDL2UDDI.html]. Apache juDDI. 2011.

[BPEL-UDDI] by Claus von Riegen and Ivana Trickovic. Using BPEL4AWS in a
UDDI registry [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-
bpel.htm]. OASIS UDDI Spec TC. 2004.

[BPEL2UDDI] Apache juDDI BPEL2UDDI Javadoc [http://juddi.apache.org/apidocs/org/apache/
juddi/v3/client/mapping/BPEL2UDDI.html]. Apache juDDI. 2011.

[RFTSW-UDDI] JBoss RiftSaw UDDI Registration [http://anonsvn.jboss.org/repos/riftsaw/trunk/
runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationimpl.java]. JBoss
Riftsaw. 2011.

- pache j erviceLocator Javadoc [http://juddi.apache.org/apidocs/org/apache
[SERV-LOC] Apache juDDI ServiceL Javadoc [http://juddi h /apidocs/org/ he/
juddi/v3/client/mapping/ServiceLocator.html]. Apache jUDDI. 2011.

44


http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html

Chapter 8.

Simple Publishing Using the jUDDI
API

One of the most common requests we get on the message board is “How do | publish a service
using jJUDDI?” This question holds a wide berth, as it can result anywhere from not understanding
the UDDI data model, to confusion around how jUDDI is set up, to the order of steps required
to publish artifacts in the registry, to general use of the API — and everything in between. This
article will attempt to answer this “loaded” question and, while not going into too much detail, will
hopefully clear some of the confusion about publishing into the jUDDI registry.

8.1. UDDI Data Model

Before you begin publishing artifacts, you need to know exactly how to break down your data into
the UDDI model. This topic is covered extensively in the specification, particularly in section 3, so
| only want to gloss over some for details. Readers interested in more extensive coverage should
most definitely take a look at the UDDI specification.

Below is a great diagram of the UDDI data model (taken directly from the specification):

businessEntity: Information about the tModel: Descriptions of specifications
party who publishes information about for services or value sels. Basis for
a sarvice technical fingerprints

businessEntities contain
businessServices

businessService: Descriptive
information about a particular family of
technical services

bindingTemplates contain references to
thModels. These references designate the
interface specifications for a service.

businessServices contain
bindingTemplates

£ |

binding Template: Technical
information about a service entry paint
and implemantation spacs

Figure 8.1. UDDI Core Data Structures

As you can see, data is organized into a hierarchical pattern. Business Entities are at the top of the
pyramid, they contain Business Services and those services in turn contain Binding Templates.
TModels (or technical models) are a catch-all structure that can do anything from categorize one
of the main entities, describe the technical details of a binding (ex. protocols, transports, etc), to

45



Chapter 8. Simple Publishing ...

registering a key partition. TModels won't be covered too much in this article as | want to focus
on the three main UDDI entities.

The hierarchy defined in the diagram is self-explanatory. You must first have a Business Entity
before you can publish any services. And you must have a Business Service before you can
publish a Binding Template. There is no getting around this structure; this is the way UDDI works.

Business Entities describe the organizational unit responsible for the services it publishes. It
generally consist of a description and contact information. How one chooses to use the Business
Entity is really dependent on the particular case. If you're one small company, you will likely just
have one Business Entity. If you are a larger company with multiple departments, you may want
to have a Business Entity per department. (The question may arise if you can have one uber-
Business Entity and multiple child Business Entities representing the departments. The answer
is yes, you can relate Business Entities using Publisher Assertions, but that is beyond the scope
of this article.)

Business Services are the cogs of the SOA landscape. They represent units of functionality that
are consumed by clients. In UDDI, there’'s not much to a service structure; mainly descriptive
information like name, description and categories. The meat of the technical details about the
service is contained in its child Binding Templates.

Binding Templates, as mentioned above, give the details about the technical specification of the
service. This can be as simple as just providing the service’s access point, to providing the location
of the service WSDL to more complicated scenarios to breaking down the technical details of the
WSDL (when used in concert with tModels). Once again, getting into these scenarios is beyond
the scope of this article but may be the subject of future articles.

8.2. jJUDDI Additions to the Model

Out of the box, jUDDI provides some additional structure to the data model described in the
specification. Primarily, this is the concept of the Publisher.

The UDDI specification talks about ownership of the entities that are published within the registry,
but makes no mention about how ownership should be handled. Basically, it is left up to the
particular implementation to decide how to handle “users” that have publishing rights in the
registry.

Enter the jUDDI Publisher. The Publisher is essentially an out-of-the-box implementation of an
identity management system. Per the specification, before assets can be published into the
registry, a “publisher” must authenticate with the registry by retrieving an authorization token. This
authorization token is then attached to future publish calls to assign ownership to the published
entities.

jUDDI’s Publisher concept is really quite simple, particularly when using the default authentication.
You can save a Publisher to the registry using jUDDI’s custom API and then use that Publisher
to publish your assets into the registry. jUDDI allows for integration into your own identity
management system, circumventing the Publisher entirely if desired. This is discussed in more

46



UDDI and juDDI API

detail in the documentation, but for purposes of this article, we will be using the simple out-of-
the-box Publisher solution.

One quick note: ownership is essentially assigned to a given registry entity by using its
“authorizedName” field. The “authorizedName” field is defined in the specification in the
operationallnfo structure which keeps track of operational info for each entity.

8.3. UDDI and jUDDI API

Knowing the UDDI data model is all well and good. But to truly interact with the registry, you need
to know how the UDDI API is structured and how jUDDI implements this API. The UDDI API is
covered in great detail in chapter 5 of the specification but will be summarized here.

UDDI divides their APl into several “sets” — each representing a specific area of functionality. The
API sets are listed below:

« Inquiry — deals with querying the registry to return details on entities within

» Publication — handles publishing entities into the registry

» Security — open-ended specification that handles authentication

» Custody and Ownership Transfer — deals with transferring ownership and custody of entities

» Subscription — allows clients to retrieve information on entities in a timely manner using a
subscription format

» Subscription Listener — client API that accepts subscription results

» Value Set (Validation and Caching)— validates keyed reference values (not implemented by
juDDI)

Replication — deals with federation of data between registry nodes (not implemented by jUDDI)

The most commonly used APIs are the Inquiry, Publication and Security APIs. These APIs provide
the standard functions for interacting with the registry.

The jUDDI server implements each of these API sets as a JAX-WS compliant web service and
each method defined in the API set is simply a method in the corresponding web service. The
client module provided by jUDDI uses a “transport” class that defines how the call is to be made.
The default transport uses JAX-WS but there are several alternative ways to make calls to the
API. Please refer to the documentation for more information.

One final note, jUDDI defines its own API set. This API set contains methods that deal with
handling Publishers as well as other useful maintenance functions (mostly related to jUDDI’s
subscription model). This API set is obviously proprietary to jJUDDI and therefore doesn’t conform
to the UDDI specification.

47



Chapter 8. Simple Publishing ...

8.4. Getting Started

Now that we've covered the basics of the data model and API sets, it's time to get started
with the publishing sample. The first thing that must happen is to get the jUDDI server up and
running. Please refer to this article [http://apachejuddi.blogspot.com/2010/02/getting-started-with-
juddi-v3.html] that explains how to start the jUDDI server.

8.4.1. Simple Publishing Example

We will now go over the “simple-publish” example found in the documentation. This sample
expands upon the HelloWorld example in that after retrieving an authentication token, a Publisher,
BusinessEntity and BusinessService are published to the registry.

The sample consists of only one class: SimplePublish. Let's start by taking a look at the
constructor:

public SimplePublish() {
try {

String clazz = UDDIClientContainer.getUDDIClerkManager(null).
getClientConfig().getUDDINode("default").getProxyTransport();

Class<?> transportClass = ClassUtil.forName(clazz, Transport.class);

if (transportClass!=null) {
Transport transport = (Transport) transportClass.
getConstructor(String.class).newlnstance("default");

security = transport.getUDDISecurityService();
juddiApi = transport.getJUDDIApiService();
publish = transport.getUDDIPublishService();
}
} catch (Exception e) {
e.printStackTrace();

The constructor uses the jUDDI client API to retrieve the transport from the default node. You can
refer to the documentation if you're confused about how clerks and nodes work. Suffice it to say,
we are simply retrieving the default client transport class which is designed to make UDDI calls
out using JAX-WS web services.

Once the transport is instantiated, we grab the three API sets we need for this demo: 1) the
Security API set so we can get authorization tokens, 2) the proprietary jUDDI API set so we can
save a Publisher and 3) the Publication API set so we can actually publish entities to the registry.

48


http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html

Simple Publishing Example

All the magic happens in the publish method. We will look at that next.

Here are the first few lines of the publish method:

/I Setting up the values to get an authentication token for the 'root' user (‘root' user
/I has admin privileges and can save other publishers).

GetAuthToken getAuthTokenRoot = new GetAuthToken();
getAuthTokenRoot.setUserID("root");

getAuthTokenRoot.setCred(™);

/l Making API call that retrieves the authentication token for the ‘root’ user.
AuthToken rootAuthToken = security.getAuthToken(getAuthTokenRoot);
System.out.printin ("root AUTHTOKEN =" + rootAuthToken.getAuthinfo());

This code simply gets the authorization token for the ‘root’ user. The ‘root’ user (or publisher) is
automatically installed in every jJUDDI instance and acts as the “administrator” for jJUDDI API calls.
Additionally, the ‘root’ user is the owning publisher for all the initial services installed with jUDDI.
You may be wondering what those “initial services” are. Well, since the UDDI API sets are all
implemented as web services by jUDDI, every jUDDI node actually registers those services inside
itself. This is done per the specification.

Let’s get back to the code. Now that we have root authorization, we can add a publisher:

/I Creating a new publisher that we will use to publish our entities to.
Publisher p = new Publisher();
p.setAuthorizedName("my-publisher”);

p.setPublisherName("My Publisher");

/I Adding the publisher to the "save" structure, using the 'root' user authentication info and
/I saving away.

SavePublisher sp = new SavePublisher();

sp.getPublisher().add(p);

sp.setAuthinfo(rootAuthToken.getAuthinfo());

juddiApi.savePublisher(sp);

Here we've simply used the jUDDI API to save a publisher with authorized name “my-publisher”.
Notice how the authorization token for the ‘root’ user is used. Next, we need to get the authorization
token for this new publisher:

49



Chapter 8. Simple Publishing ...

/I Our publisher is now saved, so now we want to retrieve its authentication token
GetAuthToken getAuthTokenMyPub = new GetAuthToken();
getAuthTokenMyPub.setUserID("my-publisher");
getAuthTokenMyPub.setCred(");

AuthToken myPubAuthToken = security.getAuthToken(getAuthTokenMyPub);
System.out.println ("myPub AUTHTOKEN =" + myPubAuthToken.getAuthInfo());

This is pretty straightforward. You'll note that no credentials have been set on both authorization
calls. This is because we're using the default authenticator which doesn’t require credentials. We
have our authorization token for our new publisher, now we can simply publish away:

/I Creating the parent business entity that will contain our service.
BusinessEntity myBusEntity = new BusinessEntity();

Name myBusName = new Name();

myBusName.setValue("My Business");
myBusEntity.getName().add(myBusName);

/I Adding the business entity to the "save" structure, using our publisher's authentication info

/I and saving away.

SaveBusiness sb = new SaveBusiness();
sb.getBusinessEntity().add(myBusEntity);
sh.setAuthinfo(myPubAuthToken.getAuthinfo());

BusinessDetail bd = publish.saveBusiness(sb);

String myBusKey = bd.getBusinessEntity().get(0).getBusinessKey();
System.out.printin("myBusiness key: " + myBusKey);

/I Creating a service to save. Only adding the minimum data: the parent business key

retrieved

/lfrom saving the business above and a single name.
BusinessService myService = new BusinessService();
myService.setBusinessKey(myBusKey);

Name myServName = new Name();
myServName.setValue("My Service");
myService.getName().add(myServName);

/I Add binding templates, etc...

/I Adding the service to the "save" structure, using our publisher's authentication info and
/I saving away.
SaveService ss = new SaveService();

50



Conclusion

ss.getBusinessService().add(myService);
ss.setAuthinfo(myPubAuthToken.getAuthinfo());

ServiceDetail sd = publish.saveService(ss);

String myServKey = sd.getBusinessService().get(0).getServiceKey();
System.out.printin("myService key: " + myServKey);

To summarize, here we have created and saved a BusinessEntity and then created and saved a
BusinessService. We've just added the bare minimum data to each entity (and in fact, have not
added any BindingTemplates to the service). Obviously, you would want to fill out each structure
with greater information, particularly with services. However, this is beyond the scope of this article,
which aims to simply show you how to programmatically publish entities.

There are a couple important notes regarding the use of entity keys. Version 3 of the specification
allows for publishers to create their own keys but also instructs implementers to have a default
method. Here we have gone with the default implementation by leaving each entity’s “key” field
blank in the save call. jJUDDI’s default key generator simply takes the node’s partition and appends
a GUID. In a default installation, it will look something like this:

uddi:juddi.apache.org:<GUID>

You can, of course, customize all of this, but that is left for another article. The second important
point is that when the BusinessService is saved, I've had to explicitly set its parent business key
(retrieved from previous call saving the business). This is a necessary step when the service is
saved in an independent call like this. Otherwise you would get an error because jUDDI won't know
where to find the parent entity. | could have added this service to the BusinessEntity’s service
collection and saved it with the call to saveBusiness. In that scenario | would not have to set the
parent business key.

8.5. Conclusion

That does it for this article. Hopefully | managed to clear some of the confusion around the open-
ended question, “How do | publish a service using jUDDI?".

51



52



Chapter 9.

Subscription

9.1. Introduction

Subscriptions come to play in a multi-registry setup. Within your company you may have the need
to run with more then one UDDI, let's say one for each department, where you limit access to the
systems in each department to just their own UDDI node. However you may want to share some
services cross departments. The subscription API can help you cross registering those services
and keeping them up to date by sending out notifications as the registry information in the parent
UDDI changes.

There are two type of subscriptions:

asynchronous
Save a subscription, and receive updates on a certain schedule.

synchronous
Save a subscription and invoke the get_Subscription and get a synchronous reply.

The notification can be executed in a synchronous and an asynchronous way. The asynchronous
way requires a listener service to be installed on the node to which the notifications should be sent.

9.2. Two node example setup: Sales and Marketing
In this example we are setting up a node for 'sales' and a node for 'marketing'. For this you need
to deploy jUDDI to two different services, then you need to do the following setup:

Procedure 9.1. Setup Node 1: Sales

1. Createjuddi _custom.install _data.

2. edit: webapps/j uddi v3/ WEB- | NF/ cl asses/j uddi v3. properties and set the following
property values where 'sales' is the DNS name of your server.

juddi.server.name=sales
juddi.server.port=8080

53



Chapter 9. Subscription

3. Start the server (tomcat), which will load the UDDI seed data (since this is the first time you're
starting jUDDI, see Chapter 5, Root Seed Data)

4. Open your browser to http://sales:8080/juddiv3. You should see:

UDDI Installation

jUDDI has been successfully installed!

Node Information

Root Partition: uddi:juddi.apache.org

Node |d: uddi: juddi.apache.org:business-sales-asf

Name: An Root 5ales jUDDI Node

Description: This is a UDDI v3 registry node as implemented by Apache jUDDI.

Figure 9.1. Sales Node Installation

Procedure 9.2. Setup Node 2: Marketing

1. Createjuddi _custom.install _data.

2. edit: webapps/j uddi v3/ WEB- | NF/ cl asses/j uddi v3. properties and set the following
property values where 'marketing' is the DNS name of your server.

juddi.server.name=marketing
juddi.server.port=8080

3. Start the server (tomcat), which will load the UDDI seed data (since this is the first time you're
starting jUDDI, see Chapter 5, Root Seed Data)

4. Open your browser to http://marketing:8080/juddiv3 . You should see:

54


http://sales:8080/juddiv3
http://marketing:8080/juddiv3

Two node example setup: Sales and Marketing

UDDI Installation
juDDI has been successfully installed!

Node Information

Root Partition: uddi:juddi.apache.org

Node Id: uddi: juddi.apache.org:business-marketing-asf

Name: An Root Marketing jUDD| Node

Description:  This is a UDDI v3 registry node as implemented by Apache jUDDI.

Figure 9.2. Marketing Node Installation

Note that we kept the root partition the same as sales and marketing are in the same company,
however the Node Id and Name are different and reflect that this node is in 'sales’ or 'marketing'.

Finally you will need to replace the sales server's uddi - port | et s. war/ WEB- | NF/ ¢l asses/ META-
I NF/ uddi . xm with uddi - port| ets. war/WEB- | NF/ cl asses/ META- | NF/ uddi . xni . sal es. Then,
edit the uddi-portlets.war/WEB- | NF/ cl asses/ META- | NF/ uddi . xm and set the following
properties:

<name>default</name>

<properties>
<property name="serverName" value="sales"/>
<property name="serverPort" value="8080"/>
<property name="rmiPort" value="1099"/>

</properties>

Log into the sales portal: http://sales:8080/pluto with username/password: sales/sales.

55


http://sales:8080/pluto

Chapter 9. Subscription

UDDIBrowser Portlet E' El

= 2 An Root Sales jUDDI N¢ ~Sales Subscription Listener Service

iy suddi:sales. apache.org:services-
B SfServices owned by thi |~ .
S Dy ol subscriptionlistenar

(4
¢~ UDDI Custody and _;iWEh Service supporting UDDI Subscription
& UDDI Inquiry Servi |~ Listener API

& UDDI Publish Sery [ Binding Template
»uddi:sales.apache.org:servicebindings-

& jUDDI Publisher Si Wsuhscnptuunlnsienm WS

r:-’r"i" UDDI Security Ser Iz = UDDI Subscription Listener API V3
& UDDI Subs cription Ews:::llI'JteplIq:q,.rr'rnam :hitp:/imarketing:8080
S Juddiv3/services/subscription-listener?wsdl |
= Ua Sales Node

B %¥Services owned by thi

& Sales Subscription
= R

Figure 9.3. Sales Services

Before logging into the marketing portal, replace marketing's uddi-portlet.war/
VEB- | NF/ ¢l asses/ META- | NF/ uddi . xm with udd- port| et.war/WEB- | NF/ cl asses/ META- | NF/
uddi . xm . mar ket i ng. Then you will need to edit the uddi - port| et.war/WEB- | NF/ cl asses/
META_|I NF/ uddi . xml and set the following properties:

<name>default</name>

<properties>
<property name="serverName" value="marketing"/>
<property name="serverPort" value="8080"/>
<property name="rmiPort" value="1099"/>

</properties>

Now log into the marketing portal http://marketing:8080/pluto with username/password: marketing/
marketing. In the browser for the marketing node we should now see:

56


http://marketing:8080/pluto

Deploy the HelloSales Service

UDDIBrowser Portlet v A&

3 ¥ An Root Marketing jUDDI  |¢~Marketing Subscription Listener Service
T . , -uddi:marketing.apache.org:services-
= MEEMGES owned by this SR
4: UDDI Custody and | | . Web Service supporting UDDI Subscription
& UDDI Inquiry Servic |~ Listener API

& UDDI Publish Servig [¢ Dinding Template

2 , =uddi:marketing.apache.org:servicebindings-
é?"j jUDDI Publisher Sex fﬁuhwpmnngener_m ° °
¢~ UDDI Security Servi =|UDDI Subscription Listener API V3

& UDDI Subscription ¢ "sciDeployment hitp:/imarketing:8080
3 g Marketing Node fluddivi/services/subscription-listener?wsdl
© ¥¥Services owned by this

& Marketing Subscript
= <>

Figure 9.4. Marketing Services

Note that the subscriptionlistener is owned by the Marketing Node business (and not the Root
Marketing Node). The Marketing Node Business is managed by the marketing publisher.

9.3. Deploy the HelloSales Service

The sales department developed a service called HelloSales. The HelloSales service is provided
in the j uddi v3-sanpl es. war, and it is annotated so that it will auto-register. Before deploying
the war, edit the j uddi v3- sanpl es. war / VEB- | NF/ cl asses/ META- | NF/ uddi . xm file to set some
property values to 'sales'.

<?xml version="1.0" encoding="1SO-8859-1" ?>
<uddi>
<reloadDelay>5000</reloadDelay>
<manager name="example-manager">
<nodes>
<node>
<name>default</name>
<description>Sales jUDDI node</description>
<properties>
<property name="serverName" value="sales"/>
<property name="serverPort" value="8080"/>

57



Chapter 9. Subscription

<property name="keyDomain" value="sales.apache.org"/>
<property name="department" value="sales" />
</properties>
<proxyTransport>
org.apache.juddi.v3.client.transport.InVMTransport
</proxyTransport>
<custodyTransferUrl>
org.apache.juddi.api.impl.UDDICustodyTransferimpl
</custodyTransferUrl>
<inquiryUrl>org.apache.juddi.api.impl.UDDIInquirylmpl</inquiryUrl>
<publishUrl>org.apache.juddi.api.impl.UDDIPublicationimpl</publishUrI>
<securityUrl>org.apache.juddi.api.impl.UDDISecuritylmpl</securityUrl>
<subscriptionUrl>
org.apache.juddi.api.impl.UDDISubscriptionimpl
</subscriptionUrl>
<subscriptionListenerUrl>
org.apache.juddi.api.impl.UDDISubscriptionListenerimpl
</subscriptionListenerUrl>
<juddiApiUrl>org.apache.juddi.api.impl.JUDDIApilmpl</juddiApiUrl>
</node>
</nodes>
</manager>
</uddi>

Now deploy the j uddi v3- sanpl es. war to the sales registry node, by building the j uddi v3-
sanpl es. war and deploying. The HelloWorld service should deploy

58



Configure a user to create Subscriptions

UDDIBrowser Portlet

® £ An Root Sales jUDDI
© %2 Sales Node
= %¥Services owned by
&f?" HelloWorld

c—> R

0

—

ik

E
& Sales Subscripti ¥

|
-

. /~HelloWorld
7~ uddi:sales.apache.org:services-hellosales
=|Hello World test service
& Binding Template
wuddi:sales.apache.org:bindings-
¥ hellosales-wsdl
WSDL endpoint for the hellosales Servi
LjThus service is used for testing the JUDI
annotation functionality
OwsdlDePIWment:mp:Hsales:EDEUMUQ_@

samples/services/helloworld ?wsdl

Figure 9.5. Registration by Annotation, deploying thej uddi - sanpl es. war to the

sales Node

On the Marketing UDDI we'd like to subscribe to the HelloWord service, in the Sales UDDI Node.
As mentioned before there are two ways to do this; synchronously and asynchronously.

9.4. Configure a user to create Subscriptions

For a user to create and save subscriptions the publisher needs to have a valid login to both the
sales and the marketing node. Also if the marketing publisher is going to create registry objects in
the marketing node, the marketing publisher needs to own the sales keygenerator tModel. Check
the marketing_*. xm files in the root seed data of both the marketing and sales node, if you
want to learn more about this. It is important to understand that the 'marketing' publisher in the
marketing registry owns the following tModels:

<save_tModel xmIns="urn:uddi-org:api_v3">

<tModel tModelKey="uddi:marketing.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">
<name>marketing-apache-org:keyGenerator</name>
<description>Marketing domain key generator</description>

<overviewDoc>
<overviewURL useType="text">

http://uddi.org/pubs/uddi_v3.htm#keyGen

</overviewURL>
</overviewDoc>

59



Chapter 9. Subscription

<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:keyGenerator"
keyValue="keyGenerator" />
</categoryBag>
</tModel>

<tModel tModelKey="uddi:marketing.apache.org:subscription:keygenerator"
xmlns="urn:uddi-org:api_v3">
<name>marketing-apache-org:subscription:keyGenerator</name>
<description>Marketing Subscriptions domain key generator</description>
<overviewDoc>
<overviewURL useType="text">
http://uddi.org/pubs/uddi_v3.htm#keyGen
</overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:keyGenerator"
keyValue="keyGenerator" />
</categoryBag>
</tModel>

<tModel tModelKey="uddi:sales.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">
<name>sales-apache-org:keyGenerator</name>
<description>Sales Root domain key generator</description>
<overviewDoc>
<overviewURL useType="text">
http://uddi.org/pubs/uddi_v3.htm#keyGen
</overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey="uddi:uddi.org:categorization:types"
keyName="uddi-org:types:keyGenerator"
keyValue="keyGenerator" />
</categoryBag>
</tModel>
</save_tModel>

If we are going to user the marketing publisher to subscribe to updates in the sales registry, then
we need to provide this publisher with two clerks in the uddi . xm of the uddi - portlet. war.

<clerks registerOnStartup="false">

60



Synchronous Notifications

<clerk name="MarketingCratchit" node="default"

publisher="marketing" password="marketing"/>
<clerk name="SalesCratchit" node="sales-ws"

publisher="marketing" password="marketing"/>
<l-- optional

<xregister>
<servicebinding
entityKey="uddi:marketing.apache.org:servicebindings-subscriptionlistener-ws"
fromClerk="MarketingCratchit" toClerk="SalesCratchit"/>
</xregister>
-->

</clerks>

Here we created two clerks for this publisher called 'MarketingCratchit' and 'SalesCratchit'. This
will allow the publisher to check the existing subscriptions owned by this publisher in each of the
two systems.

9.5. Synchronous Notifications

While being logged in as the marketing publisher on the marketing portal, we should see the
following when selecting the UDDISubscription Portlet.

UDDISubscription Portlet UDDISubscription Portlet

IEXS XS
e @ default-ws 8 @ default-ws
=] Main jUDDI node =l Main jUDDI node
2 @ sales-ws 2 @ sales-ws
=l jUDDI node in other D Down, communication pr
| = — J4 > =l jJUDDI node in other [
8 R

Figure 9.6. Subscriptions. In (a) both nodes are up while in (b) the sales
node is down

When both nodes came up green you can lick on the 'new subscription' icon in the toolbar. Since
we are going to use this subscription synchronously only the Binding Key and Notification Interval




Chapter 9. Subscription

should be left blank, as shown in Figure 9.7, “Create a New Subscription”. Click the save icon

to save the subscription.

UDDISubscription Portlet

LEXS

B @ default-ws
=l Main jUDDI node
© @ sales-ws

I jUDDI node in other [

Clerk:

Subscription
Kay:
Is Brief:

Expires After:

Max Entities:

Search Filter:

Binding Key:

Notification
Interval:

SalesCratchit

ache.org:subscription:ke

M

| S—

1000

<subscriptionFilter xmin

Figure 9.7. Create a New Subscription

Make sure that the subscription Key uses the convention of the keyGenerator of the marketing
publisher. You should see the orange subscription icon appear under the “sales-ws” UDDI node.

62



Synchronous Notifications

UDDISubscription Portlet

SalesCratchit

uddi:marketing.apache.o

M

| S

2010-10-20T18:01:38.93

| HRS
@ default-ws Clerk:
= @ ’

G Sf'les — Subscription
=l jUDDI node in other C Key:
&) uddi:marketing.apach Is Brief:

RIE
Expires After:
Max Entities:

1000

Figure 9.8. A Newly Saved Subscription

To invoke a synchronous subscription, click the icon with the green arrows. This will give you the

opportunity to set the coverage period.

UDDISubscription Portlet

. i il
L H ﬁ%};ﬁ
® G default-ws Clerk:
= -
i Sf'les wa Subscription
E JUDDI node in other L Key:
&J uddi:marketing.apach Coverage Start
= e Date
Coverage End
Date:

SalesCratchit

uddi:marketing.apache.

2008-01-01T00:00:00

2010-01-01T00:00:00

Figure 9.9. Set the Coverage Period

Click the green arrows icon again to invoke the synchronous subscription request. The example
finder request will go out to the sales node and look for updates on the HelloWorld service. The

raw XML response will be posted in the UDDISubscriptionNotification Portlet.

63



Chapter 9. Subscription

UDDISubscriptionMotification Portlet

Subscription notifications:

standalone="yes"?><subscriptionResultsList
xmlns:ns3="http://www.w3.org/2000/09/xmldsig#"

</ns2:find_service></subscriptionFilter>
<maxEntities>1000</maxEntities>

- - - A ~ Aawm - - - e w - - - F_ | -~ . F

Figure 9.10. The Raw XML response of the synchronous Subscription
request

The response will also be consumed by the marketing node. The marketing node will import
the HelloWorld subscription information, as well as the sales business. So after a successful
sync you should now see three businesses in the Browser Portlet of the marketing node,
see Figure 9.11, “The registry info of the HelloWorld Service information was imported by the
subscription mechanism.”.

64



Synchronous Notifications

UDDIBrowser Portlet

£2 An Root Marketing jUDD
£2 Marketing Node

© £ Sales Node
B %¥Services owned by thi

& HelloWorld
33 Y4 »

| — |
v |

_~HelloWorld
7—uddi:sales.apache.org:services-hellosales
| =|Hello World test service
£ Binding Template
= uddi:sales.apache.org:bindings-hellosale

E'st-::ll

WSDL endpoint for the hellosales Servics
|=| This service is used for testing the jUDDI

annotation functionality

gwsdlne ploymenthitp:/isales:8080/juddiv:
samples/services/helloworld ?wsdl

Figure 9.11. The registry info of the HelloWorld Service information was
imported by the subscription mechanism.




66



Chapter 10.

Administration

10.1. Introduction

General Stuff about administration.

10.2. Changing the Listener Port

If you want to change the port Tomcat listens on to something non-standard (something other
than 8080):

jUDDI Server

1. editconf/server.xm and change the port within the <Connect or > element

2. edit webapps/ j uddi v3/ VEB- | NF/ cl asses/ j uddi v3. properties and change the port
number

juDDI Portal

1. editwebapps/ uddi - port!ets/WEB- | NF/ cl asses/ META- | NF/ uddi . xm and change the
port numbers within the endpoint URLs

2. editpl ut o/ VEB- | NF/ cl asses/ server. xm and change the port within the <Connect or >
element

10.3. Changing the Oracle Sequence name

If you are using Hibernate as a persistence layer for jUDDI, then Oracle will generate a default
sequence for you ("HIBERNATE_SEQUENCE"). If you are using hibernate elsewhere, you may
wish to change the sequence name so that you do not share this sequence with any other
applications. If other applications try to manually create the default hibernate sequence, you may
even run into situations where you find conflicts or a race condition.

The easiest way to handle this is to create an orm xnl file and place it within the classpath
in a META-INF directory, which will override the jUDDI persistence annotations and will allow
you to specify a specific sequence name for use with jUDDI. The following or m xml specifies a
"juddi_sequence" sequence to be used with jUDDI.

<entity-mappings
xmins="http://java.sun.com/xml/ns/persistence/orm"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/
persistence/orm_1 0.xsd"
version="1.0">

67



Chapter 10. Administration

<sequence-generator name="juddi_sequence" sequence-name="juddi_sequence"/>

<entity class="org.apache.juddi.model.Address">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.AddressLine">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.BindingDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.BusinessDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.Businessldentifier">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.BusinessName">
<attributes>

68



Changing the Oracle Sequence name

<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.CategoryBag">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.Contact">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.ContactDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.DiscoveryUrl">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.Email">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>

69



Chapter 10. Administration

</entity>

<entity class="org.apache.juddi.model.InstanceDetailsDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.InstanceDetailsDocDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.KeyedReference">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.KeyedReferenceGroup">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.OverviewDoc">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.OverviewDocDescr">
<attributes>

70



Changing the Oracle Sequence name

<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.PersonName">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.Phone">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.ServiceDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.ServiceName">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.SubscriptionMatch">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>

71



Chapter 10. Administration

</entity>

<entity class="org.apache.juddi.model. TmodelDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model. Tmodelldentifier">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.Tmodellnstancelnfo">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.TmodellnstancelnfoDescr">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.TransferTokenKey">
<attributes>
<id name="id">
<generated-value generator="juddi_sequence" strategy="AUTO"/>
</id>
</attributes>
</entity>

<entity class="org.apache.juddi.model.BindingTemplate">
<attributes>

72



Persistence

<basic name="accessPointUrl">
<column name="access_point_url" length="4000"/>
</basic>
</attributes>
</entity>
</entity-mappings>

10.4. Persistence

jUDDI supports both OpenJPA and Hibernate as persistence providers. If you are embedding
juDDI, it is important to note that there are two JARSs provided through maven. If you will be using
Hibernate, please use the juddi-core JAR, if you are using OpenJPA, use juddi-core-openjpa.

The difference between these JARs is that the persistence classes within juddi-core-
openjpa have been enhanced (http:/people.apache.org/~mprudhom/openjpa/site/openjpa-
project/manual/ref_guide_pc_enhance.html). Unfortunately, the Hibernate classloader does not
deal well with these enhanced classes, so it it important to note not to use the juddi-core-openjpa
JAR with Hibernate.

73



74



Chapter 11.

Deploying to JBoss 6.0.0.GA

11.1. Introduction

This section describes how to deploy juddi to JBoss 6.0.0.GA.

First, download jboss-6.0.0.GA - the zip or tar.gz bundle may be found at http://www.jboss.org/
jbossas/downloads/. Download the bundle and uncompress it.

11.2. Add juddiv3.war

Copy juddiv3.war to server/default/deploy and unpack it.

Insert j boss-web. xn into the juddiv3.war/WEB-INF directory , should look like the following :

<?xml version="1.0" encoding="1S0O-8859-1"?>

<IDOCTYPE jboss-web PUBLIC
"-//JBoss//DTD Web Application 2.3V2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_3_2.dtd">

<jboss-web>

<resource-ref>
<res-ref-name>jdbc/JuddiDS</res-ref-name>
<jndi-name>java:JuddiDS</jndi-name>
</resource-ref>
<depends>jboss.jdbc:datasource=JuddiDS,service=metadata</depends>

</jboss-web>

11.3. Change web.xml

Replace the WEB-INF/web.xml with the jbossws-native-web.xml within docs/examples/appserver.

11.4. Configure Datasource

The first step for configuring a datasource is to copy your JDBC driver into the classpath. Copy your
JDBC driver into ${j boss. hone. dir}/server/${configuration}/lib, where configuration is
the profile you wish to start with (default, all, etc.). Example :

cp mysql-connector-java-5.0.8-bin.jar /opt/jboss-5.1.0.GA/server/default/lib

75



Chapter 11. Deploying to JBos...

Next, configure a JBoss datasource file for your db. Listed below is an example datasource for
MySQL :

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>JuddiDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/juddiv3</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>root</user-name>
<password></password>
<exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter</exception-sorter-class-
name>

<!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->
<metadata>
<type-mapping>mySQL</type-mapping>
</metadata>
</local-tx-datasource>
</datasources>

Next, make a few changes to the j uddi v3. war/ cl asses/ META- | NF/ per si st ence. xnml . Change
the "hibernate.dialect" property to match the database you have chosen for persistence.
For MySQL, change the value of hibernate.dialect to "org.hibernate.dialect. MySQLDialect".
A full list of dialects available can be found in the hibernate documentation (https://
www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html). Next, change
the <jta-data-source> tags so that it reads <non-jta-data-source>, and change the value from
java:comp/env/jdbc/JuddiDS to java:/JuddiDS.

76



Chapter 12.

Deploying to Glassfish 2.1.1

12.1. Introduction

This section describes how to deploy juddi to Glassfish 2.1.1. These instructions will use CXF as
a webservice framework.

First, download the glassfish-v2.1.1 installer JAR. Once downloaded,install using the JAR and
then run the ant setup script :

java -jar glassfish-installer-v2.1.1-b31g-linux.jar
cd glassfish
ant -f setup.xml

12.2. Glassfish jars

Copy the following JARs into domains/domain1/lib/ext. Note that for the purposes of this example,
we have copied the MySQL driver to domai ns/ domai n1/1i b/ ext :

antlr-2.7.6.jar

cglib-nodep-2.1_3.jar
commons-collections-3.2.1.jar
commons-logging-1.1.jar
dom4j-1.6.1.jar
hibernate-3.2.5.ga.jar
hibernate-annotations-3.3.0.ga.jar
hibernate-commons-annotations-3.0.0.ga.jar
hibernate-entitymanager-3.3.1.ga.jar
hibernate-validator-3.0.0.ga.jar
javassist-3.3.ga.jar
jboss-common-core-2.0.4.GA.jar
jta-1.0.1B.jar
mysql-connector-java-5.0.8-bin.jar
persistence-api-1.0.jar

12.3. Configure the JUDDI datasource

First, using the asadmin administration tool, import the following file :

77



Chapter 12. Deploying to Glas...

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE resources PUBLIC "-//Sun Microsystems Inc.//DTD Application Server 9.0 Domain//

EN" "*<install directory>/lib/dtds/sun-resources_1 3.dtd*">
<resources>

<jdbc-connection-pool name="mysql-pool"
classname="com.mysql.jdbc.jdbc2.optional.MysqglDataSource"
type="javax.sql.DataSource">

<property name="user" value="juddi"/>

<property name="password" value="juddi"/>

<property name="url" value="jdbc:mysql://localhost:3306/juddiv3"/>
</jdbc-connection-pool>

<jdbc-resource enabled="true" jndi-name="jdbc/mysql-resource
name="mysql-pool"/>

</resources>

asadmin add-resources resource.xml

datasource-
res-

object-type="user" pool-

Then use the Glassfish administration console to create a "jdbc/juddiDB" JDBC datasource

resource based on the mysql-pool Connection Pool.

12.4. Add juddiv3-cxf.war

Unzip the juddiv3-cxf WAR into domai ns/ domai n1/ aut odepl oy/ j uddi v3. war

Add a sun-web. xni file into juddiv3.war/WEB-INF. Make sure that the JNDI references matches
the IJNDI location you configured in the Glassfish administration console.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN'

'http://lwww.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd">

<sun-web-app>

<resource-ref>
<res-ref-name>jdbc/juddiDB</res-ref-name>
<jndi-name>jdbc/juddiDB</jndi-name>
</resource-ref>

</sun-web-app>

78



Run juddi

Next, make a few changes to j uddi v3. war/VEB- | NF/ cl asses/ META- | NF/ per si st ence. xml

Change the "hibernate.dialect” property to match the database that you have
chosen for persistence. For MySQL, change the value of hibernate.dialect to
"org.hibernate.dialect. MySQLDialect". A full list of dialects available can be found in
the hibernate documentation (https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/
package-summary.html). Next, change the <jta-data-source> change the value from java:comp/
env/jdbc/JuddiDS to java:comp/env/jdbc/JuddiDB.

12.5. Run juddi

Start up the server :

cd bin
asadmin start-domain domainl

Once the server is deployed, browse to http://localhost:8080/juddiv3

79


http://localhost:8080/juddiv3

80



Appendix A. Revision History

Revision History

Revision 1.1 Thu Jan 07 2010 TomCunningham<t cunni ng@pache. or g>
Translated Dev Guide to docbook
Revision 1.0 Mon Nov 16 2009 DarrinMison<dni son@ edhat . con>

Created from community jUDDI Guide

81



82



	jUDDI User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. UDDI Registry
	1.1. Introduction
	1.2. UDDI Registry

	Chapter 2. Getting Started
	2.1. What Should I Download?
	2.2. Using the JAR
	2.3. Using the WAR File
	2.4. Using the Tomcat Bundle
	2.5. Using jUDDI Web Services

	Chapter 3. Authentication
	3.1. Introduction
	3.2. jUDDI Authentication
	3.3. XMLDocAuthentication
	3.4. CryptedXMLDocAuthentication
	3.5. LDAP Authentication
	3.6. JBoss Authentication

	Chapter 4. Database Setup
	4.1. Derby Out-of-the-Box
	4.2. Switch to MySQL
	4.3. Switch to Postgres
	4.4. Switch to Oracle
	4.5. Switch to HSQL
	4.6. Switch to <other db>

	Chapter 5. Root Seed Data
	5.1. Introduction
	5.2. Seed Data Files
	5.3. Token in the Seed Data
	5.4. Customer Seed Data

	Chapter 6. jUDDI_Configuration
	6.1. Introduction
	6.2. Authentication
	6.3. Startup
	6.4. Queries
	6.5. Proxy Settings
	6.6. KeyGeneration
	6.7. Subscription
	6.8. Transfer

	Chapter 7. Using the jUDDI-Client
	7.1. Introduction
	7.2. Configuration
	7.2.1. JAX-WS Transport
	7.2.2. RMI Transport
	7.2.3. InVM Transport

	7.3. UDDI Annotations
	7.3.1. Introduction
	7.3.2. UDDIService Annotation
	7.3.3. UDDIServiceBinding Annotation
	7.3.3.1. CategoryBag Attribute

	7.3.4. WebService Example
	7.3.5. Templating keys

	7.4. Programmatic use
	7.4.1. WSDL Registration
	7.4.2. BPEL Process Registration
	7.4.3. Conventions around UDDIv3 registration
	7.4.3.1. Key Templates
	7.4.3.2. Specification of service and binding descriptions in the WSDL
	7.4.3.3. URLLocalizer


	7.5. Dynamic UDDI Service Lookup
	.1. Service Locator

	7.6. Dependencies
	7.7. Sample Code
	7.8. References

	Chapter 8. Simple Publishing Using the jUDDI API
	8.1. UDDI Data Model
	8.2. jUDDI Additions to the Model
	8.3. UDDI and jUDDI API
	8.4. Getting Started
	8.4.1. Simple Publishing Example

	8.5. Conclusion

	Chapter 9. Subscription
	9.1. Introduction
	9.2. Two node example setup: Sales and Marketing
	9.3. Deploy the HelloSales Service
	9.4. Configure a user to create Subscriptions
	9.5. Synchronous Notifications

	Chapter 10. Administration
	10.1. Introduction
	10.2. Changing the Listener Port
	10.3. Changing the Oracle Sequence name
	10.4. Persistence

	Chapter 11. Deploying to JBoss 6.0.0.GA
	11.1. Introduction
	11.2. Add juddiv3.war
	11.3. Change web.xml
	11.4. Configure Datasource

	Chapter 12. Deploying to Glassfish 2.1.1
	12.1. Introduction
	12.2. Glassfish jars
	12.3. Configure the JUDDI datasource
	12.4. Add juddiv3-cxf.war
	12.5. Run juddi

	Appendix A. Revision History

