
jUDDI User Guide

A guide to using jUDDI

by Tom Cunningham, Kurt Stam, Jeff Faath, and The jUDDI Community

and thanks to Darrin Mison

iii

Preface .. vii

1. Document Conventions ... vii

1.1. Typographic Conventions ... vii

1.2. Pull-quote Conventions ... ix

1.3. Notes and Warnings ... ix

2. We Need Feedback! .. x

1. UDDI Registry .. 1

1.1. Introduction .. 1

1.2. UDDI Registry .. 1

2. Getting Started .. 3

2.1. What Should I Download? ... 3

2.2. Using the JAR .. 3

2.3. Using the WAR File .. 3

2.4. Using the Tomcat Bundle .. 3

2.5. Using jUDDI Web Services ... 4

3. Authentication ... 7

3.1. Introduction .. 7

3.2. jUDDI Authentication ... 8

3.3. XMLDocAuthentication .. 8

3.4. CryptedXMLDocAuthentication ... 9

3.5. LDAP Authentication ... 9

3.6. JBoss Authentication ... 10

4. Database Setup .. 11

4.1. Derby Out-of-the-Box .. 11

4.2. Switch to MySQL .. 13

4.3. Switch to Postgres .. 14

4.4. Switch to Oracle ... 15

4.5. Switch to HSQL .. 15

4.6. Switch to <other db> ... 17

5. Root Seed Data .. 19

5.1. Introduction ... 19

5.2. Seed Data Files .. 19

5.3. Token in the Seed Data .. 22

5.4. Customer Seed Data .. 22

6. jUDDI_Configuration .. 23

6.1. Introduction ... 23

6.2. Authentication ... 23

6.3. Startup ... 23

6.4. Queries .. 25

6.5. Proxy Settings .. 26

6.6. KeyGeneration .. 27

6.7. Subscription .. 27

6.8. Transfer .. 28

7. Using the jUDDI-Client ... 29

jUDDI User Guide

iv

7.1. Introduction ... 29

7.2. Configuration .. 29

7.2.1. JAX-WS Transport ... 32

7.2.2. RMI Transport .. 33

7.2.3. InVM Transport .. 34

7.3. UDDI Annotations ... 35

7.3.1. Introduction .. 35

7.3.2. UDDIService Annotation ... 35

7.3.3. UDDIServiceBinding Annotation .. 36

7.3.4. WebService Example ... 37

7.3.5. Templating keys ... 38

7.4. Programmatic use ... 38

7.4.1. WSDL Registration ... 39

7.4.2. BPEL Process Registration ... 40

7.4.3. Conventions around UDDIv3 registration ... 40

7.5. Dynamic UDDI Service Lookup .. 42

7.6. Dependencies ... 42

7.7. Sample Code .. 43

7.8. References ... 43

8. Simple Publishing Using the jUDDI API ... 45

8.1. UDDI Data Model ... 45

8.2. jUDDI Additions to the Model .. 46

8.3. UDDI and jUDDI API .. 47

8.4. Getting Started ... 48

8.4.1. Simple Publishing Example ... 48

8.5. Conclusion .. 51

9. Subscription .. 53

9.1. Introduction ... 53

9.2. Two node example setup: Sales and Marketing .. 53

9.3. Deploy the HelloSales Service ... 57

9.4. Configure a user to create Subscriptions .. 59

9.5. Synchronous Notifications ... 61

10. Administration ... 67

10.1. Introduction ... 67

10.2. Changing the Listener Port .. 67

10.3. Changing the Oracle Sequence name .. 67

10.4. Persistence ... 73

11. Deploying to JBoss 6.0.0.GA ... 75

11.1. Introduction ... 75

11.2. Add juddiv3.war .. 75

11.3. Change web.xml ... 75

11.4. Configure Datasource .. 75

12. Deploying to Glassfish 2.1.1 .. 77

12.1. Introduction ... 77

v

12.2. Glassfish jars .. 77

12.3. Configure the JUDDI datasource .. 77

12.4. Add juddiv3-cxf.war ... 78

12.5. Run juddi .. 79

A. Revision History .. 81

vi

vii

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

ix

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

x

Note

A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you!

For any issues you find, or improvements you have, please sign up for a JIRA account at https://

issues.apache.org/jira/secure/Dashboard.jspa and file a bug under the "jUDDI" component.

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

Chapter 1.

1

UDDI Registry

1.1. Introduction

The Universal Description, Discovery and Integration (UDDI) protocol is one of the major building

blocks required for successful Web services. UDDI creates a standard interoperable platform that

enables companies and applications to quickly, easily, and dynamically find and use Web services

over the Internet. UDDI also allows operational registries to be maintained for different purposes in

different contexts. UDDI is a cross-industry effort driven by major platform and software providers,

as well as marketplace operators and e-business leaders within the OASIS standards consortium.

UDDI has gone through 3 revisions and the latest version is 3.0.2. Additional information regarding

UDDI can be found at http://uddi.xml.org.

1.2. UDDI Registry

The UDDI Registry implements the UDDI specification. UDDI is a Web-based distributed directory

that enables businesses to list themselves on the Internet and discover each other, similar to a

traditional phone book's yellow and white pages. The UDDI registry is both a white pages business

directory and a technical specifications library. The Registry is designed to store information about

Businesses and Services and it holds references to detailed documentation.

Figure 1.1. Invocation Pattern using the UDDI Registry

http://uddi.xml.org

Chapter 1. UDDI Registry

2

A business publishes services to the UDDI registry. A client looks up the service in the registry and

receives service binding information. The client then uses the binding information to invoke the

service. The UDDI APIs are SOAP based for interoperability reasons. The UDDI v3 specification

defines 9 APIs:

1. UDDI_Security_PortType, defines the API to obtain a security token. With a valid security

token a publisher can publish to the registry. A security token can be used for the entire session.

2. UDDI_Publication_PortType, defines the API to publish business and service information to

the UDDI registry.

3. UDDI_Inquiry_PortType, defines the API to query the UDDI registry. Typically this API does

not require a security token.

4. UDDI_CustodyTransfer_PortType, this API can be used to transfer the custody of a business

from one UDDI node to another.

5. UDDI_Subscription_PortType, defines the API to register for updates on a particular business

of service.

6. UDDI_SubscriptionListener_PortType, defines the API a client must implement to receive

subscription notifications from a UDDI node.

7. UDDI_Replication_PortType, defines the API to replicate registry data between UDDI nodes.

8. UDDI_ValueSetValidation_PortType, by nodes to allow external providers of value set

validation. Web services to assess whether keyedReferences or keyedReferenceGroups are

valid.

9. UDDI_ValueSetCaching_PortType, UDDI nodes may perform validation of publisher

references themselves using the cached values obtained from such a Web service.

Chapter 2.

3

Getting Started

2.1. What Should I Download?

The jUDDI server deploys as a WebARchive (war) named juddiv3.war. Within jUDDI, there

are three downloadable files (juddi-core.jar, juddi.war, and juddi-tomcat.zip). You should

determine which one to use depending on what level of integration you want with your application

and your platform / server choices.

JUDDI also ships with client side code, the juddi-client.jar. The jUDDI server depends on the

juddi-client.jar in situations where one server communicates to another server. In this setup

one server acts as a client to the other server. The juddi-client.

2.2. Using the JAR

The juddi-core module produces a JAR which contains the jUDDI source and a jUDDI

persistence.xml configuration. jUDDI's persistence is being actively tested with both OpenJPA and

with Hibernate. If you are going to use only the JAR, you would need to directly insert objects into

jUDDI through the database back end or persistence layer, or configure your own Web Service

provider with the provided WSDL files and classes.

2.3. Using the WAR File

As with the JAR, you need to make a decision on what framework you would like to use when

building the WAR. jUDDI's architecture supports any JAX-WS compliant WS stack (Axis, CXF,

etc). The jUDDI 3.0.GA release ships with CXF in the Tomcat bundle, but any docs or descriptors

to support other WS stacks would be welcome contributions. Simply copy the WAR to the deploy

folder of your server (this release has been tested under Apache Tomcat 6.0.20), start your server,

and follow the directions under “using jUDDI as a Web Service”.

2.4. Using the Tomcat Bundle

The jUDDI Tomcat bundle packages up the jUDDI WAR, Apache Derby, and a few necessary

configuration files and provides the user with a pre-configured jUDDI instance. By default,

Hibernate is used as the persistence layer and CXF is used as a Web Service framework. To get

started using the Tomcat bundle, unzip the juddi-tomcat-bundle.zip, and start Tomcat :

% cd apache-tomcat-6.0.20/bin

% ./startup.sh

It is suggested that you use JDK 1.6 with the Tomcat 6 bundle. On Mac OS X you can either

change your JAVA_HOME settings or use /Applications/Utilities/Java Preferences.app

to change your current JDK.

Chapter 2. Getting Started

4

Once the server is up and running can make sure the root data was properly installed by browsing

to http://localhost:8080/juddiv3

You should see the screen show in Figure 2.1, “jUDDI Welcome Page”.

Figure 2.1. jUDDI Welcome Page

2.5. Using jUDDI Web Services

Once the jUDDI server is started, you can inspect the UDDI WebService API by browsing to http://

localhost:8080/juddiv3/services

You should see an overview of all the Services and their WSDLs.

http://localhost:8080/juddiv3
http://localhost:8080/juddiv3/services
http://localhost:8080/juddiv3/services

Using jUDDI Web Services

5

Figure 2.2. UDDI Services Overview

The services page shows you the available endpoints and methods available. Using any SOAP

client, you should be able to send some sample requests to jUDDI to test:

Chapter 2. Getting Started

6

Figure 2.3. Getting an authToken using SoapUI

Chapter 3.

7

Authentication

3.1. Introduction

In order to enforce proper write access to jUDDI, each request to jUDDI needs a valid authToken.

Note that read access is not restricted and therefore queries into the registries are not restricted.

To obtain a valid authToken a getAuthToken() request must be made, where a GetAuthToken

object is passed. On the GetAuthToken object a userid and credential (password) needs to be set.

org.uddi.api_v3.GetAuthToken ga = new org.uddi.api_v3.GetAuthToken();

ga.setUserID(pubId);

ga.setCred("");

org.uddi.api_v3.AuthToken token = securityService.getAuthToken(ga);

The property juddi.auth in the juddi.properties configuration file can be used to configure

how jUDDI is going to check the credentials passed in on the GetAuthToken request. By default

jUDDI uses the JUDDIAuthenticator implementation. You can provide your own authentication

implementation or use any of the ones mention below. The implementation needs to implement

the org.apache.juddi.auth.Authenticator interface, and juddi.auth property should refer to

the implementation class.

There are two phases involved in Authentication. The authenticate phase and the identify phase.

Both of these phases are represented by a method in the Authenticator interface.

The authenticate phase occurs during the GetAuthToken request as described above. The goal of

this phase is to turn a user id and credentials into a valid publisher id. The publisher id (referred to

as the “authorized name” in UDDI terminology) is the value that assigns ownership within UDDI.

Whenever a new entity is created, it must be tagged with ownership by the authorized name of

the publisher. The value of the publisher id can be completely transparent to jUDDI – the only

requirement is that one exists to assign to new entities. Thus, the authenticate phase must return

a non-null publisher id. Upon completion of the GetAuthToken request, an authentication token

is issued to the caller.

In subsequent calls to the UDDI API that require authentication, the token issued from the

GetAuthToken request must be provided. This leads to the next phase of jUDDI authentication

– the identify phase.

The identify phase is responsible for turning the authentication token (or the publisher id

associated with that authentication token) into a valid UddiEntityPublisher object. The

UddiEntityPublisher object contains all the properties necessary to handle ownership of UDDI

entities. Thus, the token (or publisher id) is used to “identify” the publisher.

Chapter 3. Authentication

8

The two phases provide compliance with the UDDI authentication structure and grant flexibility

for users that wish to provide their own authentication mechanism. Handling of credentials and

publisher properties can be done entirely outside of jUDDI. However, jUDDI provides the Publisher

entity, which is a sub-class of UddiEntityPublisher, to persist publisher properties within jUDDI.

This is used in the default authentication and is the subject of the next section.

3.2. jUDDI Authentication

The default authentication mechanism provided by jUDDI is the JUDDIAuthenticator. The

authenticate phase of the JUDDIAuthenticator simply checks to see if the user id passed in

has an associated record in the Publisher table. No credentials checks are made. If, during

authentication, the publisher does not exist, it the publisher is added on the fly.

Warning

Do not use jUDDI authentication in production.

The identify phase uses the publisher id to retrieve the Publisher record and return it. All necessary

publisher properties are populated as Publisher inherits from UddiEntityPublisher.

juddi.auth = org.apache.juddi.auth.JUDDIAuthentication

3.3. XMLDocAuthentication

The XMLDocAuthentication implementation needs a XML file on the classpath. The

juddi.properties file would need to look like

juddi.auth = org.apache.juddi.auth.XMLDocAuthentication

juddi.usersfile = juddi-users.xml

where the name of the XML can be provided but it defaults to juddi-users.xml, and the content

of the file would looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<juddi-users>

 <user userid="anou_mana" password="password" />

 <user userid="bozo" password="clown" />

 <user userid="sviens" password="password" />

</juddi-users>

CryptedXMLDocAuthentication

9

The authenticate phase checks that the user id and password match a value in the XML file. The

identify phase simply uses the user id to populate a new UddiEntityPublisher.

3.4. CryptedXMLDocAuthentication

The CryptedXMLDocAuthentication implementation is similar to the XMLDocAuthentication

implementation, but the passwords are encrypted

juddi.auth = org.apache.juddi.auth.CryptedXMLDocAuthentication

juddi.usersfile = juddi-users-encrypted.xml

juddi.cryptor = org.apache.juddi.cryptor.DefaultCryptor

where the name user credential file is juddi-users-encrypted.xml, and the content of the file

would looks something like

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<juddi-users>

 <user userid="anou_mana" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

 <user userid="bozo" password="Na2Ait+2aW0="/>

 <user userid="sviens" password="+j/kXkZJftwTFTBH6Cf6IQ=="/>

</juddi-users>

The DefaultCryptor implementation uses BEWithMD5AndDES and Base64 to encrypt the

passwords. Note that the code in the AuthenticatorTest can be used to learn more about

how to use this Authenticator implementation. You can plugin your own encryption algorithm

by implementing the org.apache.juddi.cryptor.Cryptor interface and referencing your

implementation class in the juddi.cryptor property.

The authenticate phase checks that the user id and password match a value in the XML file. The

identify phase simply uses the user id to populate a new UddiEntityPublisher.

3.5. LDAP Authentication

LdapSimpleAuthenticator provides a way of authenticating users using Ldap simple

authentication. It is fairly rudimentary and more LDAP integration is planned in the future, but this

class allows you to authenticate a user based on an LDAP prinicipal, provided that the principal

and the juddi publisher ID are the same.

To use this class you must add the following properties to the juddi.properties file:

juddi.auth=org.apache.juddi.auth.LdapSimpleAuthenticator

juddi.auth.url=ldap://localhost:389

Chapter 3. Authentication

10

The juddi.auth.url property configures the LdapSimpleAuthenticator class so that it knows

where the LDAP server resides. Future work is planned in this area to use the LDAP uid rather

than the LDAP principal as the default publisher id.

3.6. JBoss Authentication

Finally is it possible to hook up to third party credential stores. If for example jUDDI is deployed

to the JBoss Application server it is possible to hook up to it's authentication machinery. The

JBossAuthenticator class is provided in the docs/examples/auth directory. This class enables

jUDDI deployments on JBoss use a server security domain to authenticate users.

To use this class you must add the following properties to the juddi.properties file:

juddi.auth=org.apache.juddi.auth.JBossAuthenticator

juddi.securityDomain=java:/jaas/other

The juddi.auth property plugs the JbossAuthenticator class into the jUDDI the Authenticator

framework. The juddi.sercuity.domain, configures the JBossAuthenticator class where it

can lookup the application server's security domain, which it will use to perform the authentication.

Note that JBoss creates one security domain for each application policy element on the

$JBOSS_HOME/server/default/conf/login-config.xml file, which gets bound to the server

JNDI tree with name java:/jaas/<application-policy-name>. If a lookup refers to a non

existent application policy it defaults to a policy named other.

Chapter 4.

11

Database Setup

4.1. Derby Out-of-the-Box

By default jUDDI uses an embedded Derby database. This allows us to build a downloadable

distribution that works out-of-the-box, without having to do any database setup work. We

recommend switching to an enterprise-level database before going to production. JUDDI uses the

Java Persistence API (JPA) in the back end and we've tested with both OpenJPA and Hibernate.

To configure which JPA provider you want to use, you will need to edit the configuration in

the persistence.xml. This file can be found in the juddi.war/WEB-INF/classes/META-INF/

persistence.xml

For Hibernate the content of this file looks like

<?xml version="1.0" encoding="UTF-8"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"

 version="1.0">

 <persistence-unit name="juddiDatabase" transaction-type="RESOURCE_LOCAL">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>

 <!-- entity classes -->

 <class>org.apache.juddi.model.Address</class>

 <class>org.apache.juddi.model.AddressLine</class>

 <class>org.apache.juddi.model.AuthToken</class>

 <class>org.apache.juddi.model.BindingCategoryBag</class>

 <class>org.apache.juddi.model.BindingDescr</class>

 <class>org.apache.juddi.model.BindingTemplate</class>

 <class>org.apache.juddi.model.BusinessCategoryBag</class>

 <class>org.apache.juddi.model.BusinessDescr</class>

 <class>org.apache.juddi.model.BusinessEntity</class>

 <class>org.apache.juddi.model.BusinessIdentifier</class>

 <class>org.apache.juddi.model.BusinessName</class>

 <class>org.apache.juddi.model.BusinessService</class>

 <class>org.apache.juddi.model.CategoryBag</class>

 <class>org.apache.juddi.model.Contact</class>

 <class>org.apache.juddi.model.ContactDescr</class>

 <class>org.apache.juddi.model.DiscoveryUrl</class>

 <class>org.apache.juddi.model.Email</class>

 <class>org.apache.juddi.model.InstanceDetailsDescr</class>

 <class>org.apache.juddi.model.InstanceDetailsDocDescr</class>

Chapter 4. Database Setup

12

 <class>org.apache.juddi.model.KeyedReference</class>

 <class>org.apache.juddi.model.KeyedReferenceGroup</class>

 <class>org.apache.juddi.model.OverviewDoc</class>

 <class>org.apache.juddi.model.OverviewDocDescr</class>

 <class>org.apache.juddi.model.PersonName</class>

 <class>org.apache.juddi.model.Phone</class>

 <class>org.apache.juddi.model.Publisher</class>

 <class>org.apache.juddi.model.PublisherAssertion</class>

 <class>org.apache.juddi.model.PublisherAssertionId</class>

 <class>org.apache.juddi.model.ServiceCategoryBag</class>

 <class>org.apache.juddi.model.ServiceDescr</class>

 <class>org.apache.juddi.model.ServiceName</class>

 <class>org.apache.juddi.model.ServiceProjection</class>

 <class>org.apache.juddi.model.Subscription</class>

 <class>org.apache.juddi.model.SubscriptionChunkToken</class>

 <class>org.apache.juddi.model.SubscriptionMatch</class>

 <class>org.apache.juddi.model.Tmodel</class>

 <class>org.apache.juddi.model.TmodelCategoryBag</class>

 <class>org.apache.juddi.model.TmodelDescr</class>

 <class>org.apache.juddi.model.TmodelIdentifier</class>

 <class>org.apache.juddi.model.TmodelInstanceInfo</class>

 <class>org.apache.juddi.model.TmodelInstanceInfoDescr</class>

 <class>org.apache.juddi.model.TransferToken</class>

 <class>org.apache.juddi.model.TransferTokenKey</class>

 <class>org.apache.juddi.model.UddiEntity</class>

 <class>org.apache.juddi.model.UddiEntityPublisher</class>

 <properties>

 <property name="hibernate.archive.autodetection" value="class"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="false"/>

 <property name="hibernate.dialect"

 value="org.hibernate.dialect.DerbyDialect"/>

 </properties>

 </persistence-unit>

</persistence>

The persistence.xml reference a datasource “java:comp/env/jdbc/JuddiDS”. Datasource

deployment is Application Server specific. If you are using Tomcat, then the datasource is defined

in juddi/META-INF/context.xml which by default looks like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

Switch to MySQL

13

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <!-- -->

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="" password=""

 driverClassName="org.apache.derby.jdbc.EmbeddedDriver"

 url="jdbc:derby:juddi-derby-test-db;create=true"

 maxActive="8"

 />

</Context>

4.2. Switch to MySQL

To switch over to MySQL you need to add the mysql driver (i.e. The mysql-connector-

java-5.1.6.jar) to the classpath and you will need to edit the persistence.xml

<property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect"/>

and the datasource. For tomcat you the context.xml should look something like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="root" password=""

 driverClassName="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost:3306/juddiv3"

 maxActive="8"/>

</Context>

Warning

Tomcat copies the context.xml to conf/CATALINA/localhost/juddiv3.xml,

and if you update the context.xml it may not update this copy. You should simply

delete the juddiv3.xml file after updating the context.xml.

To create a MySQL database name juddiv3 use

mysql> create database juddiv3

and finally you probably want to switch to a user which is a bit less potent then 'root'.

Chapter 4. Database Setup

14

4.3. Switch to Postgres

This was written from a JBoss - jUDDI perspective. Non-JBoss-users may have to tweak this a

little bit, but for the most part, the files and information needed is here.

Logged in as postgres user, access psql:

psql

postgres= CREATE USER juddi with PASSWORD 'password';

postgres= CREATE DATABASE juddi;

postgres= GRANT ALL PRIVILEGES ON DATABASE juddi to juddi;

Note, for this example, my database is called juddi, as is the user who has full privileges to the

database. The user 'juddi' has a password set to 'password'.

<datasources>

 <local-tx-datasource>

 <jndi-name>JuddiDS</jndi-name>

 <connection-url>jdbc:postgresql://localhost:5432/juddi</connection-url>

 <driver-class>org.postgresql.Driver</driver-class>

 <user-name>juddi</user-name>

 <password>password</password>

 <!-- sql to call when connection is created. Can be anything,

 select 1 is valid for PostgreSQL

 <new-connection-sql>select 1</new-connection-sql>

 -->

 <!-- sql to call on an existing pooled connection when it is obtained

 from pool. Can be anything, select 1 is valid for PostgreSQL

 <check-valid-connection-sql>select 1</check-valid-connection-sql>

 -->

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml -->

 <metadata>

 <type-mapping>PostgreSQL 8.0</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

In persistence.xml, reference the correct JNDI name of the datasource and remove the derby

Dialect and add in the postgresql Dialect:

<jta-data-source>java:comp/env/jdbc/JuddiDS</jta-data-source>

Switch to Oracle

15

<property name="hibernate.dialect" value="org.hibernate.dialect.PostgreSQLDialect"/>

Be sure to have postgresql-8.3-604.jdbc4.jar in the lib folder!

4.4. Switch to Oracle

To switch over to Oracle you need to add the oracle driver (i.e. theclasses12.jar) to the classpath

and you will need to edit the persistence.xml

<property name="hibernate.dialect" value="org.hibernate.dialect.Oracle10gDialect"/>

To create a Oracle database name juddiv3 with the ultimate in minimalism use

sqlplus> create database juddiv3;

then you probably want to switch to a user which is a bit less potent then 'root' and set the

appropriate password.

Warning

Tomcat copies the context.xml to conf/CATALINA/localhost/juddiv3.xml, and if you

update the context.xml it may not update this copy. You should simply delete the

juddiv3.xml file after updating the context.xml.

Please check the Section 10.3, “Changing the Oracle Sequence name” if you want to change the

Oracle Sequence name.

4.5. Switch to HSQL

First make sure you have a running hsqldb. For a standalone server startup use:

 java -cp hsqldb.jar org.hsqldb.server.Server --port 1747 --database.0 file:juddi --dbname.0 juddi

Next, connect the client manager to this instance using:

Chapter 4. Database Setup

16

 java -classpath hsqldb.jar org.hsqldb.util.DatabaseManagerSwing --driver org.hsqldb.jdbcDriver

 --url jdbc:hsqldb:hsql://localhost:1747/juddi -user sa

and create the juddi user:

 CREATE USER JUDDI PASSWORD "password" ADMIN;

 CREATE SCHEMA JUDDI AUTHORIZATION JUDDI;

 SET DATABASE DEFAULT INITIAL SCHEMA JUDDI;

 ALTER USER juddi set initial schema juddi;

From now on, one can connect as JUDDI user to that database and the database is now ready

to go.

To switch over to HSQL you need to add the hsql driver (i.e. The hsqldb.jar) to the classpath

and you will need to edit the persistence.xml

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

and the datasource. For tomcat you the context.xml should look something like

<?xml version="1.0" encoding="UTF-8"?>

<Context>

 <WatchedResource>WEB-INF/web.xml</WatchedResource>

 <!-- HSQL data source -->

 <Resource name="jdbc/JuddiDS" auth="Container"

 type="javax.sql.DataSource" username="JUDDI" password="password"

 driverClassName="org.hsqldb.jdbcDriver"

 url="jdbc:hsqldb:hsql://localhost:1747/juddi"

 maxActive="8"

 />

</Context>

Switch to <other db>

17

Warning

Tomcat copies the context.xml to conf/CATALINA/localhost/juddiv3.xml,

and if you update the context.xml it may not update this copy. You should simply

delete the juddiv3.xml file after updating the context.xml.

4.6. Switch to <other db>

If you use another database, please document, and send us what you had to change to make it

work and we will include it here.

18

Chapter 5.

19

Root Seed Data

5.1. Introduction

As of UDDI v3, each registry need to have a “root” publisher. The root publisher is the owner

of the UDDI services (inquiry, publication, etc). There can only be one root publisher per node.

JUDDI ships some default seed data for the root account. The default data can be found in the

juddi-core-3.x.jar, under juddi_install_data/. By default jUDDI installs two Publishers:

“root” and “uddi”. Root owns the root partition, and uddi owns all the other seed data such as

pre-defined tModels.

5.2. Seed Data Files

For each publisher there are four seed data files that will be read the first time you start jUDDI:

<publisher>_Publisher.xml

<publisher>_tModelKeyGen.xml

<publisher>_BusinessEntity.xml

<publisher>_tModels.xml

For example the content of the root_Publisher.xml looks like

<publisher xmlns="urn:juddi-apache-org:api_v3" authorizedName="root">

 <publisherName>root publisher</publisherName>

 <isAdmin>true</isAdmin>

</publisher>

Each publisher should have its own key generator schema so that custom generated keys cannot

end up being identical to keys generated by other publishers. It is therefor that the each publisher

need to define their own KenGenerator tModel. The tModel Key Generator is defined in the file

root_tModelKeyGen.xml and the content of this file is

<tModel tModelKey="uddi:juddi.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">

 <name>uddi-org:keyGenerator</name>

 <description>Root domain key generator</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://uddi.org/pubs/uddi_v3.htm#keyGen

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

Chapter 5. Root Seed Data

20

 keyName="uddi-org:types:keyGenerator"

 keyValue="keyGenerator" />

 </categoryBag>

</tModel>

This means that the legal format of keys used by the root publisher need to be in the form

uddi:juddi.apache.org:<text-of-chioce> The use of other types of format will lead to an

'illegal key' error. The root publisher can only own one KeyGenerator while any other publisher

can own more then one KeyGenerator. KeyGenerators should not be shared unless there is a

good reason to do so. If you want to see your publisher with more then just the one KeyGenerator

tModel, you can use the <publisher>_tModels.xml file.

Finally, in the <publisher>_BusinessEntity.xml file can be used to setup Business and Service

data. In the root_BusinessEntity.xml we specified the ASF Business, and the UDDI services;

Inquiry, Publish, etc.:

<businessEntity xmlns="urn:uddi-org:api_v3"

 xmlns:xml="http://www.w3.org/XML/1998/namespace"

 businessKey="uddi:juddi.apache.org:businesses-asf">

 <!-- Change the name field to represent the name of your registry -->

 <name xml:lang="en">An Apache jUDDI Node</name>

 <!-- Change the description field to provided

 a brief description of your registry -->

 <description xml:lang="en">

 This is a UDDI v3 registry node as implemented by Apache jUDDI.

 </description>

 <discoveryURLs>

 <!-- This discovery URL should point to the home installation URL of jUDDI -->

 <discoveryURL useType="home">

 http://${juddi.server.name}:${juddi.server.port}/juddiv3

 </discoveryURL>

 </discoveryURLs>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:nodes" keyValue="node" />

 </categoryBag>

 <businessServices>

 <!-- As mentioned above, you may want to provide user-defined keys for

 these (and the services/bindingTemplates below. Services that you

 don't intend to support should be removed entirely -->

 <businessService serviceKey="uddi:juddi.apache.org:services-inquiry"

 businessKey="uddi:juddi.apache.org:businesses-asf">

 <name xml:lang="en">UDDI Inquiry Service</name>

Seed Data Files

21

 <description xml:lang="en">Web Service supporting UDDI Inquiry API</description>

 <bindingTemplates>

 <bindingTemplate bindingKey="uddi:juddi.apache.org:servicebindings-inquiry-ws"

 serviceKey="uddi:juddi.apache.org:services-inquiry">

 <description>UDDI Inquiry API V3</description>

 <!-- This should be changed to the WSDL URL of the inquiry API.

 An access point inside a bindingTemplate will be found for every service

 in this file. They all must point to their API's WSDL URL -->

 <accessPoint useType="wsdlDeployment">

 http://${juddi.server.name}:${juddi.server.port}/juddiv3/services/inquiry?wsdl

 </accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo tModelKey="uddi:uddi.org:v3_inquiry">

 <instanceDetails>

 <instanceParms>

 <![CDATA[

 <?xml version="1.0" encoding="utf-8" ?>

 <UDDIinstanceParmsContainer

 xmlns="urn:uddi-org:policy_v3_instanceParms">

 <defaultSortOrder>

 uddi:uddi.org:sortorder:binarysort

 </defaultSortOrder>

 </UDDIinstanceParmsContainer>

]]>

 </instanceParms>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

 <categoryBag>

 <keyedReference keyName="uddi-org:types:wsdl" keyValue="wsdlDeployment"

 tModelKey="uddi:uddi.org:categorization:types"/>

 </categoryBag>

 </bindingTemplate>

 </bindingTemplates>

 </businessService>

 <businessService serviceKey="uddi:juddi.apache.org:services-publish"

 businessKey="uddi:juddi.apache.org:businesses-asf">

 <name xml:lang="en">UDDI Publish Service</name>

 </businessService>

 </businessServices>

</businessEntity>

Chapter 5. Root Seed Data

22

Note that the seeding process only kicks off if no publishers exist in the database. So this will only

work with a clean database, unless you set juddi.seed.always to true. Then it will re-apply all

files with the exception of the root data files. Note that this can lead to losing data that was added

to entities that are re-seeded, since data is not merged.

5.3. Token in the Seed Data

You may have noticed the tokens in the root_BusinessEntity.xml file

(${juddi.server.baseurl}. The value of this tokens can set in the juddiv3.properties file.

The value substitution takes place at runtime, so that different nodes can do the substitution with

their own value if needed.

5.4. Customer Seed Data

In your deployment you probably do not want to use the Seed Data shipped with the

default jUDDI install. The easiest way to overwrite this data is to add it to a directory call

juddi_custom_install_data in the juddiv3.war/WEB-INF/classes/ directory. That way you

don't have to modify the juddi-core-3.x.jar. Additionally if your root publisher is not called

“root” you will need to set the juddi.root.publisher property in the juddiv3.properties file to

something other then

juddi.root.publisher=root

The juddiv3.war ships with two example data directory. One for the Sales Affiliate, and one for

the Marketing Affiliate. To use the Sales Seed Data, in the juddiv3.war/WEB-INF/classes/,

rename the directory

mv RENAME4Sales_juddi_custom_install_data juddi_custom_install_data

before you start jUDDI the first time. It will then use this data to populate the database. If you want

to rerun you can trash the database it created and restart tomcat. Don't forget to set the tokens

in the juddiv3.properties file.

Chapter 6.

23

jUDDI_Configuration

6.1. Introduction

jUDDI will look for a juddiv3.properties file on the root of the classpath. In the juddiv3.war you

can find it in juddiv3.war/WEB_INF/classes/juddiv3.properties

6.2. Authentication

Specifies whether the inquiry API requires authentication

juddi.authenticate.Inquiry=false

This flag determines whether authentication (the presence of a getAuthToken) is required on

queries invoking the Inquiry API. By default, jUDDI sets this to false for ease of use.

jUDDI Authentication module to use

juddi.authenticator = org.apache.juddi.v3.auth.JUDDIAuthenticator

The jUDDI authenticator class to use. See Chapter 3 of the Userguide for the choices provided.

6.3. Startup

The ${juddi.server.baseurl} token can be referenced in accessPoints and will be resolved at

 runtime.

juddi.server.baseurl=http://localhost:8080

Token that can be accessed in accessPointURLs and resolved at runtime.

juddi.root.publisher=root

The username for the jUDDI root publisher. This is usually just set to "root".

#

juddi.seed.always=false

Chapter 6. jUDDI_Configuration

24

Forces seeding of the jUDDI data. This will re-apply all files with the exception of the root data

files. Note that this can lead to losing data that was added to the entities that are re-seeded, since

data is not merged.

#

juddi.load.install.data=false

This property allows you to cancel loading of the jUDDI install data.

Default locale

juddi.locale=en_US

The default local to use.

Name of the persistence unit to use (the default, "juddiDatabase" refers to the unit compiled

 into the juddi library)

juddi.persistenceunit.name=juddiDatabase

The persistence name for the jUDDI database that is specified in the persistence.xml file.

Check-the-time-stamp-on-this-file Interval in milli seconds

juddi.configuration.reload.delay=2000

The time in milliseconds in which juddiv3.properties is polled for changes.

These two tokens are referenced in the install data. Note that you

can use any tokens, and that their values can be set here or as

System parameters.

juddi.server.name=macdaddy

juddi.server.port=8080

The server name and port number of the server.

#The UDDI Operator Contact Email Address

juddi.operatorEmailAddress=admin@juddi.org

Queries

25

The jUDDI operator email address.

6.4. Queries

The maximum number of UDDI artifacts allowed

per publisher. A value of '-1' indicates any

number of artifacts is valid (These values can be

overridden at the individual publisher level).

juddi.maxBindingsPerService=10

The maximum number of bindings that can be specified per service.

The maximum number of UDDI artifacts allowed

per publisher. A value of '-1' indicates any

number of artifacts is valid (These values can be

overridden at the individual publisher level).

juddi.maxBusinessesPerPublisher=25

The maximum number of businesses that can be registered per publisher.

The maximum number of "IN" clause parameters. Some RDMBS limit the number of

parameters allowed in a SQL "IN" clause.

juddi.maxInClause=1000

The maximum number of parameters within an IN clause.

The maximum name size and maximum number

of name elements allows in several of the

FindXxxx and SaveXxxx UDDI functions.

juddi.maxNameElementsAllowed=5

Maximum number of name elements allowed in a jUDDI query.

The maximum name size and maximum number

of name elements allows in several of the

FindXxxx and SaveXxxx UDDI functions.

Chapter 6. jUDDI_Configuration

26

juddi.maxNameLength=255

Maximum name size within a jUDDI query.

The maximum number of rows returned in a find_* operation. Each call can set

this independently, but this property defines a global maximum.

juddi.maxRows=1000

Maximum number of rows within a response.

The maximum number of UDDI artifacts allowed

per publisher. A value of '-1' indicates any

number of artifacts is valid (These values can be

overridden at the individual publisher level).

juddi.maxServicesPerBusiness=20

Maxmimum number of services in a business.

The maximum number of UDDI artifacts allowed

per publisher. A value of '-1' indicates any

number of artifacts is valid (These values can be

overridden at the individual publisher level).

juddi.maxTModelsPerPublisher=100

Maximum number of TModels a publisher can create.

6.5. Proxy Settings

#only used by RMITransport

#juddi.proxy.factory.initial =org.jnp.interfaces.NamingContextFactory

#juddi.proxy.provider.url =jnp://localhost:1099

#juddi.proxy.factory.url.pkg =org.jboss.naming

This is the upper boundary set by the registry. Between the user defined endDate of a Subscription

and this value, the registry will pick the earliest date.

KeyGeneration

27

6.6. KeyGeneration

jUDDI Cryptor implementation to use

juddi.cryptor = org.apache.juddi.cryptor.DefaultCryptor

Cryptor implementation that jUDDI will use.

jUDDI Key Generator to use

juddi.keygenerator=org.apache.juddi.keygen.KeyGenerator

Key generator implementation that jUDDI will use.

jUDDI UUIDGen implementation to use

juddi.uuidgen = org.apache.juddi.uuidgen.DefaultUUIDGen

UUID generation implementation that jUDDI will use.

6.7. Subscription

Minutes before a "chunked" subscription call expires

juddi.subscription.chunkexpiration.minutes=5

This is the expiration time of a subscription “chunk”.

#

Days before a subscription expires

juddi.subscription.expiration.days=30

This is the upper boundary set by the registry. Between the user defined endDate of a Subscription

and this value, the registry will pick the earliest date.

Specifies the interval at which the notification timer triggers

juddi.notification.interval=3000000

Specifies the interval at which the notification timer triggers.

Chapter 6. jUDDI_Configuration

28

Specifies the amount of time to wait before the notification timer initially fires

juddi.notification.start.buffer=20000

Specifies the amount of time to wait before the notification timer initially fires.

6.8. Transfer

Days before a transfer request expires

juddi.transfer.expiration.days=3

Days before a transfer request expires.

Chapter 7.

29

Using the jUDDI-Client

7.1. Introduction

The jUDDI project includes UDDI Client code (juddi-client-3.x.jar), which is Java client

library to connect to a UDDI Registry, and to manipulate it. The client uses the UDDI v3 API and

can be configured to connect to any UDDI v3 compliant registry (it has been tested against jUDDI

v3 itself as well as against HP Systenet). This library can be embedded in your own application

and used programmatically or by using annotations.

7.2. Configuration

For the client to connect to the UDDI server we need to provide it with the correct connection

settings, which we call 'Transport' settings. In addition to these transport settings there are other

client features that can be configured using the client configuration file META-INF/uddi.xml. You

can deploy one of these client configuration files in your deployment archive that is interacting

with the UDDI client code. To make sure the configuration is read you need to either call

UDDIClerkManager clerkManager = new UDDIClerkManager("META/myuddi.xml");

clerkManager.start();

or you if your application deploys are a war archive, you can add your client config

in yourwar/META-INF/myuddi.xml, add in the web.xml specify the context parameters

uddi.client.manager.name and uddi.client.xml. In the following example both context

parameters are set and on deployment the UDDIClerkServlet takes care of reading the

configuration.

<!-- required -->

<context-param>

 <param-name>uddi.client.manager.name</param-name>

 <param-value>example-manager</param-value>

 </context-param>

<!-- optional override -->

<context-param>

 <param-name>uddi.client.xml</param-name>

 <param-value>META-INF/myuddi.xml</param-value>

</context-param>

<servlet>

Chapter 7. Using the jUDDI-Client

30

 <servlet-name>UDDIClerkServlet</servlet-name>

 <display-name>Clerk Servlet</display-name>

 <servlet-class>org.apache.juddi.v3.client.config.UDDIClerkServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

The following is an example of a simple client configuration file:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<uddi>

 <reloadDelay>5000</reloadDelay>

 <manager name="example-manager">

 <nodes>

 <node isHomeJUDDI="true">

 <name>default</name>

 <description>jUDDI node</description>

 <properties>

 <property name="serverName" value="www.myuddiserver.com"/>

 <property name="serverPort" value="8080"/>

 <property name="keyDomain" value="mydepartment.mydomain.org"/>

 <property name="department" value="mydepartment" />

 </properties>

 <!-- InVM -->

 <proxyTransport>org.apache.juddi.v3.client.transport.InVMTransport</proxyTransport>

 <custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferImpl</

custodyTransferUrl>

 <inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>

 <publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>

 <securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>

 <subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionImpl</subscriptionUrl>

 <subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerImpl</

subscriptionListenerUrl>

 <juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>

 <!-- JAX-WS Transport

 <proxyTransport>org.apache.juddi.v3.client.transport.JAXWSTransport</proxyTransport>

 <custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer</

custodyTransferUrl>

 <inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry</inquiryUrl>

 <publishUrl>http://${serverName}:${serverPort}/juddiv3/services/publish</publishUrl>

 <securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security</securityUrl>

 <subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription</

subscriptionUrl>

Configuration

31

 <subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-

listener</subscriptionListenerUrl>

 <juddiApiUrl>http://${serverName}:${serverPort}/juddiv3/services/juddi-api?wsdl</

juddiApiUrl>

 -->

 <!-- RMI Transport Settings

 <proxyTransport>org.apache.juddi.v3.client.transport.RMITransport</proxyTransport>

 <custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>

 <inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>

 <publishUrl>/juddiv3/UDDIPublicationService</publishUrl>

 <securityUrl>/juddiv3/UDDISecurityService</securityUrl>

 <subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrl>

 <subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</

subscriptionListenerUrl>

 <juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>

 <javaNamingFactoryInitial>org.jnp.interfaces.NamingContextFactory</

javaNamingFactoryInitial>

 <javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>

 <javaNamingProviderUrl>jnp://${serverName}:1099</javaNamingProviderUrl>

 -->

 </node>

 </nodes>

 <clerks registerOnStartup="true">

 <clerk name="BobCratchit" node="default" publisher="bob" password="bob">

 <class>org.apache.juddi.samples.HelloWorldImpl</class>

 </clerk>

 </clerks>

 </manager>

</uddi>

The manager element is required element, and the name attribute 'example-manager' should

be unique in your deployment environment. The nodes element may contain one or more node

elements. Typically you would only need one node, unless you are using subscriptions to transfer

updates of entities from one UDDI registry to another. For the 'local' registry you would set

isHomeJUDDI="true", while for the 'remote' registries you would set isHomeJUDDI="false".

Table 7.1.

element name description required

name name of the node yes

description description of the node no

properties container for properties that

will be passed into the clerk

no

Chapter 7. Using the jUDDI-Client

32

proxyTransport The transport protocol used by

the client to connect to the

UDDI server

yes

custodyTransferUrl Connection settings for

custody transfer

no

inquiryUrl Connection location settings

for inquiries

yes

publishUrl Connection location settings

for publishing

yes

securityUrl Connection location settings

for obtaining security tokens

yes

subscriptionUrl Connection location settings

for registering subscription

requests

no

subscriptionListenerUrl Connection location settings

receiving subscription

notifications

no

juddiApiUrl Connection location settings

for the jUDDI specific API

for things like publisher

management

no

Finally the manager element can contain a 'clerks' element in which one can define one or more

clerks.

Table 7.2.

attribute name description required

name name of the clerk yes

node name reference to one of the

nodes specified in the same

manager

yes

publisher name of an existing publisher yes

password password credential of the

publisher

yes

7.2.1. JAX-WS Transport

Using the settings in the uddi.xml file from above, the client will use JAX-WS to communicate

with the (remote) registry server. This means that the client needs to have access to a JAX-WS

compliant WS stack (such as CXF, Axis2 or JBossWS). Note that the juddiApiUrl is a reference

to the WSDL endpoint while the others should reference the actual endpoints.

RMI Transport

33

<!-- JAX-WS Transport -->

<proxyTransport>org.apache.juddi.v3.client.transport.JAXWSTransport</proxyTransport>

<custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer</

custodyTransferUrl>

<inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry</inquiryUrl>

<publishUrl>http://${serverName}:${serverPort}/juddiv3/services/publish</publishUrl>

<securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security</securityUrl>

<subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription</

subscriptionUrl>

<subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-

listener</subscriptionListenerUrl>

<juddiApiUrl>http://${serverName}:${serverPort}/juddiv3/services/juddi-api?wsdl</juddiApiUrl>

pros: Standard way of UDDI communication, should work with all UDDIv3 server implementations.

cons: If the server is deployed on the same application server this may lead to issues when auto-

registration on deployment/undeployment is used, since the WS stack may become unavailable

during undeployment. A workaround is to host the UDDI server on a different server.

7.2.2. RMI Transport

If jUDDI server is deployed to an Application Server it is possible to register the UDDI Services

as RMI services. If this is desired you need to edit the juddiv3.war/WEB-INF/classes/

juddiv3.properties file, on the server. Add the following setting

juddi.jndi.registration=true

At deployment time the RMI based UDDI services are bound into the Global JNDI namespace.

juddi (class: org.jnp.interfaces.NamingContext)

• UDDIPublicationService (class: org.apache.juddi.rmi.UDDIPublicationService)

• UDDICustodyTransferService (class:

org.apache.juddi.rmi.UDDICustodyTransferService)

• UDDISubscriptionListenerService (class:

org.apache.juddi.rmi.UDDISubscriptionListenerService)

• UDDISecurityService (class: org.apache.juddi.rmi.UDDISecurityService)

• UDDISubscriptionService (class: org.apache.juddi.rmi.UDDISubscriptionService)

• UDDIInquiryService (class: org.apache.juddi.rmi.UDDIInquiryService)

Chapter 7. Using the jUDDI-Client

34

Next, on the client side you need to comment out the JAXWS section in the uddi.xml file and use

the RMI Transport section instead. Optionally you can set the java.naming.* properties. In this

case we specified setting for connecting to jUDDIv3 deployed to a JBoss Application Server. You

can set the java.naming.* properties in a jndi.xml file, or as System parameters.

<!-- RMI Transport Settings -->

<proxyTransport>org.apache.juddi.v3.client.transport.RMITransport</proxyTransport>

<custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>

<inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>

<publishUrl>/juddiv3/UDDIPublicationService</publishUrl>

<securityUrl>/juddiv3/UDDISecurityService</securityUrl>

<subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrl>

<subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</subscriptionListenerUrl>

<juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>

<javaNamingFactoryInitial>org.jnp.interfaces.NamingContextFactory</

javaNamingFactoryInitial>

<javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>

<javaNamingProviderUrl>jnp://${serverName}:1099</javaNamingProviderUrl>

pros: Leight weight, and faster since it does not need a WS stack.

cons: Will only work with a jUDDIv3 server implementation.

7.2.3. InVM Transport

If you choose to use InVM Transport this means that the jUDDIv3 server is running in the same

VM as you client. If you are deploying to juddi.war the embedded server will be started by

the org.apache.juddi.RegistryServlet, but if you are running outside any container, you are

responsible for starting and stopping the org.apache.juddi.Registry Service yourself. Make

sure to call

Registry.start()

before making any calls to the Registry, and when you are done using the Registry (on shutdown)

call

Registry.stop()

so the Registry can release any resources it may be holding. To use InVM Transport uncomment

this section in the uddi.properties while commenting out the JAXWS and RMI Transport

sections.

UDDI Annotations

35

<!-- InVM -->

<proxyTransport>org.apache.juddi.v3.client.transport.InVMTransport</proxyTransport>

<custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferImpl</

custodyTransferUrl>

<inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>

<publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>

<securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>

<subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionImpl</subscriptionUrl>

<subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerImpl</

subscriptionListenerUrl>

<juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>

pros: Lightest weight, and best performant communication, and no deployment order issues when

using auto-registration of services during deployment and undeployment.

cons: Will only work with a jUDDIv3 server implementation. Typically one would use a jUDDI server

for each application server sharing one common database.

7.3. UDDI Annotations

7.3.1. Introduction

Conventionally Services (BusinessService) and their EndPoints (BindingTemplates) are

registered to a UDDI Registry using a GUI, where an admin user manually adds the necessary

info. This process tends to make the data in the Registry rather static and the data can grow stale

over time. To make the data in the UDDI more dynamic it makes sense to register and EndPoint

(BindingTemplate) when it comes online, which is when it gets deployed. The UDDI annotations

are designed to just that: register a Service when it get deployed to an Application Server. There

are two annotations: UDDIService, and UDDIServiceBinding. You need to use both annotations

to register an EndPoint. Upon undeployment of the Service, the EndPoint will be de-registered

from the UDDI. The Service information stays in the UDDI. It makes sense to leave the Service

level information in the Registry since this reflects that the Service is there, however there is

no EndPoint at the moment ("Check back later"). It is a manual process to remove the Service

information. The annotations use the juddi-client library which means that they can be used to

register to any UDDIv3 registry.

7.3.2. UDDIService Annotation

The UDDIService annotation is used to register a service under an already existing business in

the Registry. The annotation should be added at the class level of the java class.

Chapter 7. Using the jUDDI-Client

36

Table 7.3. UDDIService attributes

attribute description required

serviceName The name of the service, by

default the clerk will use the

one name specified in the

WebService annotation

no

description Human readable description of

the service

yes

serviceKey UDDI v3 Key of the Service yes

businessKey UDDI v3 Key of the Business

that should own this Service.

The business should exist

in the registry at time of

registration

yes

lang Language locale which will

be used for the name and

description, defaults to "en" if

omitted

no

categoryBag Definition of a CategoryBag,

see below for details

no

7.3.3. UDDIServiceBinding Annotation

The UDDIServiceBinding annotation is used to register a BindingTemplate to the UDDI registry.

This annotation cannot be used by itself. It needs to go along side a UDDIService annotation.

Table 7.4. UDDIServiceBinding attributes

attribute description required

bindingKey UDDI v3 Key of the

ServiceBinding

yes

description Human readable description of

the service

yes

accessPointType UDDI v3 AccessPointType,

defaults to wsdlDeployment if

omitted

no

accessPoint Endpoint reference yes

lang Language locale which will

be used for the name and

description, defaults to "en" if

omitted

no

WebService Example

37

attribute description required

tModelKeys Comma-separated list of

tModelKeys key references

no

categoryBag Definition of a CategoryBag,

see below for further details

no

7.3.3.1. CategoryBag Attribute

The CategoryBag attribute allows you to reference tModels. For example the following

categoryBag

<categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:wsdl" keyValue="wsdlDeployment" />

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:wsdl2" keyValue="wsdlDeployment2" />

</categoryBag>

can be put in like

categoryBag="keyedReference=keyName=uddi-org:types:wsdl;keyValue=wsdlDeployment;" +

"tModelKey=uddi:uddi.org:categorization:types," +

"keyedReference=keyName=uddi-org:types:wsdl2;keyValue=wsdlDeployment2;" +

"tModelKey=uddi:uddi.org:categorization:types2",

7.3.4. WebService Example

The annotations can be used on any class that defines a service. Here they are added to a

WebService, a POJO with a JAX-WS 'WebService' annotation.

package org.apache.juddi.samples;

import javax.jws.WebService;

import org.apache.juddi.v3.annotations.UDDIService;

import org.apache.juddi.v3.annotations.UDDIServiceBinding;

Chapter 7. Using the jUDDI-Client

38

@UDDIService(businessKey="uddi:myBusinessKey", serviceKey="uddi:myServiceKey",

 description = "Hello World test service")

@UDDIServiceBinding(bindingKey="uddi:myServiceBindingKey", description="WSDL endpoint

 for the helloWorld Service. This service is used for "

 + "testing the jUDDI annotation functionality",

 accessPointType="wsdlDeployment", accessPoint="http://localhost:8080/juddiv3-samples/

services/helloworld?wsdl")

@WebService(endpointInterface = "org.apache.juddi.samples.HelloWorld", serviceName =

 "HelloWorld")

public class HelloWorldImpl implements HelloWorld {

 public String sayHi(String text) {

 System.out.println("sayHi called");

 return "Hello " + text;

 }

}

On deployment of this WebService, the juddi-client code will scan this class for UDDI annotations

and take care of the registration process. In the configuration file uddi.xml, in the clerk section

you need to reference the Service class 'org.apache.juddi.samples.HelloWorldImpl':

<clerks registerOnStartup="true">

 <clerk name="BobCratchit" node="default" publisher="bob" password="bob">

 <class>org.apache.juddi.samples.HelloWorldImpl</class>

 </clerk>

</clerks>

which means that Bob is using the node connection setting of the node with name "default", and

that he will be using the "bob" publisher, for which the password it "bob". There is some analogy

here as to how datasources for database access are defined.

7.3.5. Templating keys

The business, service and binding keys can contain property references. This allows you to define

a keyTemplate in the annotation attribute for the key and the value of the properties used in the

template will be resolved at registration time.

7.4. Programmatic use

It is also possible to use the jUDDI client code in your application. The first thing to do is to read

the client config file, and get a handle to a clerk

WSDL Registration

39

UDDIClerkManager clerkManager = new UDDIClerkManager("META/myuddi.xml");

clerkManager.start();

UDDIClerk clerk = clerkManager.getClientConfig().getUDDIClerks().get(clerkName);

A UDDIClerk will allow you do make authenticated requests to a UDDI server.

7.4.1. WSDL Registration

The OASIS UDDI spec TC put out a Techical Note on "Using WSDL in a UDDI Registry" [WSDL-

UDDI]. The jUDDI client implements the UDDI v3 version of the WSDL2UDDI mapping as

described in this technical note. The registration process registers a BindingTemplate for

each WebService EndPoint and if the BusinessService for this BindingTemplate does not

yet exist it also registers the BusinessService along with a WSDLPortType TModel for each

portType, and a WSDLBinding TModel for each binding. To use it you can use the code in

the 'org.apache.juddi.v3.client.mapping' package [WSDL2UDDI] and make the following call to

asynchronously register your WebService EndPoint.

//Add the properties from the uddi.xml

properties.putAll(clerk.getUDDINode().getProperties());

RegistrationInfo registrationInfo = new RegistrationInfo();

registrationInfo.setServiceQName(serviceQName);

registrationInfo.setVersion(version);

registrationInfo.setPortName(portName);

registrationInfo.setServiceUrl(serviceUrl);

registrationInfo.setWsdlUrl(wsdlURL);

registrationInfo.setWsdlDefinition(wsdlDefinition);

registrationInfo.setRegistrationType(RegistrationType.WSDL);

registration = new AsyncRegistration(clerk, urlLocalizer, properties, registrationInfo);

Thread thread = new Thread(registration);

thread.start();

This does assume that you can pass in a URL to the WSDL file as well as the WSDLDefinition. In

most cases you will need to package up the WSDL file you are trying to register in your deployment.

You can get a WSDLDefinition using

Chapter 7. Using the jUDDI-Client

40

ReadWSDL readWSDL = new ReadWSDL();

Definition definition = readWSDL.readWSDL("wsdl/HelloWorld.wsdl");

where you would pass in the path to the WSDL on the classpath.

To remove a WSDL binding from the Registry you would use

BPEL2UDDI bpel2UDDI = new BPEL2UDDI(clerk, urlLocalizer, properties);

String serviceKey = bpel2UDDI.unRegister(serviceName, portName, serviceURL);

If this is the last BindingTemplate for the BusinessService it will also remove the BusinessService

along with the WSDLPortType and WSDLBinding TModels. The lifecycle is registration on

Endpoint deploy and unregistration on Endpoint undeploy.

7.4.2. BPEL Process Registration

Similar to the WSDL to UDDI mapping there is a BPEL to UDDI mapping Technical Note

[BPEL-UDDI]. The jUDDI client also implements this mapping. Using it is very similar to code

fragment listed for the WSDL Registration, with the only change being that in this case the

RegistrationInfo.RegistrationType should be RegistrationType.BPEL. See To use it you can use

the code in the 'org.apache.juddi.v3.client.mapping' package [BPEL2UDDI] for more information

on the implementation. For an example use of the registration process see the JBoss RiftSaw

project [RFTSW-UDDI].

7.4.3. Conventions around UDDIv3 registration

7.4.3.1. Key Templates

Both the WSDL and BPEL registration code use a key format convention to construct UDDI

v3 keys. The format of the keys can be defined in the properties section of the uddi.xml, but

they have reasonable defaults. Note that the both the serviceName and portName are obtained

from the RegistrationInfo. The nodeName can be obtained from the environment, or set in the

uddi.xml.

Table 7.5.

Property Description Required Default Value

lang The language setting

used by the

registration.

no en

Conventions around UDDIv3 registration

41

businessName The business name

which is used by.

yes

keyDomain The key domain key

part (used by the key

formats)

yes

businessKeyFormat Key format used to

contruct the Business

Key

no uddi:

${keyDomain}:business_

${businessName}

serviceKeyFormat Key format used

to contruct the

BusinessService Key

no uddi:

${keyDomain}:service_

${serviceName}

bindingKeyFormat Key format used

to contruct the

TemplateBinding Key

no uddi:

${keyDomain}:binding_

${nodeName}_

${serviceName}_

${portName}

serviceDescription Default

BusinessService

description

no Default service

description when

no <wsdl:document>

element is defined

inside the

<wsdl:service>

element.

bindingDescription Default

BindingTemplate

description

no Default binding

description when

no <wsdl:document>

element is defined

inside the

<wsdl:binding>

element.

7.4.3.2. Specification of service and binding descriptions in the

WSDL

The UDDI spec allows for setting a human readable description on both the BusinessService and

TemplateBinding. Theses description fields are important if humans are browsing the registry. A

default description can be specific in the uddi.xml, however it makes a lot more sense to have

a specific description for each service and binding, and so the registration code tries to obtain

these descriptions from the <wsdl:document> tags in the WSDL, which can be nested as a child

element inside the <wsdl:service> and <wsdl:binding> elements.

Chapter 7. Using the jUDDI-Client

42

7.4.3.3. URLLocalizer

The setting of the EndPoint URL is obtained from provided WSDL in the <soap:addressbinding>

of the <wsdl:port>. The issue with this is that this URL is static, and you it is very useful

if it can be made more dynamic. For this reason you can implement your own version

of the URLLocalizer interface [http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/

java/org/apache/juddi/v3/client/mapping/URLLocalizer.java]. In for example the version shipped

with RiftSaw [http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/

soa/bpel/uddi/JBossURLLocalizer.java] the protocol and the host parts of the URL are overriden

with the settings obtain from the local WebService Stack.

7.5. Dynamic UDDI Service Lookup

For a client application to invoke a Service it needs to know the actual binding information of the

WebService EndPoint. This information can be statically stored at the clientside but this will make

the system very rigid. For example if a service moves from one server to another the client will not

pick up this change. It therefor makes sense to do a lookup into the UDDI registry to obtain fresh)

binding information. This will make the solution dynamic, and allows for clients simply following

the changes that occur in the service deployment topology.

.1. Service Locator

The serviceLocator [SERV-LOC] can be used to locate a service binding knowing the service and

port name. The following piece of code demonstrates how to do a lookup:

ServiceLocator serviceLocator = new ServiceLocator(clerk, urlLocalizer, properties);

String endPointURL = lookupEndpoint(serviceQName, String portName);

When the above UDDI v3 serviceKey conventions are followed, then all the client needs to know is

the serviceName and portName it want to invoke and the The downside of doing a service lookup

before each service invokation is that it will have a performance inpact.

7.6. Dependencies

The UDDI client depends on uddi-ws-3.x.jar, commons-configuration-1.5.jar, commons-

collection-3.2.1.jar and log4j-1.2.13.jar, plus

• libraries for JAXB if you are not using JDK5.

• JAXWS client libraries when using JAXWS transport (like CXF).

• RMI and JNDI client libraries when using RMI Transport.

http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://svn.apache.org/repos/asf/juddi/trunk/juddi-client/src/main/java/org/apache/juddi/v3/client/mapping/URLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/JBossURLLocalizer.java

Sample Code

43

7.7. Sample Code

Sample code on how to use the UDDI client can be found in the uddi-client module on the

jUDDIv3 project. Usually the first thing you want to is to make a call to the Registry to obtain an

Authentication Token. The following code is taken from the unit tests in this module.

public void testAuthToken() {

 try {

 String clazz = ClientConfig.getConfiguration().getString(

 Property.UDDI_PROXY_TRANSPORT,Property.DEFAULT_UDDI_PROXY_TRANSPORT);

 Class<?> transportClass = Loader.loadClass(clazz);

 if (transportClass!=null) {

 Transport transport = (Transport) transportClass.newInstance();

 UDDISecurityPortType securityService = transport.getSecurityService();

 GetAuthToken getAuthToken = new GetAuthToken();

 getAuthToken.setUserID("root");

 getAuthToken.setCred("");

 AuthToken authToken = securityService.getAuthToken(getAuthToken);

 System.out.println(authToken.getAuthInfo());

 Assert.assertNotNull(authToken);

 } else {

 Assert.fail();

 }

 } catch (Exception e) {

 e.printStackTrace();

 Assert.fail();

 }

}

Make sure that the publisher, in this case “root” is an existing publisher in the Registry and that

you are supplying the correct credential to get a successful response. If needed check Chapter 3,

Authentication to learn more about this subject.

Another place to look for sample code is the docs/examples/helloword directory. Alternatively

you can use annotations.

7.8. References

[WSDL-UDDI] by John Colgrave and Karsten Januszewski. Using WSDL in a UDDI Registry,

Version 2.0.2 [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-

wsdl-v2.htm]. OASIS UDDI Spec TC. 2004.

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm

Chapter 7. Using the jUDDI-Client

44

[WSDL2UDDI] Apache jUDDI WSDL2UDDI Javadoc [http://juddi.apache.org/apidocs/org/apache/

juddi/v3/client/mapping/WSDL2UDDI.html]. Apache jUDDI. 2011.

[BPEL-UDDI] by Claus von Riegen and Ivana Trickovic. Using BPEL4WS in a

UDDI registry [http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-

bpel.htm]. OASIS UDDI Spec TC. 2004.

[BPEL2UDDI] Apache jUDDI BPEL2UDDI Javadoc [http://juddi.apache.org/apidocs/org/apache/

juddi/v3/client/mapping/BPEL2UDDI.html]. Apache jUDDI. 2011.

[RFTSW-UDDI] JBoss RiftSaw UDDI Registration [http://anonsvn.jboss.org/repos/riftsaw/trunk/

runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java]. JBoss

Riftsaw. 2011.

[SERV-LOC] Apache jUDDI ServiceLocator Javadoc [http://juddi.apache.org/apidocs/org/apache/

juddi/v3/client/mapping/ServiceLocator.html]. Apache jUDDI. 2011.

http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/WSDL2UDDI.html
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-bpel.htm
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/BPEL2UDDI.html
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://anonsvn.jboss.org/repos/riftsaw/trunk/runtime/uddi/src/main/java/org/jboss/soa/bpel/uddi/UDDIRegistrationImpl.java
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html
http://juddi.apache.org/apidocs/org/apache/juddi/v3/client/mapping/ServiceLocator.html

Chapter 8.

45

Simple Publishing Using the jUDDI

API
One of the most common requests we get on the message board is “How do I publish a service

using jUDDI?” This question holds a wide berth, as it can result anywhere from not understanding

the UDDI data model, to confusion around how jUDDI is set up, to the order of steps required

to publish artifacts in the registry, to general use of the API – and everything in between. This

article will attempt to answer this “loaded” question and, while not going into too much detail, will

hopefully clear some of the confusion about publishing into the jUDDI registry.

8.1. UDDI Data Model

Before you begin publishing artifacts, you need to know exactly how to break down your data into

the UDDI model. This topic is covered extensively in the specification, particularly in section 3, so

I only want to gloss over some for details. Readers interested in more extensive coverage should

most definitely take a look at the UDDI specification.

Below is a great diagram of the UDDI data model (taken directly from the specification):

Figure 8.1. UDDI Core Data Structures

As you can see, data is organized into a hierarchical pattern. Business Entities are at the top of the

pyramid, they contain Business Services and those services in turn contain Binding Templates.

TModels (or technical models) are a catch-all structure that can do anything from categorize one

of the main entities, describe the technical details of a binding (ex. protocols, transports, etc), to

Chapter 8. Simple Publishing ...

46

registering a key partition. TModels won’t be covered too much in this article as I want to focus

on the three main UDDI entities.

The hierarchy defined in the diagram is self-explanatory. You must first have a Business Entity

before you can publish any services. And you must have a Business Service before you can

publish a Binding Template. There is no getting around this structure; this is the way UDDI works.

Business Entities describe the organizational unit responsible for the services it publishes. It

generally consist of a description and contact information. How one chooses to use the Business

Entity is really dependent on the particular case. If you’re one small company, you will likely just

have one Business Entity. If you are a larger company with multiple departments, you may want

to have a Business Entity per department. (The question may arise if you can have one uber-

Business Entity and multiple child Business Entities representing the departments. The answer

is yes, you can relate Business Entities using Publisher Assertions, but that is beyond the scope

of this article.)

Business Services are the cogs of the SOA landscape. They represent units of functionality that

are consumed by clients. In UDDI, there’s not much to a service structure; mainly descriptive

information like name, description and categories. The meat of the technical details about the

service is contained in its child Binding Templates.

Binding Templates, as mentioned above, give the details about the technical specification of the

service. This can be as simple as just providing the service’s access point, to providing the location

of the service WSDL to more complicated scenarios to breaking down the technical details of the

WSDL (when used in concert with tModels). Once again, getting into these scenarios is beyond

the scope of this article but may be the subject of future articles.

8.2. jUDDI Additions to the Model

Out of the box, jUDDI provides some additional structure to the data model described in the

specification. Primarily, this is the concept of the Publisher.

The UDDI specification talks about ownership of the entities that are published within the registry,

but makes no mention about how ownership should be handled. Basically, it is left up to the

particular implementation to decide how to handle “users” that have publishing rights in the

registry.

Enter the jUDDI Publisher. The Publisher is essentially an out-of-the-box implementation of an

identity management system. Per the specification, before assets can be published into the

registry, a “publisher” must authenticate with the registry by retrieving an authorization token. This

authorization token is then attached to future publish calls to assign ownership to the published

entities.

jUDDI’s Publisher concept is really quite simple, particularly when using the default authentication.

You can save a Publisher to the registry using jUDDI’s custom API and then use that Publisher

to publish your assets into the registry. jUDDI allows for integration into your own identity

management system, circumventing the Publisher entirely if desired. This is discussed in more

UDDI and jUDDI API

47

detail in the documentation, but for purposes of this article, we will be using the simple out-of-

the-box Publisher solution.

One quick note: ownership is essentially assigned to a given registry entity by using its

“authorizedName” field. The “authorizedName” field is defined in the specification in the

operationalInfo structure which keeps track of operational info for each entity.

8.3. UDDI and jUDDI API

Knowing the UDDI data model is all well and good. But to truly interact with the registry, you need

to know how the UDDI API is structured and how jUDDI implements this API. The UDDI API is

covered in great detail in chapter 5 of the specification but will be summarized here.

UDDI divides their API into several “sets” – each representing a specific area of functionality. The

API sets are listed below:

• Inquiry – deals with querying the registry to return details on entities within

• Publication – handles publishing entities into the registry

• Security – open-ended specification that handles authentication

• Custody and Ownership Transfer – deals with transferring ownership and custody of entities

• Subscription – allows clients to retrieve information on entities in a timely manner using a

subscription format

• Subscription Listener – client API that accepts subscription results

• Value Set (Validation and Caching)– validates keyed reference values (not implemented by

jUDDI)

• Replication – deals with federation of data between registry nodes (not implemented by jUDDI)

The most commonly used APIs are the Inquiry, Publication and Security APIs. These APIs provide

the standard functions for interacting with the registry.

The jUDDI server implements each of these API sets as a JAX-WS compliant web service and

each method defined in the API set is simply a method in the corresponding web service. The

client module provided by jUDDI uses a “transport” class that defines how the call is to be made.

The default transport uses JAX-WS but there are several alternative ways to make calls to the

API. Please refer to the documentation for more information.

One final note, jUDDI defines its own API set. This API set contains methods that deal with

handling Publishers as well as other useful maintenance functions (mostly related to jUDDI’s

subscription model). This API set is obviously proprietary to jUDDI and therefore doesn’t conform

to the UDDI specification.

Chapter 8. Simple Publishing ...

48

8.4. Getting Started

Now that we’ve covered the basics of the data model and API sets, it’s time to get started

with the publishing sample. The first thing that must happen is to get the jUDDI server up and

running. Please refer to this article [http://apachejuddi.blogspot.com/2010/02/getting-started-with-

juddi-v3.html] that explains how to start the jUDDI server.

8.4.1. Simple Publishing Example

We will now go over the “simple-publish” example found in the documentation. This sample

expands upon the HelloWorld example in that after retrieving an authentication token, a Publisher,

BusinessEntity and BusinessService are published to the registry.

The sample consists of only one class: SimplePublish. Let’s start by taking a look at the

constructor:

 public SimplePublish() {

 try {

 String clazz = UDDIClientContainer.getUDDIClerkManager(null).

 getClientConfig().getUDDINode("default").getProxyTransport();

 Class<?> transportClass = ClassUtil.forName(clazz, Transport.class);

 if (transportClass!=null) {

 Transport transport = (Transport) transportClass.

 getConstructor(String.class).newInstance("default");

 security = transport.getUDDISecurityService();

 juddiApi = transport.getJUDDIApiService();

 publish = transport.getUDDIPublishService();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

The constructor uses the jUDDI client API to retrieve the transport from the default node. You can

refer to the documentation if you’re confused about how clerks and nodes work. Suffice it to say,

we are simply retrieving the default client transport class which is designed to make UDDI calls

out using JAX-WS web services.

Once the transport is instantiated, we grab the three API sets we need for this demo: 1) the

Security API set so we can get authorization tokens, 2) the proprietary jUDDI API set so we can

save a Publisher and 3) the Publication API set so we can actually publish entities to the registry.

http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html
http://apachejuddi.blogspot.com/2010/02/getting-started-with-juddi-v3.html

Simple Publishing Example

49

All the magic happens in the publish method. We will look at that next.

Here are the first few lines of the publish method:

 // Setting up the values to get an authentication token for the 'root' user ('root' user

 // has admin privileges and can save other publishers).

 GetAuthToken getAuthTokenRoot = new GetAuthToken();

 getAuthTokenRoot.setUserID("root");

 getAuthTokenRoot.setCred("");

 // Making API call that retrieves the authentication token for the 'root' user.

 AuthToken rootAuthToken = security.getAuthToken(getAuthTokenRoot);

 System.out.println ("root AUTHTOKEN = " + rootAuthToken.getAuthInfo());

This code simply gets the authorization token for the ‘root’ user. The ‘root’ user (or publisher) is

automatically installed in every jUDDI instance and acts as the “administrator” for jUDDI API calls.

Additionally, the ‘root’ user is the owning publisher for all the initial services installed with jUDDI.

You may be wondering what those “initial services” are. Well, since the UDDI API sets are all

implemented as web services by jUDDI, every jUDDI node actually registers those services inside

itself. This is done per the specification.

Let’s get back to the code. Now that we have root authorization, we can add a publisher:

 // Creating a new publisher that we will use to publish our entities to.

 Publisher p = new Publisher();

 p.setAuthorizedName("my-publisher");

 p.setPublisherName("My Publisher");

 // Adding the publisher to the "save" structure, using the 'root' user authentication info and

 // saving away.

 SavePublisher sp = new SavePublisher();

 sp.getPublisher().add(p);

 sp.setAuthInfo(rootAuthToken.getAuthInfo());

 juddiApi.savePublisher(sp);

Here we’ve simply used the jUDDI API to save a publisher with authorized name “my-publisher”.

Notice how the authorization token for the ‘root’ user is used. Next, we need to get the authorization

token for this new publisher:

Chapter 8. Simple Publishing ...

50

 // Our publisher is now saved, so now we want to retrieve its authentication token

 GetAuthToken getAuthTokenMyPub = new GetAuthToken();

 getAuthTokenMyPub.setUserID("my-publisher");

 getAuthTokenMyPub.setCred("");

 AuthToken myPubAuthToken = security.getAuthToken(getAuthTokenMyPub);

 System.out.println ("myPub AUTHTOKEN = " + myPubAuthToken.getAuthInfo());

This is pretty straightforward. You’ll note that no credentials have been set on both authorization

calls. This is because we’re using the default authenticator which doesn’t require credentials. We

have our authorization token for our new publisher, now we can simply publish away:

 // Creating the parent business entity that will contain our service.

 BusinessEntity myBusEntity = new BusinessEntity();

 Name myBusName = new Name();

 myBusName.setValue("My Business");

 myBusEntity.getName().add(myBusName);

 // Adding the business entity to the "save" structure, using our publisher's authentication info

 // and saving away.

 SaveBusiness sb = new SaveBusiness();

 sb.getBusinessEntity().add(myBusEntity);

 sb.setAuthInfo(myPubAuthToken.getAuthInfo());

 BusinessDetail bd = publish.saveBusiness(sb);

 String myBusKey = bd.getBusinessEntity().get(0).getBusinessKey();

 System.out.println("myBusiness key: " + myBusKey);

 // Creating a service to save. Only adding the minimum data: the parent business key

 retrieved

 //from saving the business above and a single name.

 BusinessService myService = new BusinessService();

 myService.setBusinessKey(myBusKey);

 Name myServName = new Name();

 myServName.setValue("My Service");

 myService.getName().add(myServName);

 // Add binding templates, etc...

 // Adding the service to the "save" structure, using our publisher's authentication info and

 // saving away.

 SaveService ss = new SaveService();

Conclusion

51

 ss.getBusinessService().add(myService);

 ss.setAuthInfo(myPubAuthToken.getAuthInfo());

 ServiceDetail sd = publish.saveService(ss);

 String myServKey = sd.getBusinessService().get(0).getServiceKey();

 System.out.println("myService key: " + myServKey);

To summarize, here we have created and saved a BusinessEntity and then created and saved a

BusinessService. We’ve just added the bare minimum data to each entity (and in fact, have not

added any BindingTemplates to the service). Obviously, you would want to fill out each structure

with greater information, particularly with services. However, this is beyond the scope of this article,

which aims to simply show you how to programmatically publish entities.

There are a couple important notes regarding the use of entity keys. Version 3 of the specification

allows for publishers to create their own keys but also instructs implementers to have a default

method. Here we have gone with the default implementation by leaving each entity’s “key” field

blank in the save call. jUDDI’s default key generator simply takes the node’s partition and appends

a GUID. In a default installation, it will look something like this:

uddi:juddi.apache.org:<GUID>

You can, of course, customize all of this, but that is left for another article. The second important

point is that when the BusinessService is saved, I’ve had to explicitly set its parent business key

(retrieved from previous call saving the business). This is a necessary step when the service is

saved in an independent call like this. Otherwise you would get an error because jUDDI won’t know

where to find the parent entity. I could have added this service to the BusinessEntity’s service

collection and saved it with the call to saveBusiness. In that scenario I would not have to set the

parent business key.

8.5. Conclusion

That does it for this article. Hopefully I managed to clear some of the confusion around the open-

ended question, “How do I publish a service using jUDDI?”.

52

Chapter 9.

53

Subscription

9.1. Introduction

Subscriptions come to play in a multi-registry setup. Within your company you may have the need

to run with more then one UDDI, let's say one for each department, where you limit access to the

systems in each department to just their own UDDI node. However you may want to share some

services cross departments. The subscription API can help you cross registering those services

and keeping them up to date by sending out notifications as the registry information in the parent

UDDI changes.

There are two type of subscriptions:

asynchronous

Save a subscription, and receive updates on a certain schedule.

synchronous

Save a subscription and invoke the get_Subscription and get a synchronous reply.

The notification can be executed in a synchronous and an asynchronous way. The asynchronous

way requires a listener service to be installed on the node to which the notifications should be sent.

9.2. Two node example setup: Sales and Marketing

In this example we are setting up a node for 'sales' and a node for 'marketing'. For this you need

to deploy jUDDI to two different services, then you need to do the following setup:

Procedure 9.1. Setup Node 1: Sales

1. Create juddi_custom_install_data.

cd juddiv3/WEB-INF/classes

mv RENAME4SALES_juddi_custom_install_data juddi_custom_install_data

2. edit: webapps/juddiv3/WEB-INF/classes/juddiv3.properties and set the following

property values where 'sales' is the DNS name of your server.

juddi.server.name=sales

juddi.server.port=8080

Chapter 9. Subscription

54

3. Start the server (tomcat), which will load the UDDI seed data (since this is the first time you're

starting jUDDI, see Chapter 5, Root Seed Data)

bin/startup.sh

4. Open your browser to http://sales:8080/juddiv3. You should see:

Figure 9.1. Sales Node Installation

Procedure 9.2. Setup Node 2: Marketing

1. Create juddi_custom_install_data.

cd juddiv3/WEB-INF/classes

mv RENAME4MARKETING_juddi_custom_install_data juddi_custom_install_data

2. edit: webapps/juddiv3/WEB-INF/classes/juddiv3.properties and set the following

property values where 'marketing' is the DNS name of your server.

juddi.server.name=marketing

juddi.server.port=8080

3. Start the server (tomcat), which will load the UDDI seed data (since this is the first time you're

starting jUDDI, see Chapter 5, Root Seed Data)

bin/startup.sh

4. Open your browser to http://marketing:8080/juddiv3 . You should see:

http://sales:8080/juddiv3
http://marketing:8080/juddiv3

Two node example setup: Sales and Marketing

55

Figure 9.2. Marketing Node Installation

Note that we kept the root partition the same as sales and marketing are in the same company,

however the Node Id and Name are different and reflect that this node is in 'sales' or 'marketing'.

Finally you will need to replace the sales server's uddi-portlets.war/WEB-INF/classes/META-

INF/uddi.xml with uddi-portlets.war/WEB-INF/classes/META-INF/uddi.xml.sales. Then,

edit the uddi-portlets.war/WEB-INF/classes/META-INF/uddi.xml and set the following

properties:

<name>default</name>

<properties>

 <property name="serverName" value="sales"/>

 <property name="serverPort" value="8080"/>

 <property name="rmiPort" value="1099"/>

</properties>

Log into the sales portal: http://sales:8080/pluto with username/password: sales/sales.

http://sales:8080/pluto

Chapter 9. Subscription

56

Figure 9.3. Sales Services

Before logging into the marketing portal, replace marketing's uddi-portlet.war/

WEB-INF/classes/META-INF/uddi.xml with udd-portlet.war/WEB-INF/classes/META-INF/

uddi.xml.marketing. Then you will need to edit the uddi-portlet.war/WEB-INF/classes/

META_INF/uddi.xml and set the following properties:

<name>default</name>

<properties>

 <property name="serverName" value="marketing"/>

 <property name="serverPort" value="8080"/>

 <property name="rmiPort" value="1099"/>

</properties>

Now log into the marketing portal http://marketing:8080/pluto with username/password: marketing/

marketing. In the browser for the marketing node we should now see:

http://marketing:8080/pluto

Deploy the HelloSales Service

57

Figure 9.4. Marketing Services

Note that the subscriptionlistener is owned by the Marketing Node business (and not the Root

Marketing Node). The Marketing Node Business is managed by the marketing publisher.

9.3. Deploy the HelloSales Service

The sales department developed a service called HelloSales. The HelloSales service is provided

in the juddiv3-samples.war, and it is annotated so that it will auto-register. Before deploying

the war, edit the juddiv3-samples.war/WEB-INF/classes/META-INF/uddi.xml file to set some

property values to 'sales'.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<uddi>

 <reloadDelay>5000</reloadDelay>

 <manager name="example-manager">

 <nodes>

 <node>

 <name>default</name>

 <description>Sales jUDDI node</description>

 <properties>

 <property name="serverName" value="sales"/>

 <property name="serverPort" value="8080"/>

Chapter 9. Subscription

58

 <property name="keyDomain" value="sales.apache.org"/>

 <property name="department" value="sales" />

 </properties>

 <proxyTransport>

 org.apache.juddi.v3.client.transport.InVMTransport

 </proxyTransport>

 <custodyTransferUrl>

 org.apache.juddi.api.impl.UDDICustodyTransferImpl

 </custodyTransferUrl>

 <inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>

 <publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>

 <securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>

 <subscriptionUrl>

 org.apache.juddi.api.impl.UDDISubscriptionImpl

 </subscriptionUrl>

 <subscriptionListenerUrl>

 org.apache.juddi.api.impl.UDDISubscriptionListenerImpl

 </subscriptionListenerUrl>

 <juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>

 </node>

 </nodes>

 </manager>

</uddi>

Now deploy the juddiv3-samples.war to the sales registry node, by building the juddiv3-

samples.war and deploying. The HelloWorld service should deploy

Configure a user to create Subscriptions

59

Figure 9.5. Registration by Annotation, deploying the juddi-samples.war to the

sales Node

On the Marketing UDDI we'd like to subscribe to the HelloWord service, in the Sales UDDI Node.

As mentioned before there are two ways to do this; synchronously and asynchronously.

9.4. Configure a user to create Subscriptions

For a user to create and save subscriptions the publisher needs to have a valid login to both the

sales and the marketing node. Also if the marketing publisher is going to create registry objects in

the marketing node, the marketing publisher needs to own the sales keygenerator tModel. Check

the marketing_*.xml files in the root seed data of both the marketing and sales node, if you

want to learn more about this. It is important to understand that the 'marketing' publisher in the

marketing registry owns the following tModels:

<save_tModel xmlns="urn:uddi-org:api_v3">

 <tModel tModelKey="uddi:marketing.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">

 <name>marketing-apache-org:keyGenerator</name>

 <description>Marketing domain key generator</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://uddi.org/pubs/uddi_v3.htm#keyGen

 </overviewURL>

 </overviewDoc>

Chapter 9. Subscription

60

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:keyGenerator"

 keyValue="keyGenerator" />

 </categoryBag>

 </tModel>

 <tModel tModelKey="uddi:marketing.apache.org:subscription:keygenerator"

 xmlns="urn:uddi-org:api_v3">

 <name>marketing-apache-org:subscription:keyGenerator</name>

 <description>Marketing Subscriptions domain key generator</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://uddi.org/pubs/uddi_v3.htm#keyGen

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:keyGenerator"

 keyValue="keyGenerator" />

 </categoryBag>

 </tModel>

 <tModel tModelKey="uddi:sales.apache.org:keygenerator" xmlns="urn:uddi-org:api_v3">

 <name>sales-apache-org:keyGenerator</name>

 <description>Sales Root domain key generator</description>

 <overviewDoc>

 <overviewURL useType="text">

 http://uddi.org/pubs/uddi_v3.htm#keyGen

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types"

 keyName="uddi-org:types:keyGenerator"

 keyValue="keyGenerator" />

 </categoryBag>

 </tModel>

</save_tModel>

If we are going to user the marketing publisher to subscribe to updates in the sales registry, then

we need to provide this publisher with two clerks in the uddi.xml of the uddi-portlet.war.

<clerks registerOnStartup="false">

Synchronous Notifications

61

 <clerk name="MarketingCratchit" node="default"

 publisher="marketing" password="marketing"/>

 <clerk name="SalesCratchit" node="sales-ws"

 publisher="marketing" password="marketing"/>

 <!-- optional

 <xregister>

 <servicebinding

 entityKey="uddi:marketing.apache.org:servicebindings-subscriptionlistener-ws"

 fromClerk="MarketingCratchit" toClerk="SalesCratchit"/>

 </xregister>

 -->

</clerks>

Here we created two clerks for this publisher called 'MarketingCratchit' and 'SalesCratchit'. This

will allow the publisher to check the existing subscriptions owned by this publisher in each of the

two systems.

9.5. Synchronous Notifications

While being logged in as the marketing publisher on the marketing portal, we should see the

following when selecting the UDDISubscription Portlet.

Figure 9.6. Subscriptions. In (a) both nodes are up while in (b) the sales

node is down

When both nodes came up green you can lick on the 'new subscription' icon in the toolbar. Since

we are going to use this subscription synchronously only the Binding Key and Notification Interval

Chapter 9. Subscription

62

should be left blank, as shown in Figure 9.7, “Create a New Subscription”. Click the save icon

to save the subscription.

Figure 9.7. Create a New Subscription

Make sure that the subscription Key uses the convention of the keyGenerator of the marketing

publisher. You should see the orange subscription icon appear under the “sales-ws” UDDI node.

Synchronous Notifications

63

Figure 9.8. A Newly Saved Subscription

To invoke a synchronous subscription, click the icon with the green arrows. This will give you the

opportunity to set the coverage period.

Figure 9.9. Set the Coverage Period

Click the green arrows icon again to invoke the synchronous subscription request. The example

finder request will go out to the sales node and look for updates on the HelloWorld service. The

raw XML response will be posted in the UDDISubscriptionNotification Portlet.

Chapter 9. Subscription

64

Figure 9.10. The Raw XML response of the synchronous Subscription

request

The response will also be consumed by the marketing node. The marketing node will import

the HelloWorld subscription information, as well as the sales business. So after a successful

sync you should now see three businesses in the Browser Portlet of the marketing node,

see Figure 9.11, “The registry info of the HelloWorld Service information was imported by the

subscription mechanism.”.

Synchronous Notifications

65

Figure 9.11. The registry info of the HelloWorld Service information was

imported by the subscription mechanism.

66

Chapter 10.

67

Administration

10.1. Introduction

General Stuff about administration.

10.2. Changing the Listener Port

If you want to change the port Tomcat listens on to something non-standard (something other

than 8080):

jUDDI Server

1. edit conf/server.xml and change the port within the <Connector> element

2. edit webapps/juddiv3/WEB-INF/classes/juddiv3.properties and change the port

number

jUDDI Portal

1. edit webapps/uddi-portlets/WEB-INF/classes/META-INF/uddi.xml and change the

port numbers within the endpoint URLs

2. edit pluto/WEB-INF/classes/server.xml and change the port within the <Connector>

element

10.3. Changing the Oracle Sequence name

If you are using Hibernate as a persistence layer for jUDDI, then Oracle will generate a default

sequence for you ("HIBERNATE_SEQUENCE"). If you are using hibernate elsewhere, you may

wish to change the sequence name so that you do not share this sequence with any other

applications. If other applications try to manually create the default hibernate sequence, you may

even run into situations where you find conflicts or a race condition.

The easiest way to handle this is to create an orm.xml file and place it within the classpath

in a META-INF directory, which will override the jUDDI persistence annotations and will allow

you to specify a specific sequence name for use with jUDDI. The following orm.xml specifies a

"juddi_sequence" sequence to be used with jUDDI.

<entity-mappings

 xmlns="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/

persistence/orm_1_0.xsd"

 version="1.0">

Chapter 10. Administration

68

 <sequence-generator name="juddi_sequence" sequence-name="juddi_sequence"/>

 <entity class="org.apache.juddi.model.Address">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.AddressLine">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.BindingDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.BusinessDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.BusinessIdentifier">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.BusinessName">

 <attributes>

Changing the Oracle Sequence name

69

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.CategoryBag">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.Contact">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.ContactDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.DiscoveryUrl">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.Email">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

Chapter 10. Administration

70

 </entity>

 <entity class="org.apache.juddi.model.InstanceDetailsDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.InstanceDetailsDocDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.KeyedReference">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.KeyedReferenceGroup">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.OverviewDoc">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.OverviewDocDescr">

 <attributes>

Changing the Oracle Sequence name

71

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.PersonName">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.Phone">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.ServiceDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.ServiceName">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.SubscriptionMatch">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

Chapter 10. Administration

72

 </entity>

 <entity class="org.apache.juddi.model.TmodelDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.TmodelIdentifier">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.TmodelInstanceInfo">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.TmodelInstanceInfoDescr">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.TransferTokenKey">

 <attributes>

 <id name="id">

 <generated-value generator="juddi_sequence" strategy="AUTO"/>

 </id>

 </attributes>

 </entity>

 <entity class="org.apache.juddi.model.BindingTemplate">

 <attributes>

Persistence

73

 <basic name="accessPointUrl">

 <column name="access_point_url" length="4000"/>

 </basic>

 </attributes>

 </entity>

</entity-mappings>

10.4. Persistence

jUDDI supports both OpenJPA and Hibernate as persistence providers. If you are embedding

jUDDI, it is important to note that there are two JARs provided through maven. If you will be using

Hibernate, please use the juddi-core JAR, if you are using OpenJPA, use juddi-core-openjpa.

The difference between these JARs is that the persistence classes within juddi-core-

openjpa have been enhanced (http://people.apache.org/~mprudhom/openjpa/site/openjpa-

project/manual/ref_guide_pc_enhance.html). Unfortunately, the Hibernate classloader does not

deal well with these enhanced classes, so it it important to note not to use the juddi-core-openjpa

JAR with Hibernate.

74

Chapter 11.

75

Deploying to JBoss 6.0.0.GA

11.1. Introduction

This section describes how to deploy juddi to JBoss 6.0.0.GA.

First, download jboss-6.0.0.GA - the zip or tar.gz bundle may be found at http://www.jboss.org/

jbossas/downloads/. Download the bundle and uncompress it.

11.2. Add juddiv3.war

Copy juddiv3.war to server/default/deploy and unpack it.

Insert jboss-web.xml into the juddiv3.war/WEB-INF directory , should look like the following :

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE jboss-web PUBLIC

 "-//JBoss//DTD Web Application 2.3V2//EN"

 "http://www.jboss.org/j2ee/dtd/jboss-web_3_2.dtd">

<jboss-web>

 <resource-ref>

 <res-ref-name>jdbc/JuddiDS</res-ref-name>

 <jndi-name>java:JuddiDS</jndi-name>

 </resource-ref>

 <depends>jboss.jdbc:datasource=JuddiDS,service=metadata</depends>

</jboss-web>

11.3. Change web.xml

Replace the WEB-INF/web.xml with the jbossws-native-web.xml within docs/examples/appserver.

11.4. Configure Datasource

The first step for configuring a datasource is to copy your JDBC driver into the classpath. Copy your

JDBC driver into ${jboss.home.dir}/server/${configuration}/lib, where configuration is

the profile you wish to start with (default, all, etc.). Example :

cp mysql-connector-java-5.0.8-bin.jar /opt/jboss-5.1.0.GA/server/default/lib

Chapter 11. Deploying to JBos...

76

Next, configure a JBoss datasource file for your db. Listed below is an example datasource for

MySQL :

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>JuddiDS</jndi-name>

 <connection-url>jdbc:mysql://localhost:3306/juddiv3</connection-url>

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 <user-name>root</user-name>

 <password></password>

 <exception-sorter-class-

name>org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter</exception-sorter-class-

name>

 <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml (optional) -->

 <metadata>

 <type-mapping>mySQL</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

Next, make a few changes to the juddiv3.war/classes/META-INF/persistence.xml. Change

the "hibernate.dialect" property to match the database you have chosen for persistence.

For MySQL, change the value of hibernate.dialect to "org.hibernate.dialect.MySQLDialect".

A full list of dialects available can be found in the hibernate documentation (https://

www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/package-summary.html). Next, change

the <jta-data-source> tags so that it reads <non-jta-data-source>, and change the value from

java:comp/env/jdbc/JuddiDS to java:/JuddiDS.

Chapter 12.

77

Deploying to Glassfish 2.1.1

12.1. Introduction

This section describes how to deploy juddi to Glassfish 2.1.1. These instructions will use CXF as

a webservice framework.

First, download the glassfish-v2.1.1 installer JAR. Once downloaded,install using the JAR and

then run the ant setup script :

java -jar glassfish-installer-v2.1.1-b31g-linux.jar

cd glassfish

ant -f setup.xml

12.2. Glassfish jars

Copy the following JARs into domains/domain1/lib/ext. Note that for the purposes of this example,

we have copied the MySQL driver to domains/domain1/lib/ext :

antlr-2.7.6.jar

cglib-nodep-2.1_3.jar

commons-collections-3.2.1.jar

commons-logging-1.1.jar

dom4j-1.6.1.jar

hibernate-3.2.5.ga.jar

hibernate-annotations-3.3.0.ga.jar

hibernate-commons-annotations-3.0.0.ga.jar

hibernate-entitymanager-3.3.1.ga.jar

hibernate-validator-3.0.0.ga.jar

javassist-3.3.ga.jar

jboss-common-core-2.0.4.GA.jar

jta-1.0.1B.jar

mysql-connector-java-5.0.8-bin.jar

persistence-api-1.0.jar

12.3. Configure the JUDDI datasource

First, using the asadmin administration tool, import the following file :

Chapter 12. Deploying to Glas...

78

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE resources PUBLIC "-//Sun Microsystems Inc.//DTD Application Server 9.0 Domain//

EN" "*<install directory>/lib/dtds/sun-resources_1_3.dtd*">

<resources>

<jdbc-connection-pool name="mysql-pool" datasource-

classname="com.mysql.jdbc.jdbc2.optional.MysqlDataSource" res-

type="javax.sql.DataSource">

<property name="user" value="juddi"/>

<property name="password" value="juddi"/>

<property name="url" value="jdbc:mysql://localhost:3306/juddiv3"/>

</jdbc-connection-pool>

<jdbc-resource enabled="true" jndi-name="jdbc/mysql-resource" object-type="user" pool-

name="mysql-pool"/>

</resources>

 asadmin add-resources resource.xml

Then use the Glassfish administration console to create a "jdbc/juddiDB" JDBC datasource

resource based on the mysql-pool Connection Pool.

12.4. Add juddiv3-cxf.war

Unzip the juddiv3-cxf WAR into domains/domain1/autodeploy/juddiv3.war .

Add a sun-web.xml file into juddiv3.war/WEB-INF. Make sure that the JNDI references matches

the JNDI location you configured in the Glassfish administration console.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD

Application Server 9.0 Servlet 2.5//EN'

'http://www.sun.com/software/appserver/dtds/sun-web-app_2_5-0.dtd'>

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/juddiDB</res-ref-name>

<jndi-name>jdbc/juddiDB</jndi-name>

</resource-ref>

</sun-web-app>

Run juddi

79

Next, make a few changes to juddiv3.war/WEB-INF/classes/META-INF/persistence.xml

. Change the "hibernate.dialect" property to match the database that you have

chosen for persistence. For MySQL, change the value of hibernate.dialect to

"org.hibernate.dialect.MySQLDialect". A full list of dialects available can be found in

the hibernate documentation (https://www.hibernate.org/hib_docs/v3/api/org/hibernate/dialect/

package-summary.html). Next, change the <jta-data-source> change the value from java:comp/

env/jdbc/JuddiDS to java:comp/env/jdbc/JuddiDB.

12.5. Run juddi

Start up the server :

cd bin

asadmin start-domain domain1

Once the server is deployed, browse to http://localhost:8080/juddiv3

http://localhost:8080/juddiv3

80

81

Appendix A. Revision History
Revision History

Revision 1.1 Thu Jan 07 2010 TomCunningham<tcunning@apache.org>

Translated Dev Guide to docbook

Revision 1.0 Mon Nov 16 2009 DarrinMison<dmison@redhat.com>

Created from community jUDDI Guide

82

	jUDDI User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. UDDI Registry
	1.1. Introduction
	1.2. UDDI Registry

	Chapter 2. Getting Started
	2.1. What Should I Download?
	2.2. Using the JAR
	2.3. Using the WAR File
	2.4. Using the Tomcat Bundle
	2.5. Using jUDDI Web Services

	Chapter 3. Authentication
	3.1. Introduction
	3.2. jUDDI Authentication
	3.3. XMLDocAuthentication
	3.4. CryptedXMLDocAuthentication
	3.5. LDAP Authentication
	3.6. JBoss Authentication

	Chapter 4. Database Setup
	4.1. Derby Out-of-the-Box
	4.2. Switch to MySQL
	4.3. Switch to Postgres
	4.4. Switch to Oracle
	4.5. Switch to HSQL
	4.6. Switch to <other db>

	Chapter 5. Root Seed Data
	5.1. Introduction
	5.2. Seed Data Files
	5.3. Token in the Seed Data
	5.4. Customer Seed Data

	Chapter 6. jUDDI_Configuration
	6.1. Introduction
	6.2. Authentication
	6.3. Startup
	6.4. Queries
	6.5. Proxy Settings
	6.6. KeyGeneration
	6.7. Subscription
	6.8. Transfer

	Chapter 7. Using the jUDDI-Client
	7.1. Introduction
	7.2. Configuration
	7.2.1. JAX-WS Transport
	7.2.2. RMI Transport
	7.2.3. InVM Transport

	7.3. UDDI Annotations
	7.3.1. Introduction
	7.3.2. UDDIService Annotation
	7.3.3. UDDIServiceBinding Annotation
	7.3.3.1. CategoryBag Attribute

	7.3.4. WebService Example
	7.3.5. Templating keys

	7.4. Programmatic use
	7.4.1. WSDL Registration
	7.4.2. BPEL Process Registration
	7.4.3. Conventions around UDDIv3 registration
	7.4.3.1. Key Templates
	7.4.3.2. Specification of service and binding descriptions in the WSDL
	7.4.3.3. URLLocalizer

	7.5. Dynamic UDDI Service Lookup
	.1. Service Locator

	7.6. Dependencies
	7.7. Sample Code
	7.8. References

	Chapter 8. Simple Publishing Using the jUDDI API
	8.1. UDDI Data Model
	8.2. jUDDI Additions to the Model
	8.3. UDDI and jUDDI API
	8.4. Getting Started
	8.4.1. Simple Publishing Example

	8.5. Conclusion

	Chapter 9. Subscription
	9.1. Introduction
	9.2. Two node example setup: Sales and Marketing
	9.3. Deploy the HelloSales Service
	9.4. Configure a user to create Subscriptions
	9.5. Synchronous Notifications

	Chapter 10. Administration
	10.1. Introduction
	10.2. Changing the Listener Port
	10.3. Changing the Oracle Sequence name
	10.4. Persistence

	Chapter 11. Deploying to JBoss 6.0.0.GA
	11.1. Introduction
	11.2. Add juddiv3.war
	11.3. Change web.xml
	11.4. Configure Datasource

	Chapter 12. Deploying to Glassfish 2.1.1
	12.1. Introduction
	12.2. Glassfish jars
	12.3. Configure the JUDDI datasource
	12.4. Add juddiv3-cxf.war
	12.5. Run juddi

	Appendix A. Revision History

