
jUDDI Dev Guide

A developer's guide

to using jUDDI

by Tom Cunningham, Kurt Stam, Jeff Faath, and The jUDDI Community

and thanks to Darrin Mison

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. We Need Feedback! .. viii

1. UDDI Registry .. 1

1.1. jUDDI Architecture for UDDI v3 Project .. 1

2. Development Environment Setup .. 5

2.1. Prerequisites .. 5

2.2. Building the Project ... 5

2.3. Source Modules Overview ... 5

2.4. Setting up Eclipse ... 6

2.5. Running a unittest from within Eclipse .. 7

2.6. Building the JAR ... 8

2.7. Building the WAR ... 9

2.8. Building the Tomcat Bundle ... 9

2.9. Running and Developing Tests .. 11

3. Release Process .. 13

3.1. Add your gpg key to KEYS ... 13

3.2. Release steps ... 13

A. Revision History .. 15

iv

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search

> Find from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and

release. Each word is a placeholder, either for text you enter when issuing a command or for text

displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual

better, we would love to hear from you!

For any issues you find, or improvements you have, please sign up for a JIRA account at https://

issues.apache.org/jira/secure/Dashboard.jspa and file a bug under the "jUDDI" component.

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

Chapter 1.

1

UDDI Registry

1.1. jUDDI Architecture for UDDI v3 Project

Figure 1.1. jUDDI Architecture

Chapter 1. UDDI Registry

2

The diagram above shows the software layers and components employed in the jUDDI project

implementation for UDDI v3. Here is a brief description of each item in the diagram and how they

all work together to create the UDDI-compliant registry that is jUDDI:

1. Transport - the transport layer provides the means to receive and send out requests via

a network or messaging service. The UDDI specification details an interface where XML

messages are exchanged between client and server but is agnostic as to how those messages

are relayed. By default, jUDDI uses Apache CXF to transport messages via SOAP over HTTP,

however, the system is designed so other methods of transport can be easily plugged in (for

example, JMS).

2. Security - security is provided by the UDDI specification and is based on policies defined in

the specification. jUDDI implements all the mandatory policies and can be extended to support

the optional policies. Chief among these policies is access control to the UDDI API exposed

by jUDDI. jUDDI fully implements this policy, per the specification, which allows users to easily

plug in their own third-party authentication framework.

3. UDDI Interface - the UDDI interface defines the methods set forth by the UDDI specification

to interact with the registry. Within jUDDI, the interface classes are generated from the UDDI

WSDL and they are implemented as POJOs. These classes are annotated with JAX-WS

annotations allowing end-users to easily employ any suitable JAX-WS container to expose the

interface.

4. In general, the interface implementation accepts incoming UDDI-based requests and

ummarshals these requests to the appropriate schema object. This object is then served to

the proceeding layers so the necessary logic can be performed to fulfill the request. After the

request is fulfilled, this layer is responsible for marshalling the result and sending the response

to the requesting party.

5. As the interface is implemented as POJOs, it can be accessed via an "embedded" mode. In this

scenario, the methods of the implementation classes can be called directly. This allows users to

embed jUDDI directly into their application without having to deploy a full-blown jUDDI server.

6. UDDI Schema Objects - The UDDI specification comes equipped with an XML schema for

its many data structures. jUDDI employs XML-binding technology (JAXB) to generate objects

from the schema (contained within the WSDL) that are then used as the arguments for the

UDDI Interface layer. These objects needn't originate from XML – they can also be instantiated

directly to make UDDI calls directly in java code.

7. Validation – the validation layer reads the schema object input from the UDDI interface layer

and, based on rules defined in the specification, makes sure the input is valid for the given UDDI

method. Failed validation results in an exception and an immediate return from the method call.

8. Mapping – the mapping layer is responsible for mapping the UDDI schema objects to the

persistence layer model. For all intents and purposes, the mapping layer simply copies data

from a schema object to the similar model object. This occurs in both directions, as input objects

jUDDI Architecture for UDDI v3 Project

3

must be mapped to the model to perform the necessary logic and results obtained from the call

must be mapped back to the schema as output to the caller.

9. Business Logic - the business logic layer is responsible for performing all the business logic

associated with the UDDI calls. The logic layer works with objects from the persistence layer

and generally consists of querying the model based on user input.

10.Persistence - the persistence layer, as its name implies, is responsible for persisting registry

data to a storage medium. To this end, a third-party persistence service that implements the

Java Persistence API (Apache OpenJPA, Hibernate) is utilized to manage transactions with

the storage medium and also to facilitate the plugging-in of various storage types. By default,

jUDDI is packaged with Apache OpenJPA as the persistence provider and Apache Derby as

the storage medium. This can easily be configured.

4

Chapter 2.

5

Development Environment Setup

2.1. Prerequisites

To be able to build and run jUDDI you will need to have the following installed:

1. 1.5.X JDK

2. Maven 2.0.8

2.2. Building the Project

First, check out the jUDDI sources:

% svn co http://svn.apache.org/repos/asf/webservices/juddi/trunk

Then build the entire project using OpenJPA for persistance use:

% cd trunk

% mvn clean install -Dpersistence=openjpa

To use Hibernate change the persistence flag to hibernate. Optionally you can use a

settings.xml to set your persistence choice on a permanent basis, so you don't have to provide

the persistence variable every time you build. The default location of the settings.xml is in your

.m2 directory. An example file is checked into our source tree at etc/.m2/settings.xml.

2.3. Source Modules Overview

Within jUDDI source, there are the following modules:

1. uddi-ws: JAXWS stubs built from the WSDLs

2. uddi-tck: Test kit developed by jUDDI for testing UDDI v3 functionality. The TCK is not jUDDI

specific and could be used to verify and validate other UDDI v3 implementations

3. juddi-core: the jUDDI jar containing the model, API, and core jUDDI functionality

4. juddiv3-war: a WAR module agnostic as to JAX-WS provider

5. juddi-cxf: a WAR module that uses CXF as the web service framework, chosen by default

6. juddi-tomcat: a module which builds a Tomcat bundle with juddi-cxf installed and Derby as a

backend data base

7. juddi-console: a module which builds upon the juddi-tomcat module and adds a GWT-based

administration console

Chapter 2. Development Enviro...

6

8. uddi-client: a generic client library for communicating with a UDDI server

9. juddi-dist: a module used to produce shippable binary distributions

jUDDI v3 is set up to produce a number of different deliverables – a JAR, a WAR, and a Tomcat

bundle. Depending on the scope of your application, or your interest in the project, you might want

to use the Tomcat server bundle packaged with the Derby database and jUDDI, or you may just

want to use the jUDDI JAR and make your own database and Web Service choices. jUDDI is set

up so that it can support a range of environments.

2.4. Setting up Eclipse

The easiest way to setup jUDDI in eclipse is to use the m2eclipse plugin which can be found

at http://m2eclipse.codehaus.org/update/. In order to run and debug the project unit tests, it is

required that you install this plugin. After installing the plugin you should select:

1. “Enable Depency Management”

2. Then, “Enable Nested Modules”

3. Then, “Update Project Configuration”

Figure 2.1. Eclipse Maven Integration

Running a unittest from within Eclipse

7

If you wish to change your persistence.xml for the purposes of testing, either change it and then

build, or change juddi-core/target/classes/META-INF/persistence.xml. If you choose not

to use the m2eclipse plugin you can setup your classpath by following these directions, but there

are no guarantees that the unit tests will be debuggable within Eclipse. Choose “Eclipse” ->

“Preferences” In the preference dialog, select “Java” -> “Build Path” -> “Classpath Variables” Add

a new classpath variable :

Name: M2_REPO

Path : /[path-to-.m2]/.m2 (example : /home/tcunning/.m2)

% cd v3_trunk

% mvn eclipse:eclipse -Declipse.workspace=/[path-to-workspace]/workspace

Then within Eclipse, “Create New Project” and choose “Create from existing source” and choose

the source folder that you just checked out from SVN.

2.5. Running a unittest from within Eclipse

To run one unittest from within eclipse simply right-click the unittest and select Debug As > Junit

Test

Figure 2.2. Eclipse Maven Integration

If you are using OpenJPA you have to make sure that the openjpa-1.2.jar is on the classpath

and that for each unittest you specify the javaagent needed for the enhancement phase

-javaagent:/Users/kstam/.m2/repository/org/apache/openjpa/openjpa/1.2.0/

openjpa-1.2.0.jar

Chapter 2. Development Enviro...

8

Figure 2.3. Eclipse Maven Integration

2.6. Building the JAR

The juddi-core module produces a JAR which contains the jUDDI source and a jUDDI

persistence.xml configuration. jUDDI is currently setup so that you can choose between using

either OpenJPA or Hibernate as your persistence framework. The juddi-core pom.xml contains

two profiles, triggered on the "persistence" property.

OpenJPA

Building the WAR

9

% cd juddi-core

% mvn clean install -Dpersistence=openjpa

Hibernate

% cd juddi-core

% mvn clean install -Dpersistence=hibernate

For juddi 3.0.0 and 3.0.1, the project built with Hibernate by default, but as of 3.0.2 the project

now builds with openjpa as the default persistence layer. Two flavors of juddi-core are available

as maven artifacts - juddi-core for hibernate usage and juddi-core-openjpa for use with OpenJPA.

2.7. Building the WAR

As with the JAR, you need to make a decision on what framework you would like to use when

building the WAR. The project contains twoWAR modules – juddiv3-war, which produces a JAX-

WS agnostic WAR, and juddi-cxf – which produces a WAR with CXF descriptors. The project

would welcome any contribution of docs or descriptors for alternative JAX-WS providers.

2.8. Building the Tomcat Bundle

Tomcat bundle packages up one of the jUDDI WAR files, Apache Derby, and a few necessary

configuration files and provides the user with a pre-configured jUDDI instance. By default, the WAR

produced by the juddi-cxf module is used – the example below shown uses URLs and endpoints

using the jUDDI CXF configuration. If you use the Axis 2 configuration, URLs and endpoints may

differ.

To get started using the Tomcat bundle, unzip the juddi-tomcat-bundle.zip, and start Tomcat :

% cd apache-tomcat-6.0.20/bin

% ./startup.sh

Browse to http://localhost:8080/juddiv3/services

Chapter 2. Development Enviro...

10

Figure 2.4. jUDDI Service List

The services page shows you the available endpoints and methods available. Using any SOAP

client, you should be able to send some sample requests to jUDDI to test:

Running and Developing Tests

11

Figure 2.5. SOAP Sample Request

2.9. Running and Developing Tests

Currently the only unit tests are in juddi-core. We plan to add a suite of web service tests automated

against the juddi-cargo module.

Chapter 2. Development Enviro...

12

Running the tests:

% cd juddi-core

% mvn -Dpersistence=hibernate test

The tests are run through a maven-surefire-plugin within the juddi-core pom.xml :

 maven-surefire-plugin

 2.4.2

 src/test/resources/suite-init.xml,src/test/resources/suite-subscribe.xml,src/test/resources/

suite-clean.xml

The NUnit suite files listed here determine what tests are run with what data, and what order they

are run in. suite-init.xml initializes the jUDDI database with data, suite-subscribe.xml runs

a subscription test, and suite-clean.xml cleans the database and removes the test data.

To develop your own tests, please add another maven-surefire-plugin segment and the same

ordering of XML files (suite-init.xml, your custom suite, and then suite-clean.xml).

Chapter 3.

13

Release Process

3.1. Add your gpg key to KEYS

In the root of the project there is a KEYS file. Add your key to this file and check it into source

control. Depending on your tool of choice you can use on of the following commands:

 pgp -kxa <your name> and append it to this file.

 (pgpk -ll <your name> && pgpk -xa <your name>) >> this file.

 (gpg --list-sigs <your name>

 && gpg --armor --export <your name>) >> this file.

3.2. Release steps

Environment: Apache Maven 2.2.1 (r801777; 2009-08-06 15:16:01-0400) Java version:

1.6.0_17

1. Run mvn release:prepare, this will set all the right version numbers and create a tag in SVN.

2. Run mvn release:perform, will upload the release to a staging area in the Apache Nexus

Repository.

3. Go into the juddi-dist, and run mvn clean install -Prelease

4. Upload the signed distribution artifacts to apache people.

5. Start a vote referencing the build artifacts, leave the vote open for 72 hrs.

On successful vote:

1 Release the staging artifacts in Nexus.

2 Copy the distribution artifacts to the mirror.

3 Update the website.

14

15

Appendix A. Revision History
Revision History

Revision 1.1 Thu Jan 07 2010 TomCunningham<tcunning@apache.org>

Translated Dev Guide to docbook

Revision 1.0 Mon Nov 16 2009 DarrinMison<dmison@redhat.com>

Created from community jUDDI Guide

16

	jUDDI Dev Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. UDDI Registry
	1.1. jUDDI Architecture for UDDI v3 Project

	Chapter 2. Development Environment Setup
	2.1. Prerequisites
	2.2. Building the Project
	2.3. Source Modules Overview
	2.4. Setting up Eclipse
	2.5. Running a unittest from within Eclipse
	2.6. Building the JAR
	2.7. Building the WAR
	2.8. Building the Tomcat Bundle
	2.9. Running and Developing Tests

	Chapter 3. Release Process
	3.1. Add your gpg key to KEYS
	3.2. Release steps

	Appendix A. Revision History

