Apache Camel

USER GUIDE

Version 2.9.7

Copyright 2007-2013, Apache Software Foundation

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

Chapter |

APACHE CAMEL

Table of Contents

Introduction

Quickstart

Getting Started 7
Architecture 17
Enterprise Integration Patterns 37
Cook Book 42
Tutorials 122
Language Appendix 221
DataFormat Appendix 297
Pattern Appendix 383
Component Appendix 532
Index 0

Apache Camel ? is a versatile open-source integration framework based on known Enterprise
Integration Patterns.

Camel empowers you to define routing and mediation rules in a variety of domain-specific
languages, including a Java-based Fluent API, Spring or Blueprint XML Configuration files, and a
Scala DSL. This means you get smart completion of routing rules in your IDE, whether in a Java,
Scala or XML editor.

Apache Camel uses URIs to work directly with any kind of Transport or messaging model
such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as well as pluggable Components and
Data Format options. Apache Camel is a small library with minimal dependencies for easy
embedding in any Java application. Apache Camel lets you work with the same API regardless
which kind of Transport is used - so learn the APl once and you can interact with all the
Components provided out-of-box.

Apache Camel provides support for Bean Binding and seamless integration with popular
frameworks such as Spring, Blueprint and Guice. Camel also has extensive support for unit
testing your routes.

The following projects can leverage Apache Camel as a routing and mediation engine:

* Apache ServiceMix - a popular distributed open source ESB and JBI container
* Apache ActiveMQ - a mature, widely used open source message broker
* Apache CXF - a smart web services suite (JAX-WS and JAX-RS)
* Apache Karaf - a small OSGi based runtime in which applications can be deployed
» Apache MINA - a high-performance NIO-driven networking framework
So don't get the hump - try Camel today! @

CHAPTER | - INTRODUCTION

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/scala-dsl.html
http://camel.apache.org/uris.html
http://camel.apache.org/transport.html
http://camel.apache.org/http.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jbi.html
http://camel.apache.org/mina.html
http://camel.apache.org/cxf.html
http://camel.apache.org/components.html
http://camel.apache.org/data-format.html
http://camel.apache.org/what-are-the-dependencies.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transport.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://karaf.apache.org/
http://mina.apache.org/
http://en.wikipedia.org/wiki/New_I/O

2

% Too many buzzwords - what exactly is Camel?
Okay, so the description above is technology focused.
There's a great discussion about Camel at Stack Overflow. We suggest you view the
post, read the comments, and browse the suggested links for more details.

CHAPTER | - INTRODUCTION

http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel

To start using Apache Camel quickly, you can read through some simple examples in this
chapter. For readers who would like a2 more thorough introduction, please skip ahead to
Chapter 3.

WALK THROUGH AN EXAMPLE CODE

This mini-guide takes you through the source code of a simple example.
Camel can be configured either by using Spring or directly in Java - which this example does.

This example is available in the examples\camel-example-jms-file directory of
the Camel distribution.

We start with creating a CamelContext - which is a container for Components, Routes etc:

CamelContext context = new DefaultCamelContext ();

There is more than one way of adding a Component to the CamelContext. You can add
components implicitly - when we set up the routing - as we do here for the FileComponent:

context.addRoutes (new RouteBuilder () {
public void configure() {
from("test-jms:queue:test.queue") .to("file://test");

1)

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new

ActiveMQConnectionFactory ("vm://localhost?broker.persistent=false");
// Note we can explicit name the component

context.addComponent ("test-jms",

JmsComponent . jmsComponentAutoAcknowledge (connectionFactory)) ;

The above works with any JMS provider. If we know we are using ActiveMQ we can use an

even simpler form using the activeMQComponent () method while specifying the
brokerURL used to connect to ActiveMQ

CHAPTER 2 - QUICKSTART

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/spring.html
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/download.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/components.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/activemq.html
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/configuring-transports.html

2

camelContext.addComponent ("activemg",
activeMQComponent ("vm://localhost?broker.persistent=false"));

In normal use, an external system would be firing messages or events directly into Camel
through one if its Components but we are going to use the ProducerTemplate which is a really
easy way for testing your configuration:

ProducerTemplate template = context.createProducerTemplate () ;

Next you must start the camel context. If you are using Spring to configure the camel context
this is automatically done for you; though if you are using a pure Java approach then you just
need to call the start() method

camelContext.start () ;

This will start all of the configured routing rules.

So after starting the CamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody ("test-jms:queue:test.queue", "Test Message: " + 1i);

WHAT HAPPENS?

From the ProducerTemplate - we send objects (in this case text) into the CamelContext to the
Component test-jms:queue:test.queue. These text objects will be converted automatically into
JMS Messages and posted to a JMS Queue named test.queue. When we set up the Route, we
configured the FileComponent to listen of the test.queue.

The File FileComponent will take messages off the Queue, and save them to a directory
named test. Every message will be saved in a file that corresponds to its destination and message
id.

Finally, we configured our own listener in the Route - to take notifications from the
FileComponent and print them out as text.

That's it!

If you have the time then use 5 more minutes to Walk through another example that
demonstrates the Spring DSL (XML based) routing.

CHAPTER 2 - QUICKSTART

http://camel.apache.org/components.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/spring.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/walk-through-another-example.html

WALK THROUGH ANOTHER EXAMPLE

Introduction

Continuing the walk from our first example, we take a closer look at the routing and explain a
few pointers - so you won't walk into a bear trap, but can enjoy an after-hours walk to the local
pub for a large beer @

First we take a moment to look at the Enterprise Integration Patterns - the base pattern
catalog for integration scenarios. In particular we focus on Pipes and Filters - a central pattern.
This is used to route messages through a sequence of processing steps, each performing a
specific function - much like the Java Servlet Filters.

Pipes and filters

In this sample we want to process a message in a sequence of steps where each steps can
perform their specific function. In our example we have a JMS queue for receiving new orders.
When an order is received we need to process it in several steps:

= validate

= register

= send confirm email
This can be created in a route like this:

<route>

<from uri="jms:queue:order"/>
<pipeline>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</pipeline>
</route>

Where as the bean ref is a reference for a spring bean id, so we define our beans using
regular Spring XML as:

<bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

Our validator bean is a plain POJO that has no dependencies to Camel what so ever. So you
can implement this POJO as you like. Camel uses rather intelligent Bean Binding to invoke your
POJO with the payload of the received message. In this example we will not dig into this how
this happens. You should return to this topic later when you got some hands on experience
with Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from the JMS queue
the message is routed like Pipes and Filters:
|. payload from the JMS is sent as input to the validateOrder bean

CHAPTER 2 - QUICKSTART

http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html

i Pipeline is default
In the route above we specify pipeline but it can be omitted as its default, so
you can write the route as:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a multicast and "one" of
the endpoints to send to (as a logical group) is a pipeline of other endpoints. For example.

<route>
<from uri="jms:queue:order"/>
<multicast>
<to uri="log:org.company.log.Category"/>
<pipeline>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</pipeline>
</multicast>
</route>

The above sends the order (from jms: queue:order) to two locations at the same time,
our log component, and to the "pipeline" of beans which goes one to the other. If you
consider the opposite, sans the <pipeline>

<route>
<from uri="jms:queue:order"/>
<multicast>
<to uri="log:org.company.log.Category"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>
</multicast>
</route>

you would see that multicast would not "flow" the message from one bean to the next, but
rather send the order to all 4 endpoints (Ix log, 3x bean) in parallel, which is not (for this

CHAPTER 2 - QUICKSTART

example) what we want. We need the message to flow to the validateOrder, then to the
registerOrder, then the sendConfirmEmail so adding the pipeline, provides this facility.

2. the output from validateOrder bean is sent as input to the registerOrder bean
3. the output from registerOrder bean is sent as input to the sendConfirmEmail bean

Using Camel Components

In the route lets imagine that the registration of the order has to be done by sending data to a
TCP socket that could be a big mainframe. As Camel has many Components we will use the
camel-mina component that supports TCP connectivity. So we change the route to:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<bean ref="sendConfirmEmail"/>
</route>

What we now have in the route is a to type that can be used as a direct replacement for the
bean type. The steps is now:

I. payload from the JMS is sent as input to the validateOrder bean

2. the output from validateOrder bean is sent as text to the mainframe using TCP

3. the output from mainframe is sent back as input to the sendConfirmEmai bean

What to notice here is that the to is not the end of the route (the world @) in this

example it's used in the middle of the Pipes and Filters. In fact we can change the bean types to
to as well:

<route>
<from uri="jms:queue:order"/>
<to uri="bean:validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<to uri="bean:sendConfirmEmail"/>
</route>

As the to is a generic type we must state in the uri scheme which component it is. So we must
write bean: for the Bean component that we are using.

CHAPTER 2 - QUICKSTART

http://camel.apache.org/components.html
http://camel.apache.org/mina.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/bean.html

6

Conclusion

This example was provided to demonstrate the Spring DSL (XML based) as opposed to the
pure Java DSL from the first example. And as well to point about that the to doesn't have to be
the last node in a route graph.

This example is also based on the in=only message exchange pattern. What you must
understand as well is the in-out message exchange pattern, where the caller expects a
response. We will look into this in another example.

See also

= Examples
= Tutorials
= User Guide

CHAPTER 2 - QUICKSTART

http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/examples.html
http://camel.apache.org/tutorials.html
http://camel.apache.org/user-guide.html

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK

The purpose of a "patterns” book is not to advocate new techniques that the authors have
invented, but rather to document existing best practices within a particular field. By doing this,
the authors of a patterns book hope to spread knowledge of best practices and promote a
vocabulary for discussing architectural designs.

One of the most famous patterns books is Design Patterns: Elements of Reusable Object-oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, commonly known as
the "Gang of Four" (GoF) book. Since the publication of Design Patterns, many other pattern
books, of varying quality, have been written. One famous patterns book is called Enterprise
Integration Patterns: Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe and
Bobby Woolf. It is common for people to refer to this book by its initials EIP. As the subtitle of
EIP suggests, the book focuses on design patterns for asynchronous messaging systems. The
book discusses 65 patterns. Each pattern is given a textual name and most are also given a
graphical symbol, intended to be used in architectural diagrams.

THE CAMEL PROJECT

Camel (http://camel.apache.org) is an open-source, Java-based project that helps the user
implement many of the design patterns in the EIP book. Because Camel implements many of the
design patterns in the EIP book, it would be a good idea for people who work with Camel to
have the EIP book as a reference.

ONLINE DOCUMENTATION FOR CAMEL

The documentation is all under the Documentation category on the right-side menu of the
Camel website (also available in PDF form. Camel-related books are also available, in particular
the Camel in Action book, presently serving as the Camel bible--it has a free Chapter One
(pdf), which is highly recommended to read to get more familiar with Camel.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://camel.apache.org
http://camel.apache.org/manual.html
http://camel.apache.org/books.html
http://manning.com/ibsen
http://www.manning.com/ibsen/chapter1sample.pdf
http://www.manning.com/ibsen/chapter1sample.pdf

A useful tip for navigating the online documentation

The breadcrumbs at the top of the online Camel documentation can help you navigate between
parent and child subsections.

For example, If you are on the "Languages" documentation page then the left-hand side of the
reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the
Apache Camel project, and clicking on "Documentation" takes you to the main documentation
page. You can interpret the "Architecture" and "Languages" buttons as indicating you are in the
"Languages" section of the "Architecture" chapter. Adding browser bookmarks to pages that
you frequently reference can also save time.

ONLINE JAVADOC DOCUMENTATION

The Apache Camel website provides Javadoc documentation. It is important to note that the
Javadoc documentation is spread over several independent Javadoc hierarchies rather than being
all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the
core APIs of Camel, and a separate Javadoc hierarchy for each component technology supported
by Camel. For example, if you will be using Camel with ActiveMQ and FTP then you need to
look at the Javadoc hierarchies for the core APl and Spring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL

In this section some of the concepts and terminology that are fundamental to Camel are
explained. This section is not meant as a complete Camel tutorial, but as a first step in that
direction.

Endpoint

The term endpoint is often used when talking about inter-process communication. For example,
in client-server communication, the client is one endpoint and the server is the other endpoint.
Depending on the context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is contactable at that
address. For example, if somebody uses "www.example.com:80" as an example of an endpoint,
they might be referring to the actual port at that host name (that is, an address), or they might
be referring to the web server (that is, software contactable at that address). Often, the
distinction between the address and software contactable at that address is not an important
one.

Some middleware technologies make it possible for several software entities to be contactable
at the same physical address. For example, CORBA is an object-oriented, remote-procedure-

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

call (RPC) middleware standard. If a CORBA server process contains several objects then a
client can communicate with any of these objects at the same physical address (host:port), but a
client communicates with a particular object via that object's logical address (called an IOR in
CORBA terminology), which consists of the physical address (host:port) plus an id that uniquely
identifies the object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA, some people may
use the term "endpoint” to refer to a CORBA server's physical address, while other people may
use the term to refer to the logical address of a single CORBA object, and other people still
might use the term to refer to any of the following:

* The physical address (host:port) of the CORBA server process

* The logical address (host:port plus id) of a CORBA object.

* The CORBA server process (a relatively heavyweight software entity)

* A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least two ways. First, it is
ambiguous because it might refer to an address or to a software entity contactable at that
address. Second, it is ambiguous in the granularity of what it refers to: a heavyweight versus
lightweight software entity, or physical address versus logical address. It is useful to understand
that different people use the term endpoint in slightly different (and hence ambiguous) ways
because Camel's usage of this term might be different to whatever meaning you had previously
associated with the term.

Camel provides out-of-the-box support for endpoints implemented with many different
communication technologies. Here are some examples of the Camel-supported endpoint
technologies.

* A JMS queue.

* A web service.

» Afile. A file may sound like an unlikely type of endpoint, until you realize that in some
systems one application might write information to a file and, later, another
application might read that file.

* An FTP server.

* An email address. A client can send a message to an email address, and a server can
read an incoming message from a mail server.

* A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints and
connect these endpoints with routes, which | will discuss later in Section 4.8 ("Routes,
RouteBuilders and Java DSL"). Camel defines a Java interface called Endpoint. Each Camel-
supported endpoint has a class that implements this Endpoint interface. As | discussed in
Section 3.3 ("Online Javadoc documentation"), Camel provides a separate Javadoc hierarchy for
each communications technology supported by Camel. Because of this, you will find
documentation on, say, the JmsEndpoint class in the JMS Javadoc hierarchy, while
documentation for, say, the FtpEndpoint class is in the FTP Javadoc hierarchy.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/

CamelContext

A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following steps.
I. Create a CamelContext object.
2. Add endpoints D and possibly Components, which are discussed in Section 4.5
("Components") B to the CamelContext object.
3. Add routes to the CamelContext object to connect the endpoints.
Invoke the start () operation on the CamelContext object. This starts Camel-
internal threads that are used to process the sending, receiving and processing of
messages in the endpoints.
5. Eventually invoke the stop () operation on the CamelContext object. Doing this
gracefully stops all the endpoints and Camel-internal threads.
Note that the CamelContext.start () operation does not block indefinitely. Rather, it
starts threads internal to each Component and Endpoint and then start () returns.
Conversely, CamelContext.stop () waits for all the threads internal to each Endpoint
and Component to terminate and then stop () returns.
If you neglect to call CamelContext.start () in your application then messages will not be
processed because internal threads will not have been created.
If you neglect to call CamelContext.stop () before terminating your application then the
application may terminate in an inconsistent state. If you neglect to call
CamelContext.stop () in aJUnit test then the test may fail due to messages not having
had a chance to be fully processed.

CamelTemplate

Camel used to have a class called Came1Client, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as the TransactionTemplate and JmsTemplate classes in Spring.

The CamelTemplate class is a thin wrapper around the CamelContext class. It has
methods that send a Message or Exchange B both discussed in Section 4.6 ("Message and
Exchange")) B to an Endpoint P discussed in Section 4.1 ("Endpoint"). This provides a way to
enter messages into source endpoints, so that the messages will move along routes B discussed
in Section 4.8 ("Routes, RouteBuilders and Java DSL") B to destination endpoints.

The Meaning of URL, URI, URN and IRI

Some Camel methods take a parameter that is a URI string. Many people know that a URlI is
"something like a URL" but do not properly understand the relationship between URI and URL,
or indeed its relationship with other acronyms such as IRl and URN.

Most people are familiar with URLs (uniform resource locators), such as "http://...", "ftp://...",
"mailto:...". Put simply, a URL specifies the location of a resource.

A URI (uniform resource identifier) is a URL or a URN. So, to fully understand what URI means,

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.springframework.org/

you need to first understand what is a URN.

URN is an acronym for uniform resource name. There are may "unique identifier" schemes in the
world, for example, ISBNs (globally unique for books), social security numbers (unique within a
country), customer numbers (unique within a company's customers database) and telephone
numbers. Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-name>:<unique-
identifier>". A URN uniquely identifies a resource, such as a book, person or piece of equipment.
By itself, a URN does not specify the location of the resource. Instead, it is assumed that a
registry provides a mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server application, a wall chart
or anything else that is convenient. Some hypothetical examples of URNs are
"urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee", "customer" and "foo"
in these examples) part of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you know the semantics
implied by the <scheme-name>, and (2) you have access to the registry appropriate for the
<scheme-name>. A registry does not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific company.

To date, URNSs are not (yet) as popular as URLs. For this reason, URI is widely misused as a
synonym for URL.

IRl is an acronym for internationalized resource identifier. An IRl is simply an internationalized
version of a URL. In particular, a URI can contain letters and digits in the US-ASCII character
set, while a IRI can contain those same letters and digits, and also European accented characters,
Greek letters, Chinese ideograms and so on.

Components

Component is confusing terminology; EndpointFactory would have been more appropriate because
a Component is a factory for creating Endpoint instances. For example, if a Camel-based
application uses several JMS queues then the application will create one instance of the
JmsComponent class (which implements the Component interface), and then the application
invokes the createEndpoint () operation on this JmsComponent object several times.
Each invocation of JmsComponent.createEndpoint () creates an instance of the
JmsEndpoint class (which implements the Endpoint interface). Actually, application-level
code does not invoke Component.createEndpoint () directly. Instead, application-level
code normally invokes CamelContext.getEndpoint (); internally, the CamelContext
object finds the desired Component object (as | will discuss shortly) and then invokes
createEndpoint () onit.

Consider the following code.

myCamelContext.getEndpoint ("pop3: john.smith@mailserv.example.com?password=myPassword")!;

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

The parameter to getEndpoint () is a URI. The URI prefix (that is, the part before ":")
specifies the name of a component. Internally, the CamelContext object maintains a mapping
from names of components to Component objects. For the URI given in the above example,
the CamelContext object would probably map the pop3 prefix to an instance of the
MailComponent class. Then the CamelContext object invokes

createEndpoint ("pop3://john.smith@mailserv.example.com?password=myPassword’

on that MailComponent object. The createEndpoint () operation splits the URI into its
component parts and uses these parts to create and configure an Endpoint object.

In the previous paragraph, | mentioned that a Camel1Context object maintains a mapping
from component names to Component objects. This raises the question of how this map is
populated with named Component objects. There are two ways of populating the map. The
first way is for application-level code to invoke CamelContext.addComponent (String
componentName, Component component). The example below shows a single
MailComponent object being registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent () ;
myCamelContext.addComponent ("pop3", mailComponent) ;
myCamelContext.addComponent ("imap", mailComponent) ;
myCamelContext.addComponent ("smtp", mailComponent) ;

The second (and preferred) way to populate the map of named Component objects in the
CamelContext objectis to let the CamelContext object perform lazy initialization. This
approach relies on developers following a convention when they write a class that implements
the Component interface. | illustrate the convention by an example. Let's assume you write a
class called com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write a properties file
called "META-INF/services/org/apache/camel/component/foo" (without a ".properties” file
extension) that has a single entry in it called class, the value of which is the fully-scoped name
of your class. This is shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you have
written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you add
this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint ("foo:...") onaCamelContext object, Camel will find the "foo
properties file on the CLASSPATH, get the value of the class property from that properties
file, and use reflection APIs to create an instance of the specified class.

As | said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support for numerous
communication technologies. The out-of-the-box support consists of classes that implement the

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Component interface plus properties files that enable a Came1Context object to populate
its map of named Component objects.

Earlier in this section | gave the following example of calling
CamelContext.getEndpoint ().

myCamelContext.getEndpoint ("pop3: smith@mailserv.example.com?password=myPassword")!;

When | originally gave that example, | said that the parameter to getEndpoint () was a URL
| said that because the online Camel documentation and the Camel source code both claim the
parameter is a URL. In reality, the parameter is restricted to being a URL. This is because when
Camel extracts the component name from the parameter, it looks for the first ":", which is a
simplistic algorithm. To understand why, recall from Section 4.4 ("The Meaning of URL, URI,
URN and IRI") that a URI can be a URL or a URN. Now consider the following calls to

getEndpoint.

myCamelContext.getEndpoint ("pop3:...");

(
myCamelContext.getEndpoint ("jms:...");
myCamelContext.getEndpoint ("urn:foo:...");
(

myCamelContext.getEndpoint ("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It
would be more useful if the latter components were identified as "urn:foo" and "urn:bar" or,
alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you
must identify an endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter to getEndpoint () as being a URL rather than (as
claimed) a URI.

Message and Exchange

The Message interface provides an abstraction for a single message, such as a request, reply
or exception message.

There are concrete classes that implement the Message interface for each Camel-supported
communications technology. For example, the JmsMessage class provides a JMS-specific
implementation of the Message interface. The public API of the Message interface provides
get- and set-style methods to access the message id, body and individual header fields of a
messge.

The Exchange interface provides an abstraction for an exchange of messages, that is, a
request message and its corresponding reply or exception message. In Camel terminology, the
request, reply and exception messages are called in, out and fault messages.

There are concrete classes that implement the Exchange interface for each Camel-supported
communications technology. For example, the JmsExchange class provides a JMS-specific
implementation of the Exchange interface. The public APl of the Exchange interface is quite

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

limited. This is intentional, and it is expected that each class that implements this interface will
provide its own technology-specific operations.

Application-level programmers rarely access the Exchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are instantiated
on (a class that implements) Exchange. Because of this, the Exchange interface appears a
lot in the generic signatures of classes and methods.

Processor

The Processor interface represents a class that processes a message. The signature of this
interface is shown below.

Listing 1. Processor

package org.apache.camel;
public interface Processor ({
void process (Exchange exchange) throws Exception;

}

Notice that the parameter to the process () method is an Exchange rather than a
Message. This provides flexibility. For example, an implementation of this method initially
might call exchange.getIn () to get the input message and process it. If an error occurs
during processing then the method can call exchange.setException ().

An application-level developer might implement the Processor interface with a class that
executes some business logic. However, there are many classes in the Camel library that
implement the Processor interface in a way that provides support for a design pattern in the
EIP book. For example, ChoiceProcessor implements the message router pattern, that is, it
uses a cascading if-then-else statement to route a message from an input queue to one of
several output queues. Another example is the FilterProcessor class which discards
messages that do not satisfy a stated predicate (that is, condition).

Routes, RouteBuilders and Java DSL

A route is the step-by-step movement of a Message from an input queue, through arbitrary
types of decision making (such as filters and routers) to a destination queue (if any). Camel
provides two ways for an application developer to specify routes. One way is to specify route
information in an XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific language).

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can
process an input file containing keywords and syntax specific to a particular domain. This is not
the approach taken by Camel. Camel documentation consistently uses the term "Java DSL"

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

instead of "DSL", but this does not entirely avoid potential confusion. The Camel "Java DSL" is a
class library that can be used in a way that looks almost like a DSL, except that it has a bit of
Java syntactic baggage. You can see this in the example below. Comments afterwards explain
some of the constructs used in the example.

Listing 1. Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder () {
public void configure() {

from("queue:a") .filter (header ("foo") .isEqualTo ("bar")) .to("queue:b");
from("queue:c") .choice ()
.when (header ("foo") .isEqualTo ("bar")) .to ("queue:d")
.when (header ("foo") .isEqualTo ("cheese")) .to("queue:e")
.otherwise () .to("queue:f");

}
bi
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes (builder) ;

The first line in the above example creates an object which is an instance of an anonymous
subclass of RouteBuilder with the specified configure () method.

The CamelContext.addRoutes (RouterBuilder builder) method invokes
builder.setContext (this) B so the RouteBuilder object knows which
CamelContext object it is associated with D and then invokes builder.configure ().
The body of configure () invokes methods such as from (), filter (), choice (),
when (), isEqualTo (), otherwise () and to ().

The RouteBuilder.from(String uri) method invokes getEndpoint (uri) on the
CamelContext associated with the RouteBuilder object to get the specified Endpoint
and then puts a FromBuilder "wrapper” around this Endpoint. The
FromBuilder.filter (Predicate predicate) method creates a
FilterProcessor object for the Predicate (that is, condition) object built from the
header ("foo") .isEqualTo ("bar") expression. In this way, these operations
incrementally build up a Route object (with a RouteBuilder wrapper around it) and add it
to the CamelContext object associated with the RouteBuilder.

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of
configuring routes and endpoints in a XML-based Spring configuration file. In particular, Java
DSL is less verbose than its XML counterpart. In addition, many integrated development
environments (IDEs) provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of
writing a parser that can process DSL stored in, say, an external file. Currently, Camel does not
provide such a DSL parser, and | do not know if it is on the "to do" list of the Camel

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

16

maintainers. | think that a DSL parser would offer a significant benefit over the current Java
DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by
reading this BNF would almost certainly be significantly less than the effort currently required
to study the APl of the RouterBuilder classes.

Continue Learning about Camel

Return to the main Getting Started page for additional introductory reference information.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/getting-started.html

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml Configuration to
configure routing and mediation rules which are added to a CamelContext to implement the
various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a collection of Component
instances. A Component is essentially a factory of Endpoint instances. You can explicitly
configure Component instances in Java code or an loC container like Spring or Guice, or they
can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS
system; you can communicate with an endpoint; either sending messages to it or consuming
messages from it. You can then create a Producer or Consumer on an Endpoint to exchange
messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to
make a truly powerful DSL which is extensible to the most suitable language depending on your
needs. The following languages are supported

* Bean Language for using Java for expressions
* Constant
* the unified EL from JSP and JSF
* Header
* JXPath
e Mvel
+ OGNL
* Ref Language
* Property
* Scripting Languages such as
o BeanShell
° JavaScript
> Groovy
° Python
o PHP
o Ruby
* Simple
° File Language
» Spring Expression Language

+ SQL

CHAPTER 4 - ARCHITECTURE

17

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/routes.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/component.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/uris.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/constant.html
http://camel.apache.org/el.html
http://camel.apache.org/header.html
http://camel.apache.org/jxpath.html
http://camel.apache.org/mvel.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ref-language.html
http://camel.apache.org/property.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/javascript.html
http://camel.apache.org/groovy.html
http://camel.apache.org/python.html
http://camel.apache.org/php.html
http://camel.apache.org/ruby.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/spel.html
http://camel.apache.org/sql.html

18

* Tokenizer
¢ XPath

* XQuery

* VTD-XML

Most of these languages is also supported used as Annotation Based Expression Language.

For a full details of the individual languages see the Language Appendix

URIS

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created

by a Component if you refer to them within Routes.

Current Supported URIs

Component / Artifactld / URI

Description

AHC / camel-ahc

ahc:hostname: [port]

To call external HTTP services
using Async Http Client

AMQP / camel-amqp

amgp: [topic:]destinationName

For Messaging with AMQP
protocol

APNS / camel-apns

apns:notify[?options]

For sending notifications to Apple
iOS devices

Atom / camel-atom

atom:uri

Working with Apache Abdera for
atom integration, such as
consuming an atom feed.

Avro /[camel-avro

avro:http://hostname[:port] [?options]

Working with Apache Avro for
data serialization.

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/tokenizer.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/vtd-xml.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/book-languages-appendix.html
http://camel.apache.org/component.html
http://camel.apache.org/routes.html
http://camel.apache.org/ahc.html
http://github.com/sonatype/async-http-client
http://camel.apache.org/amqp.html
http://www.amqp.org/
http://www.amqp.org/
http://camel.apache.org/apns.html
http://camel.apache.org/atom.html
http://incubator.apache.org/abdera/
http://camel.apache.org/avro.html
http://avro.apache.org/

i important

Make sure to read How do | configure endpoints to learn more about configuring
endpoints. For example how to refer to beans in the Registry or how to use raw
values for password options, and using property placeholders etc.

AWS-CW / camel-aws

aws-cw://namespace [?options]

For working with Amazon's
CloudWatch (CW).

AWS-DDB / camel-aws

aws—-ddb://tableName [?options]

For working with Amazon's
DynamoDB (DDB).

AWS-SDB / camel-aws

aws-sdb://domainName [?options]

For working with Amazon's
SimpleDB (SDB).

AWS-SES / camel-aws

aws-ses://from[?options]

For working with Amazon's
Simple Email Service (SES).

AWS-SNS / camel-aws

aws-sns://topicname[?options]

For Messaging with Amazon's
Simple Notification Service (SNS).

AWS-SQS / camel-aws

aws-sgs://queuename [?options]

For Messaging with Amazon's
Simple Queue Service (SQS).

AWS-S3 / camel-aws

aws-s3://bucketname[?options]

For working with Amazon's
Simple Storage Service (S3).

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/aws-cw.html
http://camel.apache.org/aws.html
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://camel.apache.org/aws-ddb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://camel.apache.org/aws-sdb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://camel.apache.org/aws-ses.html
http://camel.apache.org/aws.html
http://aws.amazon.com/ses/
http://aws.amazon.com/ses/
http://camel.apache.org/aws-sns.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/
http://camel.apache.org/aws-sqs.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://camel.apache.org/aws-s3.html
http://camel.apache.org/aws.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/registry.html
http://camel.apache.org/using-propertyplaceholder.html

20

Bean / camel-core

bean:beanName [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Bean Validation / camel-bean-validator

bean-validator:something

Validates the payload of a message
using the Java Validation API (JSR
303 and JAXP Validation) and its
reference implementation
Hibernate Validator

Browse / camel-core

browse: someName

Provides a simple
BrowsableEndpoint which can be
useful for testing, visualisation
tools or debugging. The exchanges
sent to the endpoint are all
available to be browsed.

Cache / camel-cache

cache://cachename [?options]

The cache component facilitates
creation of caching endpoints and
processors using EHCache as the
cache implementation.

Class / camel-core

class:className [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

CMIS / camel-cmis

cmis://cmisServerUrl[?options]

Uses the Apache Chemistry client
API to interface with CMIS
supporting CMS

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages using
the jetty cometd implementation
of the bayeux protocol

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-validation.html
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://camel.apache.org/browse.html
http://camel.apache.org/browsableendpoint.html
http://camel.apache.org/cache.html
http://ehcache.org/
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/cmis.html
http://chemistry.apache.org/java/opencmis.html
http://camel.apache.org/cometd.html
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

Context / camel-context

context:camelContextId:localEndpointName

Used to refer to endpoints within
a separate CamelContext to
provide a simple black box
composition approach so that
routes can be combined into a
CamelContext and then used as a
black box component inside other
routes in other CamelContexts

ControlBus / camel-core

controlbus:command|[?options

ControlBus EIP that allows to
send messages to Endpoints for
managing and monitoring your
Camel applications.

CouchDB / camel-couchdb

couchdb:http://hostname[:port]/database[?options]

To integrate with Apache
CouchDB.

Crypto (Digital Signatures) / camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify exchanges
using the Signature Service of the
Java Cryptographic Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]

Working with Apache CXF for
web services integration

CXF Bean / camel-cxf

cxf:bean name

Proceess the exchange using a
JAX'WS or JAX RS annotated
bean from the registry. Requires
less configuration than the above
CXF Component

CXFRS / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF for
REST services integration

CHAPTER 4 - ARCHITECTURE

21

http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/controlbus-component.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/couchdb.html
http://couchdb.apache.org/
http://couchdb.apache.org/
http://camel.apache.org/crypto-digital-signatures.html
http://camel.apache.org/cxf.html
http://apache.org/cxf/
http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/cxfrs.html
http://apache.org/cxf/

22

DataSet / camel-core

dataset:name

For load & soak testing the
DataSet provides a way to create
huge numbers of messages for
sending to Components or
asserting that they are consumed
correctly

Direct / camel-core

direct:name

Synchronous call to another
endpoint from same
CamelContext.

Direct-VM / camel-core

direct-vm:name

Synchronous call to another
endpoint in another
CamelContext running in the
same VM.

DNS / camel-dns

dns:operation

To lookup domain information
and run DNS queries using
DNSJava

EJB / camel-ejb

ejb:ejbName [?method=someMethod]

Uses the Bean Binding to bind
message exchanges to E|Bs. It
works like the Bean component
but just for accessing EJBs.
Supports EJB 3.0 onwards.

ElasticSearch / camel-elasticsearch

elasticsearch://clusterName

For interfacing with an
ElasticSearch server.

Event / camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

EventAdmin / camel-eventadmin

eventadmin:topic

Receiving OSGi EventAdmin
events

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/dataset.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/components.html
http://camel.apache.org/direct.html
http://camel.apache.org/direct-vm.html
http://camel.apache.org/dns.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/ejb.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://camel.apache.org/elasticsearch.html
http://elasticsearch.org
http://camel.apache.org/event.html
http://camel.apache.org/eventadmin.html

Exec / camel-exec

exec://executable[?options]

For executing system commands

File / camel-core

file://nameOfFileOrDirectory

Sending messages to a file or
polling a file or directory.

Flatpack / camel-flatpack

flatpack: [fixed|delim] :configFile

Processing fixed width or
delimited files or messages using
the FlatPack library

FOP / camel-fop

fop:outputFormat

Renders the message into
different output formats using
Apache FOP

FreeMarker / camel-freemarker

freemarker:someTemplateResource

Generates a response using a
FreeMarker template

FTP / camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over
FTP.

FTPS / camel-ftp

ftps://host[:port]/fileName

Sending and receiving files over
FTP Secure (TLS and SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement an OAuth consumer.
See also Camel Components for
Google App Engine.

GHttp / camel-gae

ghttp://hostname [:port] [/path] [?options]

ghttp:///path[?options]

Provides connectivity to the URL
fetch service of Google App
Engine but can also be used to
receive messages from servlets.
See also Camel Components for
Google App Engine.

CHAPTER 4 - ARCHITECTURE

23

http://camel.apache.org/exec.html
http://camel.apache.org/file2.html
http://camel.apache.org/flatpack.html
http://flatpack.sourceforge.net
http://camel.apache.org/fop.html
http://xmlgraphics.apache.org/fop/index.html
http://camel.apache.org/freemarker.html
http://freemarker.org/
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/gauth.html
http://camel.apache.org/gae.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/ghttp.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html

24

GLogin / camel-gae

glogin://hostname[:port] [?options]

Used by Camel applications
outside Google App Engine (GAE)
for programmatic login to GAE
applications. See also Camel
Components for Google App
Engine.

GTask / camel-gae

gtask://queue-name

Supports asynchronous message
processing on Google App Engine
by using the task queueing service
as message queue. See also Camel
Components for Google App
Engine.

GMail / camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails via the
mail service of Google App
Engine. See also Camel
Components for Google App
Engine.

Google Guava EventBus / camel-guava-eventbus

guava-eventbus:busName [?eventClass=className]

The Google Guava EventBus
allows publish-subscribe-style
communication between
components without requiring the
components to explicitly register
with one another (and thus be
aware of each other). This
component provides integration
bridge between Camel and
Google Guava EventBus
infrastructure.

Hazelcast / camel-hazelcast

hazelcast://[type] :cachename [?options]

Hazelcast is a data grid entirely
implemented in Java (single jar).
This component supports map,
multimap, seda, queue, set, atomic
number and simple cluster
support.

HBase / camel-hbase

hbase://table[?options]

For reading/writing from/to an
HBase store (Hadoop database)

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/glogin.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gtask.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gmail.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/guava-eventbus.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/hazelcast-component.html
http://www.hazelcast.com
http://camel.apache.org/hbase.html
http://hadoop.apache.org/hbase/

HDFS / camel-hdfs

hdfs://path[?options]

For reading/writing from/to an
HDFS filesystem

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7 MLLP
protocol and the HL7 model using
the HAPI library

HTTP / camel-http

http://hostname[:port]

For calling out to external HTTP
servers using Apache HTTP Client
3.x

HTTP4 / camel-http4

http4://hostname[:port]

For calling out to external HTTP
servers using Apache HTTP Client
4.x

iBATIS / camel-ibatis

ibatis://statementName

Performs a query, poll, insert,
update or delete in a relational
database using Apache iBATIS

IMAP / camel-mail

imap://hostname[:port]

Receiving email using IMAP

IRC / camel-irc

irc:host[:port]/#room

For IRC communication

JavaSpace / camel-javaspace

javaspace:jini://host?spaceName=mySpace?...

Sending and receiving messages
through JavaSpace

JBI / servicemix-camel

jbi:serviceName

For JBI integration such as
working with Apache ServiceMix

CHAPTER 4 - ARCHITECTURE

25

http://camel.apache.org/hdfs.html
http://hadoop.apache.org/hdfs/
http://camel.apache.org/hl7.html
http://hl7api.sourceforge.net
http://camel.apache.org/http.html
http://camel.apache.org/http4.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/mail.html
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://camel.apache.org/irc.html
http://camel.apache.org/javaspace.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://camel.apache.org/jbi.html
http://servicemix.apache.org

26

jclouds / jclouds

jclouds: [blobstore|computservice] :provider

For interacting with cloud
compute & blobstore service via
jclouds

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
compliant repository like Apache
Jackrabbit

JDBC / camel-jdbc

jdbc:dataSourceName?options

For performing JDBC queries and
operations

Jetty / camel-jetty

jetty:url

For exposing services over HTTP

JMS / camel-jms

jms: [topic:]destinationName

Working with JMS providers

JMX'/ camel-jmx

jmx://platform?options

For working with JMX notification
listeners

JPA / camel-jpa

jpa://entityName

For using a database as a queue via
the JPA specification for working
with Open]PA, Hibernate or
TopLink

Jsch / camel-jsch

scp://localhost/destination

Support for the scp protocol

JT/400 / camel-jt400

jt400://user:pwd@system/<path to dtag>

For integrating with data queues
on an AS/400 (aka System i, IBM i,
i5, ...) system

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jclouds.html
http://www.jclouds.org
http://camel.apache.org/jcr.html
http://jackrabbit.apache.org
http://jackrabbit.apache.org
http://camel.apache.org/jdbc.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jms.html
http://camel.apache.org/jmx.html
http://camel.apache.org/jpa.html
http://openjpa.apache.org/
http://www.hibernate.org/
http://camel.apache.org/jsch.html
http://camel.apache.org/jt400.html

Kestrel / camel-kestrel

kestrel://[addresslist/]queuename [?options]

For producing to or consuming
from Kestrel queues

Krati / camel-krati

krati://[path to datastore/] [?options]

For producing to or consuming to
Krati datastores

Language / camel-core

language://languageName [:script] [?options]

Executes Languages scripts

LDAP / camel-Idap

ldap:host[:port] ?base=... [&scope=<scope>]

Performing searches on LDAP
servers (<scope> must be one of
object|onelevel|subtree)

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to
log the message exchange to some
underlying logging system like
log4i

Lucene / camel-lucene

lucene:searcherName:insert[?analyzer=<analyzer>]
lucene:searcherName:query[?analyzer=<analyzer>]

Uses Apache Lucene to perform
Java-based indexing and full text
based searches using advanced

analysis/tokenization capabilities

Mail / camel-mail

mail://user-info@host:port

Sending and receiving email

MINA / camel-mina

[tecpludp|vm] :host [:port]

Working with Apache MINA

Mock / camel-core

mock:name

For testing routes and mediation
rules using mocks

CHAPTER 4 - ARCHITECTURE

27

http://camel.apache.org/kestrel.html
https://github.com/robey/kestrel
http://camel.apache.org/krati.html
http://sna-projects.com/krati/
http://camel.apache.org/language.html
http://camel.apache.org/languages.html
http://camel.apache.org/ldap.html
http://camel.apache.org/log.html
http://camel.apache.org/lucene.html
http://camel.apache.org/mail.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/mock.html

28

MongoDB / camel-mongodb

mongodb:connection?options

Interacts with MongoDB
databases and collections. Offers
producer endpoints to perform
CRUD-style operations and more
against databases and collections,
as well as consumer endpoints to
listen on collections and dispatch
objects to Camel routes

MQTT / camel-mqtt

mgtt:name

Component for communicating
with MQTT M2M message
brokers

MSV / camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a message
using the MSV Library

MyBatis / camel-mybatis

mybatis://statementName

Performs a query, poll, insert,
update or delete in a relational
database using MyBatis

Nagios / camel-nagios

nagios://host[:port]?options

Sending passive checks to Nagios
using JSendNSCA

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO based
capabilities offered by the JBoss
Netty community project

Pax-Logging / camel-paxlogging

paxlogging:appender

Receiving Pax-Logging events in
OSGi

POP / camel-mail

pop3://user-info@host:port

Receiving email using POP3 and
JavaMail

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/mongodb.html
http://www.mongodb.org/
http://camel.apache.org/mqtt.html
http://mqtt.org
http://camel.apache.org/msv.html
https://msv.dev.java.net/
http://camel.apache.org/mybatis.html
http://mybatis.org/
http://camel.apache.org/nagios.html
http://www.nagios.org/
http://code.google.com/p/jsendnsca/
http://camel.apache.org/netty.html
http://www.jboss.org/netty
http://www.jboss.org/netty
http://camel.apache.org/pax-logging.html
http://camel.apache.org/mail.html

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component facilitates
creation of printer endpoints to
local, remote and wireless
printers. The endpoints provide
the ability to print camel directed
payloads when utilized on camel
routes.

Properties / camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in endpoint
uri definitions.

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of
messages using the Quartz
scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the QuickFix
for Java engine which allow to
send/receive FIX messages

Ref / camel-core

ref:name

Component for lookup of existing
endpoints bound in the Registry.

Restlet / camel-restlet

restlet:restletUrl[?options]

Component for consuming and
producing Restful resources using
Restlet

RMI / camel-rmi

rmi://host[:port]

Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG Compact Syntax

CHAPTER 4 - ARCHITECTURE

29

http://camel.apache.org/printer.html
http://camel.apache.org/properties.html
http://camel.apache.org/quartz.html
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://camel.apache.org/quickfix.html
http://www.fixprotocol.org
http://camel.apache.org/ref.html
http://camel.apache.org/registry.html
http://camel.apache.org/restlet.html
http://www.restlet.org
http://camel.apache.org/rmi.html
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html

30

RNG / camel-jing

rng:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG

Routebox / camel-routebox

routebox:routeboxName [?options]

Facilitates the creation of
specialized endpoints that offer
encapsulation and a strategy/map
based indirection service to a
collection of camel routes hosted
in an automatically created or
user injected camel context

RSS / camel-rss

rss:uri

Working with ROME for RSS
integration, such as consuming an
RSS feed.

SEDA / camel-core

seda:name

Asynchronous call to another
endpoint in the same Camel
Context

SERVLET / camel-servlet

servlet:uri

For exposing services over HTTP
through the servlet which is
deployed into the Web container.

SFTP / camel-ftp

sftp://host[:port]/fileName

Sending and receiving files over
SFTP (FTP over SSH).

Sip / camel-sip

sip://user@host[:port]?[options]
sips://user@host[:port]?[options]

Publish/Subscribe communication
capability using the Telecom SIP
protocol. RFC3903 - Session
Initiation Protocol (SIP) Extension
for Event

SJMS / camel-sjms

sjms: [topic:]destinationName? [options]

A ground up implementation of a
JMS client

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jing.html
http://relaxng.org/
http://camel.apache.org/routebox.html
http://camel.apache.org/rss.html
http://rometools.org/
http://camel.apache.org/seda.html
http://camel.apache.org/servlet.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/sip.html
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://camel.apache.org/sjms.html

SMTP / camel-mail

smtp://user-infoRhost[:port]

Sending email using SMTP and
JavaMail

SMPP / camel-smpp

smpp://user-info@host [:port] ?options

To send and receive SMS using
Short Messaging Service Center
using the JSMPP library

SNMP / camel-snmp

snmp://host[:port]?options

Polling OID values and receiving
traps using SNMP via SNMP4]
library

Solr / camel-solr

solr://host[:port]/solr?[options]

Uses the Solrj client API to
interface with an Apache Lucene
Solr server

SpringBatch / camel-spring-batch

spring-batch:job[?options]

To bridge Camel and Spring Batch

Springlntegration / camel-spring-integration

spring-integration:defaultChannelName

The bridge component of Camel
and Spring Integration

Spring LDAP / camel-spring-ldap

spring-ldap:spring-ldap-template-bean?options

Camel wrapper for Spring LDAP

Spring Redis / camel-spring-redis

spring-redis:restletUrl[?options]

Component for consuming and
producing from Redis key-value
store Redis

Spring Web Services / camel-spring-ws

spring-ws: [mapping-type:]address[?options]

Client-side support for accessing
web services, and server-side
support for creating your own
contract-first web services using
Spring Web Services

CHAPTER 4 - ARCHITECTURE

31

http://camel.apache.org/mail.html
http://camel.apache.org/smpp.html
http://code.google.com/p/jsmpp/
http://camel.apache.org/snmp.html
http://snmp4j.com
http://camel.apache.org/solr.html
http://wiki.apache.org/solr/Solrj
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://camel.apache.org/springbatch.html
http://www.springsource.org/spring-batch
http://camel.apache.org/springintegration.html
http://www.springframework.org/spring-integration
http://camel.apache.org/spring-ldap.html
http://www.springsource.org/ldap
http://camel.apache.org/spring-redis.html
http://redis.io
http://camel.apache.org/spring-web-services.html
http://static.springsource.org/spring-ws/sites/1.5/

32

SQL / camel-sq|

sgl:select * from table where id=#

Performing SQL queries using
JDBC

SSH component / camel-ssh

ssh: [username [:password]@]host[:port] [?options]

For sending commands to a SSH
server

StAX / camel-stax

stax:contentHandlerClassName

Process messages through a SAX
ContentHandler.

Stream / camel-stream

stream: [in|out|err|file]

Read or write to an input/output/
error/file stream rather like unix

pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource

Generates a response using a
String Template

Stub / camel-core

stub:someOtherCamelUri

Allows you to stub out some
physical middleware endpoint for
easier testing or debugging

TCP / camel-mina

mina:tcp://host:port

Working with TCP protocols
using Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint which
expects to receive all the message
bodies that could be polled from
the given underlying endpoint

Timer / camel-core

timer://name

A timer endpoint

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/sql-component.html
http://camel.apache.org/ssh.html
http://camel.apache.org/stax.html
http://download.oracle.com/javase/6/docs/api/org/xml/sax/ContentHandler.html
http://camel.apache.org/stream.html
http://camel.apache.org/stringtemplate.html
http://www.stringtemplate.org/
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/timer.html

Twitter / camel-twitter

twitter://[endpoint]? [options]

A twitter endpoint

UDP / camel-mina

mina:udp://host:port

Working with UDP protocols
using Apache MINA

Validation / camel-core (camel-spring for Camel 2.8 or

older)

validation:someLocalOrRemoteResource

Validates the payload of a message
using XML Schema and JAXP
Validation

Velocity / camel-velocity

velocity:someTemplateResource

Generates a response using an
Apache Velocity template

VM / camel-core

vim:name

Asynchronous call to another
endpoint in the same JVM

Websocket / camel-websocket

websocket://host:port/path

Communicating with Websocket
clients

XMPP / camel-xmpp

xmpp://host:port/room

Working with XMPP and Jabber

XQuery / camel-saxon

xquery:someXQueryResource

Generates a response using an
XQuery template

XSLT / camel-core (camel-spring for Camel 2.8 or
older)

xslt:someTemplateResource

Generates a response using an
XSLT template

CHAPTER 4 - ARCHITECTURE

33

http://camel.apache.org/twitter.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/validation.html
http://www.w3.org/XML/Schema
http://camel.apache.org/velocity.html
http://velocity.apache.org/
http://camel.apache.org/vm.html
http://camel.apache.org/websocket.html
http://wiki.eclipse.org/Jetty/Feature/WebSockets
http://camel.apache.org/xmpp.html
http://camel.apache.org/xquery-endpoint.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://www.w3.org/TR/xslt

34

Zookeeper / camel-zookeeper

Working with ZooKeeper

zookeeper://host:port/path c|uster(s)

URI's for external components

Other projects and companies have also created Camel components to integrate additional
functionality into Camel. These components may be provided under licenses that are not
compatible with the Apache License, use libraries that are not compatible, etc... These
components are not supported by the Camel team, but we provide links here to help users find

the additional functionality.

Component / Artifactld / URI License

Description

ActiveMQ / activemg-camel

Apache

activemqg: [topic:]destinationName

For JMS
Messaging with
Apache
ActiveMQ

ActiveMQ Journal / activemg-core

Apache

activemg.journal:directory-on-filesystem

Uses ActiveMQ's
fast disk
journaling
implementation
to store message
bodies in a
rolling log file

Axctiviti / activiti-camel

Apache

activiti:camelProcess:serviceTask

For working
with Activiti, a
light-weight
workflow and
Business Process
Management
(BPM) platform
which supports
BPMN 2

Db4o / camel-db4o in camel-extra

GPL

db4o://className

For using a db4o
datastore as a
queue via the
db4o library

CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/zookeeper.html
http://hadoop.apache.org/zookeeper/
http://camel.apache.org/activemq.html
http://activemq.apache.org/
http://activemq.apache.org/
http://camel.apache.org/activemq-journal.html
http://www.activiti.org/
http://www.activiti.org/
http://camel.apache.org/db4o.html
http://code.google.com/p/camel-extra/
http://www.db4o.com/

Esper / camel-esper in camel-extra

esper:name

GPL

Working with
the Esper Library
for Event Stream
Processing

Hibernate / camel-hibernate in camel-extra

hibernate://entityName

GPL

For using a
database as a
queue via the
Hibernate library

JGroups / camel-jgroups in camel-extra

jgroups://clusterName

LGPL

The jgroups:
component
provides
exchange of
messages
between Camel
infrastructure
and JGroups
clusters.

NMR / servicemix-nmr

nmr://serviceName

Apache

Integration with
the Normalized
Message Router
BUS in
ServiceMix 4.x

Scalate / scalate-camel

scalate:templateName

Apache

Uses the given
Scalate template
to transform the
message

Smooks / camel-smooks in camel-extra.

unmarshal (edi)

GPL

For working
with EDI parsing
using the
Smooks library.
This component
is deprecated
as Smooks now
provides Camel
integration out
of the box

CHAPTER 4 - ARCHITECTURE

35

http://camel.apache.org/esper.html
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://camel.apache.org/hibernate.html
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://camel.apache.org/jgroups.html
http://code.google.com/p/camel-extra/
http://camel.apache.org/nmr.html
http://servicemix.apache.org/SMX4NMR/index.html
http://scalate.fusesource.org/camel.html
http://scalate.fusesource.org/
http://camel.apache.org/smooks.html
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration

Component for
Spring Neo4j / camel-spring-neo4j in camel-extra producing to
to bee Neo4j datastore
spring-neo4j:http://hostname|:port]/database[?options] clarified using the Spring
Data Neo4j
library

The ZeroMQ
component
allows you to
LGPL consumer or
produce
messages using
ZeroMQ.

ZeroMQ / camel-zeromq in camel-extra.

zeromq: (tcpl|ipc) ://hostname:port

For a full details of the individual components see the Component Appendix

36 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/spring-neo4j.html
http://code.google.com/p/camel-extra/
http://www.springsource.org/spring-data/neo4j
http://www.springsource.org/spring-data/neo4j
http://camel.apache.org/zeromq.html
http://code.google.com/p/camel-extra/
http://zeromq.org
http://camel.apache.org/book-component-appendix.html

Camel supports most of the Enterprise Integration Patterns from the excellent book of the
same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly
for users of Camel.

PATTERN INDEX

There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

—® Message
@l Channel

How does one application communicate with another using
messaging?

% Message

How can two applications connected by a message channel
exchange a piece of information?

*DD Pipes and

Filters

How can we perform complex processing on a message while
maintaining independence and flexibility?

v o | Message

= Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

@@ Message

Translator

How can systems using different data formats communicate with
each other using messaging!?

—t Message
Endpoint

How does an application connect to a messaging channel to send
and receive messages!?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

38

Messaging Channels

Point to . . .
I Point How can the caller be sure that exactly one receiver will receive
the document or perform the call?
Channel
Publish ,
. How can the sender broadcast an event to all interested
Subscribe receivers!?
Channel ’
Dead
(Y, Letter What will the messaging system do with a message it cannot

deliver?
Channel

Guaranteed How can the sender make sure that a message will be delivered,
Delivery even if the messaging system fails?

@
—
g
What is an architecture that enables separate applications to
Message . . s
% work together, but in a de-coupled fashion such that applications
Bus . . .
can be easily added or removed without affecting the others?

Message Construction

How can messaging be used to transmit events from one
Event Message L
application to another?

L]—» Request Repl When an application sends a message, how can it get a
<« q PY response from the receiver?

m Correlation How does a requestor that has received a reply know which
[A] HB]

Identifier request this is the reply for?
= © Return
[i ?
= Address How does a replier know where to send the reply?

Message Routing

= Content How do we handle a situation where the implementation of a
o— . .)) .
— Based single logical function (e.g., inventory check) is spread across
Router multiple physical systems?
Message . - . .
Filter How can a component avoid receiving uninteresting messages?
» ~—f+ Dynamic How can you avoid the dependency of the router on all
T Router possible destinations while maintaining its efficiency?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/return-address.html
http://camel.apache.org/return-address.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/dynamic-router.html

% Recipient How do we route a message to a list of (static or dynamically)
List specified recipients?
= How can we process a message if it contains multiple
m Splitter elements, each of which may have to be processed in a
different way?
BeD How do we combine the results of individual, but related
Aggregator
messages so that they can be processed as a whole?
0% qoo How can we get a stream of related but out-of-sequence
O Resequencer .
messages back into the correct order?
= Composed How can you maintain the overall message flow when
E=>E=-E Message processing a message consisting of multiple elements, each of
Processor which may require different processing?
Scatter How do you maintain the overall message flow when a
Gather message needs to be sent to multiple recipients, each of which
may send a reply?
How do we route a message consecutively through a series of
oooo

Routing Slip processing steps when the sequence of steps is not known at
design-time and may vary for each message?

How can | throttle messages to ensure that a specific endpoint
Throttler does not get overloaded, or we don't exceed an agreed SLA
with some external service?

How can | sample one message out of many in a given period

Samplin .
Ping to avoid downstream route does not get overloaded?
Delayer How can | delay the sending of a message?
Load .
How can | balance load across a number of endpoints?
Balancer
. How can | route a message to a number of endpoints at the
Multicast .
same time?
Loop How can | repeat processing a message in a loop?

Message Transformation

D—bl:‘

Content How do we communicate with another system if the message
Enricher originator does not have all the required data items available?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

39

http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/throttler.html
http://camel.apache.org/sampling.html
http://camel.apache.org/delayer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/multicast.html
http://camel.apache.org/loop.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-enricher.html

[J—wo Content How do you simplify dealing with a large message, when you are
Filter interested only in a few data items?
[(J—s0 Claim How can we reduce the data volume of message sent across the
=] Check system without sacrificing information content?
9) How do you process messages that are semantically equivalent,
22 ®0 Normalizer ° YU PTe 8 yed
but arrive in a different format?
Sort How can | sort the body of a message?!
Validate How can | validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects and the
messaging infrastructure while keeping the two independent of
each other?

¥
+

Event Driven

How can an application automatically consume messages as they

Consumer become available?

| 'Q' Polling How can an application consume a message when the
Consumer application is ready?

| IQ Competing How can a messaging client process multiple messages
Consumers concurrently?

1y {. Message How can multiple consumers on a single channel coordinate
Dispatcher their message processing?

_IE Selective How can a message consumer select which messages it wishes
Consumer to receive!?

_[:E'} Durable How can a subscriber avoid missing messages while it's not
Subscriber listening for them?
Idempotent . . .

How can a message receiver deal with duplicate messages?

Consumer

Transactional
Client

How can a client control its transactions with the messaging
system?

Bl

Messaging
Gateway

How do you encapsulate access to the messaging system from
the rest of the application?

40 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/content-filter.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/normalizer.html
http://camel.apache.org/sort.html
http://camel.apache.org/validate.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/messaging-gateway.html

Service How can an application design a service to be invoked both via
—|: various messaging technologies and via non-messaging
techniques?

Activator

System Management

How can we effectively administer a messaging system that is
ControlBus |
distributed across multiple platforms and a wide geographic area?
P How can you route a message through intermediate steps to
— Detour

perform validation, testing or debugging functions?

How do you inspect messages that travel on a point-to-point

-3 Wire Tap

channel?
Message How can we effectively analyze and debug the flow of messages
History in a loosely coupled system?
Log How can | log processing a message!

For a full breakdown of each pattern see the Book Pattern Appendix

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 41

http://camel.apache.org/service-activator.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/detour.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/message-history.html
http://camel.apache.org/message-history.html
http://camel.apache.org/logeip.html
http://camel.apache.org/book-pattern-appendix.html

This document describes various recipes for working with Camel
* Bean Integration describes how to work with beans and Camel in a loosely coupled
way so that your beans do not have to depend on any Camel APlIs
> Annotation Based Expression Language binds expressions to method
parameters
> Bean Binding defines which methods are invoked and how the Message is
converted into the parameters of the method when it is invoked
° Bean Injection for injecting Camel related resources into your POJOs
o Parameter Binding Annotations for extracting various headers, properties
or payloads from a Message
> POJO Consuming for consuming and possibly routing messages from Camel
> POJO Producing for producing camel messages from your POJOs
> RecipientlList Annotation for creating a Recipient List from a POJO method
o Using Exchange Pattern Annotations describes how pattern annotations can
be used to change the behaviour of method invocations
* Hiding Middleware describes how to avoid your business logic being coupled to any
particular middleware APIs allowing you to easily switch from in JVM SEDA to |MS,
ActiveMQ, Hibernate, JPA, JDBC, iBATIS or JavaSpace etc.
* Visualisation describes how to visualise your Enterprise Integration Patterns to help
you understand your routing rules
* Business Activity Monitoring (BAM) for monitoring business processes across systems
* Extract Transform Load (ETL) to load data into systems or databases
* Testing for testing distributed and asynchronous systems using a messaging approach
o Camel Test for creating test cases using a single Java class for all your
configuration and routing
o Spring Testing uses Spring Test together with either XML or Java Config to
dependency inject your test classes
o Guice uses Guice to dependency inject your test classes
* Templating is a great way to create service stubs to be able to test your system
without some back end system.
* Database for working with databases
* Parallel Processing and Ordering on how using parallel processing and SEDA or JMS
based load balancing can be achieved.
* Asynchronous Processing in Camel Routes.
* Implementing Virtual Topics on other JMS providers shows how to get the effect of
Virtual Topics and avoid issues with JMS durable topics
* Camel Transport for CXF describes how to put the Camel context into the CXF
transport layer.

42 COOKBOOK

http://camel.apache.org/bean-integration.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/visualisation.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bam.html
http://camel.apache.org/etl.html
http://camel.apache.org/testing.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/templating.html
http://camel.apache.org/database.html
http://camel.apache.org/parallel-processing-and-ordering.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/asynchronous-processing.html
http://camel.apache.org/implementing-virtual-topics-on-other-jms-providers.html
http://camel.apache.org/camel-transport-for-cxf.html

* Fine Grained Control Over a Channel describes how to deliver a sequence of
messages over a single channel and then stopping any more messages being sent over
that channel. Typically used for sending data over a socket and then closing the
socket.

» EventNotifier to log details about all sent Exchanges shows how to let Camels
EventNotifier logall sent to endpoint events and how long time it took.

* Loading routes from XML files into an existing CamelContext.

* Using MDC logging with Camel

* Running Camel standalone and have it keep running shows how to keep Camel
running when you run it standalone.

* Hazelcast Idempotent Repository Tutorial shows how to avoid to consume duplicated
messages in a clustered environment.

* How to use Camel as a HTTP proxy between a client and server shows how to use
Camel as a HTTP adapter/proxy between a client and HTTP service.

BEAN INTEGRATION

Camel supports the integration of beans and POJOs in a number of ways

Annotations

If a bean is defined in Spring XML or scanned using the Spring component scanning mechanism
and a <camelContext> is used or a Camel1BeanPostProcessor then we process a
number of Camel annotations to do various things such as injecting resources or producing,
consuming or routing messages.
* POJO Consuming to consume and possibly route messages from Camel
* POJO Producing to make it easy to produce camel messages from your POJOs
* DynamicRouter Annotation for creating a Dynamic Router from a POJO method
* RecipientlList Annotation for creating a Recipient List from a POJO method
* RoutingSlip Annotation for creating a Routing Slip for a POJO method
* Bean Injection to inject Camel related resources into your POJOs
» Using Exchange Pattern Annotations describes how the pattern annotations can be
used to change the behaviour of method invocations with Spring Remoting or POJO
Producing

Bean Component

The Bean component allows one to invoke a particular method. Alternately the Bean
component supports the creation of a proxy via ProxyHelper to a Java interface; which the
implementation just sends a message containing a Beanlnvocation to some Camel endpoint.

COOKBOOK

43

http://camel.apache.org/fine-grained-control-over-a-channel.html
http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html
http://camel.apache.org/loading-routes-from-xml-files.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/mdc-logging.html
http://camel.apache.org/running-camel-standalone-and-have-it-keep-running.html
http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/spring.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/dynamicrouter-annotation.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routingslip-annotation.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html

44

i Example
See the POJO Messaging Example for how to use the annotations for routing and
messaging.

Spring Remoting

We support a Spring Remoting provider which uses Camel as the underlying transport
mechanism. The nice thing about this approach is we can use any of the Camel transport
Components to communicate between beans. It also means we can use Content Based Router
and the other Enterprise Integration Patterns in between the beans; in particular we can use
Message Translator to be able to convert what the on-the-wire messages look like in addition
to adding various headers and so forth.

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression
@)]JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject 2 PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression

COOKBOOK

http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html
http://camel.apache.org/pojo-messaging-example.html

 Bean binding
Whenever Camel invokes a bean method via one of the above methods (Bean
component, Spring Remoting or POJO Consuming) then the Bean Binding
mechanism is used to figure out what method to use (if it is not explicit) and how to
bind the Message to the parameters possibly using the Parameter Binding
Annotations or using a method name option.

Example:

public class Foo {
@MessageDriven (uri = "activemg:my.queue")

public void doSomething (@XPath ("/foo/bar/text()") String correlationID, @Body
String body) {

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:
public class Foo {
@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@Bean ("myCorrelationIdGenerator") String correlationID,

@Body String body) {

And then we can have a spring bean with the id myCorrelationldGenerator where we
can compute the id.
public class MyIdGenerator ({
private UserManager userManager;
public String generate (@Header (name = "user") String user, @Body String payload)
throws Exception ({

User user = userManager.lookupUser (user) ;
String userId = user.getPrimaryId();

COOKBOOK

45

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/bean-binding.html

46

String id = userId + generateHashCodeForPayload (payload) ;
return id;

The Pojo MyldGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate () {
generate a unique id

return 123;

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething (@Groovy ("$request.header['user'].firstName
Srequest.header['user'].familyName) String fullName, @Body String body) {

Process he inbound message here

}

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

BEAN BINDING

Bean Binding in Camel defines both which methods are invoked and also how the Message is
converted into the parameters of the method when it is invoked.

COOKBOOK

http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/message.html

Choosing the method to invoke

The binding of a Camel Message to a bean method call can occur in different ways, in the
following order of importance:

if the message contains the header CamelBeanMethodName then that method
is invoked, converting the body to the type of the method's argument.

° From Camel 2.8 onwards you can qualify parameter types to select
exactly which method to use among overloads with the same name (see
below for more details).

° From Camel 2.9 onwards you can specify parameter values directly in the
method option (see below for more details).

you can explicitly specify the method name in the DSL or when using POJO
Consuming or POJO Producing

if the bean has a method marked with the @Handler annotation, then that method
is selected

if the bean can be converted to a Processor using the Type Converter mechanism,
then this is used to process the message. The ActiveMQ component uses this
mechanism to allow any JMS MessagelListener to be invoked directly by Camel
without having to write any integration glue code. You can use the same mechanism
to integrate Camel into any other messaging/remoting frameworks.

if the body of the message can be converted to a Beanlnvocation (the default payload
used by the ProxyHelper) component - then that is used to invoke the method and
pass its arguments

otherwise the type of the body is used to find a matching method; an error is thrown
if a single method cannot be chosen unambiguously.

you can also use Exchange as the parameter itself, but then the return type must be
void.

if the bean class is private (or package-private), interface methods will be preferred
(from Camel 2.9 onwards) since Camel can't invoke class methods on such beans

In cases where Camel cannot choose a method to invoke, an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding

When a method has been chosen for invokation, Camel will bind to the parameters of the

method.

The following Camel-specific types are automatically bound:

org.apache.camel.Exchange
org.apache.camel.Message
org.apache.camel.CamelContext
org.apache.camel.TypeConverter
org.apache.camel.spi.Registry

COOKBOOK

47

http://camel.apache.org/message.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/activemq.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

48

* java.lang.Exception
So, if you declare any of these types, they will be provided by Camel. Note that Exception
will bind to the caught exception of the Exchange - so it's often usable if you
employ a Pojo to handle, e.g., an onException route.

What is most interesting is that Camel will also try to bind the body of the Exchange to the
first parameter of the method signature (albeit not of any of the types above). So if, for
instance, we declare a parameter as String body, then Camel will bind the IN body to this
type. Camel will also automatically convert to the type declared in the method signature.

Let's review some examples:

Below is a simple method with a body binding. Camel will bind the IN body to the body
parameter and convertittoa String.

public String doSomething (String body)

In the following sample we got one of the automatically-bound types as well - for instance, a
Registry that we can use to lookup beans.

public String doSomething (String body, Registry registry)
We can use Exchange as well:
public String doSomething(String body, Exchange exchange)

You can also have multiple types:

public String doSomething (String body, Exchange exchange, TypeConverter converter)

And imagine you use a Pojo to handle a given custom exception InvalidOrderException
- we can then bind that as well:

public String badOrder (String body, InvalidOrderException invalid)

Notice that we can bind to it even if we use a sub type of java.lang.Exception as Camel
still knows it's an exception and can bind the cause (if any exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we can use
annotations to help us, or specify the binding in the method name option.
See the following sections for more detail.

Binding Annotations

You can use the Parameter Binding Annotations to customize how parameter values are
created from the Message

COOKBOOK

http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html

Examples

For example, a Bean such as:

public class Bar {

public String doSomething (String body) {
p1 ss the in body and return whatever you want

return "Bye World";

Or the Exchange example. Notice that the return type must be void when there is only a
single parameter of the type org.apache.camel.Exchange:

public class Bar {

exchange.getIn() .setBody ("Bye World");

@Handler

You can mark a method in your bean with the @Handler annotation to indicate that this
method should be used for Bean Binding.

This has an advantage as you need not specify a method name in the Camel route, and
therefore do not run into problems after renaming the method in an IDE that can't find all its

references.

public class Bar {

@QHandler
public String doSomething (String body) {
process the and return whatever you want

return "Bye World";

Parameter binding using method option

Available as of Camel 2.9
Camel uses the following rules to determine if it's a parameter value in the method option
= The value is either true or false which denotes a boolean value
= The value is a numeric value such as 123 or 7
* The value is a String enclosed with either single or double quotes
= The value is null which denotes a null value

COOKBOOK

49

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html

50

* It can be evaluated using the Simple language, which means you can use, e.g., body,
header.foo and other Simple tokens. Notice the tokens must be enclosed with ${ }.
Any other value is consider to be a type declaration instead - see the next section about
specifying types for overloaded methods.

When invoking a Bean you can instruct Camel to invoke a specific method by providing the
method name:

.bean (OrderService.class, "doSomething")

Here we tell Camel to invoke the doSomething method - Camel handles the parameters'
binding. Now suppose the method has 2 parameters, and the 2nd parameter is a boolean where
we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {

This is now possible in Camel 2.9 onwards:

.bean (OrderService.class, "doSomething(*, true)")

In the example above, we defined the first parameter using the wild card symbol *, which tells
Camel to bind this parameter to any type, and let Camel figure this out. The 2nd parameter has
a fixed value of true. Instead of the wildcard symbol we can instruct Camel to use the
message body as shown:

.bean (OrderService.class, "doSomething(${body}, true)")

The syntax of the parameters is using the Simple expression language so we have to use ${ }
placeholders in the body to refer to the message body.

If you want to pass in a null value, then you can explicit define this in the method option as
shown below:

.to("bean:orderService?method=doSomething (null, true)")

Specifying null as a parameter value instructs Camel to force passing a null value.

Besides the message body, you can pass in the message headers as a java.util.Map:

.bean (OrderService.class, "doSomethingWithHeaders (${body}, ${headers})")

You can also pass in other fixed values besides booleans. For example, you can pass in a String
and an integer:

COOKBOOK

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html
http://camel.apache.org/simple.html

.bean (MyBean.class, "echo('World', 5)")

In the example above, we invoke the echo method with two parameters. The first has the
content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

Having the power of the Simple language allows us to bind to message headers and other
values such as:

.bean (OrderService.class, "doSomething (${body}, ${header.high})")

You can also use the OGNL support of the Simple expression language. Now suppose the
message body is an object which has a method named asXml. To invoke the asXml method
we can do as follows:

.bean (OrderService.class, "doSomething(${body.asXml}, ${header.high})")

Instead of using .bean as shown in the examples above, you may want to use . to instead as
shown:

.to("bean:orderService?method=doSomething (${body.asXml}, ${header.high})")

Using type qualifiers to select among overloaded methods

Available as of Camel 2.8

If you have a Bean with overloaded methods, you can now specify parameter types in the
method name so Camel can match the method you intend to use.
Given the following bean:

Listing 1. MyBean

public static final class MyBean {

public String hello(String name) ({
return "Hello " + name;

public String hello(String name, @Header ("country") String country) {
return "Hello " + name + " you are from " + country;

public String times(String name, QHeader ("times") int times) {
StringBuilder sb = new StringBuilder();
for (int i = 0; 1 < times; 1i++) {
sb.append (name) ;

COOKBOOK

51

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

52

return sb.toString();

public String times (byte[] data, @Header("times") int times) {
String s = new String(data);
StringBuilder sb = new StringBuilder();
for (int i = 0; 1 < times; 1i++) {
sb.append(s) ;
if (1 < times - 1) {
sb.append(",");

}

return sb.toString();

public String times(String name, int times, char separator) ({
StringBuilder sb = new StringBuilder();
for (int i = 0; 1 < times; 1i++) {
sb.append (name) ;
if (i < times - 1) {
sb.append (separator) ;

}

return sb.toString();

Then the MyBean has 2 overloaded methods with the names hello and times. So if we
want to use the method which has 2 parameters we can do as follows in the Camel route:

Listing 1. Invoke 2 parameter method

from("direct:start")
.bean (MyBean.class, "hello(String,String)")
.to("mock:result");

We can also use a * as wildcard so we can just say we want to execute the method with 2
parameters we do

Listing 1. Invoke 2 parameter method using wildcard

from("direct:start")
.bean (MyBean.class, "hello(*,*)")
.to("mock:result");

By default Camel will match the type name using the simple name, e.g. any leading package name
will be disregarded. However if you want to match using the FQN, then specify the FQN type
and Camel will leverage that. So if you have a com. foo.MyOrder and you want to match
against the FQN, and not the simple name "MyOrder", then follow this example:

COOKBOOK

.bean (OrderService.class, "doSomething(com.foo.MyOrder)")

Bean Injection

We support the injection of various resources using @Endpointlnject. This can be used to

inject

* Endpoint instances which can be used for testing when used with Mock endpoints; see

the Spring Testing for an example.
* ProducerTemplate instances for POJO Producing

* client side proxies for POJO Producing which is a simple approach to Spring

Remoting

Parameter Binding Annotations

Annotations can be used to define an Expression or to extract various headers, properties or
payloads from a Message when invoking a bean method (see Bean Integration for more detail of
how to invoke bean methods) together with being useful to help disambiguate which method to

invoke.

If no annotations are used then Camel assumes that a single parameter is the body of the
message. Camel will then use the Type Converter mechanism to convert from the expression

value to the actual type of the parameter.

The core annotations are as follows

Annotation Meaning Parameter
@Body To bind to an inbound message body E
@ExchangeException To bind to an Exception set on the exchange E
. . String name
@Header To bind to an inbound message header of the header
@Headers To bind to the Map of the inbound message E
headers
@OutHeaders To bind to the Map of the outbound message £
headers
String name
@Property To bind to a named property on the exchange of the
property
@Properties To bind to the property map on the exchange E

COOKBOOK

53

http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/expression.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Headers.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Property.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Properties.html

54

) Camel currently only supports either specifying parameter binding or type per
parameter in the method name option. You cannot specify both at the same time,
such as

doSomething (com. foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

) camel-core
The annotations below are all part of camel-core and thus does not require
camel-spring or Spring. These annotations can be used with the Bean
component or when invoking beans in the DSL

Not part as a type parameter but stated in this

table anyway to spread the good word that we have E
this annotation in Camel now. See more at Bean
Binding.

@Handler

The follow annotations @Headers, @OutHeaders and @Properties binds to the backing
java.util.Map so you can alter the content of these maps directly, for instance using the
put method to add a new entry. See the OrderService class at Exception Clause for such an
example. You can use @Header ("myHeader") and @Property ("myProperty") to
access the backing java.util.Map.

Example

In this example below we have a @Consume consumer (like message driven) that consumes
JMS messages from the activemq queue. We use the @Header and @Body parameter binding
annotations to bind from the JMSMessage to the method parameters.

public class Foo {

@Consume (uri = "activemg:my.queue")
public void doSomething (@Header ("JMSCorrelationID") String correlationID, @Body
String body) {

}

COOKBOOK

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Handler.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean.html
http://camel.apache.org/dsl.html

In the above Camel will extract the value of Message.get)MSCorrelationlD(), then using the
Type Converter to adapt the value to the type of the parameter if required - it will inject the
parameter value for the correlationlD parameter. Then the payload of the message will be
converted to a String and injected into the body parameter.

You don't necessarily need to use the @Consume annotation if you don't want to as you
could also make use of the Camel DSL to route to the bean's method as well.

Using the DSL to invoke the bean method

Here is another example which does not use POJO Consuming annotations but instead uses
the DSL to route messages to the bean method

public class Foo {
public void doSomething (Q@Header ("JMSCorrelationID") String correlationID, @Body
String body) {

The routing DSL then looks like this

from("activemqg: someQueue") .
to("bean:myBean") ;

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try figure out what
method to call.

If you want to be explicit you can use

from("activemqg: someQueue") .
to ("bean:myBean?methodName=doSomething") ;

And here we have a nifty example for you to show some great power in Camel. You can mix
and match the annotations with the normal parameters, so we can have this example with
annotations and the Exchange also:

public void doSomething (QHeader ("user") String user, @Body String body, Exchange
exchange) {
exchange.getIn() .setBody (body + "MyBean");

COOKBOOK

55

http://camel.apache.org/type-converter.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

56

@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression
@]JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression
Example:

public class Foo {

@MessageDriven (uri = "activemg:my.queue")

public void doSomething (@XPath ("/foo/bar/text ()")
String body)

}

COOKBOOK

String correlationID, @Body

http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html

Advanced example using @Bean

And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:

public class Foo {

@MessageDriven (uri = "activemg:my.queue'")
public void doSomething (@Bean ("myCorrelationIdGenerator™) String correlationID,
@Body String body) {

process the inbound mess

And then we can have a spring bean with the id myCorrelationldGenerator where we
can compute the id.

public class MyIdGenerator {
private UserManager userManager;

public String generate (@Header (name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser (user);

String userId = user.getPrimaryId();

String id = userId + generateHashCodeForPayload (payload) ;
return id;

The Pojo MyldGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate () {
nerate a iniqgue]‘:

return 123;

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

COOKBOOK

57

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html

58

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething (@Groovy ("$request.header['user'].firstName
Srequest.header['user'].familyName) String fullName, @Body String body) {

process the inbound message here

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

@Consume

To consume a message you use the @Consume annotation to mark a particular method of a
bean as being a consumer method. The uri of the annotation defines the Camel Endpoint to
consume from.

e.g. lets invoke the onCheese () method with the String body of the inbound JMS message
from ActiveMQ on the cheese queue; this will use the Type Converter to convert the JMS
ObjectMessage or BytesMessage to a String - or just use a TextMessage from |JMS

public class Foo {

QConsume (uri="activemqg:cheese")
public void onCheese (String name) {

The Bean Binding is then used to convert the inbound Message to the parameter list used to
invoke the method .

What this does is basically create a route that looks kinda like this

from(uri) .bean (theBean, "methodName") ;

Using context option to apply only a certain CamelContext

See the warning above.
You can use the context option to specify which CamelContext the consumer should
only apply for. For example:

COOKBOOK

http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consume.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/activemq.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/camelcontext.html

i When using more than one CamelContext
When you use more than | CamelContext you might end up with each of them
creating a POJO Consuming; therefore use the option context on @Consume
that allows you to specify which CamelContext id/name you want it to apply for.

@Consume (uri="activemqg:cheese", context="camel-1"
public void onCheese (String name) {

The consumer above will only be created for the CamelContext that have the context id =
camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

Using an explicit route

If you want to invoke a bean method from many different endpoints or within different complex
routes in different circumstances you can just use the normal routing DSL or the Spring XML
configuration file.

For example

from(uri) .beanRef ("myBean", "methodName") ;
which will then look up in the Registry and find the bean and invoke the given bean name. (You

can omit the method name and have Camel figure out the right method based on the method
annotations and body type).

Use the Bean endpoint

You can always use the bean endpoint

from(uri) .to ("bean:myBean?method=methodName") ;

Using a property to define the endpoint

Available as of Camel 2.11

COOKBOOK

59

http://camel.apache.org/camelcontext.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/registry.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/camelcontext.html

60

The following annotations @Consume, @Produce, @Endpointlnject, now offers a
property attribute you can use to define the endpoint as a property on the bean. Then
Camel will use the getter method to access the property.

For example

public class MyService {
private String serviceEndpoint;

public void setServiceEndpoint (String uri) ({
this.serviceEndpoint = uri;

public String getServiceEndpoint () {
return serviceEndpoint

@Consume (property = "serviceEndpoint")
public void onService (String input) {

The bean MyService has a property named serviceEndpoint which has getter/setter for
the property. Now we want to use the bean for POJO Consuming, and hence why we use
@Consume in the onService method. Notice how we use the property =
"serviceEndpoint to configure the property that has the endpoint url.

If you define the bean in Spring XML or Blueprint, then you can configure the property as
follows:

<bean id="myService" class="com.foo.MyService">
<property name="serviceEndpoint" value="activemq:queue:foo"/>
</bean>

This allows you to configure the bean using any standard loC style.

Camel offers a naming convention which allows you to not have to explicit name the

property.

Camel uses this algorithm to find the getter method. The method must be a getXXX method.
I. Use the property name if explicit given

2. If no property name was configured, then use the method name

3. Try to get the property with name*Endpoint* (eg with Endpoint as postfix)

4. Try to get the property with the name as is (eg no postfix or postfix)

5. If the property name starts with on then omit that, and try step 3 and 4 again.

So in the example above, we could have defined the @Consume annotation as

COOKBOOK

http://camel.apache.org/pojo-consuming.html

) This applies for them all
The explanation below applies for all the three annotations, eg @Consume,
@Produce, and @Endpointlnject

@Consume (property = "service")
public void onService(String input) {

Now the property is named 'service' which then would match step 3 from the algorithm, and
have Camel invoke the getServiceEndpoint method.

We could also have omitted the property attribute, to make it implicit

@QConsume
public void onService (String input) {

Now Camel matches step 5, and loses the prefix on in the name, and looks for 'service' as the
property. And because there is a getServiceEndpoint method, Camel will use that.

Which approach to use?

Using the @Consume annotations are simpler when you are creating a simple route with a
single well defined input URI.

However if you require more complex routes or the same bean method needs to be
invoked from many places then please use the routing DSL as shown above.

There are two different ways to send messages to any Camel Endpoint from a POJO

@Endpointinject

To allow sending of messages from POJOs you can use the @Endpointinject annotation. This
will inject a ProducerTemplate so that the bean can participate in message exchanges.

e.g. lets send a message to the foo.bar queue in ActiveMQ at some point

public class Foo {
@EndpointInject (uri="activemqg: foo.bar")
ProducerTemplate producer;

public void doSomething() {

if (whatever) {
producer.sendBody ("<hello>world!</hello>");

COOKBOOK

6l

http://camel.apache.org/dsl.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/activemq.html

62

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce

We recommend Hiding Middleware APIs from your application code so the next option might
be more suitable.

You can add the @Produce annotation to an injection point (a field or property setter) using a
ProducerTemplate or using some interface you use in your business logic. e.g.

public interface MyListener ({
String sayHello (String name) ;

public class MyBean {
@Produce (uri = "activemg:foo")
protected MyListener producer;

public void doSomething() {

lets send a messag

String response = producer.sayHello ("James");

Here Camel will automatically inject a smart client side proxy at the @Produce annotation - an
instance of the MyListener instance. When we invoke methods on this interface the method call
is turned into an object and using the Camel Spring Remoting mechanism it is sent to the
endpoint - in this case the ActiveMQ endpoint to queue foo; then the caller blocks for a
response.

If you want to make asynchronous message sends then use an @InOnly annotation on the
injection point.

@RECIPIENTLIST ANNOTATION

We support the use of @RecipientList on a bean method to easily create a dynamic Recipient
List using a Java method.

COOKBOOK

http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/activemq.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html

i See POJO Consuming for how to use a property on the bean as endpoint
configuration, eg using the property attribute on @Produce, @Endpointinject.

Simple Example using @Consume and @RecipientList

package com.acme.foo;
public class RouterBean {

@Consume (uri = "activemg:foo")
QRecipientList
public String[] route(String body) {
return new String[]{"activemg:bar", "activemg:whatnot"};

For example if the above bean is configured in Spring when using 2 <camelContext>
element as follows

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>
<bean id="myRecipientList" class="com.acme.foo.RouterBean"/>

</beans>

then a route will be created consuming from the foo queue on the ActiveMQ component
which when a message is received the message will be forwarded to the endpoints defined by
the result of this method call - namely the bar and whatnot queues.

How it works

The return value of the @RecipientList method is converted to either a java.util.Collection /
java.util.lterator or array of objects where each element is converted to an Endpoint or a String,
or if you are only going to route to a single endpoint then just return either an Endpoint object
or an object that can be converted to a String. So the following methods are all valid

COOKBOOK

63

http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/pojo-consuming.html

64

QRecipientList

public String[] route(String body) { ... }
QRecipientList

public List<String> route(String body) { ... }
@RecipientList

public Endpoint route(String body) { ... }
@RecipientList

public Endpoint[] route(String body) { ... }
@RecipientList

public Collection<Endpoint> route (String body) { ... }
@RecipientList

public URI route(String body) { ... }
@RecipientList

public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to that endpoint.

You can then use whatever Java code you wish to figure out what endpoints to route to; for
example you can use the Bean Binding annotations to inject parts of the message body or
headers or use Expression values on the message.

More Complex Example Using DSL

In this example we will use more complex Bean Binding, plus we will use a separate route to
invoke the Recipient List

public class RouterBean2 {

@RecipientList
public String route (@Header ("customerID") String custID String body) {
if (custID == null) return null;
return "activemg:Customers.Orders." + custID;

public class MyRouteBuilder extends RouteBuilder {
protected void configure () {
from("activemg:0Orders.Incoming") .recipientList (bean ("myRouterBean", "route"));

Notice how we are injecting some headers or expressions and using them to determine the
recipients using Recipient List EIP.
See the Bean Integration for more details.

COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean-integration.html

USING EXCHANGE PATTERN ANNOTATIONS

When working with POJO Producing or Spring Remoting you invoke methods which typically
by default are InOut for Request Reply. That is there is an In message and an Out for the result.
Typically invoking this operation will be synchronous, the caller will block until the server
returns a result.

Camel has flexible Exchange Pattern support - so you can also support the Event Message
pattern to use InOnly for asynchronous or one way operations. These are often called 'fire and
forget' like sending a JMS message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message exchange pattern
on regular Java methods, classes or interfaces.

Specifying InOnly methods

Typically the default InOut is what most folks want but you can customize to use InOnly using
an annotation.

public interface Foo {
Object someInOutMethod(String input);
String anotherInOutMethod (Cheese input);

@InOnly
void someInOnlyMethod (Document input);

The above code shows three methods on an interface; the first two use the default InOut
mechanism but the somelnOnlyMethod uses the InOnly annotation to specify it as being a
oneway method call.

Class level annotations

You can also use class level annotations to default all methods in an interface to some pattern
such as

@InOnly

public interface Foo {
void someInOnlyMethod (Document input);
void anotherInOnlyMethod(String input);

Annotations will also be detected on base classes or interfaces. So for example if you created a
client side proxy for

COOKBOOK

65

http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html

public class MyFoo implements Foo {

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation
You can overload a class level annotation on specific methods. A common use case for this is if

you have a class or interface with many InOnly methods but you want to just annote one or
two methods as InOut

@InOnly

public interface Foo {
void someInOnlyMethod (Document input) ;
void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod(String input);

In the above Foo interface the somelnOutMethod will be InOut

Using your own annotations
You might want to create your own annotations to represent a group of different bits of
metadata; such as combining synchrony, concurrency and transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to default the
exchange pattern you wish to use.

For example lets say we want to create our own annotation called @MyAsyncService

@QRetention (RetentionPolicy.RUNTIME)
@Target ({ElementType.TYPE, ElementType.METHOD})

lets add the message exchange pattern to it

@Pattern (ExchangePattern.InOnly)

>ther annotations - maybe transaction behaviour?

public @interface MyAsyncService {

}

Now we can use this annotation and Camel will figure out the correct exchange pattern...

66 COOKBOOK

public interface Foo {
void someInOnlyMethod (Document input) ;
void anotherInOnlyMethod(String input);

@MyAsyncService
String someInOutMethod (String input) ;

When writing software these days, its important to try and decouple as much middleware code
from your business logic as possible.
This provides a number of benefits...
* you can choose the right middleware solution for your deployment and switch at any
time
* you don't have to spend a large amount of time learning the specifics of any particular
technology, whether its JMS or JavaSpace or Hibernate or JPA or iBATIS whatever
For example if you want to implement some kind of message passing, remoting, reliable load
balancing or asynchronous processing in your application we recommend you use Camel
annotations to bind your services and business logic to Camel Components which means you
can then easily switch between things like
* in JVM messaging with SEDA
* using JMS via ActiveMQ or other |MS providers for reliable load balancing, grid or
publish and subscribe
* for low volume, but easier administration since you're probably already using a
database you could use
o Hibernate or JPA to use an entity bean / table as a queue
o iBATIS to work with SQL
o JDBC for raw SQL access
* use JavaSpace

How to decouple from middleware APIs

The best approach when using remoting is to use Spring Remoting which can then use any
messaging or remoting technology under the covers. When using Camel's implementation you
can then use any of the Camel Components along with any of the Enterprise Integration
Patterns.

Another approach is to bind Java beans to Camel endpoints via the Bean Integration. For
example using POJO Consuming and POJO Producing you can avoid using any Camel APIs to
decouple your code both from middleware APls and Camel APIs! (..

COOKBOOK

67

http://camel.apache.org/jms.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

68

VISUALISATION

Camel supports the visualisation of your Enterprise Integration Patterns using the GraphViz
DOT files which can either be rendered directly via a suitable GraphViz tool or turned into
HTML, PNG or SVG files via the Camel Maven Plugin.

Here is a typical example of the kind of thing we can generate

If you click on the actual generated htmlyou will see that you can navigate from an EIP node
to its pattern page, along with getting hover-over tool tips ec.

How to generate

See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users

If you are using OS X then you can open the DOT file using graphviz which will then
automatically re-render if it changes, so you end up with a real time graphical representation of
the topic and queue hierarchies!

Also if you want to edit the layout a little before adding it to a wiki to distribute to your
team, open the DOT file with OmniGraffle then just edit away @

BUSINESS ACTIVITY MONITORING

The Camel BAM module provides a Business Activity Monitoring (BAM) framework for
testing business processes across multiple message exchanges on different Endpoint instances.

Consider, for example, a simple system in which you submit Purchase Orders into system A
and then receive Invoices from system B. You might want to test that, for a given Purchase
Order, you receive a matching Invoice from system B within a specific time period.

How Camel BAM Works

Camel BAM uses a Correlation Identifier on an input message to determine the Process Instance
to which it belongs. The process instance is an entity bean which can maintain state for each
Activity (where an activity typically maps to a single endpoint - such as the submission of
Purchase Orders or the receipt of Invoices).

You can then add rules to be triggered when a message is received on any activity - such as
to set time expectations or perform real time reconciliation of values across activities.

COOKBOOK

http://camel.apache.org/enterprise-integration-patterns.html
http://graphviz.org
http://camel.apache.org/camel-maven-plugin.html
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html
http://camel.apache.org/camel-dot-maven-goal.html
http://camel.apache.org/camel-maven-plugin.html
http://www.pixelglow.com/graphviz/
http://www.omnigroup.com/applications/omnigraffle/
http://camel.apache.org/endpoint.html
http://camel.apache.org/correlation-identifier.html

Simple Example

The following example shows how to perform some time based rules on a simple business
process of 2 activities - A and B - which correspond with Purchase Orders and Invoices in the
example above. If you would like to experiment with this scenario, you may edit this Test Case,
which defines the activities and rules, and then tests that they work.

return new ProcessBuilder (jpaTemplate, transactionTemplate) {
public void configure() throws Exception ({

let's define some activities, correlating on an XPath on the message bodies
ActivityBuilder a = activity("seda:a") .name("a")
.correlate (xpath("/hello/@id")) ;

ActivityBuilder b = activity("seda:b") .name ("b")
.correlate (xpath("/hello/@id"));
let's add some

b.starts () .after (a.completes())
.expectWithin (seconds (1)
.errorIfOver (seconds (errorTimeout)) .to ("mock:overdue") ;

}i

As you can see in the above example, we first define two activities, and then rules to specify
when we expect them to complete for a process instance and when an error condition should
be raised.p. The ProcessBuilder is a RouteBuilder and can be added to any CamelContext.

Complete Example

For a complete example please see the BAM Example, which is part of the standard Camel
Examples

Use Cases

In the world of finance, a common requirement is tracking trades. Often a trader will submit a
Front Office Trade which then flows through the Middle Office and Back Office through various
systems to settle the trade so that money is exchanged. You may wish to test that the front and
back office trades match up within a certain time period; if they don't match or a back office
trade does not arrive within a required amount of time, you might signal an alarm.

EXTRACT TRANSFORM LOAD (ETL)

The ETL (Extract, Transform, Load) is a mechanism for loading data into systems or databases
using some kind of Data Format from a variety of sources; often files then using Pipes and
Filters, Message Translator and possible other Enterprise Integration Patterns.

COOKBOOK

69

http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java
http://camel.apache.org/routebuilder.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/bam-example.html
http://camel.apache.org/examples.html
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/enterprise-integration-patterns.html

So you could query data from various Camel Components such as File, HTTP or JPA,
perform multiple patterns such as Splitter or Message Translator then send the messages to
some other Component.

To show how this all fits together, try the ETL Example

MOCK COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is run, which typically fires messages to one or more endpoints, and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:

* The correct number of messages are received on each endpoint,

* The correct payloads are received, in the right order,

* Messages arrive on an endpoint in order, using some Expression to create an order
testing function,

* Messages arrive match some kind of Predicate such as that specific headers have
certain values, or that parts of the messages match some predicate, such as by
evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock
endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its
assertions from some sample messages in a File or database, for example.

URI format

mock:someName [?options]
Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format,
?option=value&option=values&...

Options

Option Default Description

reportGroup null A size to use a throughput logger for reporting

COOKBOOK

http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jpa.html
http://camel.apache.org/splitter.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/component.html
http://camel.apache.org/etl-example.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/log.html

i@ Mock endpoints keep received Exchanges in memory indefinitely
Remember that Mock is designed for testing. When you add Mock endpoints to a
route, each Exchange sent to the endpoint will be stored (to allow for later
validation) in memory until explicitly reset or the JVM is restarted. If you are
sending high volume and/or large messages, this may cause excessive memory use. If
your goal is to test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new options retainFirst, and retainLast
that can be used to limit the number of messages the Mock endpoints keep in memory.

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the
context. Then we set an expectation, and then, after the test has run, we assert that our
expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint ("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount (2) ;

now lets assert tha he mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied() ;

You typically always call the assertlsSatisfied() method to test that the expectations were met
after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied () is invoked. This
can be configured by setting the setResultWaitTime (millis) method.

Using assertPeriod

Available as of Camel 2.7

When the assertion is satisfied then Camel will stop waiting and continue from the
assertIsSatisfied method. That means if a new message arrives on the mock endpoint,
just a bit later, that arrival will not affect the outcome of the assertion. Suppose you do want to
test that no new messages arrives after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

COOKBOOK

71

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

72

MockEndpoint resultEndpoint = context.resolveEndpoint ("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod (5000) ;
resultEndpoint.expectedMessageCount (2) ;

now lets assert tha he mock: foo
resultEndpoint.assertIsSatisfied() ;

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) ~ To define the minimum number of exp d on the endp

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.
expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

To add an expectation that no duplicate messages are received; using an Expression to calculate a unique identifier for each message. This

expectsNoDuplicates(Expression) could be something like the JMSMessageID if using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived ("firstMessageBody", "secondMessageBody",
"thirdMessageBody") ;

Adding expectations to specific messages

In addition, you can use the message(int messagelndex) method to add assertions about a
specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-
based indexing like java.util.List), you can use the following code:

resultEndpoint.message (0) .header ("foo") .isEqualTo ("bar") ;

There are some examples of the Mock endpoint in use in the camel-core processor tests.
Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

COOKBOOK

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

 How it works
Important: The endpoints are still in action. What happens differently is that a
Mock endpoint is injected and receives the message first and then delegates the
message to the target endpoint. You can view this as a kind of intercept and
delegate or endpoint listener.

Suppose you have the given route below:
Listing 1. Route

@QOverride
protected RouteBuilder createRouteBuilder () throws Exception {
return new RouteBuilder () {

QOverride
public void configure () throws Exception {
from("direct:start") .to("direct:foo").to("log:foo") .to("mock:result");

from("direct:foo") .transform(constant ("Bye World"));

You can then use the adviceWith feature in Camel to mock all the endpoints in a given
route from your unit test, as shown below:

Listing 1. adviceWith mocking all endpoints

public void testAdvisedMockEndpoints () throws Exception ({

// advice first route using

C } an C SHEN = D
0) .adviceWith (context, new
AdviceWithRouteBuilder () {

@Override
public void configure() throws Exception {
mock all
mockEndpoints () ;

>ndpoints

})

getMockEndpoint

("mock:direct:start") .expectedBodiesReceived ("Hello World") ;
getMockEndpoint ("mock:direct:foo") .expectedBodiesReceived ("Hello World") ;
(
(

getMockEndpoint ("mock:log: foo") .expectedBodiesReceived ("Bye World");
getMockEndpoint

"mock:result") .expectedBodiesReceived ("Bye World") ;
template.sendBody ("direct:start", "Hello World");

assertMockEndpointsSatisfied() ;

// additional test to ensure correct endpoints

assertNotNull (context.hasEndpoint ("direct:start"));

COOKBOOK

73

http://camel.apache.org/mock.html

74

assertNotNull (context.hasEndpoint ("direct:foo"));
assertNotNull (context.hasEndpoint ("log:foo"));

assertNotNull (context.hasEndpoint ("mock:result"));

// all the e ints s mocked

assertNotNull (context.hasEndpoint ("mock:direct:start"));
assertNotNull (context.hasEndpoint ("mock:direct:foo0"));
assertNotNull (context.hasEndpoint ("mock:log:foo"));

Notice that the mock endpoints is given the uri mock: <endpoint>, for example
mock:direct:foo. Camel logs at INFO level the endpoints being mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example to mock all 1og
endpoints you do as shown:
Listing 1. adviceWith mocking only log endpoints using a pattern
public void testAdvisedMockEndpointsWithPattern() throws Exception ({
. 97

which has extended capabilities than the regular route builder

With route builder

using the inli vi

// rice the first rou

context.getRouteDefinitions () .get (0) .adviceWith (context, new
AdviceWithRouteBuilder () {
@QOverride
public void configure() throws Exception ({
// mock only log endpoints
mockEndpoints ("log*") ;

3

oo as a mock and set our e ations

// now we can refe t

getMockEndpoint ("mock:log:foo") .expectedBodiesReceived ("Bye World") ;

r to log:

getMockEndpoint ("mock:result") .expectedBodiesReceived ("Bye World");
template.sendBody ("direct:start", "Hello World");
assertMockEndpointsSatisfied() ;

// additional test to ensure correct endpoints in registry

assertNotNull (context.hasEndpoint ("direct:start"));
assertNotNull (context.hasEndpoint ("direct:foo"));
assertNotNull (context.hasEndpoint ("log:foo"));
assertNotNull (context.hasEndpoint ("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull (context.hasEndpoint ("mock:log:foo"));
assertNull (context.hasEndpoint ("mock:direct:start"));
assertNull (context.hasEndpoint ("mock:direct:foo")) ;
}
COOKBOOK

3 Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off. For example
the endpoint "log:foo?showAll=true" will be mocked to the following endpoint
"mock:log:foo". Notice the parameters have been removed.

The pattern supported can be a wildcard or a regular expression. See more details about this at

Intercept as its the same matching function used by Camel.

Mocking existing endpoints using the camel-test component

Instead of using the adviceWith to instruct Camel to mock endpoints, you can easily enable

this behavior when using the camel-test Test Kit.

The same route can be tested as follows. Notice that we return " *" from the
isMockEndpoints method, which tells Camel to mock all endpoints.

If you only want to mock all 10g endpoints you can return "1og*" instead.

Listing 1. isMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

QOverride
public String isMockEndpoints () {

erride this 1 and return the pattern for which endpoints to mock.

*

return "*";

@Test
public void testMockAllEndpoints () throws Exception {
notice we have automatic mocked all endpoints and the name of tt 1dpoint
is "mock:uri"
getMockEndpoint ("mock:direct:start") .expectedBodiesReceived ("Hello World") ;

(

getMockEndpoint ("mock:

getMockEndpoint ("mock:
(

getMockEndpoint ("mock:

direct:foo") .expectedBodiesReceived ("Hello World");
log:foo") .expectedBodiesReceived ("Bye World");
result") .expectedBodiesReceived ("Bye World") ;

template.sendBody ("direct:start", "Hello World");

assertMockEndpointsSatisfied() ;

additional
assertNotNull
assertNotNull

(context
(
assertNotNull (context.
(

context

assertNotNull
all the S
assertNotNull (context.

context.

DO1NtCS

sure correct endpoints in registry

.hasEndpoint ("direct:start"));

(
.hasEndpoint ("direct:foo")) ;
hasEndpoint ("log:foo"));
hasEndpoint ("mock:result"));
was mocked
hasEndpoint ("mock:direct:start"));

COOKBOOK

75

http://camel.apache.org/intercept.html

76

) Mind that mocking endpoints causes the messages to be copied when they arrive on

the mock.
That means Camel will use more memory. This may not be suitable when you send

in a lot of messages.

assertNotNull (context.hasEndpoint ("mock:direct:foo"));
assertNotNull (context.hasEndpoint ("mock:log:foo"));

QOverride
protected RouteBuilder createRouteBuilder () throws Exception {
return new RouteBuilder() {
@QOverride
public void configure() throws Exception {
from("direct:start") .to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo") .transform(constant ("Bye World"));

Mocking existing endpoints with XML DSL

If you do not use the camel-test component for unit testing (as shown above) you can use a

different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then include the intended

XML file which has the route you want to test.
Suppose we have the route in the camel-route.xml file:

Listing 1. camel-route.xml

{!-— this camel route is in the camel-route.xml file -->

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>
</route>

<route>
<from uri="direct:foo"/>
<transform>
<constant>Bye World</constant>

COOKBOOK

</transform>
</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-route.xml file and
define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which tells
Camel to mock all endpoints:

Listing 1. test-camel-route.xml

<!-- the Camel route is defined in another XML file -->

<import resource="camel-route.xml"/>

<! bean which enables mocking all endpoints

<bean id="mockAllEndpoints"

class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml) instead of
camel-route.xml.

To only mock all Log endpoints you can define the pattern in the constructor for the bean:

<bean id="mockAllEndpoints"

class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">
<constructor-arg index="0" value="log*"/>

</bean>

Mocking endpoints and skip sending to original endpoint

Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain endpoints. So the message
is detoured and send to the mock endpoint only. From Camel 2.10 onwards you can now use
the mockEndpointsAndSkip method using AdviceWith or the [Test Kit]. The example
below will skip sending to the two endpoints "direct:foo", and "direct:bar".

Listing 1. adviceWith mock and skip sending to endpoints

public void testAdvisedMockEndpointsWithSkip() throws Exception {

he inlined Ad

iith rc

which has extende bilities than the re

=ndadec e ar route D
context.getRouteDefinitions () .get (0) .adviceWith (context, new
AdviceWithRouteBuilder () {

@QOverride

public void configure() throws Exception ({

mock sending to direct:foo and direct:bar and skip send to

COOKBOOK

77

http://camel.apache.org/log.html
http://camel.apache.org/advicewith.html

78

mockEndpointsAndSkip ("direct:foo", "direct:bar");

3

getMockEndpoint ("mock:result") .expectedBodiesReceived ("Hello World");
getMockEndpoint ("mock:direct:foo") .expectedMessageCount (1) ;
getMockEndpoint ("mock:direct:bar") .expectedMessageCount (1) ;

template.sendBody ("direct:start", "Hello World");

assertMockEndpointsSatisfied() ;

t:foo route and thus not sent to the

// was not send to the dire
endpoint
SedaEndpoint seda = context.getEndpoint ("seda:foo", SedaEndpoint.class);

assertEquals (0, seda.getCurrentQueueSize());

The same example using the Test Kit
Listing 1. isMockEndpointsAndSkip using camel-test kit

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

@QOverride

public String isMockEndpointsAndSkip () {
// override this method and return the pattern for which endpoints to mock,
// and skip sending to the original endpoint.

return "direct:foo";

@Test
public void testMockEndpointAndSkip() throws Exception {
// notice we have automatic mocked the direct:foo endpoints and the name of
the endpoints is "mock:uri"
getMockEndpoint ("mock:result") .expectedBodiesReceived ("Hello World");
getMockEndpoint ("mock:direct:foo") .expectedMessageCount (1) ;

template.sendBody ("direct:start", "Hello World");

assertMockEndpointsSatisfied() ;

// the message was not send to the direct:foo route and thus not sent to the

seda endpoint
SedaEndpoint seda = context.getEndpoint ("seda:foo", SedaEndpoint.class);
assertEquals (0, seda.getCurrentQueueSize());

}
@Override
protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {
@Override

public void configure() throws Exception ({
from("direct:start").to("direct:foo").to("mock:result");

COOKBOOK

http://camel.apache.org/testing.html

from("direct:foo") .transform(constant ("Bye World")) .to("seda:foo");

Limiting the number of messages to keep

Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you
test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and
retainLast that can be used to specify to only keep N'th of the first and/or last Exchanges.

For example in the code below, we only want to retain a copy of the first 5 and last 5
Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint ("mock:data");
mock.setRetainFirst (5);

mock.setRetainLast (5) ;
mock.expectedMessageCount (2000) ;

mock.assertIsSatisfied();

Using this has some limitations. The getExchanges () and getReceivedExchanges ()
methods on the MockEndpoint will return only the retained copies of the Exchanges. So in
the example above, the list will contain 10 Exchanges; the first five, and the last five.

The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedXXX methods that work on message bodies,
headers, etc. will only operate on the retained messages. In the example above they can test
only the expectations on the |0 retained messages.

Testing with arrival times

Available as of Camel 2.7
The Mock endpoint stores the arrival time of the message as a property on the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock. But it also
provides foundation to know the time interval between the previous and next message arrived

COOKBOOK

79

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html

on the mock. You can use this to set expectations using the arrives DSL on the Mock
endpoint.

For example to say that the first message should arrive between 0-2 seconds before the
next you can do:

mock.message (0) .arrives () .noLaterThan (2) .seconds () .beforeNext () ;

You can also define this as that 2nd message (0 index based) should arrive no later than 0-2
seconds after the previous:

mock.message (1) .arrives () .noLaterThan (2) .seconds () .afterPrevious () ;

You can also use between to set a lower bound. For example suppose that it should be
between |-4 seconds:

mock.message (1) .arrives () .between (1, 4).seconds() .afterPrevious();

You can also set the expectation on all messages, for example to say that the gap between them
should be at most | second:

mock.allMessages () .arrives () .noLaterThan (1) .seconds () .beforeNext () ;

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

* Spring Testing

* Testing

TESTING

Testing is a crucial activity in any piece of software development or integration. Typically Camel
Riders use various different technologies wired together in a variety of patterns with different
expression languages together with different forms of Bean Integration and Dependency
Injection so its very easy for things to go wrong! @ . Testing is the crucial weapon to ensure
that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework
you use (JUnit 3.x (deprecated), 4.x, or TestNG). However the Camel project has tried to

COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html

i time units

In the example above we use seconds as the time unit, but Camel offers
milliseconds, and minutes as well.

make the testing of Camel as easy and powerful as possible so we have introduced the following

features.

Testing mechanisms

The following mechanisms are supported

Name Component Description

Is a standalone Java library letting you easily create Camel test
cases using a single Java class for all your configuration and

Camel camel- routing without using Spring or Guice for Dependency

Test test InjectionEwhich does not require an in-depth knowledge of
Spring + Spring Test or Guice. ESupports JUnit 3.x
(deprecated) and JUnit 4.x based tests.
Supports JUnit 3.x (deprecated) or JUnit 4.x based tests that
bootstrap a test environment using Spring without needing to
be familiar with Spring Test. EThe Eplain JUnit 3.x/4.x based
tests work very similar to the test support classes in camel-

. camel- test. EAlso supports Spring Test based tests that use the
Sprlr?g test- declarative style of test configuration and injection common in
Testing spring Spring Test. EThe Spring Test based tests provide feature

parity with the plain JUnit 3.x/4.x based testing approach.
ENotice camel-test-spring is a new component in
Camel 2.10 onwards. For older Camel release use camel-
test which has built-in Spring Testing.
camel-
Blueprint fest- Camel 2.10: Provides the ability to do unit testing on
Testing , blueprint configurations
blueprint

. camel- . o
Guice , Uses Guice to dependency inject your test classes

guice

COOKBOOK

8l

http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/guice.html

Supports plain TestNG based testsEwith or
withoutESpringEorEGuiceEforEDependency InjectionEwhich
does not require an in-depth knowledge of Spring + Spring
camel-testng Test or Guice. EAlso from Camel 2.10 onwards, this
component supports Spring TestEbased tests that use the
declarative style of test configuration and injection common in
Spring Test and described in more detail under Spring Testing.

Camel
TestNG

In all approaches the test classes look pretty much the same in that they all reuse the Camel
binding and injection annotations.

Camel Test Example

Here is the Camel Test example.

public class FilterTest extends CamelTestSupport {

@EndpointInject (uri = "mock:result"
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@QTest
public void testSendMatchingMessage () throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");
resultEndpoint.assertIsSatisfied() ;

@QTest

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

@QOverride
protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {

from("direct:start") .filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");

}

82 COOKBOOK

http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

Notice how it derives from the Camel helper class CamelTestSupport but has no Spring or
Guice dependency injection configuration but instead overrides the createRouteBuilder()

method.

Spring Test with XML Config Example
Here is the Spring Testing example using XML Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

@Test

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar"):;
resultEndpoint.assertIsSatisfied();

@DirtiesContext

@QTest
public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

Notice that we use @DirtiesContext on the test methods to force Spring Testing to
automatically reload the CamelContext after each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in

another test method).

COOKBOOK

83

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html

84

Also notice the use of @ContextConfiguration to indicate that by default we should

look for the FilterTest-context.xml on the classpath to configure the test case which looks like
this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>
</filter>
</route>
</camelContext>

</beans>

Spring Test with Java Config Example

Here is the Spring Testing example using Java Config.

For more information see Spring Java Config.

@ContextConfiguration (
locations =
"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

@Test

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;

COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://camel.apache.org/spring-java-config.html

template.sendBodyAndHeader (expectedBody, "foo", "bar"):;

resultEndpoint.assertIsSatisfied();

@DirtiesContext

@Test

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {
@Bean
public RouteBuilder route() {
return new RouteBuilder() {
public void configure() {

from("direct:start") .filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");
}
}i

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive from
SingleRouteCamelConfiguration which is a helper Spring Java Config class which will
configure the CamelContext for us and then register the RouteBuilder we create.

Since Camel 2.11.0 you can use the CamelSpring]Unit4ClassRunner with
CamelSpringDelegatingTestContextLoader like example using Java Config with
CamelSpringJUnit4ClassRunner.

QRunWith (CamelSpringJUnit4ClassRunner.class)
@ContextConfiguration (
classes = {CamelSpringDelegatingTestContextLoaderTest.TestConfig.class},
Since Camel 2.11.0
loader = CamelSpringDelegatingTestContextLoader.class
)
@MockEndpoints
public class CamelSpringDelegatingTestContextLoaderTest {

COOKBOOK

85

http://jira.springframework.org/browse/SJC-238
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java

86

QEndpointInject (uri = "mock:direct:end")
protected MockEndpoint endEndpoint;

QEndpointInject (uri = "mock:direct:error")
protected MockEndpoint errorEndpoint;

@Produce (uri = "direct:test")
protected ProducerTemplate testProducer;

@Configuration

public static class TestConfig extends SingleRouteCamelConfiguration {
@Bean
@QOverride
public RouteBuilder route() {

return new RouteBuilder () {
@Override
public void configure() throws Exception {

from("direct:test") .errorHandler (deadLetterChannel ("direct:error")) .to("direct:end");
from("direct:error") .log("Received message on direct:error
endpoint.") ;
from("direct:end") .log ("Received message on direct:end endpoint.");
}
}i
}
}
@QTest

public void testRoute() throws InterruptedException ({
endEndpoint.expectedMessageCount (1) ;
errorEndpoint.expectedMessageCount (0) ;

testProducer.sendBody ("<name>test</name>") ;

endEndpoint.assertIsSatisfied();
errorEndpoint.assertIsSatisfied();

Spring Test with XML Config and Declarative Configuration
Example

Here is a Camel test support enhancedESpring TestingEexample using XML Config and pure
Spring Test based configuration of the Camel Context.

COOKBOOK

http://camel.apache.org/spring-testing.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java

QRunWith (CamelSpringJUnit4ClassRunner.class)

@ContextConfiguration

// Put here to prevent Spring context caching across tests and test methods since some

tests inherit

// from this test and therefore use the same Spring context. Also because we want to

reset the
/

Camel context and mock endpoints between test methods automatically.

@DirtiesContext (classMode = ClassMode.AFTER EACH TEST METHOD)
public class CamelSpringJUnit4ClassRunnerPlainTest {

QAutowired
protected CamelContext camelContext;

QAutowired
protected CamelContext camelContext?2;

@EndpointInject (uri = "mock:a", context = "camelContext")
protected MockEndpoint mockA;

QEndpointInject (uri = "mock:b", context = "camelContext")
protected MockEndpoint mockB;

Q@EndpointInject (uri = "mock:c", context = "camelContext2")
protected MockEndpoint mockC;

@Produce (uri = "direct:start", context = "camelContext")
protected ProducerTemplate start;

@Produce (uri = "direct:start2", context = "camelContext2")
protected ProducerTemplate start2;

@Test

public void testPositive() throws Exception {
assertEquals (ServiceStatus.Started, camelContext.getStatus());
assertEquals (ServiceStatus.Started, camelContext2.getStatus());

mockA.expectedBodiesReceived ("David") ;
mockB.expectedBodiesReceived ("Hello David");
mockC.expectedBodiesReceived ("David") ;

start.sendBody ("David") ;
start2.sendBody ("David") ;

MockEndpoint.assertIsSatisfied (camelContext) ;

@Test
public void testJmx() throws Exception {
assertEquals (DefaultManagementStrategy.class,
camelContext.getManagementStrategy () .getClass()) ;
}

@Test
public void testShutdownTimeout () throws Exception {

COOKBOOK

87

assertEquals (10, camelContext.getShutdownStrategy () .getTimeout());
assertEquals (TimeUnit.SECONDS,
camelContext.getShutdownStrategy () .getTimeUnit ()) ;
}

@QTest
public void testStopwatch() {
StopWatch stopWatch = StopWatchTestExecutionListener.getStopWatch () ;

assertNotNull (stopWatch) ;
assertTrue (stopWatch.taken() < 100);

@QTest
public void testExcludedRoute () {
assertNotNull (camelContext.getRoute ("excludedRoute")) ;
}
@QTest
public void testProvidesBreakpoint () {

assertNull (camelContext.getDebugger()) ;
assertNull (camelContext2.getDebugger()) ;

@SuppressWarnings ("deprecation")

@Test

public void testLazyLoadTypeConverters () {
assertTrue (camelContext.isLazylLoadTypeConverters()) ;
assertTrue (camelContext2.isLazyLoadTypeConverters()) ;

Notice how a custom test runner is used with theE@RunW ithEannotation to support the
features ofECamelTestSupportEthrough annotations on the test class. ESeeESpring
TestingEfor a list of annotations you can use in your tests.

Blueprint Test

Here is the Blueprint Testing example using XML Config.

CamelBlueprintT

// and add your unit tests methods as s

public class DebugBlueprintTest extends CamelBlueprintTestSupport {

// override this method, and return the tion of our Blueprint XML file to be
ting

@Override

>d for

protected String getBlueprintDescriptor () {
return "org/apache/camel/test/blueprint/camelContext.xml";

88 COOKBOOK

http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java

ere we have regular Junit @Test method

@Test

public void testRoute() throws Exception ({
set mock expectations

getMockEndpoint ("mock:a") .expectedMessageCount (1) ;

sena a message

template.sendBody ("direct:start", "World"):;

/ assert mocks
assertMockEndpointsSatisfied();

Also notice the use of getBlueprintDescriptors to indicate that by default we should
look for the camelContext.xml in the package to configure the test case which looks like this

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<transform>
<simple>Hello ${body}</simple>
</transform>
<to uri="mock:a"/>
</route>

</camelContext>

</blueprint>

Testing endpoints

Camel provides a number of endpoints which can make testing easier.

Name Description

For load & soak testing this endpoint provides a way to create huge numbers of
DataSet messages for sending to Components and asserting that they are consumed
correctly

COOKBOOK 89

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml
http://camel.apache.org/dataset.html
http://camel.apache.org/components.html

90

For testing routes and mediation rules using mocks and allowing assertions to be

Mock added to an endpoint

Creates a Mock endpoint which expects to receive all the message bodies that

Test could be polled from the given underlying endpoint

The main endpoint is the Mock endpoint which allows expectations to be added to different
endpoints; you can then run your tests and assert that your expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for
example to unit test a transformation route rather than performing a full integration test) then
the following endpoints can be useful.

Name Description

Direct invocation of the consumer from the producer so that single threaded
Direct (non-SEDA) in VM invocation is performed which can be useful to mock out
physical transports

Delivers messages asynchonously to consumers via a
SEDA java.util.concurrent.BlockingQueue which is good for testing asynchronous
transports

Works like SEDA but does not validate the endpoint uri, which makes stubbing

Stub .
much easier.

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will
not use Mock etc. For example you may have a production ready route which you want to test
with some 3rd party APl which sends messages into this route.

Name Description

Allows you to be notified when a certain condition has occurred. For
NotifyBuilder ~example when the route has completed 5 messages. You can build complex
expressions to match your criteria when to be notified.

Allows you to advice or enhance an existing route using a RouteBuilder
AdviceWith style. For example you can add interceptors to intercept sending outgoing
messages to assert those messages are as expected.

COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/direct.html
http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/stub.html
http://camel.apache.org/seda.html
http://camel.apache.org/mock.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html
http://camel.apache.org/routebuilder.html

CAMEL TEST

As a simple alternative to using Spring Testing or Guice the camel-test module was
introduced so you can perform powerful Testing of your Enterprise Integration Patterns easily.

Adding to your pom.xml

To get started using Camel Test you will need to add an entry to your pom.xml

JUnit

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-test</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

TestNG

Available as of Camel 2.8

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-testng</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

You might also want to add slf4j and log4j to ensure nice logging messages (and maybe adding a
log4j.properties file into your src/test/resources directory).

<dependency>
<groupld>org.slf4j</groupld>
<artifactId>slf4j-log4jl2</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4ij</artifactId>
<scope>test</scope>

</dependency>

COOKBOOK 91

http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties

92

) The camel-test JAR s using JUnit. There is an alternative camel-testng JAR
(Camel 2.8 onwards) using the TestNG test framework.

Writing your test

You firstly need to derive from the class

CamelTestSupportE(orgapache.camel.test. CamelTestSupport,
org.apache.camel.test.junit4.CamelTestSupport, or org.apache.camel.testng.CamelTestSupport
for JUnit 3.x, JUnit 4.x, and TestNG, respectively)Eand typically you will need to override the
createRouteBuilder() orEcreateRouteBuilders()Emethod to create routes to be
tested.

Here is an example.
public class FilterTest extends CamelTestSupport {

@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@QTest
public void testSendMatchingMessage () throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");
resultEndpoint.assertIsSatisfied();

@Test

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;
template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");
resultEndpoint.assertIsSatisfied();

@Override

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder () {

public void configure() {
from("direct:start").filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");

}
bi

COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
http://testng.org/doc/index.html

Notice how you can use the various Camel binding and injection annotations to inject individual
Endpoint objects - particularly the Mock endpoints which are very useful for Testing. Also you
can inject producer objects such as ProducerTemplate or some application code interface for

sending messages or invoking services.

Features Provided by CamelTestSupport

The various CamelTestSupport classes provide a standard set of behaviors relating to the
CamelContext used to host the route(s) under test. EThe classes provide a number of methods
that allow a test to alter the configuration of the CamelContext used. EThe following table
describes the available customization methods and the default behavior of tests that are built

from aECamelTestSupport class.

Method Name

Description

boolean isUseRouteBuilder()

If the route builders from returned fromEcreateRout
createRouteBuilders() should be added to the Can
the test should be started.

boolean isUseAdviceWith()

If the CamelContext use in the test should be automatic
test methods are invoked.

Override when using advice withEand return true. EThis
adviceWith is to be used, and theECamelContextEwill n
beforeEthe advice with takes place. This delay helps by e
with has been property setup before theECamelContext

boolean isCreateCamelContextPerClass()

SeeESetup CamelContext once per class, or per every t

String isMockEndpoints()

Triggers the auto-mocking of endpoints whose URIs mat
EThe defaultEfilter is null which disables this feature. ERe
endpoints.
ESeeEorg.apache.camel.impl.InterceptSendToMockEndpc
details on the registration of the mock endpoints.

COOKBOOK 93

http://camel.apache.org/bean-integration.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/testing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/advicewith.html

94

done doing all the advice with.

) lts important to start the CamelContext manually from the unit test after you are

boolean isUseDebugger()

If this method returns true, theEdebugBefore(Exch:
Processor processor, ProcessorDefinition<?>
definition,EString id, String label)EandE
debugAfter(Exchange exchange, Processor pi
ProcessorDefinition<?> definition,ﬁString id,
timeTaken)Emethods are invoked for each processor
routes.

int getShutdownTimeout()

Returns the number of seconds that Camel should wait
shutdown. EUseful for decreasing test times when a mes
the end of the test.

boolean useJmx()

If JMX should be disabled on the CamelContext used in

JndiRegistry createRegistry()

Provides a hook for adding objects into the registry. EOr
to bind objects to the registry before test methods are i

useOverridePropertiesWithPropertiesComponent

Camel 2.10: Allows to add/override properties when
PropertyPlaceholder in Camel.

ignoreMissingLocationWithPropertiesComponent

Camel 2.10: Allows to control if Camel should ignore
properties.

JNDI

Camel uses a Registry to allow you to configure Component or Endpoint instances or Beans
used in your routes. If you are not using Spring or [OSGi] then JNDI is used as the default

registry implementation.

So you will also need to create a jndi.properties file in your src/test/resources
directory so that there is a default registry available to initialise the CamelContext.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

Dynamically assighing ports

Available as of Camel 2.7

Tests that use port numbers will fail if that port is already on use.
AvailablePortFinder provides methods for finding unused port numbers at runtime.

COOKBOOK

http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/registry.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/spring.html
http://camel.apache.org/jndi.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties

/ Get the next available port number starting from the default starting port of 1024
int portl = AvailablePortFinder.getNextAvailable();
/*

* Get another port. Note that just getting a port number does not reserve it so

* we look starting one past the last port number we got.

o/
int port2 = AvailablePortFinder.getNextAvailable (portl + 1);

Setup CamelContext once per class, or per every test method

Available as of Camel 2.8

The Camel Test kit will by default setup and shutdown CamelContext per every test
method in your test class. So for example if you have 3 test methods, then CamelContext is
started and shutdown after each test, that is 3 times.

You may want to do this once, to share the CamelContext between test methods, to speedup

unit testing. This requires to use JUnit 4! In your unit test method you have to extend the
org.apache.camel.test.junit4.CamelTestSupport or the
org.apache.camel.test.junit4.CamelSpringTestSupport test class and

override the isCreateCamelContextPerClass method and return true as shown in

the following example:
Listing 1. Setup CamelContext once per class

public class FilterCreateCamelContextPerClassTest extends CamelTestSupport {

@QOverride
public boolean isCreateCamelContextPerClass() {

this method and return true, > tell Camel test-kit that

once (per class), we will
ween each test method in this class
return true;
}
@Test
public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

getMockEndpoint ("mock:result") .expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader ("direct:start", expectedBody, "foo", "bar");
assertMockEndpointsSatisfied() ;

@Test

public void testSendNotMatchingMessage () throws Exception {

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;

template.sendBodyAndHeader ("direct:start", "<notMatched/>", "foo",

COOKBOOK

95

http://camel.apache.org/camel-test.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html

96

i TestNG
This feature is also supported in camel-testng

iy Beware
When using this the CamelContext will keep state between tests, so have that in
mind. So if your unit tests start to fail for no apparent reason, it could be due this
fact. So use this feature with a bit of care.

"notMatchedHeaderValue") ;

assertMockEndpointsSatisfied() ;

@QOverride
protected RouteBuilder createRouteBuilder () {
return new RouteBuilder () {
public void configure() {

from("direct:start") .filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");
}
}i

See Also

* Testing
¢ Mock
¢ Test

SPRING TESTING

Testing is a crucial part of any development or integration work. The Spring Framework offers
a number of features that makes it easy to test while using Spring for Inversion of Control
which works with JUnit 3.x, JUnit 4.x, and TestNG.

We can use Spring for loC and the Camel Mock and Test endpoints to create sophisticated
integration/unit tests that are easy to run and debug inside your IDE. EThere are three
supported approaches for testing with Spring in Camel.

COOKBOOK

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/testing.html
http://testng.org
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/camelcontext.html

Testing

Name Frameworks Description
Supported
* JUnit 3.x
(deprecated) Provided by org.apache.camel.test.CamelSpringTestSupp:
CamelSpringTestSupport * JUnit 4.x org.apache.camel.testng.CamelSpringTestSupport. EThes
* TestNG - TestEbut do not support Spring annotations on the test
Camel 2.8

Extend the abstract base classes

* JUnit 3.x (org.springframework.test.context.junit38.Abstract]Unit:
Plain Spring Test * JUnit 4.x etc.)Eprovided in Spring Test or use the Spring Test JUni
* TestNG not have feature parity withEorg.apache.camel.test.Came

org.apache.camel.testng.CamelSpringTestSupport.

* JUnit 4.x -
Camel Use the org.apache.camel.test.junit4.CamelSpring]Unit4C
Camel Enhanced Spring 2.10 org.apache.camel.testng. AbstractCamelTestNGSpringCo
Test * TestNG - org.apache.camel.test.junit4.CamelTestSupport and also
Camel and @ContextConfiguration.
2.10

CamelSpringTestSupport

org.apache.camel.test. CamelSpringTestSupport,
org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupportEextend their non-Spring aware counterparts
(org.apache.camel.test.CamelTestSupport, org.apache.camel.test.junit4.CamelTestSupport, and
org.apache.camel.testng.CamelTestSupport) and deliver integration with Spring into your test
classes. Elnstead ofEinstantiatingEthe CamelContext and routes programmatically, these classes
rely on a Spring context to wire the needed components together. Elf your test extends one of
these classes, you must provide the Spring context by implementing the following method.

COOKBOOK 97

http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport

protected abstract AbstractApplicationContext createApplicationContext();

You are responsible for the instantiation of the Spring context in the method implementation.
EAIl of the features available in the non-Spring aware counterparts from Camel Test are
available in your test.

Plain Spring Test

In this approach, your test classes directly inherit from the Spring Test abstract test classes or
use the JUnit 4.x test runner provided in Spring Test. EThis approach
supportsEdependencyEinjection into your test class and the full suite of Spring Test annotations
but does not support the features provided by the CamelSpringTestSupport classes.

Plain Spring Test using JUnit 3.x with XML Config Example

Here is a simple unit test using JUnit 3.x support from Spring Test usingEXML Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

Q@EndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start"
protected ProducerTemplate template;

@DirtiesContext

@QTest

public void testSendMatchingMessage () throws Exception ({
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");
resultEndpoint.assertIsSatisfied() ;

@DirtiesContext

@Test

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

98 COOKBOOK

http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

Notice that we useE@DirtiesContextEon the test methods to forceESpring TestingEto
automatically reload theECamelContextEafter each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in
another test method).

Also notice the use ofE@ContextConfigurationEto indicate that by default we should
look for theEFilterTest-context.xml on the classpathEto configure the test case which looks like
this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>
</filter>
</route>
</camelContext>

</beans>
This test will load a Spring XML configuration file calledFilterTest-context.xmlEfrom the

classpath in the same package structure as the FilterTest class and initialize it along with any
Camel routes we define inside it, then inject theCamelContextinstance into our test case.

For instance, like this maven folder layout:

src/test/java/org/apache/camel/spring/patterns/FilterTest.java
src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Plain Spring Test using JUnit 4.x with Java Config Example

You can completely avoid using an XML configuration file by using Spring Java Config. EHere is a
unit test using JUnit 4.x support from Spring Test usingEJava Config.

@ContextConfiguration (
locations =
"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",

COOKBOOK

99

http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
http://camel.apache.org/spring-java-config.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

100

loader = JavaConfigContextLoader.class)
public class FilterTest extends AbstractJUnit4SpringContextTests {

QEndpointInject (uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce (uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext

@QTest

public void testSendMatchingMessage () throws Exception {
String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived (expectedBody) ;
template.sendBodyAndHeader (expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();

@DirtiesContext

@Test

public void testSendNotMatchingMessage () throws Exception {
resultEndpoint.expectedMessageCount (0) ;

template.sendBodyAndHeader ("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();

@QConfiguration
public static class ContextConfig extends SingleRouteCamelConfiguration {
@Bean
public RouteBuilder route() {
return new RouteBuilder() {
public void configure() {

from("direct:start").filter (header ("foo") .isEqualTo ("bar")) .to("mock:result");
}
}i

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

COOKBOOK

http://jira.springframework.org/browse/SJC-238

Plain Spring Test using JUnit 4.x Runner with XML Config

You can avoid extending Spring classes by using the Spring]Unit4ClassRunner provided by
Spring Test. EThis custom JUnit runner means you are free to choose your own class hierarchy

while retaining all the capabilities of Spring Test.

@RunWith (SpringJdUnit4ClassRunner.class)
@ContextConfiguration
public class MyCamelTest {

e

E @Autowired

E E protected CamelContext camelContext;
E E Q@EndpointInject (uri = "mock:foo")
E E protected MockEndpoint foo;

@Test
@DirtiesContext

E E public void testMocksAreValid() throws Exception {

E E E E foo.message(0) .header ("bar") .isEqualTo ("ABC") ;
E £ £ E MockEndpoint.assertIsSatisfied(camelContext);

— D
[ea0)

Camel Enhanced Spring Test

Using org.apache.camel.test.junit4.CamelSpring)Unit4ClassRunnerErunner with

theE@RunWithEannotation or extending

org.apache.camel.testng.AbstractCamelTestNGSpringContextTests provides the full feature set
of Spring Test with support for the feature set provided in the CamelTestSupport classes. EA
number of Camel specific annotations have been developed in order to provide for declarative
manipulation of the Camel context(s) involved in the test. EThese annotations free your test
classes from having to inherit from the CamelSpringTestSupport classes and also reduce the

amount of code required to customize the tests.

Annotation Class ?opplles Description
Indicates if]MX should be globally disabl
org.apache.camel.test.spring.DisableJmx Class bootstrapped Eduring the test through t!

application contexts.

COOKBOOK 101

102

org.apache.camel.test.spring.ExcludeRoutes

Class

Indicates if certain route builder classes ¢
Elnitializes a org.apache.camel.spi.Packag
of given classes from being resolved. Typ
exclude certain routes,Ewhich might oth
discovered and initialized.

org.apache.camel.test.spring.LazyLoadTypeConverters
(Deprecated)

Class

Indicates if theECamelContexts that are
the use of Spring TestEloaded applicatior
type converters.

org.apache.camel.test.spring.MockEndpoints

Class

Triggers the auto-mocking of endpoints
filter.E The defaultEfilter is "*" which mat
ESeeEorg.apache.camel.impl.InterceptSen
details on the registration of the mock el

org.apache.camel.test.spring.MockEndpointsAndSkip

Class

Triggers the auto-mocking of endpoints
filter.E The defaultEfilter is "*", which ma
ESeeEorg.apache.camel.impl.InterceptSen
details on the registration of the mock el
skip sending the message to matched enc

org.apache.camel.test.spring.ProvidesBreakpoint

Method

Indicates that the annotated method rett
anEorg.apache.camel.spi.BreakpointEfor 1
interceptingEtraffic to all endpoints or si
IDE for debugging.E The method mustEb
and return org.apache.camel.spi.Breakpo

org.apache.camel.test.spring.ShutdownTimeout

Class

Indicates to set the shutdown timeout of
through theEuse of Spring Test loaded aj
is used, the timeout isEautomatically red
framework.

org.apache.camel.test.spring.UseAdviceWith

Class

Indicates the use of adviceWith() within |
withEthis annotation and UseAdviceWitt
anyECamelContexts bootstrapped durin,
Test loadedEapplication contexts will no
author is responsible forEinjecting the C:
executing CamelContext#start()Eon the
advice has been applied to the routes in

The following example illustrates the use of the @MockEndpointsEannotation in order to

setup mock endpoints as interceptors on all endpoints using the Camel Log component and the
@DisableJmx annotation to enable J]MX which is disabled during tests by default. ENote that
we still use the @DirtiesContext annotation to ensure that the CamelContext, routes, and

mock endpoints are reinitialized between test methods.

COOKBOOK

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/main/java/org/apache/camel/impl/InterceptSendToMockEndpointStrategy.java?view=markup

@RunWith (CamelSpringJdUnit4ClassRunner.class)
@ContextConfiguration

@DirtiesContext (classMode = ClassMode.AFTER EACH TEST METHOD)
@MockEndpoints ("log:*")

@Disabledmx (false)

public class CamelSpringJdUnit4ClassRunnerPlainTest {

QAutowired
protected CamelContext camelContext2;

protected MockEndpoint mockB;

@EndpointInject (uri = "mock:c", context = "camelContext2")
protected MockEndpoint mockC;

@Produce (uri = "direct:start2", context = "camelContext2")
protected ProducerTemplate start2;

@EndpointInject (uri = "mock:log:org.apache.camel.test.junit4.spring", context =
"camelContext2")

protected MockEndpoint mockLog;

@Test
public void testPositive() throws Exception {

mockC.expectedBodiesReceived ("David") ;
mockLog.expectedBodiesReceived ("Hello David");

start2.sendBody ("David") ;

MockEndpoint.assertIsSatisfied(camelContext);

Adding more Mock expectations

If you wish to programmatically add any new assertions to your test you can easily do so with
the following. Notice how we use @Endpointlnject to inject a Camel endpoint into our code
then the Mock API to add an expectation on a specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject (uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksArevValid() throws Exception ({

// lets add more expectations

foo.message (0) .header ("bar") .isEqualTo ("ABC") ;

COOKBOOK

103

http://camel.apache.org/mock.html

MockEndpoint.assertIsSatisfied(camelContext);

Further processing the received messages

Sometimes once a Mock endpoint has received some messages you want to then process them
further to add further assertions that your test case worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

QAutowired
protected CamelContext camelContext;

@EndpointInject (uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksArevValid() throws Exception ({

lets add more expectations...
MockEndpoint.assertIsSatisfied(camelContext) ;

>w lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges () ;
for (Exchange exchange : list) ({
Message in = exchange.getIn();

Sending and receiving messages

It might be that the Enterprise Integration Patterns you have defined in either Spring XML or
using the Java DSL do all of the sending and receiving and you might just work with the Mock
endpoints as described above. However sometimes in a test case its useful to explicitly send or
receive messages directly.

To send or receive messages you should use the Bean Integration mechanism. For example
to send messages inject a ProducerTemplate using the @Endpointlnject annotation then call the
various send methods on this object to send a message to an endpoint. To consume messages
use the @MessageDriven annotation on a method to have the method invoked when a message
is received.

104 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html
http://camel.apache.org/dsl.html
http://camel.apache.org/mock.html
http://camel.apache.org/bean-integration.html

public class Foo {
Q@EndpointInject (uri="activemqg: foo.bar")
ProducerTemplate producer;

public void doSomething () {

lets send a messa !

producer.sendBody ("<hello>world!</hello>") ;

lets consume mes s from the 'cheese' queue

@MessageDriven (uri="activemqg:cheese")

public void onCheese (String name) {

See Also

* A real example test case using Mock and Spring along with its Spring XML
* Bean Integration

* Mock endpoint

* Test endpoint

CAMEL GUICE

We have support for Google Guice as a dependency injection framework.

Maven users will need to add the following dependency to their pom. xm1 for this
component:

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-guice</artifactId>
<version>x.x.x</version>

Ll== se the same vers

</dependency>

Dependency Injecting Camel with Guice

The GuiceCamelContext is designed to work nicely inside Guice. You then need to bind it
using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules you can use if you
wish - or you can bind the GuiceCamelContext yourself in your own module.

¢ CamelModule is the base module which binds the GuiceCamelContext but leaves it
up you to bind the RouteBuilder instances

COOKBOOK

105

https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://code.google.com/p/google-guice/
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html

106

* CamelModuleWithRouteTypes extends CamelModule so that in the constructor of
the module you specify the RouteBuilder classes or instances to use
* CamelModuleWithMatchingRoutes extends CamelModule so that all bound
RouteBuilder instances will be injected into the CamelContext or you can supply an
optional Matcher to find RouteBuilder instances matching some kind of predicate.
So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector (new
CamelModuleWithRouteTypes (MyRouteBuilder.class, AnotherRouteBuilder.class));
i1f required you can lookup the CamelContext

CamelContext camelContext = injector.getInstance (CamelContext.class);

Or inject them all

Injector injector = Guice.createlInjector (new CamelModuleWithRouteTypes());
if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance (CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any other dependent
objects.

Bootstrapping with JNDI

A common pattern used in J2EE is to bootstrap your application or root objects by looking
them up in JNDI. This has long been the approach when working with |MS for example -
looking up the JMS ConnectionFactory in JNDI for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI Provider which lets
you bootstrap Guice from a jndi.properties file which can include the Guice Modules to
create along with environment specific properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify the jndi
properties file name in the Guice Main with option -j or -jndiProperties with the properties file
location to let Guice Main to load right jndi properties file.

Configuring Component, Endpoint or RouteBuilder instances

You can use Guice to dependency inject whatever objects you need to create, be it an
Endpoint, Component, RouteBuilder or arbitrary bean used within a route.

The easiest way to do this is to create your own Guice Module class which extends one of
the above module classes and add a provider method for each object you wish to create. A
provider method is annotated with @Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

COOKBOOK

hhttp://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
http://camel.apache.org/routebuilder.html
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
http://camel.apache.org/guice.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/bean-integration.html

@Provides
@JIndiBind ("jms")
JmsComponent Jjms (@Named ("activemg.brokerURL") String brokerUrl) ({
return JmsComponent.jmsComponent (new ActiveMQConnectionFactory (brokerUrl));

You can optionally annotate the method with @JndiBind to bind the object to JNDI at some
name if the object is a component, endpoint or bean you wish to refer to by name in your
routes.

You can inject any environment specific properties (such as URLs, machine names,
usernames/passwords and so forth) from the jndi.properties file easily using the @Named
annotation as shown above. This allows most of your configuration to be in Java code which is
typesafe and easily refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development, testing, production etc.

Creating multiple RouteBuilder instances per type

It is sometimes useful to create multiple instances of a particular RouteBuilder with different
configurations.

To do this just create multiple provider methods for each configuration; or create a single
provider method that returns a collection of RouteBuilder instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JIndiBind ("foo")
Collection<RouteBuilder> foo (@Named("fooUrl") String fooUrl) ({
return Lists.newArraylList (new MyRouteBuilder (fooUrl), new
MyRouteBuilder ("activemq:CheeseQueue")) ;

}

See Also

* there are a number of Examples you can look at to see Guice and Camel being used
such as Guice JMS Example
* Guice Maven Plugin for running your Guice based routes via Maven

COOKBOOK

107

http://camel.apache.org/routebuilder.html
http://camel.apache.org/examples.html
http://camel.apache.org/guice-jms-example.html
http://camel.apache.org/guice-maven-plugin.html

108

TEMPLATING

When you are testing distributed systems its a very common requirement to have to stub out
certain external systems with some stub so that you can test other parts of the system until a
specific system is available or written etc.
A great way to do this is using some kind of Template system to generate responses to
requests generating a dynamic message using a mostly-static body.
There are a number of templating components included in the Camel distribution you could
use
* FreeMarker
» StringTemplate
* Velocity
* XQuery
* XSLT
or the following external Camel components
* Scalate

Example

Here's a simple example showing how we can respond to InOut requests on the My.Queue
queue on ActiveMQ with a template generated response. The reply would be sent back to the
JMSReplyTo Destination.

from("activemqg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") ;

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") .
to("activemg:Another.Queue") ;

See Also

* Mock for details of mock endpoint testing (as opposed to template based stubs).

DATABASE

Camel can work with databases in a number of different ways. This document tries to outline
the most common approaches.

COOKBOOK

http://camel.apache.org/freemarker.html
http://camel.apache.org/stringtemplate.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://scalate.fusesource.org/camel.html
http://camel.apache.org/activemq.html
http://camel.apache.org/mock.html

Database endpoints

Camel provides a number of different endpoints for working with databases
» JPA for working with hibernate, openjpa or toplink. When consuming from the
endpoints entity beans are read (and deleted/updated to mark as processed) then
when producing to the endpoints they are written to the database (via insert/update).
* iBATIS similar to the above but using Apache iBATIS
» |DBC similar though using explicit SQL

Database pattern implementations

Various patterns can work with databases as follows
* Idempotent Consumer
* Aggregator
* BAM for business activity monitoring

PARALLEL PROCESSING AND ORDERING

It is a common requirement to want to use parallel processing of messages for throughput and
load balancing, while at the same time process certain kinds of messages in order.

How to achieve parallel processing

You can send messages to a number of Camel Components to achieve parallel processing and
load balancing such as

» SEDA for in-JVM load balancing across a thread pool

* ActiveMQ or JMS for distributed load balancing and parallel processing

» JPA for using the database as a poor mans message broker
When processing messages concurrently, you should consider ordering and concurrency issues.
These are described below

Concurrency issues

Note that there is no concurrency or locking issue when using ActiveMQ, JMS or SEDA by
design; they are designed for highly concurrent use. However there are possible concurrency
issues in the Processor of the messages i.e. what the processor does with the message?

For example if a processor of a message transfers money from one account to another
account; you probably want to use a database with pessimistic locking to ensure that operation
takes place atomically.

COOKBOOK

109

http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/jdbc.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/bam.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/seda.html
http://camel.apache.org/processor.html

110

Ordering issues

As soon as you send multiple messages to different threads or processes you will end up with
an unknown ordering across the entire message stream as each thread is going to process
messages concurrently.

For many use cases the order of messages is not too important. However for some
applications this can be crucial. e.g. if a customer submits a purchase order version |, then
amends it and sends version 2; you don't want to process the first version last (so that you
loose the update). Your Processor might be clever enough to ignore old messages. If not you
need to preserve order.

Recommendations

This topic is large and diverse with lots of different requirements; but from a high level here are
our recommendations on parallel processing, ordering and concurrency
* for distributed locking, use a database by default, they are very good at it @

* to preserve ordering across a JMS queue consider using Exclusive Consumers in the
ActiveMQ component
* even better are Message Groups which allows you to preserve ordering across
messages while still offering parallelisation via the JMSXGrouplD header to
determine what can be parallelized
* if you receive messages out of order you could use the Resequencer to put them
back together again
A good rule of thumb to help reduce ordering problems is to make sure each single can be
processed as an atomic unit in parallel (either without concurrency issues or using say, database
locking); or if it can't, use a Message Group to relate the messages together which need to be
processed in order by a single thread.

Using Message Groups with Camel

To use a Message Group with Camel you just need to add a header to the output JMS message
based on some kind of Correlation Identifier to correlate messages which should be processed
in order by a single thread - so that things which don't correlate together can be processed
concurrently.

For example the following code shows how to create a message group using an XPath
expression taking an invoice's product code as the Correlation Identifier

from("activemg:a") .setHeader ("JMSXGroupID", xpath("/invoice/
productCode")) .to("activemg:b") ;

You can of course use the Xml Configuration if you prefer

COOKBOOK

http://camel.apache.org/processor.html
http://activemq.apache.org/exclusive-consumer.html
http://camel.apache.org/activemq.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/resequencer.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/xml-configuration.html

ASYNCHRONOUS PROCESSING

Overview

Camel supports a more complex asynchronous processing model. The asynchronous

processors implement the AsyncProcessor interface which is derived from the more

synchronous Processor interface. There are advantages and disadvantages when using

asynchronous processing when compared to using the standard synchronous processing model.
Advantages:

* Processing routes that are composed fully of asynchronous processors do not use up
threads waiting for processors to complete on blocking calls. This can increase the
scalability of your system by reducing the number of threads needed to process the
same workload.

* Processing routes can be broken up into SEDA processing stages where different
thread pools can process the different stages. This means that your routes can be
processed concurrently.

Disadvantages:

* Implementing asynchronous processors is more complex than implementing the

synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple
synchronous APIs unless you identify a performance of scalability requirement that dictates
otherwise. A Processor whose process() method blocks for a long time would be good
candidates for being converted into an asynchronous processor-.

Interface Details

public interface AsyncProcessor extends Processor ({
boolean process (Exchange exchange, AsyncCallback callback);

The AsyncProcessor defines a single process () method which is very similar to it's
synchronous Processor.process() brethren. Here are the differences:
* A non-null AsyncCallback MUST be supplied which will be notified when the
exchange processing is completed.
* |t MUST not throw any exceptions that occurred while processing the exchange.
Any such exceptions must be stored on the exchange's Exception property.
* It MUST know if it will complete the processing synchronously or asynchronously.
The method will return true if it does complete synchronously, otherwise it returns
false.

COOKBOOK 11

http://camel.apache.org/seda.html

112

) Supported versions
The information on this page applies for Camel 2.4 onwards. Before Camel 2.4 the
asynchronous processing is only implemented for JBl where as in Camel 2.4
onwards we have implemented it in many other areas. See more at Asynchronous
Routing Engine.

* When the processor has completed processing the exchange, it must call the
callback.done (boolean sync) method. The sync parameter MUST match
the value returned by the process () method.

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the AsyncProcessor
interface, can be coerced to implement the AsyncProcessor interface. This is usually done when
you are implementing a Camel component consumer that supports asynchronous completion of
the exchanges that it is pushing through the Camel routes. Consumers are provided a
Processor object when created. All Processor object can be coerced to a AsyncProcessor using
the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert (processor);

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start
with the consumer implementation making use of the asynchronous processing API. If it called
the synchronous process() method instead, the consumer's thread would be forced to be
blocked and in use for the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous API, it does not
mean that the processing will take place asynchronously. It only allows the possibility that it can
be done without tying up the caller's thread. If the processing happens asynchronously is
dependent on the configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback class instance which
can reference the exchange object that was declared final. This allows it to finish up any post
processing that is needed when the called processor is done processing the exchange. See
below for an example.

final Exchange exchange = ...

AsyncProcessor asyncProcessor = ...

asyncProcessor.process (exchange, new AsyncCallback() {
public void done (boolean sync) {

if (exchange.isFailed()) {

COOKBOOK

http://camel.apache.org/jbi.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the AsyncProcessor, and have seen
how to make use of it when calling processors, lets looks a what the thread model/sequence
scenarios will look like for some sample routes.

The Jetty component's consumers support async processing by using continuations. Suffice
to say it can take a http request and pass it to a camel route for async processing. If the
processing is indeed async, it uses Jetty continuation so that the http request is 'parked' and the
thread is released. Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park’ the request. Jetty un-parks the request, the http
response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async".
This is why AsyncProcessor.process() implementations MUST accurately report if request is
completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and implement the
AsyncProcessor interface. A route that uses both the jetty asynchronous consumer and the jhc
asynchronous producer will be a fully asynchronous route and has some nice attributes that can
be seen if we take a look at a sequence diagram of the processing route. For the route:

from("jetty:http: ocalhost:¢€ service") .to("jhc:http://localhost/service-impl") ;

The sequence diagram would look something like this:

The diagram simplifies things by making it looks like processors implement the
AsyncCallback interface when in reality the AsyncCallback interfaces are inline inner classes, but
it illustrates the processing flow and shows how 2 separate threads are used to complete the
processing of the original http request. The first thread is synchronous up until processing hits
the jhc producer which issues the http request. It then reports that the exchange processing
will complete async since it will use a NIO to complete getting the response back. Once the jhc
component has received a full response it uses AsyncCallback.done () method to notify
the caller. These callback notifications continue up until it reaches the original jetty consumer
which then un-parks the http request and completes it by providing the response.

COOKBOOK

113

114

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous
processors/components. The pipeline processor is the backbone of a Camel processing route. It
glues all the processing steps together. It is implemented as an AsyncProcessor and supports
interleaving synchronous and asynchronous processors as the processing steps in the pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation, both of which
are synchronous processors. Lets say we want to load file from the data/in directory validate
them with the MyValidator() processor, Transform them into JPA java objects using
MyTransformation and then insert them into the database using the JPA component. Lets say
that the transformation process takes quite a bit of time and we want to allocate 20 threads to
do parallel transformations of the input files. The solution is to make use of the thread
processor. The thread is AsyncProcessor that forces subsequent processing in asynchronous
thread from a thread pool.

The route might look like:

from("file:data/in") .process (new MyValidator ()) .threads (20) .process (new
MyTransformation()) .to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the 2nd part of the thread sequence.

Staying synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things
synchronously. This is due to the fact that starting up an asynchronous thread and doing a
context switch to it adds a little bit of of overhead. So it is generally encouraged that
AsyncProcessors do as much work as they can synchronously. When they get to a step that
would block for a long time, at that point they should return from the process call and let the
caller know that it will be completing the call asynchronously.

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS

ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck (see this page
for more detail) mostly since they don't support Competing Consumers.

Most folks want Queue semantics when consuming messages; so that you can support
Competing Consumers for load balancing along with things like Message Groups and Exclusive
Consumers to preserve ordering or partition the queue across consumers.

However if you are using another JMS provider you can implement Virtual Topics by
switching to ActiveMQ @ or you can use the following Camel pattern.

COOKBOOK

http://camel.apache.org/jpa.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html

First here's the ActiveMQ approach.
* send to activemgq:topic:VirtualTopic.Orders
» for consumer A consume from activemq:Consumer.A.VirtualTopic.Orders
When using another message broker use the following pattern
* send to jms:Orders
* add this route with a to() for each logical durable topic subscriber

from("jms:0rders") .to("jms:Consumer.A", "jms:Consumer.B", ...);

+ for consumer A consume from jms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF

In CXF you offer or consume a webservice by defining it«s address. The first part of the
address specifies the protocol to use. For example address="http://localhost:9000" in an
endpoint configuration means your service will be offered using the http protocol on port 9000
of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel".
So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address
to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which implements the CXF
transport APl with the Camel core library. This allows you to use camel«s routing engine and
integration patterns support smoothly together with your CXF services.

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER

To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You
can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring

You can use the following snippet in your applicationcontext if you want to configure anything
special. If you only want to activate the camel transport you do not have to do anything in your
application context. As soon as you include the camel-cxf-transport jar (or camel-cxf.jar if your
camel version is less than 2.7.x) in your app cxf will scan the jar and load a
CamelTransportFactory for you.

<!-- you don need to specif he CamelTransportFactory configuration as i is autc
<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />

<!-- checkException new added in Camel 2.1 and Camel 1.6.2 --

COOKBOOK

115

http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports
http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

116

<!-- If checkException is true , CamelDestination will check the outMessage's
exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->

<property name="checkException" value="true" />

<property name="transportIds">
<list>

<value>http://cxf.apache.org/transports/camel</value>

</list>

</property>

</bean>

Integrating the Camel Transport in a programmatic way

Camel transport provides a setContext method that you could use to set the Camel context
into the transport factory. If you want this factory take effect, you need to register the factory
into the CXF bus. Here is a full example for you.

import org.apache.cxf.Bus;

import org.apache.cxf.BusFactory;

import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;

BusFactory bf = BusFactory.newlInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();

// set up the CamelContext which will be use by the CamelTransportFactory

camelTransportFactory.setCamelContext (context)

// 1f you are using CXF higher then 2.4.x the

camelTransportFactory.setBus (bus) ;

// 1f you are 1 to register the ConduitInitiatorManager and

DestinationFac

// register the)
ConduitInitiatorManager cim = bus.getExtension (ConduitInitiatorManager.class);

cim.registerConduitInitiator (CamelTransportFactory.TRANSPORT ID,

camelTransportFactory) ;
// re

DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);

ister the destination factory

dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT ID,
camelTransportFactory) ;

// set or bus as the default bus for cxf
BusFactory.setDefaultBus (bus) ;

COOKBOOK

CONFIGURE THE DESTINATION AND CONDUIT WITH
SPRING

Namespace

The elements used to configure an Camel transport endpoint are defined in the namespace
http://cxf.apache.org/transports/camel. It is commonly referred to using the
prefix camel. In order to use the Camel transport configuration elements you will need to add
the lines shown below to the beans element of your endpoint's configuration file. In addition,
you will need to add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Listing 1. Adding the Configuration Namespace

<beans ...
xmlns:camel="http://cxf.apache.org/transports/came

xsi:schemalLocation="...
http:
http:
>

The destination element

You configure an Camel transport server endpoint using the camel:destination element
and its children. The camel :destination element takes a single attribute, name, the
specifies the WSDL port element that corresponds to the endpoint. The value for the name
attribute takes the form portQName . camel-destination. The example below shows the
camel :destination element that would be used to add configuration for an endpoint that
was specified by the WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net.

Listing 1. camel:destination Element

<camel:destination name="{http:

widgetvendor.net}widgetSOAPPort.http-destination>
<camelContext id="context" xmlns="http://activemqg.apache.org/camel/schema/spring">
<route>
<from uri="direct:EndpointC" />
<to uri="direct:EndpointD" />
</route>
</camelContext>
</camel:destination>

COOKBOOK

117

http://cxf.apache.org/transports/camel
http://widgets.widgetvendor.net

<!-- new added feature since Camel 2.11.x
<camel:destination name="{http://wic

brt.camel-destination" camelContextId="context" />

The camel:destination element for Spring has a number of child elements that specify
configuration information. They are described below.

Element Description

camel-

. You can specify the camel context in the camel destination
spring:camelContext

The camel context id which you want inject into the camel

camel :camelContextRef L
destination

The conduit element

You configure an Camel transport client using the camel : conduit element and its children.
The camel:conduit element takes a single attribute, name, that specifies the WSDL port
element that corresponds to the endpoint. The value for the name attribute takes the form
portQName . camel-conduit. For example, the code below shows the camel:conduit
element that would be used to add configuration for an endpoint that was specified by the
WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint’s target namespace was
http://widgets.widgetvendor.net.

Listing 1. http-conf:conduit Element

<camelContext id="conduit context" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>
<from uri="direct:EndpointA" />
<to uri="direct:EndpointB" />
</route>
</camelContext>

<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
<camel:camelContextRef>conduit context</camel:camelContextRef>
</camel:conduit>

<!-- new added feature since Camel 2.11.x
<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit"
camelContextId="conduit context" />

<camel:conduit name="*.camel-conduit">

118 COOKBOOK

http://widgets.widgetvendor.net

</camel:conduit>

The camel:conduit element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel- . . .
. You can specify the camel context in the camel conduit

spring:camelContext

The camel context id which you want inject into the
camel:camelContextRef . Y I
camel conduit

CONFIGURE THE DESTINATION AND CONDVUIT WITH
BLUEPRINT

From Camel 2.1 1.x, Camel Transport supports to be configured with Blueprint
If you are using blueprint, you should use the the namespace
http://cxf.apache.org/transports/camel/blueprint and import the schema
like the blow.
Listing 1. Adding the Configuration Namespace for blueprint

<beans ...

xmlns:camel="http://cxf.apache.or

xsi:schemalocation="...
http:
http:
002

In blueprint camel:conduit camel:destination only has one camelContextld
attribute, they doesn't support to specify the camel context in the camel destination.

<camel:conduit id="*.camel-conduit" camelContextId="camell" />

<camel:destination id="*.camel-destination" camelContextId="camell" />

COOKBOOK

119

http://cxf.apache.org/transports/camel/blueprint

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF

This example show how to use the camel load balance feature in CXF, and you need load the
configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA"
and "camel://direct:EndpointB"

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://cxf.apache.org/transports/camel"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/
camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/
cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
">

<!-- Enable bridge between Camel Property Placeholder and Spring Property
placeholder so we can use system properties
to dynamically set the port number for unit testing the example. -->
<bean id="bridgePropertyPlaceholder"
class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer" />

<bean id = "roundRobinRef"
class="org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id="dest context" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jetty:http://localhost:{{port}}/GreeterContext/GreeterPort"/>
<loadBalance ref="roundRobinRef">
<to uri="direct:EndpointA"/>
<to uri="direct:EndpointB"/>
</loadBalance>
</route>
</camelContext>

the camel ¢

text to the Camel trar
<camel:destination name="{http://apache.org/

hello world soap http}CamelPort.camel-destination">
<camel:camelContextRef>dest context</camel:camelContextRef>
</camel:destination>

</beans>

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF

Better JMS Transport for CXF Webservice using Apache CamelE

120 COOKBOOK

http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html

INTRODUCTION

When sending an Exchange to an Endpoint you can either use a Route or a ProducerTemplate.
This works fine in many scenarios. However you may need to guarantee that an exchange is

delivered to

the same endpoint that you delivered a previous exchange on. For example in the

case of delivering a batch of exchanges to a MINA socket you may need to ensure that they are

all delivered

through the same socket connection. Furthermore once the batch of exchanges

have been delivered the protocol requirements may be such that you are responsible for
closing the socket.

USING A PRODUCER

To achieve fine grained control over sending exchanges you will need to program directly to a
Producer. Your code will look similar to:

CamelContext camelContext = ...

ain

Endpoint
Producer
producer

try {

Object

AN enapo JL;', ANna create f,i; producer we w L l l pe us JLL', J .
endpoint = camelContext.getEndpoint ("someuri:etc");

producer = endpoint.createProducer();
.start () ;

each message to send

requestMessage = ...

Exchange exchangeToSend = producer.createExchange();

exchangeToSend () .setBody (requestMessage) ;

producer.process (exchangeToSend) ;

I'idy

producer.stop () ;

finally {

7 the

In the case of using Apache MINA the producer.stop() invocation will cause the socket to be

closed.

COOKBOOK

121

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/routes.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/mina.html

122

There now follows the documentation on camel tutorials

We have a number of tutorials as listed below. The tutorials often comes with source code
which is either available in the Camel Download or attached to the wiki page.

OAuth Tutorial

This tutorial demonstrates how to implement OAuth for a web application with
Camel's gauth component. The sample application of this tutorial is also online at
http://gauthcloud.appspot.com/

Tutorial for Camel on Google App Engine

This tutorial demonstrates the usage of the Camel Components for Google App
Engine. The sample application of this tutorial is also online at
http://camelcloud.appspot.com/

Tutorial on Spring Remoting with JMS

This tutorial is focused on different techniques with Camel for Client-Server
communication.

Report Incident - This tutorial introduces Camel steadily and is based on a real life
integration problem

This is a very long tutorial beginning from the start; its for entry level to Camel. Its
based on a real life integration, showing how Camel can be introduced in an existing
solution. We do this in baby steps. The tutorial is currently work in progress, so
check it out from time to time. The tutorial explains some of the inner building blocks
Camel uses under the covers. This is good knowledge to have when you start using
Camel on a higher abstract level where it can do wonders in a few lines of routing
DSL.

Using Camel with ServiceMix a tutorial on using Camel inside Apache ServiceMix.
Better JMS Transport for CXF Webservice using Apache Camel Describes how to
use the Camel Transport for CXF to attach a CXF Webservice to a JMS Queue
Tutorial how to use good old Axis 1.4 with Camel

This tutorial shows that Camel does work with the good old frameworks such as
AXIS that is/was widely used for WebService.

Tutorial on using Camel in a Web Application

This tutorial gives an overview of how to use Camel inside Tomcat, Jetty or any other
servlet engine

Tutorial on Camel 1.4 for Integration

Another real-life scenario. The company sells widgets, with a somewhat unique
business process (their customers periodically report what they've purchased in order
to get billed). However every customer uses a different data format and protocol.
This tutorial goes through the process of integrating (and testing!) several customers

TUTORIALS

http://camel.apache.org/download.html
http://camel.apache.org/tutorial-oauth.html
http://camel.apache.org/gauth.html
http://gauthcloud.appspot.com/
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camelcloud.appspot.com/
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/tutorial-axis-camel.html
http://camel.apache.org/tutorial-on-using-camel-in-a-web-application.html
http://camel.apache.org/tutorial-business-partners.html

 Notice
These tutorials listed below, is hosted at Apache. We offer the Articles page where
we have a link collection for 3rd party Camel material, such as tutorials, blog posts,
published articles, videos, pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a link to it. You can
contact the Camel Team, for example using the Mailing Lists, (or post a tweet with the word
Apache Camel).

and their electronic reporting of the widgets they've bought, along with the company's
response.

* Tutorial how to build a Service Oriented Architecture using Camel with OSGI -
Updated 20/11/2009
The tutorial has been designed in two parts. The first part introduces basic concept to
create a simple SOA solution using Camel and OSGI and deploy it in a OSGI Server
like Apache Felix Karaf and Spring DM Server while the second extends the
Reportincident tutorial part 4 to show How we can separate the different layers
(domain, service, ...) of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI bundles.

* Several of the vendors on the Commercial Camel Offerings page also offer various
tutorials, webinars, examples, etc.... that may be useful.

* Examples
While not actual tutorials you might find working through the source of the various
Examples useful.

TUTORIAL ON SPRING REMOTING WITH JMS
E

PREFACE

This tutorial aims to guide the reader through the stages of creating a project which uses Camel
to facilitate the routing of messages from a JMS queue to a Spring service. The route works in a
synchronous fashion returning a response to the client.

* Tutorial on Spring Remoting with JMS

* Preface

* Prerequisites

» Distribution

* About

* Create the Camel Project

* Update the POM with Dependencies

TUTORIALS

123

http://camel.apache.org/tutorial-osgi-camel-part1.html
http://camel.apache.org/tutorial-osgi-camel-part2.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/commercial-camel-offerings.html
http://camel.apache.org/examples.html
http://camel.apache.org/examples.html
http://www.springramework.org
http://camel.apache.org/articles.html
http://camel.apache.org/team.html
http://camel.apache.org/mailing-lists.html

124

 Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

* Writing the Server

* Create the Spring Service

* Define the Camel Routes

» Configure Spring

* Run the Server

* Writing The Clients

* Client Using The ProducerTemplate
* Client Using Spring Remoting

* Client Using Message Endpoint EIP Pattern
* Run the Clients

* Using the Camel Maven Plugin

* Using Camel JMX

* See Also

PREREQUISITES

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

DISTRIBUTION

This sample is distributed with the Camel distribution as examples/camel-example-
spring-jms.

ABOUT

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless
integrated with Spring to leverage the best of both worlds. This sample is client server solution
using JMS messaging as the transport. The sample has two flavors of servers and also for clients
demonstrating different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that
does computations on the received message and returns a response.
The EIP patterns used in this sample are:

Pattern Description

Message

Channel We need a channel so the Clients can communicate with the server.

TUTORIALS

http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html

Message The information is exchanged using the Camel Message interface.
Message This is where Camel shines as the message exchange between the Server and
5 the Clients are text based strings with numbers. However our business service
Translator . . .
uses int for numbers. So Camel can do the message translation automatically.
It should be easy to send messages to the Server from the the clients. This is
Message archived with Camels powerful Endpoint pattern that even can be more
Endpoint powerful combined with Spring remoting. The tutorial have clients using each
kind of technique for this.
Point to
Point We using JMS queues so there are only one receive of the message exchange
Channel
Event . . .
Driven Yes the JMS broker is of course event driven and only reacts when the client
sends a message to the server.
Consumer

We use the following Camel components:

Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server side
We use the bean binding to easily route the messages to our business
Bean . . ;
service. This is a very powerful component in Camel.
File In the AOP enabled Server we store audit trails as files.
JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -Dgroupld=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, its spring, jms components and
finally ActiveMQ as the message broker.

<!-- required by both clier

T ana server —-—>

<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
</dependency>

TUTORIALS

125

http://camel.apache.org/message.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/activemq.html
http://camel.apache.org/bean.html
http://camel.apache.org/file2.html
http://camel.apache.org/jms.html

) For the purposes of the tutorial a single Maven project will be used for both the
client and server. Ideally you would break your application down into the
appropriate components.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>

</dependency>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-spring</artifactId>

</dependency>

<dependency>
<groupId>org.apache.activemg</groupId>
<artifactId>activemg-camel</artifactId>

</dependency>

<dependency>
<groupld>org.apache.activemg</groupId>
<artifactId>activemg-pool</artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this dependency:

<!-- xbean is required fo

r ACT1VeE

g xml file -->
<dependency>

<groupld>org.apache.xbean</groupId>

<artifactId>xbean-spring</artifactId>
</dependency>

WRITING THE SERVER

Create the Spring Service

For this example the Spring service (= our business service) on the server will be a simple
multiplier which trebles in the received value.

public interface Multiplier ({

/**
* Multiplies the given number by a pre-defined constant.
*

* @param originalNumber The number to be multiplied
* @return The result of the multiplication

126 TUTORIALS

*/

int multiply(int originalNumber);

And the implementation of this service is:

@Service (value = "multiplier")
public class Treble implements Multiplier ({

public int multiply(final int originalNumber) ({
return originalNumber * 3;

Notice that this class has been annotated with the @Service spring annotation. This ensures
that this class is registered as a bean in the registry with the given name multiplier.

Define the Camel Routes

public class ServerRoutes extends RouteBuilder {

@Override
public void configure() throws Exception ({
// route from the numbers queue to our business that is a spring bean

registered with the id=multiplier

// Camel will introspect the multiplier bean and find the best candidate of
the method to invoke.

// You can add annotations etc to help Camel find the method to invoke.

// As our multiplier bean only have one method its easy for Camel to find the
method to use.

from("jms:queue:numbers") .to("multiplier");

// Camel has several ways to configure the same routing, we have defined some
of them here below
// as above but with the bean: prefix

//from("jms:queue:numbers") .to ("bean:multiplier") ;

// beanRef is using explicit bean bindings to lookup the multiplier bean and
invoke the multiply method
//from("jms:queue:numbers") .beanRef ("multiplier", "multiply"):;

// the same as above but expressed as a URI configuration
(

//from("jms:queue:numbers") .to ("bean:multiplier?methodName=multiply") ;

TUTORIALS

127

128

This defines a Camel route from the JMS queue named numbers to the Spring bean named
multiplier. Camel will create a consumer to the JMS queue which forwards all received
messages onto the the Spring bean, using the method named multiply.

Configure Spring

The Spring config file is placed under META-INF/spring as this is the default location used
by the Camel Maven Plugin, which we will later use to run our server.

First we need to do the standard scheme declarations in the top. In the camel-server.xml we
are using spring beans as the default bean: namespace and springs context:. For configuring
ActiveMQ we use broker: and for Camel we of course have camel:. Notice that we don't
use version numbers for the camel-spring schema. At runtime the schema is resolved in the
Camel bundle. If we use a specific version number such as 1.4 then its IDE friendly as it would
be able to import it and provide smart completion etc. See Xml Reference for further details.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:broker="http://activemq.apache.org/schema/core"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd
http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/
activemg-core.xsd">

We use Spring annotations for doing loC dependencies and its component-scan features comes
to the rescue as it scans for spring annotations in the given package name:

<!-- let Spring do its IoC stuff in this pack

<context:component-scan base-package="org.apache.camel.example.server"/>

Camel will of course not be less than Spring in this regard so it supports a similar feature for
scanning of Routes. This is configured as shown below.

Notice that we also have enabled the J]MXAgent so we will be able to introspect the Camel
Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->
<camel:camelContext id="camel-server">
<camel :package>org.apache.camel.example.server</camel:package>
ble JMX € SO we can o the se 1 ¥

URI o)

TUTORIALS

http://camel.apache.org/bean.html
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/xml-reference.html
http://camel.apache.org/camel-jmx.html

<camel:jmxAgent id="agent" createConnector="true"/>
</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to listen on TCP port
61610.

<!-- lets configure \ctiveMQ JMS broker server -->

<broker:broker useJmx="true" persistent="false" brokerName="myBroker">
<broker:transportConnectors>

l-— ex e a VM trar

nd Camel on the
server side

<broker:transportConnector name="vm" uri="vm://myBroker"/>

<l—— ox

e a TCP transport for clients to

<broker:transportConnector name="tcp" uri="tcp://localhost:${tcp.port}"/>
</broker:transportConnectors>
</broker:broker>

As this examples uses JMS then Camel needs a JMS component that is connected with the
ActiveMQ broker. This is configured as shown below:

== ets configure the Camel ActiveMQ to use the embeddec

<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="vm://myBroker"/>
</bean>

Notice: The JMS component is configured in standard Spring beans, but the gem is that the
bean id can be referenced from Camel routes - meaning we can do routing using the JMS
Component by just using jmss: prefix in the route URI. What happens is that Camel will find in
the Spring Registry for a bean with the id="jms". Since the bean id can have arbitrary name you
could have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers) .to ("multiplier");

We use the vm protocol to connect to the ActiveMQ server as its embedded in this
application.

component- Defines the package to be scanned for Spring stereotype annotations, in this

scan case, to load the "multiplier" bean

camel- Defines the package to be scanned for Camel routes. Will find the
context ServerRoutes class and create the routes contained within it
jms bean Creates the Camel JMS component

TUTORIALS

129

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

130

Run the Server

The Server is started using the org.apache.camel.spring.Main class that can start
camel-spring application out-of-the-box. The Server can be started in several flavors:

= as a standard java main application - just start the

org.apache.camel.spring.Main class

= using maven jave:exec

= using camel:run
In this sample as there are two servers (with and without AOP) we have prepared some
profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java —-PCamelServer

WRITING THE CLIENTS

This sample has three clients demonstrating different Camel techniques for communication
= CamelClient using the ProducerTemplate for Spring template style coding
= CamelRemoting using Spring Remoting
= CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly using ProducerTemplate. We will later create a
client which uses Spring remoting to hide the fact that messaging is being used.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id="camel-client">
<camel:template id="camelTemplate"/>
</camel:camelContext>

nd messages to a remote Active MQ server -->

<!-- Camel JMSProducer to be able to se

<bean id="jms" class="org.apache.activemqg.camel.component.ActiveMQComponent">

TUTORIALS

http://camel.apache.org/camel-run-maven-goal.html
http://camel.apache.org/producertemplate.html

<property name="brokerURL" value="tcp://localhost:${tcp.port}"/>
</bean>

The client will not use the Camel Maven Plugin so the Spring XML has been placed in src/main/
resources to not conflict with the server configs.

camelContext The Camel context is defined but does not contain any routes

template The ProducerTemplate is used to place messages onto the JMS queue

This initialises the Camel JMS component, allowing us to place messages

jms bean
onto the queue

And the CamelClient source code:

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already
running!");

ApplicationContext context = new
ClassPathXmlApplicationContext ("camel-client.xml");

get the camel template for Spring template style

producer)

ProducerTemplate camelTemplate = context.getBean("camelTemplate",
ProducerTemplate.class) ;

System.out.println("Invoking the multiply with 22");

// as to the CamelClientRemoting example we need to define the service URI
in this java

int response = (Integer)camelTemplate.sendBody ("jms:queue:numbers",
ExchangePattern.InOut, 22);

System.out.println("... the result is: " + response);

System.exit (0) ;

The ProducerTemplate is retrieved from a Spring ApplicationContext and used to
manually place a message on the "numbers" JMS queue. The requestBody method will use
the exchange pattern InOut, which states that the call should be synchronous, and that the
caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the CamelServer
are running.

Client Using Spring Remoting

Spring Remoting "eases the development of remote-enabled services". It does this by allowing
you to invoke remote services through your regular Java interface, masking that a remote
service is being called.

TUTORIALS

131

http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/spring-remoting.html

<!-- Camel proxy for a given service, in this case the JMS queue -->
<camel:proxy
id="multiplierProxy"
servicelInterface="org.apache.camel.example.server.Multiplier"
serviceUrl="Jjms:queue:numbers" />

The snippet above only illustrates the different and how Camel easily can setup and use Spring
Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the remote invocations.
The servicelnterface property details which Java interface is to be implemented by the
proxy. serviceUrl defines where messages sent to this proxy bean will be directed. Here we
define the JMS endpoint with the "numbers" queue we used when working with Camel template
directly. The value of the id property is the name that will be the given to the bean when it is
exposed through the Spring ApplicationContext. We will use this name to retrieve the
service in our client. | have named the bean multiplierProxy simply to highlight that it is not the
same multiplier bean as is being used by CamelServer. They are in completely independent
contexts and have no knowledge of each other. As you are trying to mask the fact that
remoting is being used in a real application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String[] args) {

System.out.println ("Notice this client requires that the CamelServer is already
running!");

ApplicationContext context = new
ClassPathXmlApplicationContext ("camel-client-remoting.xml");

the proxy to the service and we as the client can use the "proxy" as
it wa
2 local we are invoking. Camel will under the covers do the remote
communicati
to the remote ActiveMQ server and fetch the response.
Multiplier multiplier = context.getBean("multiplierProxy", Multiplier.class);

System.out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System.out.println("... the result is: " + response);

System.exit (0) ;

Again, the client is similar to the original client, but with some important differences.
I. The Spring context is created with the new camel-client-remoting.xml
2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-trivial
example you would have the bean injected as in the standard Spring manner.
3. The multiply method is then called directly. In the client we are now working to an
interface. There is no mention of Camel or JMS inside our Java code.

132 TUTORIALS

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to
the Server. The Client uses the same simple API to get hold of the endpoint, create an
exchange that holds the message, set the payload and create a producer that does the send and
receive. All done using the same neutral Camel API for all the components in Camel. So if the
communication was socket TCP based you just get hold of a different endpoint and all the java
code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext ("camel-client.xml");
CamelContext camel = context.getBean("camel-client", CamelContext.class);

get the endpoint from the camel context

Endpoint endpoint = camel.getEndpoint ("jms:queue:numbers");

used for the communication

// we use the in out pattern for a synchronized e:
Exchange exchange = endpoint.createExchange (ExchangePattern.InOut) ;

“nange wnere we ez

the in

Y

/ must be correct to match the ted type of an

Lype

exchange.getIn() .setBody(11);

// to send the exchange we need an producer to do it for us
Producer producer = endpoint.createProducer();

// start the pro - so it can operate

producer.start () ;

he exchange where it does all the work in this

System.out.println("Invoking the multiply with 11");
producer.process (exchange) ;

// get the se from the out body and cast it to an integ

int response exchange.getOut () .getBody (Integer.class);

System.out.println("... the result is: " + response);

top and exit the client

producer.stop () ;
System.exit (0) ;

Switching to a different component is just a matter of using the correct endpoint. So if we had
defined a TCP endpoint as: "mina:tcp://localhost:61610" then its just a matter of

getting hold of this endpoint instead of the JMS and all the rest of the java code is exactly the
same.

TUTORIALS

133

134

Run the Clients

The Clients is started using their main class respectively.
* as a standard java main application - just start their main class
* using maven jave:exec

In this sample we start the clients using maven:

mvn compile exec:java —-PCamelClient

mvn compile exec:java -PCamelClientRemoting

mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom. xm1 file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN

The Camel Maven Plugin allows you to run your Camel routes directly from Maven. This
negates the need to create a host application, as we did with Camel server, simply to start up
the container. This can be very useful during development to get Camel routes running quickly.

Listing 1. pom.xml

<build>
<plugins>
<plugin>
<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

All that is required is a new plugin definition in your Maven POM. As we have already placed
our Camel config in the default location (camel-server.xml has been placed in META-INF/
spring/) we do not need to tell the plugin where the route definitions are located. Simply run
mvn camel:run.

USING CAMEL JMX

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As
we have enabled the JMXAgent in our tutorial we can fire up the jconsole and connect to the
following service URI: service:jmx:rmi:///jndi/rmi://localhost:1099/
jmxrmi/camel. Notice that Camel will log at INFO level the JMX Connector URI:

DefaultInstrumentationAgent INFO JMX connector thread started on

service:jmx:rmi: jndi/rmi://claus-acer:1099/jmxrmi/camel
TUTORIALS

http://camel.apache.org/camel-maven-plugin.html

In the screenshot below we can see the route and its performance metrics:

SEE ALSO
+ Spring Remoting with JMS Example on Amin Abbaspour's Weblog

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION

Creating this tutorial was inspired by a real life use-case | discussed over the phone with a
colleague. He was working at a client whom uses a heavy-weight integration platform from a
very large vendor. He was in talks with developer shops to implement a new integration on this
platform. His trouble was the shop tripled the price when they realized the platform of choice.
So | was wondering how we could do this integration with Camel. Can it be done, without
tripling the cost @

This tutorial is written during the development of the integration. | have decided to start off
with a sample that isn't Camel's but standard Java and then plugin Camel as we goes. Just as
when people needed to learn Spring you could consume it piece by piece, the same goes with
Camel.

The target reader is person whom hasn't experience or just started using Camel.

MOTIVATION FOR THIS TUTORIAL

| wrote this tutorial motivated as Camel lacked an example application that was based on the
web application deployment model. The entire world hasn't moved to pure OSGi deployments
yet.

THE USE-CASE

The goal is to allow staff to report incidents into a central administration. For that they use
client software where they report the incident and submit it to the central administration. As
this is an integration in a transition phase the administration should get these incidents by email
whereas they are manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term will transform the
report into an email and send it to the central administrator for manual processing.

The figure below illustrates this process. The end users reports the incidents using the client
applications. The incident is sent to the central integration platform as webservice. The

TUTORIALS

135

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

136

i@ The full source code for this tutorial as complete is part of the Apache Camel
distribution in the examples/camel-example-reportincident directory

integration platform will process the incident and send an OK acknowledgment back to the
client. Then the integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the emails and take it
from there.

In EIP patterns

We distill the use case as EIP patterns:

PARTS

This tutorial is divided into sections and parts:
Section A: Existing Solution, how to slowly use Camel

Part | - This first part explain how to setup the project and get a webservice exposed using
Apache CXF. In fact we don't touch Camel yet.

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any
XML configuration file) and create the full feature integration. This part will introduce different
Camel's concepts and How we can build our solution using them like :

= CamelContext

* Endpoint, Exchange & Producer

= Components : Log, File
Part 3 - Continued from part 2 where we implement that last part of the solution with the
event driven consumer and how to send the email through the Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and using CXF endpoints directly in Camel
Part 6 - Showing a alternative solution primarily using XML instead of Java code

LINKS

= Introduction
= Part |
= Part2
= Part3

TUTORIALS

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
http://camel.apache.org/cxf.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html

i Using Axis 2
See this blog entry by Sagara demonstrating how to use Apache Axis 2 instead of
Apache CXF as the web service framework.

= Part 4
= Part5
= Part 6

PART |

PREREQUISITES

This tutorial uses the following frameworks:
* Maven 3.0.4
* Apache Camel 2.10.0
* Apache CXF 2.6.1
» Spring 3.0.7
Note: The sample project can be downloaded, see the resources section.

INITIAL PROJECT SETUP

We want the integration to be a standard .war application that can be deployed in any web
container such as Tomcat, Jetty or even heavy weight application servers such as WebLogic or
WebSphere. There fore we start off with the standard Maven webapp project that is created
with the following long archetype command:

mvn archetype:create -Dgroupld=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupld etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But | have used these package names as the example is an official
part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the webservice part where
we want to use Apache CXF for the webservice stuff. So we add this to the pom.xml

<properties>
<cxf-version>2.6.1</cxf-version>
</properties>

TUTORIALS

137

http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://ws.apache.org/axis2/
http://cxf.apache.org/

<dependency>
<groupld>org.apache.cxf</groupId>
<artifactId>cxf-rt-core</artifactId>
<version>${cxf-version}</version>
</dependency>
<dependency>
<groupld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>${cxf-version}</version>
</dependency>
<dependency>
<groupld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-transports-http</artifactId>
<version>${cxf-version}</version>
</dependency>

DEVELOPING THE WEBSERVICE

As we want to develop webservice with the contract first approach we create our .wsdl file. As
this is a example we have simplified the model of the incident to only include 8 fields. In real life
the model would be a bit more complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and name the
file report incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
<xs:element name="inputReportIncident">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="incidentId"/>
<xs:element type="xs:string"
name="incidentDate"/>
<xs:element type="xs:string"
name="givenName" />
<xs:element type="xs:string"
name="familyName" />
<xs:element type="xs:string"
name="summary"/>
<xs:element type="xs:string"

138 TUTORIALS

name="details"/>
<xs:element type="xs:string"
name="email" />
<xs:element type="xs:string"
name="phone" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident'">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="code" />
</xs:sequence>
</xs:complexType>
</xs:element>
</x%s:schema>
</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">
<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>
</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->
<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">
<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"

style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>

<wsdl:output>
<soap:body parts="parameters" use="literal"/>

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->

TUTORIALS

139

<wsdl:service name="ReportIncidentService">
<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">
<soap:address
location="http://reportincident.example.camel.apache.org"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

CXF wsdl2java

Then we integration the CXF wsdl2java generator in the pom.xml so we have CXF generate
the needed POJO classes for our webservice contract.

However at first we must configure maven to live in the modern world of Java 1.6 so we must
add this to the pom.xml

<!-- to compile with 1.6 -->
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1l.6</source>
<target>1l.6</target>
</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into the compile goal so
its automatic run all the time:

<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf-version}</version>
<executions>
<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<sourceRoot>${basedir}/target/
generated/src/main/java</sourceRoot>
<wsdlOptions>
<wsdlOption>

<wsdl>$ {basedir}/src/main/webapp/WEB-INF/wsdl/report incident.wsdl</wsdl>

</wsdlOption>
</wsdlOptions>

140 TUTORIALS

</configuration>

<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>

You are now setup and should be able to compile the project. So running the mvn compile
should run the CXF wsdl2java and generate the source code in the folder
&{basedir}/target/generated/src/main/java that we specified in the pom.xml

above. Since its in the target/generated/src/main/java maven will pick it up and
include it in the build process.

Configuration of the web.xml

Next up is to configure the web.xml to be ready to use CXF so we can expose the webservice.
As Spring is the center of the universe, or at least is a very important framework in today's Java
land we start with the listener that kick-starts Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

And then we have the CXF part where we define the CXF servlet and its URI mappings to
which we have chosen that all our webservices should be in the path /webservices/

<!-- CXF servlet -->
<servlet>
<servlet-name>CXFServlet</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<!-- all our webservices are mapped under this URI pattern
<servlet-mapping>
<servlet-name>CXFServlet</servlet-name>

<url-pattern>/webservices/*</url-pattern>
</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring XML that we link

to fron the web.xml by the standard Spring contextConfigLocation property in the
web.xml

TUTORIALS

141

<!-- location of spring xml files -->

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath:cxf-config.xml</param-value>

</context-param>

We have named our CXF configuration file cxf-config.xml and its located in the root of
the classpath. In Maven land that is we can have the cxf-config.xml file in the src/
main/resources folder. We could also have the file located in the WEB-INF folder for
instance <param-value>/WEB-INF/cxf-config.xml</param-value>.

Getting rid of the old jsp world

The maven archetype that created the basic folder structure also created a sample .jsp file
index.jsp. This file src/main/webapp/index. jsp should be deleted.

Configuration of CXF

The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemalLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<!-- implementation of the webse ==3
<bean id="reportIncidentEndpoint"
class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl" />

<jaxws:endpoint id="reportIncident"
implementor="#reportIncidentEndpoint"
address="/incident"
wsdlLocation="/WEB-INF/wsdl/report incident.wsdl"
endpointName="s:ReportIncidentPort"
serviceName="s:ReportIncidentService"
xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

The configuration is standard CXF and is documented at the Apache CXF website.
The 3 import elements is needed by CXF and they must be in the file.

142 TUTORIALS

http://camel.apache.org/cxf.html
http://cxf.apache.org/

Noticed that we have a spring bean reportincidentEndpoint that is the implementation
of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use the # mark to
identify its a reference to a spring bean. We could have stated the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint
but then we lose the ability to let the ReportincidentEndpoint be configured by spring.
The address attribute defines the relative part of the URL of the exposed webservice.
wsdlLocation is an optional parameter but for persons like me that likes contract-first we
want to expose our own .wsdl contracts and not the auto generated by the frameworks, so
with this attribute we can link to the real .wsdl file. The last stuff is needed by CXF as you could
have several services so it needs to know which this one is. Configuring these is quite easy as all
the information is in the wsdl already.

Implementing the ReportincidentEndpoint

Phew after all these meta files its time for some java code so we should code the implementor
of the webservice. So we fire up mvn compile to let CXF generate the POJO classes for our
webservice and we are ready to fire up a Java editor.

You canusemvn idea:idea ormvn eclipse:eclipse to create project files for
these editors so you can load the project. However IDEA has been smarter lately and can load
a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and dirty as it can get.
At first beware that since its jaxws and Java |.5 we get annotations for the money, but they

reside on the interface so we can remove them from our implementations so its a nice plain
POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName ()) ;
OutputReportIncident out = new OutputReportIncident();

out.setCode ("OK") ;
return out;

We just output the person that invokes this webservice and returns a OK response. This class
should be in the maven source root folder src/main/java under the package name

TUTORIALS 143

| 44

org.apache.camel.example.reportincident. Beware that the maven archetype
tool didn't create the src/main/java folder, so you should create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice

Now that the code compiles we would like to run it inside a web container, for this purpose
we make use of Jetty which we will bootstrap using it's plugin
org.mortbay.jetty:maven-jetty-plugin:

<build>
<plugins>

<!-- so we can run mvn jetty:run -->

<plugin>
<groupIld>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>${jetty-version}</version>

</plugin>

Notice: We make use of the Jetty version being defined inside the Camel's Parent POM.

So to see if everything is in order we fire up jetty with mvn jetty:run and if everything
is okay you should be able to access http://localhost:8080.

Jetty is smart that it will list the correct URI on the page to our web application, so just click on
the link. This is smart as you don't have to remember the exact web context URI for your
application - just fire up the default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the web.xml to instruct
the CXF servlet to accept the pattern /webservices/* we should hit this URL to get the
attention of CXF: http://localhost:8080/camel-example-reportincident/
webservices.

m

Hitting the webservice

Now we have the webservice running in a standard .war application in a standard web container
such as Jetty we would like to invoke the webservice and see if we get our code executed.
Unfortunately this isn't the easiest task in the world - its not so easy as a REST URL, so we
need tools for this. So we fire up our trusty webservice tool SoapUI and let it be the one to fire
the webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the expected OK response
and the console outputs the System.out so we are ready to code.

E

TUTORIALS

https://svn.apache.org/repos/asf/camel/trunk/parent/pom.xml
http://localhost:8080
http://localhost:8080/camel-example-reportincident/webservices
http://localhost:8080/camel-example-reportincident/webservices
http://www.soapui.org/

Remote Debugging

Okay a little sidestep but wouldn't it be cool to be able to debug your code when its fired up
under Jetty? As Jetty is started from maven, we need to instruct maven to use debug mode.
Se we set the MAVEN OPTS environment to start in debug mode and listen on port 5005.

MAVEN_ OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt socket, server=y, suspend=n, address=5005

Then you need to restart Jetty so its stopped with ctrl + €. Remember to start a new shell to
pickup the new environment settings. And start jetty again.

Then we can from our IDE attach a remote debugger and debug as we want.
First we configure IDEA to attach to a remote debugger on port 5005:

E

Then we set a breakpoint in our code ReportIncidentEndpoint and hit the SoapUIl
once again and we are breaked at the breakpoint where we can inspect the parameters:

N

E

Adding a unit test

Oh so much hard work just to hit a webservice, why can't we just use an unit test to invoke
our webservice? Yes of course we can do this, and that's the next step.

First we create the folder structure src/test/java and src/test/resources. We
then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;
import junit.framework.TestCase;

/**

* Plain JUnit test of our webservice.

*/
public class ReportIncidentEndpointTest extends TestCase ({

Here we have a plain old JUnit class. As we want to test webservices we need to start and
expose our webservice in the unit test before we can test it. And JAXWS has pretty decent
methods to help us here, the code is simple as:

import javax.xml.ws.Endpoint;

TUTORIALS

145

146

private static String ADDRESS =

protected void startServer () throws Exception ({

// ! t a server that
V use jaxws to do this pretty sir]
ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl () ;
Endpoint.publish (ADDRESS, server);

The Endpoint class is the javax.xml.ws.Endpoint that under the covers looks for a
provider and in our case its CXF - so its CXF that does the heavy lifting of exposing out
webservice on the given URL address. Since our class ReportincidentEndpointimpl implements
the interface ReportincidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF wsdl2java generated
interface:

/*

*

*/
package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**

* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008

* Generated source version: 2.1.1

*

*/

/*

*

*/

.org", name =

@WebService (targetNamespace = "http://reportincident.example.camel.apache
"ReportIncidentEndpoint")
@XmlSeeAlso ({ObjectFactory.class})

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*

TUTORIALS

*/

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult (name = "outputReportIncident", targetNamespace =
"http://reportincident.example.camel.apache.org", partName = "parameters"

@WebMethod(operatlonName action =

"ReportIncident"

"http://reportincident.example.camel.apache.orc bortIncident
public OutputReportIn01dent reportIncident (
@WebParam (partName = "parameters", name = "inputReportIncident",
targetNamespace = "http://reportinc 1t .example.camel.apache.org")

InputReportIncident parameters
)i

Next up is to create a webservice client so we can invoke our webservice. For this we actually
use the CXF framework directly as its a bit more easier to create a client using this framework
than using the JAXWS style. We could have done the same for the server part, and you should
do this if you need more power and access more advanced features.

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;

protected ReportIncidentEndpoint createCXFClient () {

“XF to create a client for us as its easier than JAXWS
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean() ;
factory.setServiceClass (ReportIncidentEndpoint.class);
factory.setAddress (ADDRESS) ;

return (ReportIncidentEndpoint) factory.create();

So now we are ready for creating a unit test. We have the server and the client. So we just
create a plain simple unit test method as the usual junit style:

public void testRendportIncident () throws Exception ({
startServer();

ReportIncidentEndpoint client = createCXFClient();

InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");

input.setIncidentDate ("2008-07-16") ;
input.setGivenName ("Claus") ;

input.setFamilyName ("Ibsen") ;

input.setSummary ("bla bla");

input.setDetails ("more bla bla");

input.setEmail ("davsclaus@apache.org");
input.setPhone ("+45 2962 7576");

OutputReportIncident out = client.reportIncident (input) ;

TUTORIALS

147

148

assertEquals ("Response code is wrong", "OK", out.getCode()):;

Now we are nearly there. But if you run the unit test with mvn test then it will fail. Why!!!
Well its because that CXF needs is missing some dependencies during unit testing. In fact it
needs the web container, so we need to add this to our pom.xmil.

<!-- cxf web container for uni esting -->

<dependency>
<groupld>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>${cxf-version}</version>
<scope>test</scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how agile, embedable
and popular Jetty is.
So lets run our junit test with, and it reports:
mvn test

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART |

Thanks for being patient and reading all this more or less standard Maven, Spring, JAXWS and
Apache CXF stuff. Its stuff that is well covered on the net, but | wanted a full fledged tutorial on
a maven project setup that is web service ready with Apache CXF. We will use this as a base
for the next part where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the Spring framework
that we take for granted today.

RESOURCES
» Apache CXF user guide

LINKS

= Introduction
= Part |

TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html

= Part2

= Part3
= Part 4
= Part5
= Part 6
PART 2

ADDING CAMEL

In this part we will introduce Camel so we start by adding Camel to our pom.xml:

<properties>

<camel-version>1.4.0</camel-version>
</properties>

<!-- camel --—>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>

That's it, only one dependency for now.

Now we turn towards our webservice endpoint implementation where we want to let Camel
have a go at the input we receive. As Camel is very non invasive its basically a .jar file then we
can just grap Camel but creating a new instance of DefaultCamelContext thatis the
hearth of Camel its context.

CamelContext camel = new DefaultCamelContext () ;

In fact we create a constructor in our webservice and add this code:

private CamelContext camel;

public ReportIncidentEndpointImpl () throws Exception ({
cr e the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

add the log component

camel.addComponent ("log", new LogComponent());

TUTORIALS

149

http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

150

i Synchronize IDE
If you continue from part |, remember to update your editor project settings since
we have introduce new .jar files. For instance IDEA has a feature to synchronize
with Maven projects.

camel.start () ;

LOGGING THE "HELLO WORLD"

Here at first we want Camel to log the givenName and familyName parameters we
receive, so we add the LogComponent with the key log. And we must start Camel before
its ready to act.

Then we change the code in the method that is invoked by Apache CXF when a webservice
request arrives. We get the name and let Camel have a go at it in the new method we create
sendToCamel:

public OutputReportIncident reportIncident (InputReportIncident parameters) {
String name = parameters.getGivenName () + " " + parameters.getFamilyName () ;
let Camel do something with the name
sendToCamelLog (name) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

Next is the Camel code. At first it looks like there are many code lines to do a simple task of
logging the name - yes it is. But later you will in fact realize this is one of Camels true power. Its
concise API. Hint: The same code can be used for any component in Camel.

private void sendToCamellog (String name) {
try {

T log component

Component component = camel.getComponent ("log") ;

default
Endpoint endpoint = component.createEndpoint ("log:com.mycompany.part2") ;

TUTORIALS

2 Component Documentation
The Log and File components is documented as well, just click on the links. Just
return to this documentation later when you must use these components for real.

create an Exchange that we want to send to the end
Exchange exchange = endpoint.createExchange();
set the in me bayload (=body) with the name parameter

for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start () ;

brocess the exchange will send the exchange to the log compor

the exchange and yes log the payload
producer.process (exchange) ;

p the producer, we want ice a lea
producer.stop () ;
} catch (Exception e) {
lgnore any exceptions and just rethrow as runtime

throw new RuntimeException(e);

i

Okay there are code comments in the code block above that should explain what is happening.
We run the code by invoking our unit test with maven mvn test, and we should get this log

line:

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE

Okay that isn't to impressive, Camel can log @ Well | promised that the above code style can
be used for any component, so let's store the payload in a file. We do this by adding the file

component to the Camel context

TUTORIALS

151

http://camel.apache.org/log.html
http://camel.apache.org/file2.html

152

// add the file component

camel.addComponent ("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by creating a new

method sendToCamelFile. We want to store the payload in filename with the incident id so

we need this parameter also:

// let Camel do something with the name
sendToCamelLog (name) ;
sendToCamelFile (parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI configuration when we create
the endpoint as we pass in configuration parameters to the file component.
And then we need to set the output filename and this is done by adding a special header to the

exchange. That's the only difference:

private void sendToCamelFile (String incidentId, String name) {
try {

// get the file component

Component component = camel.getComponent ("file");

// an endpoint and configure it.

// ameters this is a common pratice in Camel

// URT.

// file: —arg instructs the base folder to output the files. W in

the target folder
// then its actumatically cleaned by mvn clean

Endpoint endpoint = component.createEndpoint("file://target");

that we want to send to the endpoint
Exchange exchange = endpoint.createExchange () ;

// set the in me

// create an Exchange

ge payload (=body) with the name parameter

exchange.getIn() .setBody (name) ;

set to instruct the file component what the
output filename

// should be

exchange.getIn() .setHeader (FileComponent .HEADER FILE NAME, "incident-" +
incidentId + ".txt");

// now we want to send the excha

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start () ;

// 5 the exchan will sen
vill
// the exchange and yes write the
producer.process (exchange) ;
TUTORIALS

STOop the producer, we want TO be nice anda C leanup
producer.stop () ;
} catch (Exception e) {
> 1gnore any >XCceptions anda just rethrow as runtime

throw new RuntimeException(e);

After running our unit test again with mvn test we have a output file in the target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS

In the file example above the configuration was URI based. What if you want 100% java setter
based style, well this is of course also possible. We just need to cast to the component specific
endpoint and then we have all the setters available:

FileEndpoint endpoint = (FileEndpoint)component.createEndpoint ("");
endpoint.setFile (new File("target/subfolder"));
endpoint.setAutoCreate (true) ;

That's it. Now we have used the setters to configure the FileEndpoint that it should store
the file in the folder target/subfolder. Of course Camel now stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

LESSONS LEARNED

Okay | wanted to demonstrate how you can be in 100% control of the configuration and usage
of Camel based on plain Java code with no hidden magic or special XML or other configuration
files. Just add the camel-core.jar and you are ready to go.

You must have noticed that the code for sending a message to a given endpoint is the same
for both the log and file, in fact any Camel endpoint. You as the client shouldn't bother with
component specific code such as file stuff for file components, jms stuff for JMS messaging etc.

TUTORIALS

153

This is what the Message Endpoint EIP pattern is all about and Camel solves this very very nice -
a key pattern in Camel.

REDUCING CODE LINES

Now that you have been introduced to Camel and one of its masterpiece patterns solved
elegantly with the Message Endpoint its time to give productive and show a solution in fewer
code lines, in fact we can get it down to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based producer.
Meaning that it has methods to send messages to any Camel endpoints. First of all we need to
get hold of such a template and this is done from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception {

,,,,,,, a Spring'ish xxxTemplate based producer

for very

easy sending exchanges to Camel.

template = camel.createProducerTemplate () ;

art Camel

camel.start();

Now we can use template for sending payloads to any endpoint in Camel. So all the logging
gabble can be reduced to:

template.sendBody ("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct what the output
filename should be:

String filename = "easy-incident-" + incidentId + ".txt";

"

template.sendBodyAndHeader ("file: target/subfolder", name,
EileComponent.HEADERiElLﬂiNAME, filename) ;

REDUCING EVEN MORE CODE LINES

Well we got the Camel code down to |-2 lines for sending the message to the component that
does all the heavy work of wring the message to a file etc. But we still got 5 lines to initialize
Camel.

154 TUTORIALS

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

camel = new DefaultCamelContext();
camel.addComponent ("log", new LogComponent());
camel.addComponent ("file", new FileComponent());
template = camel.createProducerTemplate () ;
camel.start();

This can also be reduced. All the standard components in Camel is auto discovered on-the-fly
so we can remove these code lines and we are down to 3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext ();
template = camel.createProducerTemplate () ;
camel.start () ;

Later will we see how we can reduce this to ... in fact 0 java code lines. But the 3 lines will do
for now.

MESSAGE TRANSLATION

Okay lets head back to the over goal of the integration. Looking at the EIP diagrams at the
introduction page we need to be able to translate the incoming webservice to an email. Doing
so we need to create the email body. When doing the message translation we could put up our
sleeves and do it manually in pure java with a StringBuilder such as:

private String createMailBody (InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();
sb.append ("Incident ") .append(parameters.getIncidentId());
sb.append (" has been reported on the ").append(parameters.getIncidentDate());
sb.append (" by ") .append(parameters.getGivenName ());
sb.append (" ") .append(parameters.getFamilyName()) ;

and the rest of the mail body with more appends to the string builder

return sb.toString();

But as always it is a hardcoded template for the mail body and the code gets kinda ugly if the
mail message has to be a bit more advanced. But of course it just works out-of-the-box with
just classes already in the |DK.

Lets use a template language instead such as Apache Velocity. As Camel have a component
for Velocity integration we will use this component. Looking at the Component List overview
we can see that camel-velocity component uses the artifactld camel-velocity so therefore
we need to add this to the pom.xml

TUTORIALS

155

http://velocity.apache.org/
http://camel.apache.org/velocity.html
http://camel.apache.org/component.html

 Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't seen before it will
try to look for it in the classpath. It will do so by looking for special Camel
component marker files that reside in the folder META-INF/services/org/
apache/camel/component. If there are files in this folder it will read them as
the filename is the scheme part of the URL. For instance the log component is
defined in this file META-INF/services/org/apache/component/log
and its content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same technique and have
them been auto discovered on-the-fly.

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-velocity</artifactId>
<version>${camel-version}</version>
</dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring 2.0.8 and camel-
velocity is dependent on Spring 2.5.5. To remedy this we could wrestle with the pom.xml
with excludes settings in the dependencies or just bring in another dependency camel-
spring:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>
</dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it in nearly all
situations - we will look into how well Camel is seamless integration with Spring in part 3. For
now its just another dependency.

We create the mail body with the Velocity template and create the file src/main/
resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
$body.givenName S$body.familyName.

156 TUTORIALS

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the following 3 code
lines:

private void generateEmailBodyAndStoreAsFile (InputReportIncident parameters) ({

erate the mail ng veloc plate

ot from Ap Velocity.

Object response = template.sendBody("velocity:MailBody.vm", parameters);

lote: the response is a String and can be cast to String if ne
// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://target/subfolder", response,

FileComponent .HEADER FILE NAME, filename);
}

What is impressive is that we can just pass in our POJO object we got from Apache CXF to
Velocity and it will be able to generate the mail body with this object in its context. Thus we
don't need to prepare anything before we let Velocity loose and generate our mail body.
Notice that the template method returns a object with out response. This object contains
the mail body as a String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has produced the file
and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

TUTORIALS

157

158

FIRST PART OF THE SOLUTION

What we have seen here is actually what it takes to build the first part of the integration flow.
Receiving a request from a webservice, transform it to a mail body and store it to a file, and
return an OK response to the webservice. All possible within 10 lines of code. So lets wrap it
up here is what it takes:

/**
* The webservice we have implemented.
*/
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception ({
'/ create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

cerTemplate thst is a Spring'ist

for very

easy se¢

) Camel.

template = camel.createProducerTemplate () ;

start Camel

camel.start();

public OutputReportIncident reportIncident (InputReportIncident parameters) {
ransform the request into a mail
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

tore the mail in a file

String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://ta
FileComponent.HEADER FILE NAME, filename);

"

subfc , mailBody,

return an OK reply
OutputReportIncident out =
out.setCode ("OK") ;

return out;

new OutputReportIncident () ;

Okay | missed by one, its in fact only 9 lines of java code and 2 fields.

END OF PART 2

| know this is a bit different introduction to Camel to how you can start using it in your
projects just as a plain java .jar framework that isn't invasive at all. | took you through the

TUTORIALS

coding parts that requires 6 - 10 lines to send a message to an endpoint, buts it's important to
show the Message Endpoint EIP pattern in action and how its implemented in Camel. Yes of
course Camel also has to one liners that you can use, and will use in your projects for sending
messages to endpoints. This part has been about good old plain java, nothing fancy with Spring,
XML files, auto discovery, OGSi or other new technologies. | wanted to demonstrate the basic
building blocks in Camel and how its setup in pure god old fashioned Java. There are plenty of
eye catcher examples with one liners that does more than you can imagine - we will come
there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets interesting since
we have to wrestle with the event driven consumer.

Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us some fun with the
Camel. See you in part 3.

LINKS

* Introduction
= Part |
= Part2
= Part3
= Part4
= Part5
= Part 6

PART 3

RECAP

Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl () throws Exception {

reate the camel context that is the "heart" of Camel
camel = new DefaultCamelContext () ;
get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer

for
>adsSy senaing >xchanges to Camel.

template = camel.createProducerTemplate () ;

TUTORIALS

159

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

160

start Camel

camel.start();

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident (InputReportIncident parameters) {

transform the request into a mail

Object mailBody = template.sendBody ("velocity:MailBody.vm", parameters);

store the mail body in a file

String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader ("file://target/subfolder", mailBody,
FileComponent .HEADER FILE NAME, filename);

return an OK reply

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

This completes the first part of the solution: receiving the message using webservice, transform
it to a mail body and store it as a text file.

What is missing is the last part that polls the text files and send them as emails. Here is where
some fun starts, as this requires usage of the Event Driven Consumer EIP pattern to react when
new files arrives. So lets see how we can do this in Camel. There is a saying: Many roads lead to
Rome, and that is also true for Camel - there are many ways to do it in Camel.

ADDING THE EVENT DRIVEN CONSUMER

We want to add the consumer to our integration that listen for new files, we do this by
creating a private method where the consumer code lives. We must register our consumer in
Camel before its started so we need to add, and there fore we call the method
addMailSenderConsumer in the constructor below:

public ReportIncidentEndpointImpl () throws Exception {

create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext () ;
I Prc cerTemplate thst is a Spring'ish xxxTemplate based producer
for very
easy sending exchanges to Camel.
template = camel.createProducerTemplate () ;
add the event driven consumer that will listen for mail files and process

TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html

addMailSendConsumer () ;

tart Camel

camel.start();

The consumer needs to be consuming from an endpoint so we grab the endpoint from Camel
we want to consume. It's file://target/subfolder. Don't be fooled this endpoint
doesn't have to 100% identical to the producer, i.e. the endpoint we used in the previous part
to create and store the files. We could change the URL to include some options, and to make it
more clear that it's possible we setup a delay value to 10 seconds, and the first poll starts after
2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.

When we have the endpoint we can create the consumer (just as in part | where we created a
producer}. Creating the consumer requires a Processor where we implement the java code
what should happen when a message arrives. To get the mail body as a String object we can use
the getBody method where we can provide the type we want in return.

Sending the email is still left to be implemented, we will do this later. And finally we must
remember to start the consumer otherwise its not active and won't listen for new files.

private void addMailSendConsumer () throws Exception {
Grab the

bint where we should consume. Option - the first poll

Endpoint endpint = camel.getEndpoint ("file://target

folder?consumer.initialDelay=2000") ;

the onl met
Consumer consumer = endpint.createConsumer (new Processor () {
public void process (Exchange exchange) throws Exception {
jet the mail body as a String
String mailBody = exchange.getIn() .getBody(String.class);

'j‘k:j;' now we are read to send it as an email

System.out.println("Sending email..." + mailBody);

consumer.start () ;

Before we test it we need to be aware that our unit test is only catering for the first part of the
solution, receiving the message with webservice, transforming it using Velocity and then storing
it as a file - it doesn't test the Event Driven Consumer we just added. As we are eager to see it

TUTORIALS

161

/target/subfolder
http://camel.apache.org/processor.html
http://camel.apache.org/event-driven-consumer.html

i URL Configuration
The URL configuration in Camel endpoints is just like regular URL we know from
the Internet. You use ? and & to set the options.

1, Camel Type Converter

Why don't we just cast it as we always do in Java? Well the biggest advantage when
you provide the type as a parameter you tell Camel what type you want and Camel
can automatically convert it for you, using its flexible Type Converter mechanism.
This is a great advantage, and you should try to use this instead of regular type
casting.

in action, we just do a common trick adding some sleep in our unit test, that gives our Event
Driven Consumer time to react and print to System.out. We will later refine the test:

public void testRendportIncident() throws Exception ({

OutputReportIncident out = client.reportIncident (input) ;
assertEquals ("Response code is wrong", "OK", out.getCode()):;

give he even driven consumer ime O reac

Thread.sleep (10 * 1000);

We run the test with mvn clean test and have eyes fixed on the console output.
During all the output in the console, we see that our consumer has been triggered, as we want.

2008-07-19 12:09:24,140 [mponent@lfl2cd4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

2008-07-19 12:09:24,156 [mponent@1fl2c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

162 TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/type-converter.html

SENDING THE EMAIL

Sending the email requires access to a SMTP mail server, but the implementation code is very
simple:

private void sendEmail (String body) {
nd the email to your mail server

String url =

incident@my

"smtp://some 2@localhost?password=sec

template.sendBodyAndHeader (url, body, "subject", "New incident reported"):;

And just invoke the method from our consumer:

okay 7 we are read to send it as an email

System.out.println("Sending email...");
sendEmail (mailBody) ;
System.out.println("Email sent");

UNIT TESTING MAIL

For unit testing the consumer part we will use a mock mail framework, so we add this to our
pom.xml:

<!—- unit testing mail u S1Nng mMOCK ——>

<dependency>
<groupld>org.jvnet.mock-javamail</groupId>
<artifactId>mock-javamail</artifactId>
<version>1l.7</version>
<scope>test</scope>

</dependency>

Then we prepare our integration to run with or without the consumer enabled. We do this to
separate the route into the two parts:

* receive the webservice, transform and save mail file and return OK as repose

= the consumer that listen for mail files and send them as emails
So we change the constructor code a bit:

public ReportIncidentEndpointImpl () throws Exception {
init(true);

public ReportIncidentEndpointImpl (boolean enableConsumer) throws Exception ({

init (enableConsumer) ;

TUTORIALS

163

private void init (boolean enableConsumer) throws Exception ({

ne text that is the "heart" of Camel

create the c

camel = new DefaultCamelContext ()

@ he Pr thst is a Spring'ish xxxTemplate based producer
for very
2asy sending exchanges to Camel.
template = camel.createProducerTemplate () ;
add the event driven that will listen for mail files and process

if (enableConsumer) {
addMailSendConsumer () ;

start Camel

camel.start();

Then remember to change the ReportincidentEndpointTest to pass in false in the
ReportIncidentEndpointImpl constructor.
And as always runmvn clean test to be sure that the latest code changes works.

ADDING NEW UNIT TEST

We are now ready to add a new unit test that tests the consumer part so we create a new test
class that has the following code structure:

/kk
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer () throws Exception {
we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl (true);

As we want to test the consumer that it can listen for files, read the file content and send it as
an email to our mailbox we will test it by asserting that we receive | mail in our mailbox and
that the mail is the one we expect. To do so we need to grab the mailbox with the mockmail
APL. This is done as simple as:

164 TUTORIALS

public void testConsumer () throws Exception {
sumer,

the true parameter

we run this unit test with the
endpoint = new ReportIncidentEndpointImpl (true);

// get the mailbox
Mailbox box = Mailbox.get ("incident@mycompany.comn") ;

assertEquals ("Should not have mails", 0, box.size()):;

How do we trigger the consumer? Well by creating a file in the folder it listen for. So we could
use plain java.io.File API to create the file, but wait isn't there an smarter solution? ... yes Camel
of course. Camel can do amazing stuff in one liner codes with its ProducerTemplate, so we
need to get a hold of this baby. We expose this template in our ReportincidentEndpointimpl
but adding this getter:

protected ProducerTemplate getTemplate () {
return template;

Then we can use the template to create the file in one code line:

the file for

us

// fire a message that will create
endpoint.getTemplate () . sendBodyAndHeader ("file://target/
end=false", "Hello World",

FileComponent .HEADER FILE NAME, "mail-incident-test.txt");

subfolder?ar

Then we just need to wait a little for the consumer to kick in and do its work and then we
should assert that we got the new mail. Easy as just:

=r have time to run

// let the cor
Thread.sleep (3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals ("Should have got 1 mail", 1, box.size());
assertEquals ("Subject wrong", "New incident reported",

box.get (0) .getSubject ()) ;
assertEquals ("Mail body wrong", "Hello World", box.get (0).getContent());

The final class for the unit test is:

/**
* Plain JUnit test of our consumer.
o/

public class ReportIncidentConsumerTest extends TestCase ({

TUTORIALS

165

private ReportIncidentEndpointImpl endpoint;

public void testConsumer () throws Exception {
> run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl (true);

the mailbox
Mailbox box = Mailbox.get ("incident@mycompany.com") ;
assertEquals ("Should not have mails", 0, box.size());

o re Camel! the p

that will create the file for us

fire a mes

endpoint.getTemplate () . sendBodyAndHeader ("file://target
folder? bend=false", "Hello World",
FileComponent .HEADER FILE NAME, "mail-incident-test.txt");

let the consumer have time to run
Thread.sleep (3 * 1000);

get the mock mailbox and ct < if we got mail ;)

assertEquals ("Should have got 1 mail", 1, box.size());

assertEquals ("Subject wrong", "New incident reported",
box.get (0) .getSubject());

assertEquals ("Mail body wrong", "Hello World", box.get(0).getContent());

END OF PART 3

Okay we have reached the end of part 3. For now we have only scratched the surface of what
Camel is and what it can do. We have introduced Camel into our integration piece by piece and
slowly added more and more along the way. And the most important is: you as the
developer never lost control. We hit a sweet spot in the webservice implementation
where we could write our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was time to translate
the input to a mail body, we decided when the content should be written to a file. This is very
important to not lose control, that the bigger and heavier frameworks tend to do. No names
mentioned, but boy do developers from time to time dislike these elephants. And Camel is no
elephant.

| suggest you download the samples from part | to 3 and try them out. It is great basic
knowledge to have in mind when we look at some of the features where Camel really excel -
the routing domain language.

From part | to 3 we touched concepts such as::
= Endpoint
* URI configuration

166 TUTORIALS

http://camel.apache.org/endpoint.html
http://camel.apache.org/configuring-camel.html

= Consumer

= Producer

= Event Driven Consumer
= Component

= CamelContext

* ProducerTemplate

= Processor

= Type Converter

* Introduction
= Part |
= Part2
* Part3
= Part4
= Part5
= Parté

PART 4

INTRODUCTION

This section is about regular Camel. The examples presented here in this section is much more
in common of all the examples we have in the Camel documentation.

ROUTING

Camel is particular strong as a light-weight and agile routing and mediation framework. In
this part we will introduce the routing concept and how we can introduce this into our
solution.

Looking back at the figure from the Introduction page we want to implement this routing.
Camel has support for expressing this routing logic using Java as a DSL (Domain Specific
Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its
the most powerful and all developers know Java. Later we will introduce the XML version that
is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about Developers not
loosing control. In my humble experience one of the key fears of developers is that they are
forced into a tool/framework where they loose control and/or power, and the possible is now
impossible. So in this part we stay clear with this vision and our starting point is as follows:

TUTORIALS

167

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/routes.html

168

1, If you have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again! @

* We have generated the webservice source code using the CXF wsdl2java generator
and we have our ReportincidentEndpointimpl.java file where we as a Developer feels
home and have the power.

So the starting point is:

/**
* The webservice we have implemented.
Sy
public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/
public OutputReportIncident reportIncident (InputReportIncident parameters) {

return null;

Yes we have a simple plain Java class where we have the implementation of the webservice. The
cursor is blinking at the WE ARE HERE block and this is where we feel home. More or less any
Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache
CXF or some other quite popular framework. They all allow the developer to be in control and
implement the code logic as plain Java code. Camel of course doesn't enforce this to be any
different. Okay the boss told us to implement the solution from the figure in the Introduction
page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy
lifting of supporting EIP verbs for end-users to express the routing. It does take a little while to
get settled and used to, but when you have worked with it for a while you will enjoy its power
and realize it is in fact a little language inside Java itself. Camel is the only integration
framework we are aware of that has Java DSL, all the others are usually only XML based.
As an end-user you usually use the RouteBuilder as of follows:
= create your own Route class that extends RouteBuilder

TUTORIALS

= implement your routing DSL in the configure method
So we create a new class ReportincidentRoutes and implement the first part of the routing:

import org.apache.camel.builder.RouteBuilder;
public class ReportIncidentRoutes extends RouteBuilder ({

public void configure () throws Exception {

>xample

llrect:i:start is a internal queue TO K1CK—St

we use this as he starting poin where

alrect:start

from("direct:start")

nsform the mail

.to("velocity:MailBody.vm") ;

What to notice here is the configure method. Here is where all the action is. Here we have
the Java DSL langauge, that is expressed using the fluent builder syntax that is also known
from Hibernate when you build the dynamic queries etc. What you do is that you can stack
methods separating with the dot.
In the example above we have a very common routing, that can be distilled from pseudo
verbs to actual code with:
= fromAtoB
* From Endpoint A To Endpoint B
= from("endpointA").to("endpointB")
= from("direct:start").to("velocity:MailBody.vm");
from("direct:start™) is the consumer that is kick-starting our routing flow. It will wait for
messages to arrive on the direct queue and then dispatch the message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity
generate the mail body response.
So what we have implemented so far with our ReportincidentRoutes RouteBuilder is this
part of the picture:

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the
hearth of Camel. So turning back to our webservice implementation class
ReportincidentEndpointlmpl we add this constructor to the code, to create the CamelContext
and add the routes from our route builder and finally to start it.

TUTORIALS

169

http://camel.apache.org/direct.html

170

private CamelContext context;

public ReportIncidentEndpointImpl () throws Exception {
ate the context

context = new DefaultCamelContext () ;

append the routes to the context
context.addRoutes (new ReportIncidentRoutes());

at the end start the camel context

context.start();

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to
send messages to Endpoints, so we just send to the direct:start endpoint and it will take it
from there.

So we implement the logic in our webservice operation:

/**
* This is the last solution displayed that is the most simple
*/
public OutputReportIncident reportIncident (InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate ().sendBody ("direct:start",
parameters) ;
System.out.println("Body:" + mailBody) ;

return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

Notice that we get the producer template using the createProducerTemplate method on
the CamelContext. Then we send the input parameters to the direct:start endpoint and it
will route it to the velocity endpoint that will generate the mail body. Since we use direct as
the consumer endpoint (=from) and its a synchronous exchange we will get the response
back from the route. And the response is of course the output from the velocity endpoint.

We have now completed this part of the picture:

UNIT TESTING

Now is the time we would like to unit test what we got now. So we call for camel and its great
test kit. For this to work we need to add it to the pom.xml

TUTORIALS

) About creating ProducerTemplate
In the example above we create a new ProducerTemplate when the
reportIncident method is invoked. However in reality you should only create
the template once and re-use it. See this FAQ entry.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.4.0</version>
<scope>test</scope>
<type>test-jar</type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar.
Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class ContextTestSupport

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/
public class ReportIncidentRoutesTest extends ContextTestSupport {

ContextTestSupport is a supporting unit test class for much easier unit testing with
Apache Camel. The class is extending JUnit TestCase itself so you get all its glory. What we
need to do now is to somehow tell this unit test class that it should use our route builder as
this is the one we gonna test. So we do this by implementing the createRouteBuilder
method.

@QOverride
protected RouteBuilder createRouteBuilder () throws Exception {
return new ReportIncidentRoutes();

That is easy just return an instance of our route builder and this unit test will use our routes.
We then code our unit test method that sends a message to the route and assert that its
transformed to the mail body using the Velocity template.

TUTORIALS

171

http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html

172

& Itis quite common in Camel itself to unit test using routes defined as an anonymous
inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder () throws Exception {
return new RouteBuilder () {
public void configure() throws Exception ({

// TODO: Add your routes here, such

from("jms:queue:inbox") .to("file://target/out");

C

The same technique is of course also possible for end-users of Camel to create parts of your
routes and test them separately in many test classes.

However in this tutorial we test the real route that is to be used for production, so we just
return an instance of the real one.

parameters) ;

convert it if it v

will later learn to

public void testTransformMailBody() throws Exception {

// create a dummy input with some input data

InputReportIncident parameters = createlnput();

// send the messa (using the

>ndBody method that tak

a parameters as the
input

// to "direct:start" that kick-starts the
// the re

route

se 1s returned as the out object, and its also the body of the

Object out = context.createProducerTemplate ().sendBody("direct:start",

// cor rt the se to a string using camel converters. Hc could
also T it to
// a string directly but using the type converters ensure that Camel can

n't a string

// in the first plac

The type converters in Camel is really p

ful and you

eciate them and

app

wonder why its not build in Java out-of-the-box

context.getTypeConverter () .convertTo (String.class,

String body = out) ;

// do some

simple as

rtions of the mail body

assertTrue (body.startsWith("Incident 123 has been reported on the 2008-07-16

by Claus Ibsen."));

}

/~k~k
* Creates a dummy request to be used for input
Y/
protected InputReportIncident createlInput() {
InputReportIncident input = new InputReportIncident();

TUTORIALS

input.setIncidentId("123");
input.setIncidentDate ("2008-07-16");
input.setGivenName ("Claus") ;
input.setFamilyName ("Ibsen") ;
input.setSummary ("bla bla");
input.setDetails ("more bla bla");
input.setEmail ("davsclaus@apache.org");
input.setPhone ("+45 2962 7576");

return input;

ADDING THE FILE BACKUP

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn
back to our route and the EIP patterns. We use the Pipes and Filters pattern here to chain the
routing as:

public void configure() throws Exception ({
from("direct:start")

Notice that we just add a 2nd .to on the newline. Camel will default use the Pipes and Filters
pattern here when there are multi endpoints chained liked this. We could have used the
pipeline verb to let out stand out that its the Pipes and Filters pattern such as:

from("direct:start")

using pipes-and-filters we send the ou

.pipeline ("velocity:MailBody.vm", "file:

But most people are using the multi .to style instead.

We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also be created as the
backup file. If we look in the target/subfolder we can see that something happened.

On my humble laptop it created this folder: target\subfolder\ID-claus-acer. So the file
producer create a sub folder named ID-claus-acer what is this? Well Camel auto
generates an unique filename based on the unique message id if not given instructions to use a
fixed filename. In fact it creates another sub folder and name the file as: target\subfolder\ID-

TUTORIALS

173

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html

174

claus-acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What we want is
to use our own filename instead of this auto generated filename. This is archived by adding a
header to the message with the filename to use. So we need to add this to our route and
compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant
filename, just to verify that we are on the right path, to instruct the file producer what filename
to use. The file producer uses a special header FileComponent .HEADER FILE NAME to
set the filename.

What we do is to send the header when we "kick-start" the routing as the header will be
propagated from the direct queue to the file producer. What we need to do is to use the
ProducerTemplate.sendBodyAndHeader method that takes both a body and a
header. So we change out webservice code to include the filename also:

public OutputReportIncident reportIncident (InputReportIncident parameters) {
create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate();

1d the body and the filename defined with the cial header key

Object mailBody = producer.sendBodyAndHeader ("direct:start", parameters,
FileComponent .HEADER FILE NAME, "incident.txt");
System.out.println ("Body:" + mailBody) ;

return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

However we could also have used the route builder itself to configure the constant filename as
shown below:

public void configure() throws Exception ({
from("direct:start")
.to("velocity:MailBody.vm")

set the filename to a constant before the file producer receives the

.setHeader (FileComponent.HEADER FILE NAME, constant("incident.txt"))
- S lder");

.to("file: arge

But Camel can be smarter and we want to dynamic set the filename based on some of the input
parameters, how can we do this?

Well the obvious solution is to compute and set the filename from the webservice
implementation, but then the webservice implementation has such logic and we want this
decoupled, so we could create our own POJO bean that has a method to compute the

TUTORIALS

filename. We could then instruct the routing to invoke this method to get the computed
filename. This is a string feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no
dependencies to Camel what so ever.

/**
* Plain java class to be used for filename generation based on the reported incident
*/

public class FilenameGenerator ({

public String generateFilename (InputReportIncident input) {
compute the filename

return "incident-" + input.getIncidentId() + ".txt";

The class is very simple and we could easily create unit tests for it to verify that it works as
expected. So what we want now is to let Camel invoke this class and its generateFilename with
the input parameters and use the output as the filename. Pheeeww is this really possible out-of-
the-box in Camel? Yes it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception ({
from("direct:start")
set the filename using the bean language and call the FilenameGenerator
class.
the 2nd null parameter is optional methodname, to be used to avoid
ambigui

if not pro

Camel will try to figure out the

only have one method this is very simple
.setHeader (FileComponent.HEADER FILE NAME,
Beanlanguage.bean (FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file://target/subfolder");

Notice that we use the bean language where we supply the class with our bean to invoke.
Camel will instantiate an instance of the class and invoke the suited method. For completeness
and ease of code readability we add the method name as the 2nd parameter

.setHeader (FileComponent.HEADER FILE NAME,
BeanlLanguage.bean (FilenameGenerator.class, "generateFilename"))

TUTORIALS

175

http://camel.apache.org/bean.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/bean-language.html

176

Then other developers can understand what the parameter is, instead of null.

Now we have a nice solution, but as a sidetrack | want to demonstrate the Camel has other
languages out-of-the-box, and that scripting language is a first class citizen in Camel where it etc.
can be used in content based routing. However we want it to be used for the filename
generation.

Whatever worked for you we have now implemented the backup of the data files:

SENDING THE EMAIL

What we need to do before the solution is completed is to actually send the email with the mail
body we generated and stored as a file. In the previous part we did this with a File consumer,
that we manually added to the CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;
public class ReportIncidentRoutes extends RouteBuilder ({

public void configure() throws Exception
irst part rom the webservice -> ile backup
from("direct:start")
.setHeader (FileComponent .HEADER FILE NAME, bean(FilenameGenerator.class,
"generateFilename"))
.to("velocity:MailBody.vm")
.to("file: arget/subfolder") ;

bart from the file backup -> send email

email

.setHeader ("subject", constant("new incident reported")

e email

.to("smtp: someone@localhost?password=secret&to=incident@mycompany.com") ;

The last 3 lines of code does all this. It adds a file consumer from(“file://target/
subfolder™), sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

TUTORIALS

http://camel.apache.org/file2.html

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message
header when we "kick-start" the route. But we want to learn new stuff so we look for a
different solution using some of Camels many Languages. As OGNL is a favorite language of
mine (used by WebWork) so we pick this baby for a Camel ride. For starters we must add it
to our pom.xml:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>${camel-version}</version>
</dependency>

And remember to refresh your editor so you got the new .jars.

We want to construct the filename based on this syntax: mail-incident-#ID#.txt
where #|D# is the incident id from the input parameters. As OGNL is a language that can
invoke methods on bean we can invoke the getIncidentId () on the message body and
then concat it with the fixed pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:
= request is the IN message. See the OGNL for other predefined objects
available
= body is the body of the in message
* incidentld will invoke the getIncidentId () method on the body.
The rest is just more or less regular plain code where we can concat
strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on
our route so we turn back to our route, where we can add the OGNL expression:

public void configure() throws Exception ({
from("direct:start")

ve need to set the filename and uses OGNL for this
.setHeader (FileComponent .HEADER FILE NAME,
OgnlExpression.ognl ("'mail-incident-' + request.body.incidentId + '.txt'"))

TUTORIALS

177

http://camel.apache.org/languages.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html

178

using pipes—-and-filters we send the output from the previous
the nex

.pipeline ("velocity:MailBody.vm", "file: target/subfolder") ;

And since we are on Java |.5 we can use the static import of ognl so we have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;

.setHeader (FileComponent.HEADER FILE NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the Bean Language
we used previously.

CONCLUSION

We have just briefly touched the routing in Camel and shown how to implement them using
the fluent builder syntax in Java. There is much more to the routing in Camel than shown
here, but we are learning step by step. We continue in part 5. See you there.

LINKS

* Introduction
= Part |
= Part2
= Part3
= Part4
= Part5
= Parté

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This
article shows how to use Apache Camel to provide a better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using Camel for JMS is
still 2 good idea if you want to use the rich feature of Camel for routing and other Integration
Scenarios that CXF does not support.

TUTORIALS

http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://camel.apache.org/bean-language.html

You can find the original announcement for this Tutorial and some additional info on
Christian Schneider«s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using the Camel transport for CXF. This is a camel
module that registers with cxf as a new transport. It is quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<property name="transportIds">
<list>
<value>http://cxf.ap
</list>
</property>
</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in
CXF address configurations. The bean references a bean cxf which will be already present in
your config. The other refrenceis a camel context. We will later define this bean to provide the
routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As
ConnectionFactory you can simply set up the normal Factory your JMS provider offers or bind
a JNDI ConnectionFactory. In this example we use the ConnectionFactory provided by
ActiveMQ.

<bean id="jmsConnectionFactory" class="org.apache.activemg.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply
call jms. If we need several [MSComponents we can differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="useMessageIDAsCorrelationID" value="true" />
</bean>

You can find more details about the JMSComponent at the Camel Wiki. For example you find
the complete configuration options and a JNDI sample there.

TUTORIALS

179

http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://activemq.apache.org/camel/jms.html

180

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl.
The webservice client will be configured to use JMS directly. You can also use a direct: Endpoint
and do the routing to JMS in the Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws"

xmlns:customer="http://customerservice.example.com/"

serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="camel:jms:queue:CustomerService"

serviceClass="com.example.customerservice.CustomerService">
</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl.
The names we use are arbitrary and have no further function but we set them to look nice. The
serviceclass points to the service interface that was generated from the wsdl. Now the
important thing is address. Here we tell cxf to use the camel transport, use the JmsComponent
who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext
As we do not need additional routing an empty CamelContext bean will suffice.

<camelContext id="camelContext" xmlns="http://activemqg.apache.o
</camelContext>

Running the Example

* Download the example project here
* Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while
being able to also use the rich integration features of Apache Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL

* Tutorial using Axis |.4 with Apache Camel
* Prerequisites

» Distribution

* Introduction

» Setting up the project to run Axis

TUTORIALS

http://activemq.apache.org/camel/spring.html
http://camel.apache.org/book-in-one-page.data/cxfcamelexample.zip?version=2&modificationDate=1219861188000

 Removed from distribution
This example has been removed from Camel 2.9 onwards. Apache Axis 1.4 is a
very old and unsupported framework. We encourage users to use CXF instead of
Axis.

* Maven 2

e wadl

* Configuring Axis

* Running the Example

* Integrating Spring

» Using Spring

* Integrating Camel

* CamelContext

+ Store a file backup

* Running the example

* Unit Testing

* Smarter Unit Testing with Spring
* Unit Test calling WebService
* Annotations

* The End

* See Also

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel 1.5 distribution as examples/camel-example-

axis.

Introduction

Apache Axis is/was widely used as a webservice framework. So in line with some of the other
tutorials to demonstrate how Camel is not an invasive framework but is flexible and integrates
well with existing solution.

We have an existing solution that exposes a webservice using Axis |.4 deployed as web
applications. This is a common solution. We use contract first so we have Axis generated
source code from an existing wsdl file. Then we show how we introduce Spring and Camel to
integrate with Axis.

This tutorial uses the following frameworks:

TUTORIALS

181

http://ws.apache.org/axis/
http://camel.apache.org/cxf.html

* Maven 2.0.9

* Apache Camel 1.5.0
* Apache Axis 1.4

* Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or
Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis</artifactId>
<version>1l.4</version>
</dependency>

<dependency>
<groupld>org.apache.axis</groupId>
<artifactId>axis-jaxrpc</artifactId>
<version>1l.4</version>

</dependency>

<dependency>
<groupld>org.apache.axis</groupld>
<artifactId>axis-saaj</artifactId>
<version>1l.4</version>
</dependency>

<dependency>
<groupId>axis</groupId>
<artifactId>axis-wsdl4j</artifactId>
<version>1.5.1</version>
</dependency>

<dependency>
<groupId>commons-discovery</groupId>
<artifactId>commons-discovery</artifactId>
<version>0.4</version>

</dependency>

<dependency>
<groupld>log4j</groupIld>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
</dependency>

182 TUTORIALS

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the
source code based on the wsdl file:

pile with 1.5 -->
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1l.5</source>
<target>1.5</target>
</configuration>
</plugin>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>axistools-maven-plugin</artifactId>
<configuration>
<sourceDirectory>src/main/resources/</sourceDirectory>
<packageSpace>com.mycompany.myschema</packageSpace>
<testCases>false</testCases>
<serverSide>true</serverSide>
<subPackageByFileName>false</subPackageByFileName>
</configuration>
<executions>
<execution>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>

wsdl

We use the same .wsdl file as the Tutorial-Example-Reportincident and copy it to src/main/
webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">
<xs:element name="inputReportIncident">
<xs:complexType>

TUTORIALS

183

http://camel.apache.org/tutorial-example-reportincident.html

<xs:sequence>
<xs:element type="xs:string"
name="incidentId"/>
<xs:element type="xs:string"
name="incidentDate"/>
<xs:element type="xs:string"
name="givenName" />
<xs:element type="xs:string"
name="familyName" />
<xs:element type="xs:string"
name="summary" />
<xs:element type="xs:string"
name="details"/>
<xs:element type="xs:string"
name="email" />
<xs:element type="xs:string"
name="phone" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string"
name="code" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">
<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>
</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->
<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">
<soap:operation

184 TUTORIALS

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"

style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>

<wsdl:output>
<soap:body parts="parameters" use="literal"/>

</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">
<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">
<soap:address
location="http://reportincident.example.camel.apache.org"/>
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For
now we are still only using standard Axis and not Spring nor Camel. We still need to setup Axis
as a web application so we configure the web.xml in src/main/webapp/WEB-INF/
web.xml as:

<servlet>
<servlet-name>axis</servlet-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>axis</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet
mapping. We still need to configure Axis itself and this is done using its special configuration file
server-config.wsdd. We nearly get this file for free if we let Axis generate the source
code so we run the maven goal:

mvn axistools:wsdl2java

TUTORIALS

185

186

The tool will generate the source code based on the wsdl and save the files to the following
folder:

.\target\generated-sources\axistools\wsdl2javalorg\apache\camel\example\reportincident
deploy.wsdd

InputReportIncident.java

OutputReportIncident.java

ReportIncidentBindingImpl. java

ReportIncidentBindingStub.java

ReportIncidentService PortType.java

ReportIncidentService_Service.java

ReportIncidentService Servicelocator.java

undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our
webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where we can
implement our code logic what happens when the webservice is invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService implements ReportIncidentService PortType {

public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException {
System.out.println("Hello AxisReportIncidentService is called from " +
parameters.getGivenName ()) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

Now we need to configure Axis itself and this is done using its server-config.wsdd file.
We nearly get this for for free from the auto generated code, we copy the stuff from
deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/" xmlns:java="http://xml.apache.org/

TUTORIALS

axis/wsdd/providers/java">
<!-- global configuration -->

<globalConfiguration>
<parameter name="sendXsiTypes" value="true"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendXMLDeclaration" value="true"/>
<parameter name="axis.sendMinimizedElements" value="true"/>

</globalConfiguration>

<handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

<!-- this service is from deploy.wsdd -->
<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">
<parameter name="wsdlTargetNamespace"
value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServiceElement" value="ReportIncidentService"/>
<parameter name="schemaUnqualified"
value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServicePort" value="ReportIncidentPort"/>
<parameter name="className"
value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
<parameter name="wsdlPortType" value="ReportIncidentService"/>
<parameter name="typeMappingVersion" value="1.2"/>
<operation name="reportIncident" gname="ReportIncident"
returnQName="retNS:outputReportIncident"
xmlns:retNS="http://reportincident.example.camel.apache.org"
returnType="rtns:>outputReportIncident"
xmlns:rtns="http://reportincident.example.camel.apache.org"
soapAction="http://reportincident.example.camel.apache.org/
ReportIncident" >
<parameter gname="pns:inputReportIncident"
xmlns:pns="http://reportincident.example.camel.apache.org"
type="tns:>inputReportIncident"
xmlns:tns="http://reportincident.example.camel.apache.org"/>
</operation>
<parameter name="allowedMethods" value="reportIncident"/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
gname="ns:>outputReportIncident"
type="java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
gname="ns:>inputReportIncident”
type="java:org.apache.camel.example.reportincident.InputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>

</service>

TUTORIALS

187

188

<transport name="http">
<requestFlow>
<handler type="URLMapper"/>
<handler
type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
</requestFlow>
</transport>
</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so you gotta write
that yourself. The service is a 100% copy from deploy.wsdd. Axis has more configuration to it
than shown here, but then you should check the Axis documentation.

What we need to do now is important, as we need to modify the above configuration to use
our webservice class than the default one, so we change the classname parameter to our class
AxisReportincidentService:

<parameter name="className"
value="org.apache.camel.example.axis.AxisReportIncidentService"/>

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web
container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL: http://localhost:8080/
camel-example-axis/services and you should see the famous Axis start page with the
text And now... Some Services.

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not
our original .wsdl file. So we need to fix this ASAP and this is done by configuring Axis in the
server-config.wsdd file:

<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">
<wsdlFile>/WEB-INF/wsdl/report incident.wsdl</wsdlFile>

We do this by adding the wsdlFile tag in the service element where we can point to the real
wsdl file.

TUTORIALS

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services

Integrating Spring

First we need to add its dependencies to the pom.xml.

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.5</version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context
parameter to be able to configure precisely what spring xml files to use:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
classpath:axis-example-context.xml
</param-value>
</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Next is to add a plain spring XML file named axis-example-context.xml in the src/main/
resources folder.

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with mvn jetty:run just to make
sure Spring was setup correctly.

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so
we can get access to the glory spring, but how do we do this? And our webservice class
AxisReportincidentService is created and managed by Axis we want to let Spring do this. So we
have two problems.

TUTORIALS

189

190

We solve these problems by creating a delegate class that Axis creates, and this delegate
class gets hold on Spring and then gets our real webservice as a spring bean and invoke the
service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is
our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +
parameters.getGivenName ()) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;
return out;

So now we need to get from AxisReportincidentService to this one ReportincidentService using
Spring. Well first of all we add our real service to spring XML configuration file so Spring can
handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>
And then we need to modify AxisReportincidentService to use Spring to lookup the spring bean
id="incidentservice™ and delegate the call. We do this by extending the spring class

org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

TUTORIALS

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;

import org.apache.camel.example.reportincident.OutputReportIncident;

import org.apache.camel.example.reportincident.ReportIncidentService PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**

* Axis webservice

*/
public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService PortType {

public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException {

// get hold of the spring

ReportIncidentService service = (ReportIncidentService)
getApplicationContext () .getBean ("incidentservice");

/)

// delegate to the real service

return service.reportIncident (parameters);

To see if everything is okay we run mvn Jjetty:run.

In the code above we get hold of our service at each request by looking up in the application
context. However Spring also supports an init method where we can do this once. So we
change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService PortType {

private ReportIncidentService service;

@Override
protected void onInit () throws ServiceException {

service = (ReportIncidentService)
getApplicationContext () .getBean ("incidentservice");

}

public OutputReportIncident reportIncident (InputReportIncident parameters) throws
RemoteException {

// delegate to the real s

return service.reportIncident (parameters);

TUTORIALS

191

192

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the maven pom.xml file:

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.5.0</version>
</dependency>

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>1.5.0</version>
</dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works
well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel namespace and the
schema location:

CamelContext

CamelContext is the heart of Camel its where all the routes, endpoints, components, etc. is
registered. So we setup a CamelContext and the spring XML files looks like:

<?xml version="1.0" encoding="UTF-8"?2>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://activemq.apache.org/camel/schema/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd
http://activemq.apache.org/camel/schema/spring http://activemqg.apache.org/

camel/schema/spring/camel-spring.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService" />

<camel:camelContext id="camel">

<!-- TODO: Here we can add Camel stuff -->

TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/components.html
http://camel.apache.org/camelcontext.html

{2 Camel does not require Spring
Camel does not require Spring, we could easily have used Camel without Spring,
but most users prefer to use Spring also.

</camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we
want to send the file content as a message to an endpoint that produces the file. So we need to
do two steps:

= configure the file backup endpoint

* send the message to the endpoint
The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id="camelContext">

<!-- endpoint named backup that is configued as a file component -->

<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and configured it use
the URL notation that we know from the internet. Its a £i1e scheme that accepts a context
and some options. The contest is target and its the folder to store the file. The option is just
as the internet with ? and & for subsequent options. We configure it to not append, meaning
than any existing file will be overwritten. See the File component for options and how to use
the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way is to use a
ProducerTemplate. A ProducerTemplate is inspired by Spring template pattern with for
instance J/msTemplate or JdbcTemplate in mind. The template that all the grunt work and
exposes a simple interface to the end-user where he/she can set the payload to send. Then the
template will do proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well the CamelContext is able to provide one. This is done by
configuring the template on the camel context in the spring XML as:

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->

<camel:template id="camelTemplate"/>

TUTORIALS

193

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html

194

>d as a file con

<!-- endpoint namec kup that is

<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java
code as:

public class ReportIncidentService {
private ProducerTemplate template;

public void setTemplate (ProducerTemplate template) {
this.template = template;

And then let Spring handle the dependency inject as below:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService">

<!-- set the

or template to use from the camel context

<property name="template" ref="camelTemplate"/>
</bean>

Now we are ready to use the producer template in our service to send the payload to the
endpoint. The template has many sendXXX methods for this purpose. But before we send
the payload to the file endpoint we must also specify what filename to store the file as. This is
done by sending meta data with the payload. In Camel metadata is sent as headers. Headers is
just a plain Map<String, Object>. So if we needed to send several metadata then we
could construct an ordinary HashMap and put the values in there. But as we just need to send
one header with the filename Camel has a convenient send method sendBodyAndHeader so

we choose this one.

public OutputReportIncident reportIncident (InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName ()) ;
String data = parameters.getDetails();

store the data as a file
String filename = parameters.getIncidentId() + ".txt";

nt and the header contains what filename it

// send the data to the endpo

should be stored as
template.sendBodyAndHeader ("backup", data, "org.apache.camel.file.name",

filename) ;

OutputReportIncident out = new OutputReportIncident();
out.setCode ("OK") ;

TUTORIALS

return out;

The template in the code above uses 4 parameters:
= the endpoint name, in this case the id referring to the endpoint defined in Spring XML
in the camelContext element.
= the payload, can be any kind of object
* the key for the header, in this case a Camel keyword to set the filename
= and the value for the header

Running the example

We start our integration with maven using mvn Jjetty:run. Then we open a browser and
hit http://localhost:8080. Jetty is so smart that it display a frontpage with links to the
deployed application so just hit the link and you get our application. Now we hit append
/services to the URL to access the Axis frontpage. The URL should be
http://localhost:8080/camel-example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing

We would like to be able to unit test our ReportincidentService class. So we add junit to
the maven dependency:

<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>3.8.2</version>
<scope>test</scope>
</dependency>

And then we create a plain junit testcase for our service class.

TUTORIALS

195

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/‘k‘k
* Unit test of service
7

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident (input) ;
assertEquals ("OK", output.getCode());

protected InputReportIncident createDummyIncident () {
InputReportIncident input = new InputReportIncident();
input.setEmail ("davsclaus@apache.org") ;
input.setIncidentId("12345678");
input.setIncidentDate ("2008-07-13");
input.setPhone ("+45 2962 7576");
input.setSummary ("Failed operation");
input.setDetails ("The wrong foot was operated.");
input.setFamilyName ("Ibsen") ;
input.setGivenName ("Claus") ;
return input;

Then we can run the test with maven using: mvn test. But we will get a failure:

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results

Tests in error:

testIncident (org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message
to the file endpoint so the message will be stored in a file. What we need is to get hold of such
a producer and inject it on our service, by calling the setter.

196 TUTORIALS

Since Camel is very light weight and embedable we are able to create a CamelContext and
add the endpoint in our unit test code directly. We do this to show how this is possible:

private CamelContext context;

QOverride

protected void setUp() throws Exception {
super.setUp () ;
// CamelContext is just created like this
context = new DefaultCamelContext();

// then we

can create our endpoint and set the options

FileEndpoint endpoint = new FileEndpoint () ;

// the endpoint must have the camel context set also
endpoint.setCamelContext (context) ;

// our output folder

endpoint.setFile(new File("target"));

// and the end
endpoint.setAppend(false);

option not to ar

add the endpoint just in java code just as the spring XML, we
er it with the "backup" id.
context.addSingletonEndpoint ("backup", endpoint);

// finally we need to start the context so Camel is ready to rock
context.start();

QOverride
protected void tearDown () throws Exception ({
super.tearDown () ;
// and we are nice boys so we stop it to allow resources to clean up

context.stop();

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that
baby from the CamelContext as:

public void testIncident () {

ReportIncidentService service = new ReportIncidentService();

t

yet a producer template from the camel context
ProducerTemplate template = context.createProducerTemplate () ;

// inject it on our service using the setter

service.setTemplate (template) ;

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident (input) ;
assertEquals ("OK", output.getCode());

And this time when we run the unit test its a success:

TUTORIALS

197

198

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue ("File should exists", file.exists()):;

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we
would like our unit test to use our spring configuration file axis-example-context.xml
where we already have setup the endpoint. And of course we would like to test using this
configuration file as this is the real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path for unit testing.
First we add the spring-test jar to our maven dependency:

<dependency>
<groupld>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<scope>test</scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to
extend AbstractJUnit38SpringContextTests instead of TestCase in our unit test.
Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml
configuration file is located:

@ContextConfiguration (locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is located in src/
main/resources. If we omit the prefix then Spring will by default try to locate the xml file
in the current package and that is org.apache.camel.example.axis. If the xml file is located
outside the classpath you can use file: prefix instead. So with these two modifications we can
get rid of all the setup and teardown code we had before and now we will test our real
configuration.

The last change is to get hold of the producer template and now we can just refer to the
bean id it has in the spring xml file:

TUTORIALS

<!-- producer template exposed with this id -->

<camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is
used to do:

get a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)
applicationContext.getBean ("camelTemplate") ;
inject 1T Oon our service using the setter

service.setTemplate (template) ;

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring
and you can use standard Spring'ish unit test to test your Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the
AxisReportincidentService how do we unit test this one? Well first of all the code is
merely just a delegate to our real service that we have just tested, but nevertheless its a good
question and we would like to know how. Well the answer is that we can exploit that fact that
Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add
this to our pom.xml:

<dependency>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
<version>${jetty-version}</version>
<scope>test</scope>

</dependency>

Then we can create a new class AxisReportincidentServiceTest to unit test with Jetty.
The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {
private Server server;

private void startJetty() throws Exception {
e an ed Je y server

create a embe

server = new Server();

listener on port 8080 on localhost (127.0.0.1)

Connector connector = new SelectChannelConnector();
connector.setPort (8080) ;
connector.setHost ("127.0.0.1");

TUTORIALS

199

server.addConnector (connector) ;

// add our web context path

WebAppContext wac = new WebAppContext () ;

wac.setContextPath ("/unittest");

// set the location of the exploded webapp where WEB-INF is located

// this is a nice feature of Jetty where we can point to src/main/web
wac.setWar ("./src/main/webapp") ;
server.setHandler (wac) ;

// then start Jetty
server.setStopAtShutdown (true) ;
server.start();

@Override

protected void setUp() throws Exception {
super.setUp () ;
startJetty () ;

QOverride

protected void tearDown () throws Exception ({
super.tearDown () ;
server.stop();

Now we just need to send the incident as a webservice request using Axis. So we add the
following code:

public void testReportIncidentWithAxis () throws Exception {
// the url to the axis webservice exposed by jetty
URL url = new URL ("http://localhost:8080/unittest/services/

ReportIncidentPort") ;

// Axis stuff to get the port where we can send the w

ReportIncidentService Servicelocator locator = new
ReportIncidentService ServicelLocator();

ReportIncidentService PortType port = locator.getReportIncidentPort (url);

// create input to send

InputReportIncident input = createDummyIncident () ;
// send the
OutputReportIncident output = port.reportIncident (input) ;
assertEquals ("OK", output.getCode());

webservice and get the response

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue ("File should exists", file.exists()):;

200 TUTORIALS

protected InputReportIncident createDummyIncident () {
InputReportIncident input = new InputReportIncident();
input.setEmail ("davsclaus@apache.org");
input.setIncidentId("12345678") ;
input.setIncidentDate ("2008-07-13");
input.setPhone ("+45 2962 7576");
input.setSummary ("Failed operation");
input.setDetails ("The wrong foot was operated.");
input.setFamilyName ("Ibsen") ;
input.setGivenName ("Claus") ;
return input;

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings
more elegantly. Camel has the endpoint annotation @EndpointInjected that is just what
we need. With this annotation we can inject the endpoint into our service. The annotation
takes either a name or uri parameter. The name is the bean id in the Registry. The uri is the
URI configuration for the endpoint. Using this you can actually inject an endpoint that you have
not defined in the camel context. As we have defined our endpoint with the id backup we use
the name parameter.

@EndpointInject (name = "backup")
private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object types. We like
the ProducerTemplate so we just keep it as it is.

Since we use annotations on the field directly we do not need to set the property in the spring
xml file so we change our service bean:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.

And since we use the @EndpointInjected that refers to the endpoint with the id
backup directly we can loose the template tag in the xml, so its shorter:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camelContext">

TUTORIALS

201

http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

202

<!-- producer templa d with this id -->

<camel:template id="camelTemplate"/>

<! >ndpoint named backup that is configued as a file component

<camel:endpoint id="backup" uri="file://target?append=false"/>
</camel:camelContext>
And the final touch we can do is that since the endpoint is injected with concrete endpoint to

use we can remove the "backup" name parameter when we send the message. So we change
from:

ntains what filename it

should be stored as
template.sendBodyAndHeader ("backup", data, "org.apache.camel.file.name",
filename) ;

To without the name:

nt and the header contains what filename it

should be stored as

template.sendBodyAndHeader (data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget
to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing
and mediation framework. But we wanted to demonstrate its flexibility and that it integrates
well with even older frameworks such as Apache Axis |.4.

Check out the other tutorials on Camel and the other examples.

Note that the code shown here also applies to Camel |.4 so actually you can get started
right away with the released version of Camel. As this time of writing Camel 1.5 is work in
progress.

See Also

= Tutorials
= Examples

TUTORIALS

http://camel.apache.org/tutorials.html
http://camel.apache.org/examples.html

TUTORIAL ON USING CAMEL IN A WEB APPLICATION

Camel has been designed to work great with the Spring framework; so if you are already a
Spring user you can think of Camel as just a framework for adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to
add the standard Spring hook to load 2 /WEB-INF/applicationContext.xml file. In that
file you can include your usual Camel XML configuration.

Stepl: Edit your web.xml

To enable spring add a context loader listener to your /WEB=INF/web.xml file

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

ns/javaee/web-app 2 5.xsd"
version="2.5">

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

</web-app>

This will cause Spring to boot up and look for the /WEB=INF/applicationContext.xml
file.

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?2>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

TUTORIALS

203

http://camel.apache.org/spring.html

<from uri="seda:foo"/>
<to uri="mock:results"/>
</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you use Maven to build your application your directory tree will look like this...

src/main/webapp/WEB-INF
web.xml

applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming like this...

<project>
<packaging>war</packaging>
<build>
<finalName>[desired WAR file name]</finalName>

</build>

To enable more rapid development we highly recommend the jetty:run maven plugin.

Please refer to the help for more information on using jetty:run - but briefly if you add the
following to your pom.xml

<build>
<plugins>
<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>
<webAppConfig>
<contextPath>/</contextPath>
</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>
</configuration>
</plugin>
</plugins>
</build>

Then you can run your web application as follows

204 TUTORIALS

http://maven.apache.org/
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory
so that if you modify your spring XML, your web.xml or your java code the web application will
be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web
application via

mvn -Dtest=false jetty:run

TUTORIAL BUSINESS PARTNERS

BACKGROUND AND INTRODUCTION

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their
customers are responsible for telling Acme what they purchased. The customer enters into
their own systems (ERP or whatever) which widgets they bought from Acme. Then at some
point, their systems emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so there needs to be
integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects,
"you can send us the data in whatever format, using whatever protocols, whatever. You just
can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:

* Customer I: XML over FTP

* Customer 2: CSV over HTTP

* Customer 3: Excel via e-mail
Now on the Acme side, all this has to be converted to a canonical XML format and submitted
to the Acme accounting system via JMS. Then the Acme accounting system does its stuff and
sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted,
line item #2 in error, total invoice $123.45). Finally, that data needs to be formatted into an e-
mail, and sent to a contact at the customer in question ("Dear Joyce, we received an invoice on
1/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items
#2 [invalid quantity ordered]. Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
¢ Listen for HTTP, e-mail, and FTP files
* Grab attachments from the e-mail messages

TUTORIALS

205

206

. Under Construction
This tutorial is a work in progress.

Convert XML, XLS, and CSV files to a canonical XML format
read and write JMS messages

route based on company ID

format e-mails using Velocity templates

send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:

Camel concepts including the CamelContext, Routes, Components and Endpoints,
and Enterprise Integration Patterns
Configuring Camel with the XML or Java DSL

You'll learn:

How to set up a Maven build for a Camel project
How to transform XML, CSV, and Excel data into a standard XML format with Camel
° How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT
stylesheets that are invoked by Camel routes for message transformation
How to configure simple and complex Routes in Camel, using either the XML or the
Java DSL format
How to set up unit tests that load a Camel configuration and test Camel routes
How to use Camel's Data Formats to automatically convert data between Java objects
and XML, CSV files, etc.
How to send and receive e-mail from Camel
How to send and receive JMS messages from Camel
How to use Enterprise Integration Patterns including Message Router and Pipes and
Filters
o How to use various languages to express content-based routing rules in
Camel
How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and
configuration files yourself. Each of the sections gives detailed descriptions of the steps that
need to be taken to get the components and routes working in Camel, and takes you through
tests to make sure they are working as expected.

But each section also links to working copies of the source and configuration files, so if you
don't want the hands-on approach, you can simply review and/or download the finished files.

TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/dsl.html

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

And then, the output from Acme to the customers:

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and
test those, and then try to assemble the big scenario and test that.

Here's what we'll try to accomplish:

oAk wnpn

14.
I5.

Create a Maven build for the project
Get sample files for the customer Excel, CSV, and XML input
Get a sample file for the canonical XML format that Acme's accounting system uses
Create an XSD for the canonical XML format
Create JAXB POJOs corresponding to the canonical XSD
Create an XSLT stylesheet to convert the Customer | (XML over FTP) messages to
the canonical format
Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet
works
Create a POJO that converts a List<List<String>> to the above JAXB POJOs
° Note that Camel can automatically convert CSV input to a List of Lists of
Strings representing the rows and columns of the CSV, so we'll use this
POJO to handle Customer 2 (CSV over HTTP)
Create a unit test to ensure that a simple Camel route invoking the CSV processing
works
Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs
(using POI to read Excel)
Create a unit test to ensure that a simple Camel route invoking the Excel processing
works
Create a POJO that reads an input message, takes an attachment off the message, and
replaces the body of the message with the attachment
o This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains
a single Excel file as an attachment, and the actual e-mail body is throwaway
Build a set of Camel routes to handle the entire input (Customer -> Acme) side of
the scenario.
Build unit tests for the Camel input.
TODO: Tasks for the output (Acme -> Customer) side of the scenario

TUTORIALS

207

208

LET'S GET STARTED!

Step I: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's
nice to have Maven handle them for us. You should have a current version of Maven (e.g. 2.0.9)

installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple
JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel-core, and set the compile
version to |.5 (so we can use annotations):

Listing 1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">
<modelVersion>4.0.0</modelVersion>
<groupld>org.apache.camel.tutorial</groupld>
<artifactId>business-partners</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial</name>
<dependencies>
<dependency>
<artifactId>camel-core</artifactId>
<groupIld>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1l.5</source>
<target>1l.5</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf" ones. You can save
yourself some time by downloading these to src/test/resources in your Maven project.
* Customer | (XML): input-customer | .xml
» Customer 2 (CSV): input-customer2.csv
» Customer 3 (Excel): input-customer3.xls

TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/input-customer2.csv?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/input-customer3.xls?version=1&modificationDate=1221319297000

* Canonical Acme XML Request: canonical-acme-request.xml

* Canonical Acme XML Response: TODO
If you look at these files, you'll see that the different input formats use different field names and/
or ordering, because of course the sales guys were totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?2>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">
<partner-id>2</partner-id>
<date-received>9/12/2008</date-received>
<line-item>
<product-id>134</product-id>
<description>A widget</description>
<quantity>3</quantity>
<item-price>10.45</item-price>
<order-date>6/5/2008</order-date>
</line-item>
Lll== more line-item elements here -->
<order-total>218.82</order-total>
</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and
save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/main/xsd.

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to
set up those XML binding POJOs. So we'll update the Maven POM to generate JAXB beans
from the XSD file.

We need a dependency:

<dependency>
<artifactId>camel-jaxb</artifactId>
<groupld>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>

And a plugin configured:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jaxb2-maven-plugin</artifactId>

TUTORIALS

209

http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xsd?version=1&modificationDate=1221569994000

<executions>
<execution>
<goals>
<goal>xjc</goal>
</goals>
</execution>
</executions>
</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to generate
beans for). Run mvn install and it should emit the beans into target/generated-
sources/Jjaxb. Your IDE should see them there, though you may need to update the
project to reflect the new settings in the Maven POM.

Step 4: Initial Work on Customer | Input (XML over FTP)

To get a start on Customer |, we'll create an XSLT template to convert the Customer |

sample file into the canonical XML format, write a small Camel route to test it, and build that
into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and
can be run safely in Camel.

Create an XSLT template

Start with the Customer | sample input. You want to create an XSLT template to generate
XML like the canonical XML sample above b an invoice element with 1ine-item
elements (one per item in the original XML document). If you're especially clever, you can
populate the current date and order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going if you don't
want to write one of your own.

Create a unit test

Here's where we get to some meaty Camel work. We need to:

* Set up a unit test

* That loads a Camel configuration

* That has a route invoking our XSLT

* Where the test sends a message to the route

* And ensures that some XML comes out the end of the route
The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then
use a base unit test class from Spring that knows how to load a Spring context to run tests
against. So, the procedure is:

210 TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/XMLConverter.xsl?version=1&modificationDate=1221329900000

Set Up a Skeletal Camel/Spring Unit Test

I. Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically
bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId>camel-spring</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

<dependency>
<artifactId>spring-test</artifactId>
<groupId>org.springframework</groupId>
<version>2.5.5</version>
<scope>test</scope>

</dependency>

2. Create a new unit test class in src/test/java/your-package-here, perhaps
called XMLInputTest.java

3. Make the test extend Spring's Abstract]Unit38SpringContextTests class, so it can load
a Spring context for the test

4. Create a Spring context configuration file in src/test/resources, perhaps
called XMLInputTest-context.xml

5. In the unit test class, use the class-level @ContextConfiguration annotation to
indicate that a Spring context should be loaded

o By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory corresponding to the
package of the test class. For instance, if your test class was
org.apache.camel.tutorial.XMLInputTest, it would look for
org/apache/camel/tutorial/XMLInputTest-context.xml

° To override this default, use the locations attribute on the
@ContextConfiguration annotation to provide specific context file
locations (starting each path with a / if you don't want it to be relative to
the package directory). My solution does this so | can put the context file
directly in src/test/resources instead of in a package directory
under there.

6. Add a CamelContext instance variable to the test class, with the @Autowired
annotation. That way Spring will automatically pull the CamelContext out of the
Spring context and inject it into our test class.

7. Add a ProducerTemplate instance variable and a setUp method that instantiates it
from the CamelContext. We'll use the ProducerTemplate later to send messages to
the route.

protected ProducerTemplate<Exchange> template;

TUTORIALS 211

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html

212

protected void setUp () throws Exception ({
super.setUp() ;
template = camelContext.createProducerTemplate () ;

Put in an empty test method just for the moment (so when we run this we can see
that "l test succeeded")

Add the Spring <beans> element (including the Camel Namespace) with an empty
<camelContext> element to the Spring context, like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
http://activemqg.apache.org/camel/schema/spring
http://activemg.apache.org/camel/schema/spring/
camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemqg.apache.org/camel/schema/
spring">

</camelContext>
</beans>

Test it by running mvn install and make sure there are no build errors. So far it doesn't test
much; just that your project and test and source files are all organized correctly, and the one
empty test method completes successfully.

Solution: Your test class might look something like this:
* src/test/java/org/apache/camel/tutorial/ XMLInputTest.java
* src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer |
input file, and makes sure that some XML output comes out:

l.
2.
3.

Save the input-customer|.xml file to src/test/resources
Save your XSLT file (created in the previous step) to src/main/resources
Write a Camel Route, either right in the Spring XML, or using the Java DSL (in
another class under src/test/java somewhere). This route should use the Pipes
and Filters integration pattern to:
I. Start from the endpoint direct:start (which lets the test conveniently pass
messages into the route)
2. Call the endpoint xslt:YourXSLTFile.xs| (to transform the message with the
specified XSLT template)

TUTORIALS

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/book-in-one-page.data/empty-XMLInputTest.java?version=3&modificationDate=1221648819000
http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/xslt.html

3. Send the result to the endpoint mockfinish (which lets the test verify the
route output)
4. Add a test method to the unit test class that:
I. Get a reference to the Mock endpoint mock: finish using code like this:

MockEndpoint finish = MockEndpoint.resolve (camelContext,

"mock:finish");

2. Set the expectedMessageCount on that endpoint to |
3. Get a reference to the Customer | input file, using code like this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partnerl.xml") ;
assertNotNull (in) ;

4. Send that InputStream as a message to the direct:start endpoint,
using code like this:

template.sendBody ("direct:start", in);

Note that we can send the sample file body in several formats (File,
InputStream, String, etc.) but in this case an InputStream is pretty
convenient.

5. Ensure that the message made it through the route to the final endpoint, by
testing all configured Mock endpoints like this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code like
finish.getExchanges () .get (0) .getIn () .getBody ().
= If you do this, you'll need to know what format that body is B
String, byte array, InputStream, etc.
5. Run your test with mvn install and make sure the build completes successfully.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/XMLInputTest.java
* For XML Configuration:
° src/test/resources/XMLInputTest-context.xml
* Oir, for Java DSL Configuration:
° src/test/resources/XMLInputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/XMLInputTestRoute.java

TUTORIALS

213

http://camel.apache.org/mock.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/book-in-one-page.data/XMLInputTest.java?version=3&modificationDate=1221651730000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-context.xml?version=1&modificationDate=1221574632000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221641531000
http://camel.apache.org/book-in-one-page.data/XMLInputTestRoute.java?version=1&modificationDate=1221641531000

214

2 Test Base Class
Once your test class is working, you might want to extract things like the
@Autowired CamelContext, the ProducerTemplate, and the setUp method to a
custom base class that you extend with your other tests.

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data
into the JAXB POJOs representing the canonical XML format, write a small Camel route to test
it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV
conversion and JAXB handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with, CSV is a known data format in Camel. Camel can convert a CSV file to a List
(representing rows in the CSV) of Lists (representing cells in the row) of Strings (the data for
each cell). That means our POJO can just assume the data coming in is of type
List<List<String>>, and we can declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/jaxb, it looks like an
Invoice object represents the whole document, with a nested list of LineltemType objects
for the line items. Therefore our POJO method will return an Invoice (a document in the
canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:

I. Create a new class under src/main/java, perhaps called CSVConverterBean.
2. Add a method, with one argument of type List<List<String>> and the return
type Invoice
> You may annotate the argument with @Body to specifically designate it as
the body of the incoming message
3. In the method, the logic should look roughly like this:
I. Create a new Invoice, using the method on the generated
ObjectFactory class
2. Loop through all the rows in the incoming CSV (the outer List)
Skip the first row, which contains headers (column names)
4. For the other rows:

w

I. Create a new LineItemType (using the ObjectFactory
again)
2. Pick out all the cell values (the Strings in the inner List) and put
them into the correct fields of the LineItemType
= Not all of the values will actually go into the line item in
this example

TUTORIALS

http://camel.apache.org/csv.html
http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html

* You may hardcode the column ordering based on the

sample data file, or else try to read it dynamically from
the headers in the first line

Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for

the date fields in the XML D which probably means
using a SimpleDateFormat to parse the date and

setting that date on a GregorianCalendar

3. Add the line item to the invoice

wrong

7. Return the finished Invoice

Solution: Here's an example of what the CSVConverterBean might look like.

Create a unit test

Populate the partner ID, date of receipt, and order total on the Invoice
Throw any exceptions out of the method, so Camel knows something went

Start with a simple test class and test Spring context like last time, perhaps based on the name
CSVInputTest:

Listing 1. CSVInputTest.java

Vaks

* A test class the ensure we can convert Partner 2 CSV input files to the

* canonical XML output format, using JAXB POJOs.

*/

QContextConfiguration (locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests
QAutowired

protected
protected

protected
super.

CamelContext camelContext;
ProducerTemplate<Exchange> template;

void setUp() throws Exception {
setUp();

template = camelContext.createProducerTemplate () ;

public void testCSVConversion() {

TOD

Listing 1. CSVInputTest-context.xml

<?xml version="1.0" encoding="UTEF-8"?>

<beans xmlns="

http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

TUTORIALS

215

http://camel.apache.org/book-in-one-page.data/CSVConverterBean.java?version=1&modificationDate=1221648421000

216

xsi:schemalLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd
http://activemqg.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/
camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">

</camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.
I. Update the Maven POM to include CSV Data Format support:

<dependency>
<artifactId>camel-csv</artifactId>
<groupld>org.apache.camel</groupId>
<version>1.4.0</version>
</dependency>

2. Write the routes (right in the Spring XML context, or using the Java DSL) for the
CSV conversion process, again using the Pipes and Filters pattern:

I. Start from the endpoint direct:CSVstart (which lets the test conveniently
pass messages into the route). We'll name this differently than the starting
point for the previous test, in case you use the Java DSL and put all your
routes in the same package (which would mean that each test would load
the DSL routes for several tests.)

2. This time, there's a little preparation to be done. Camel doesn't know that
the initial input is a CSV, so it won't be able to convert it to the expected
List<List<String>> without a little hint. For that, we need an
unmarshal transformation in the route. The unmarshal method (in the
DSL) or element (in the XML) takes a child indicating the format to
unmarshal; in this case that should be csv.

3. Next invoke the POJO to transform the message with a
bean:CSVConverter endpoint

4. As before, send the result to the endpoint mock:finish (which lets the test
verify the route output)

5. Finally, we need a Spring <bean> element in the Spring context XML file
(but outside the <camelContext> element) to define the Spring bean
that our route invokes. This Spring bean should have a name attribute that
matches the name used in the bean endpoint (CSVConverter in the
example above), and a class attribute that points to the CSV-to-JAXB
POJO class you wrote above (such as,
org.apache.camel.tutorial.CSVConverterBean). When

TUTORIALS

http://camel.apache.org/csv.html
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/data-format.html#DataFormat-Unmarshalling
http://camel.apache.org/bean.html
http://camel.apache.org/mock.html

Spring is in the picture, any bean endpoints look up Spring beans with the
specified name.
3. Write a test method in the test class, which should look very similar to the previous
test class:
I. Get the MockEndpoint for the final endpoint, and tell it to expect one
message
2. Load the Partner 2 sample CSV file from the ClassPath, and send it as the
body of a message to the starting endpoint
3. Verify that the final MockEndpoint is satisfied (that is, it received one
message) and examine the message body if you like
* Note that we didn't marshal the JAXB POJOs to XML in this test,
so the final message should contain an Invoice as the body. You
could write a simple line of code to get the Exchange (and
Message) from the MockEndpoint to confirm that.
4. Run this new test with mvn install and make sure it passes and the build completes
successfully.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/CSVInputTest.java
* For XML Configuration:
o src/test/resources/CSVInputTest-context.xml
* Or, for Java DSL Configuration:
° src/test/resources/CSVInputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel
data into the JAXB POJOs representing the canonical XML format, write a small Camel route
to test it, and build that into a unit test. If we get through this, we can be pretty sure that the
Excel conversion and JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options P create
an Excel DataFormat (so Camel can convert Excel spreadsheets to something like the CSV
List<List<String>> automatically), or create a POJO that can translate Excel data
manually. For now, the second approach is easier (if we go the DataFormat route, we need
code to both read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like an InputStream or
byte[] as an argument, and returns in Invoice as before. The process should look
something like this:

I. Update the Maven POM to include POI support:

TUTORIALS

217

http://camel.apache.org/data-format.html#DataFormat-Marshalling
http://camel.apache.org/book-in-one-page.data/CSVInputTest.java?version=2&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTest-context.xml?version=2&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTestRoute.java?version=2&modificationDate=1221693442000
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://poi.apache.org/

218

<dependency>
<artifactId>poi</artifactId>
<groupId>org.apache.poi</groupId>
<version>3.1-FINAL</version>
</dependency>

2. Create a new class under src/main/java, perhaps called
ExcelConverterBean.
3. Add a method, with one argument of type InputStream and the return type
Invoice
o You may annotate the argument with @Body to specifically designate it as
the body of the incoming message
4. In the method, the logic should look roughly like this:
I. Create a new Invoice, using the method on the generated
ObjectFactory class
2. Create a new HSSFWorkbook from the InputStream, and get the first
sheet from it
3. Loop through all the rows in the sheet
Skip the first row, which contains headers (column names)
5. For the other rows:
I. Create a new LineItemType (using the ObjectFactory
again)
2. Pick out all the cell values and put them into the correct fields of
the LineItemType (you'll need some data type conversion

logic)

>

= Not all of the values will actually go into the line item in
this example
* You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line
= Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML D which probably means
setting the date from a date cell on a
GregorianCalendar
3. Add the line item to the invoice
6. Populate the partner ID, date of receipt, and order total on the Invoice
7. Throw any exceptions out of the method, so Camel knows something went
wrong
8. Return the finished Invoice
Solution: Here's an example of what the ExcelConverterBean might look like.

TUTORIALS

http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
http://camel.apache.org/book-in-one-page.data/ExcelConverterBean.java?version=1&modificationDate=1221716652000

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean
should be quite similar to the CSV bean.
I. Create the basic test class and corresponding Spring Context XML configuration file
2. The XML config should look a lot like the CSV test, except:
o Remember to use a different start endpoint name if you're using the Java
DSL and not use separate packages per test
° You don't need the unmarshal step since the Excel POJO takes the raw
InputStream from the source endpoint
o You'll declare a <bean> and endpoint for the Excel bean prepared above
instead of the CSV bean
3. The test class should look a lot like the CSV test, except use the right input file name
and start endpoint name.
Solution: Your finished test might look something like this:
* src/test/java/org/apache/camel/tutorial/ExcellnputTest.java
* For XML Configuration:
° src/test/resources/ExcellnputTest-context.xml
* Oir, for Java DSL Configuration:
° src/test/resources/ExcellnputTest-dsl-context.xml
° src/test/java/org/apache/camel/tutorial/routes/ExcellnputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen
for HTTP, FTP, or e-mail input, and write the final XML output to an ActiveMQ queue. Along
the way these routes will use the data conversions we've developed above.
So we'll create 3 routes to start with, as shown in the diagram back at the beginning:
I. Accept XML orders over FTP from Customer | (we'll assume the FTP server dumps
files in a local directory on the Camel machine)
2. Accept CSV orders over HTTP from Customer 2
3. Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent
to an account we can access via IMAP)

Step 8: Create a unit test for the Customer Input Routes

TUTORIALS

219

http://camel.apache.org/book-in-one-page.data/ExcelInputTest.java?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-context.xml?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221746832000
http://camel.apache.org/book-in-one-page.data/ExcelInputTestRoute.java?version=1&modificationDate=1221746832000

& Logging
You may notice that your tests emit a lot less output all of a sudden. The
dependency on POI brought in Log4] and configured commons-logging to use it, so
now we need a log4j.properties file to configure log output. You can use the
attached one (snarfed from ActiveMQ) or write your own; either way save it to
src/main/resources to ensure you continue to see log output.

220 TUTORIALS

http://camel.apache.org/book-in-one-page.data/log4j.properties?version=1&modificationDate=1221746968000

To support flexible and powerful Enterprise Integration Patterns Camel supports various
Languages to create an Expression or Predicate within either the Routing Domain Specific
Language or the Xml Configuration. The following languages are supported

BEAN LANGUAGE

The purpose of the Bean Language is to be able to implement an Expression or Predicate using
a simple method on a bean.

So the idea is you specify a bean name which will then be resolved in the Registry such as
the Spring ApplicationContext then a method is invoked to evaluate the Expression or
Predicate.

If no method name is provided then one is attempted to be chosen using the rules for Bean
Binding; using the type of the message body and using any annotations on the bean methods.

The Bean Binding rules are used to bind the Message Exchange to the method parameters;
so you can annotate the bean to extract headers or other expressions such as XPath or
XQuery from the message.

Using Bean Expressions from the Java DSL

from("activemqg:topic:0rdersTopic") .
filter () .method("myBean", "isGoldCustomer").
to("activemg:BigSpendersQueue") ;

Using Bean Expressions from XML

<route>
<from uri="activemq:topic:0OrdersTopic"/>
<filter>
<method bean="myBean" method="isGoldCustomer"/>
<to uri="activemqg:BigSpendersQueue"/>
</filter>
</route>

LANGUAGES SUPPORTED APPENDIX

221

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html

222

Writing the expression bean

The bean in the above examples is just any old Java Bean with a method called
isGoldCustomer() that returns some object that is easily converted to a boolean value in this
case, as its used as a predicate.

So we could implement it like this...

public class MyBean {
public boolean isGoldCustomer (Exchange exchange) {

We can also use the Bean Integration annotations. For example you could do...

public boolean isGoldCustomer (String body) {...}

or

public boolean isGoldCustomer (@Header (name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, the Message or individual headers,
properties, the body or other expressions.

Non registry beans

The Bean Language also supports invoking beans that isn't registered in the Registry. This is
usable for quickly to invoke a bean from Java DSL where you don't need to register the bean in
the Registry such as the Spring ApplicationContext.

Camel can instantiate the bean and invoke the method if given a class or invoke an already
existing instance. This is illustrated from the example below:

from("activemqg:topic:0rdersTopic") .
filter () .expression (BeanLanguage (MyBean.class, "isGoldCustomer'")).
to("activemg:BigSpendersQueue") ;

The 2nd parameter i sGoldCustomer is an optional parameter to explicit set the method
name to invoke. If not provided Camel will try to invoke the best suited method. If case of
ambiguity Camel will thrown an Exception. In these situations the 2nd parameter can solve this
problem. Also the code is more readable if the method name is provided. The Ist parameter
can also be an existing instance of a Bean such as:

private MyBean my;

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html

from("activemqg:topic:0rdersTopic") .
filter () .expression(BeanlLanguage.bean (my, "isGoldCustomer")).
to("activemg:BigSpendersQueue") ;

In Camel 2.2 onwards you can avoid the BeanLanguage and have it just as:

private MyBean my;
from("activemqg:topic:0rdersTopic") .

filter () .expression (bean (my, "isGoldCustomer")) .
to("activemg:BigSpendersQueue") ;

Which also can be done in a bit shorter and nice way:

private MyBean my;
from("activemqg:topic:0rdersTopic") .

filter() .method(my, "isGoldCustomer").
to("activemg:BigSpendersQueue") ;

Other examples

We have some test cases you can look at if it'll help
* MethodFilterTest is a JUnit test case showing the Java DSL use of the bean expression
being used in a filter
» aggregator.xml is a Spring XML test case for the Aggregator which uses a bean
method call to test for the completion of the aggregation.

Dependencies

The Bean language is part of camel-core.

CONSTANT EXPRESSION LANGUAGE

The Constant Expression Language is really just a way to specify constant strings as a type of
expression.

Example usage

The setHeader element of the Spring DSL can utilize a constant expression like:

<route>
<from uri="seda:a"/>

LANGUAGES SUPPORTED APPENDIX

223

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MethodFilterTest.java
http://camel.apache.org/dsl.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/aggregator.xml
http://camel.apache.org/aggregator.html

224

<setHeader headerName="theHeader">
<constant>the value</constant>

</setHeader>
<to uri="mock:b"/>
</route>

in this case, the Message coming from the seda:a Endpoint will have 'theHeader' header set to
the constant value 'the value'.
And the same example using Java DSL:

from("seda:a") .setHeader ("theHeader", constant("the value")).to("mock:b");

Dependencies

The Constant language is part of camel-core.

EL

Camel supports the unified |SP and JSF Expression Language via the JUEL to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

For example you could use EL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>

<filter>
<el>${in.headers.foo == 'bar'}</el>
<to uri="seda:bar"/>
</filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a valid identifier:

<route>
<from uri="seda:foo"/>

<filter>
<el>${in.headers['My Header'] == 'bar'}</el>
<to uri="seda:bar"/>
</filter>
</route>

You could use EL to create an Predicate in a Message Filter or as an Expression for a Recipient
List

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://juel.sourceforge.net/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message
out Message the exchange.out message
Samples

You can use EL dot notation to invoke operations. If you for instance have a body that contains
a POJO that has a getFamiliyName method then you can construct the syntax as follows:

"$in.body.familyName"

Dependencies
To use EL in your camel routes you need to add the a dependency on camel-juel which
implements the EL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-juel</artifactId>
<version>x.x.x</version>
</dependency>

Otherwise you'll also need to include JUEL.

HEADER EXPRESSION LANGUAGE

The Header Expression Language allows you to extract values of named headers.

Example usage

The recipientList element of the Spring DSL can utilize a header expression like:

<route>
<from uri="direct:a" />
{!-- use comma as a delimiter for String based values -->

<recipientlList delimiter=",">

LANGUAGES SUPPORTED APPENDIX

225

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/de/odysseus/juel/juel/2.1.3/juel-2.1.3.jar

226

<header>myHeader</header>
</recipientList>
</route>

In this case, the list of recipients are contained in the header 'myHeader".
And the same example in Java DSL:

from("direct:a") .recipientlList (header ("myHeader")) ;

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using

parameters but using stacked operations, notice that header is not a parameter but a stacked
method call)

from("direct:a") .recipientlList () .header ("myHeader") ;

Dependencies

The Header language is part of camel-core.

JXPATH

Camel supports JXPath to allow XPath expressions to be used on beans in an Expression or
Predicate to be used in the DSL or Xml Configuration. For example you could use JXPath to
create an Predicate in a Message Filter or as an Expression for a Recipient List.

You can use XPath expressions directly using smart completion in your IDE as follows

from("queue:foo") .filter ().
jxpath ("/in/body/foo") .
to("queue:bar")

Variables

Variable Type Description

this Exchange the Exchange object
in Message the exchange.in message
out Message the exchange.out message

LANGUAGES SUPPORTED APPENDIX

http://commons.apache.org/jxpath/
http://camel.apache.org/xpath.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Options

Option Type Description

Camel 2.11/2.10.5: Allows to turn lenient on the JXPathContext.
When turned on this allows the JXPath expression to evaluate against

lenient boolean expressions and message bodies which may be invalid / missing data.
See more details at the JXPath Documentation This option is by
default false.

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use JXPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemqg:MyQueue" />
<filter>
<jxpath>in/body/name = 'James'</xpath>
<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Examples

Here is a simple example using a JXPath expression as a predicate in a Message Filter

from("direct:start").
filter () .jxpath("in/body/name="'James'") .
to ("mock:result");

JXPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
JXPath to extract a value from the message and bind it to a method parameter.

LANGUAGES SUPPORTED APPENDIX

227

http://commons.apache.org/proper/commons-jxpath//users-guide.html#Lenient_Mode
http://camel.apache.org/spring.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
http://camel.apache.org/message-filter.html
http://camel.apache.org/bean-integration.html

228

For example

public class Foo {

@MessageDriven (uri = "activemg:my.queue")
public void doSomething (@JXPath ("in/body/foo") String correlationID, @Body String
body) {

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") . jxpath ("resource:classpath:myjxpath.txt")

Dependencies
To use JXpath in your camel routes you need to add the a dependency on camel-jxpath
which implements the JXpath language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-jxpath</artifactId>
<version>x.x.x</version>
</dependency>

Otherwise, you'll also need Commons JXPath.

MVEL

Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use Mvel to create an Predicate in a Message Filter or as an Expression for a
Recipient List

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/commons-jxpath/commons-jxpath/1.3/commons-jxpath-1.3.jar
http://mvel.codehaus.org/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

You can use Mvel dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as

follows:

"request.body.familyName"

/ or

"getRequest () .getBody () .getFamilyName ()"

Variables

Variable Type Description

this Exchange the Exchange is the root object
exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)
exchangeld String the exchange id

fault Message the Fault message (if any)
request Message the exchange.in message
response Message the exchange.out message (if any)
properties Map the exchange properties
property(name) Object the property by the given name

property(name, type) Type

the property by the given name as the given type

Samples

For example you could use Mvel inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<mvel>request.headers.foo == '

<to uri="seda:bar"/>
</filter>
</route>

And the sample using Java DSL:

bar'</mvel>

from("seda:foo") .filter () .mvel ("request.headers.foo == 'bar'").to("seda:bar");

LANGUAGES SUPPORTED APPENDIX

229

http://camel.apache.org/message-filter.html

230

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .mvel ("resource:classpath:script.mvel”

Dependencies

To use Mvel in your camel routes you need to add the a dependency on camel-mvel which
implements the Mvel language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mvel</artifactId>
<version>x.x.x</version>
</dependency>

Otherwise, you'll also need MVEL

OGNL

Camel allows OGNL to be used as an Expression or Predicate the DSL or Xml Configuration.
You could use OGNL to create an Predicate in a Message Filter or as an Expression for a
Recipient List
You can use OGNL dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as
follows:

"request.body.familyName"

"getRequest () .getBody () .getFamilyName ()"

Variables

Variable Type Description

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/mvel/mvel2/2.0.18/mvel2-2.0.18.jar
http://www.opensymphony.com/ognl/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)

exchangeld String the exchange id

fault Message the Fault message (if any)

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

property(name) Object the property by the given name

property(name, type) Type the property by the given name as the given type
Samples

For example you could use OGNL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>

<filter>
<ognl>request.headers.foo == 'bar'</ognl>
<to uri="seda:bar"/>
</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter () .ognl ("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .ognl ("resource:classpath:myognl.txt")

LANGUAGES SUPPORTED APPENDIX

231

http://camel.apache.org/message-filter.html

232

Dependencies

To use OGNL in your camel routes you need to add the a dependency on camel-ognl which
implements the OGNL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupIld>
<artifactId>camel-ognl</artifactId>
<version>x.x.x</version>
</dependency>

Otherwise, you'll also need OGNL

PROPERTY EXPRESSION LANGUAGE

The Property Expression Language allows you to extract values of named exchange properties.

Example usage

The recipientList element of the Spring DSL can utilize a property expression like:

<route>
<from uri="direct:a" />
<recipientList>
<property>myProperty</property>
</recipientList>
</route>

In this case, the list of recipients are contained in the property 'myProperty'.
And the same example in Java DSL:

from("direct:a") .recipientlist (property ("myProperty"));

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that property is not a parameter but a stacked
method call)

from("direct:a") .recipientList () .property ("myProperty") ;

Dependencies

The Property language is part of camel-core.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.ognl/2.7.3_4/org.apache.servicemix.bundles.ognl-2.7.3_4.jar

SCRIPTING LANGUAGES

Camel supports a number of scripting languages which can be used to create an Expression or
Predicate via the standard JSR 223 which is a standard part of Java 6.

The following scripting languages are integrated into the DSL:

Language DSL keyword

EL el
Groovy groovy
JavaScript javaScript
JoSQL sql
JXPath jxpath
MVEL mvel
OGNL ognl
PHP php
Python python
Ruby ruby
XPath xpath
XQuery xquery

However any JSR 223 scripting language can be used using the generic DSL methods.

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value
The C I
context org.apache.camel.CamelContext ¢ ~-ame
Context
The
exchange org.apache.camel.Exchange current
Exchange
The IN
request org.apache.camel.Message
message
The OUT
response org.apache.camel .Message
message

LANGUAGES SUPPORTED APPENDIX 233

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

234

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
properties org.apache.camel.builder.script.PropertiesFunction use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {
return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;
getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;

additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put ("foo", "bar");
arguments.put ("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments) ;

assertMockEndpointsSatisfied();

LANGUAGES SUPPORTED APPENDIX

235

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

236

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{' +
request.headers.get ('foo') + "'}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

SEE ALSO

* Languages
+ DSL
* Xml Configuration

BEANSHELL

Camel supports BeanShell among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a BeanShell expression use the following Java code:

...choice ()
.when (script ("beanshell", "request.getHeaders () .get (\"foo\").equals (\"bar\")"))
.to(M...M)

Or the something like this in your Spring XML:

<filter>
<language language="beanshell">request.getHeaders () .get ("Foo") == null</language>

You could follow the examples above to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value
context org.apache.camel.CamelContext The Camel
Context
The
exchange org.apache.camel.Exchange current
Exchange
The IN
request org.apache.camel.Message
message
The OUT
response org.apache.camel.Message
message

LANGUAGES SUPPORTED APPENDIX 237

http://camel.apache.org/languages.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://www.beanshell.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

238

1, BeanShell Issues
You must use BeanShell 2.0b5 or greater. Note that as of 2.0b5 BeanShell cannot
compile scripts, which causes Camel releases before 2.6 to fail when configured
with BeanShell expressions.

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
properties org.apache.camel.builder.script.PropertiesFunction use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;

getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;
additional arguments to ScriptEngine

Map<String, Object> arguments = new HashMap<String, Object>();

arguments.put ("foo", "bar");

LANGUAGES SUPPORTED APPENDIX

239

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

240

arguments.put ("baz", 7);

hose additional arguments is provided as a header on he Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,
arguments) ;

assertMockEndpointsSatisfied() ;

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{' +

request.headers.get ('foo') + '}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

JAVASCRIPT

Camel supports JavaScript/ECMAScript among other Scripting Languages to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

To use a JavaScript expression use the following Java code

javaScript ("someJavaScriptExpression")

For example you could use the javaScript function to create an Predicate in a Message Filter
or as an Expression for a Recipient List

Example

In the sample below we use JavaScript to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice ()
.when () .javaScript ("request.headers.get ('user') ==
'admin'") .to ("seda:adminQueue")
.otherwise ()
.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>
<when>
<javaScript>request.headers.get ('user') == 'admin'</javaScript>
<to uri="seda:adminQueue" />
</when>
<otherwise>
<to uri="seda:regularQueue"/>
</otherwise>
</choice>
</route>

LANGUAGES SUPPORTED APPENDIX

241

http://en.wikipedia.org/wiki/JavaScript
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

242

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute

Type

Value

context

org.apache.

camel.

CamelContext

The Camel
Context

exchange

org.apache.

camel.

Exchange

The
current
Exchange

request

org.apache.

camel.

Message

The IN
message

response

org.apache.

camel.

Message

The OUT
message

properties

org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such

as:

In the sample below we add an attribute user that is an object we already have instantiated

as myUser. This object has a getFirstName() method that we want to set as header on the

message. We use the groovy language to concat the first and last name into a single string that

is returned.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

LANGUAGES SUPPORTED APPENDIX

243

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

244

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;
getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;

additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put ("foo", "bar");
arguments.put ("baz", 7);

/ those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments) ;

assertMockEndpointsSatisfied();

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{"' +

request.headers.get ('foo') + '}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource: scheme:location", egto refer to a
file on the classpath you can do:

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupld>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

GROOVY

Camel supports Groovy among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Groovy expression use the following Java code
. groovy ("someGroovyExpression")

For example you could use the groovy function to create an Predicate in a Message Filter or
as an Expression for a Recipient List

Example
lets route if a line item is over $100
from("queue:foo") .filter (groovy ("request.lineltems.any { i -> i.value > 100

}™)) .to("queue:bar")

And the Spring DSL:

<route>
<from uri="queue:foo"/>
<filter>
<groovy>request.lineltems.any { i -> i.value > 100 }</groovy>
<to uri="queue:bar"/>
</filter>
</route>

LANGUAGES SUPPORTED APPENDIX

245

http://camel.apache.org/download.html
http://groovy.codehaus.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

246

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute

Type

Value

context

org.apache.

camel.

CamelContext

The Camel
Context

exchange

org.apache.

camel.

Exchange

The
current
Exchange

request

org.apache.

camel.

Message

The IN
message

response

org.apache.

camel.

Message

The OUT
message

properties

org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such

as:

In the sample below we add an attribute user that is an object we already have instantiated

as myUser. This object has a getFirstName() method that we want to set as header on the

message. We use the groovy language to concat the first and last name into a single string that

is returned.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

LANGUAGES SUPPORTED APPENDIX

247

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

248

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;
getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;

additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put ("foo", "bar");
arguments.put ("baz", 7);

/ those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments) ;

assertMockEndpointsSatisfied();

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{"' +

request.headers.get ('foo') + '}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource: scheme:location", egto refer to a
file on the classpath you can do:

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupld>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

PYTHON

Camel supports Python among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Python expression use the following Java code

. python ("somePythonExpression")

For example you could use the python function to create an Predicate in a Message Filter or
as an Expression for a Recipient List

Example

In the sample below we use Python to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice ()
.when () .python ("request.headers['user'] == 'admin'") .to("seda:adminQueue")
.otherwise ()
.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>

LANGUAGES SUPPORTED APPENDIX

249

http://camel.apache.org/download.html
http://www.python.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

<choice>

<when>
<python>request.headers['user'] == 'admin'</python>
<to uri="seda:adminQueue"/>

</when>

<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>
</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value
context org.apache.camel.CamelContext The Camel
Context
The
exchange org.apache.camel.Exchange current
Exchange
The IN
request org.apache.camel.Message
message
The OUT
response org.apache.camel.Message
message

250 LANGUAGES SUPPORTED APPENDIX

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
properties org.apache.camel.builder.script.PropertiesFunction use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 25]

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {
return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;
getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;

additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put ("foo", "bar");
arguments.put ("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments) ;

assertMockEndpointsSatisfied();

252 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{' +
request.headers.get ('foo') + "'}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

LANGUAGES SUPPORTED APPENDIX

253

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

PHP

Camel supports PHP among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a PHP expression use the following Java code

. php ("somePHPExpression") ...

For example you could use the php function to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value
Th I
context org.apache.camel.CamelContext e Came
Context
The
exchange org.apache.camel.Exchange current
Exchange
The IN
request org.apache.camel .Message
message
The OUT
response org.apache.camel.Message
message

254 LANGUAGES SUPPORTED APPENDIX

http://www.php.net/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
properties org.apache.camel.builder.script.PropertiesFunction use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" 'Suser.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 255

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation Ilanguage="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {
return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;
getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;

additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put ("foo", "bar");
arguments.put ("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments) ;

assertMockEndpointsSatisfied();

256 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{' +
request.headers.get ('foo') + "'}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

LANGUAGES SUPPORTED APPENDIX

257

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

258

RUBY

Camel supports Ruby among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a Ruby expression use the following Java code

. ruby ("someRubyExpression")

For example you could use the ruby function to create an Predicate in a Message Filter or as
an Expression for a Recipient List

Example

In the sample below we use Ruby to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice ()
.when () .ruby ("Srequest.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise ()

.to("seda:regularQueue") ;

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>
<when>
<ruby>$request.headers['user'] == 'admin'</ruby>
<to uri="seda:adminQueue"/>
</when>
<otherwise>
<to uri="seda:regularQueue"/>
</otherwise>
</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE SCOPE:

Attribute Type Value
Th [
context org.apache.camel.CamelContext e Came
Context

LANGUAGES SUPPORTED APPENDIX

http://www.ruby-lang.org/en/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

The
exchange org.apache.camel.Exchange current
Exchange

The IN

request org.apache.camel .Message
message

The OUT

response org.apache.camel .Message
message

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
properties org.apache.camel.builder.script.PropertiesFunction use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute (name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in") .setHeader ("name") .groovy (" '$user.firstName
Suser.lastName'") .attribute ("user", myUser) .to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

LANGUAGES SUPPORTED APPENDIX 259

http://camel.apache.org/properties.html

from("direct:in") .setHeader ("firstName") .script ("jaskel",
"user.firstName") .attribute ("user", myUser) .to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">
<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language
language="beanshell">request.getHeaders () .get ("Foo") .equals ("Bar")</language>
<to uri="direct:next" />
</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample () throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;

getMockEndpoint ("mock:result") .expectedMessageCount (0) ;

getMockEndpoint ("mock:unmatched") .expectedMessageCount (1) ;
additional arguments to ScriptEngine

Map<String, Object> arguments = new HashMap<String, Object>();

arguments.put ("foo", "bar");

260 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

arguments.put ("baz", 7);

hose additional arguments is provided as a header on he Camel Message
template.sendBodyAndHeader ("direct:start", "hello", ScriptBuilder.ARGUMENTS,
arguments) ;

assertMockEndpointsSatisfied() ;

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader ("myHeader") .groovy ("context.resolvePropertyPlaceholders (' {{' +
request.headers.get ('foo') + '}}")")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader ("myHeader") .groovy ("properties.resolve (request.headers.get ('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .groovy ("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX

261

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

262

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>
</dependency>

SIMPLE EXPRESSION LANGUAGE

The Simple Expression Language was a really simple language you can use, but has since grown
more powerful. Its primarily intended for being a really small and simple language for evaluating
Expression and Predicate without requiring any new dependencies or knowledge of XPath; so
its ideal for testing in camel-core. Its ideal to cover 95% of the common use cases when you
need a little bit of expression based script in your Camel routes.

However for much more complex use cases you are generally recommended to choose a
more expressive and powerful language such as:
« SpEL
* Mvel
* Groovy
* JavaScript
 EL
« OGNL
+ one of the supported Scripting Languages
The simple language uses $ {body} placeholders for complex expressions where the
expression contains constant literals. The ${ } placeholders can be omitted if the expression is
only the token itself.
To get the body of the in message: "body", or "in.body" or "$ {body}".
A complex expression must use ${ } placeholders, such as: "Hello
${in.header.name} how are you?".
You can have multiple functions in the same expression: "Hello ${in.header.name}
this is ${in.header.me} speaking".
However you can not nest functions in Camel 2.8.x or older (i.e. having another ${ }
placeholder in an existing, is not allowed).
From Camel 2.9 onwards you can nest functions.

Variables

Variable Type Description

camelld String Camel 2.10: the CamelContext name

camelContext. OGNL Object Camel 2.1 I: the CamelContext invoked using a Camel OGNL expression.
exchangeld String Camel 2.3: the exchange id

id String the input message id

body Object the input body

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/spel.html
http://camel.apache.org/mvel.html
http://camel.apache.org/groovy.html
http://camel.apache.org/javascript.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/camelcontext.html

Alternative syntax

From Camel 2.5 onwards you can also use the alternative syntax which uses
$simple{ } as placeholders.

This can be used in situations to avoid clashes when using for example Spring
property placeholder together with Camel.

Configuring result type

From Camel 2.8 onwards you can configure the result type of the Simple
expression. For example to set the type asa java.lang.Boolean ora
java.lang.Integer etc.

File language is now merged with Simple language
From Camel 2.2 onwards, the File Language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

Simple Language Changes in Camel 2.9 onwards

The Simple language have been improved from Camel 2.9 onwards to use a better
syntax parser, which can do index precise error messages, so you know exactly
what is wrong and where the problem is. For example if you have made a typo in
one of the operators, then previously the parser would not be able to detect this,
and cause the evaluation to be true. There is a few changes in the syntax which are
no longer backwards compatible. When using Simple language as a Predicate then
the literal text must be enclosed in either single or double quotes. For example:
"S{body} == 'Camel'". Notice how we have single quotes around the literal.
The old style of using "body" and "header.foo" to refer to the message body
and header is @deprecated, and its encouraged to always use ${ } tokens for the
built-in functions.

The range operator now requires the range to be in single quote as well as shown:
"S{header.zip} between '30000..39999'".

in.body

Object the input body

body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

in.body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

bodyAs(type) Type Camel 2.3: Converts the body to the given type determined by its classname. The converted body can be null.
mandatoryBodyAs(type) Type Camel 2.5: Converts the body to the given type determined by its classname, and expects the body to be not null.

LANGUAGES SUPPORTED APPENDIX

263

http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/predicate.html

264

out.body Object the output body
header.foo Object refer to the input foo header
header[foo] Object Camel 2.9.2: refer to the input foo header
headers.foo Object refer to the input foo header
headers[foo] Object Camel 2.9.2: refer to the input foo header
in.header.foo Object refer to the input foo header
in.header[foo] Object Camel 2.9.2: refer to the input foo header
in.headers.foo Object refer to the input foo header
in.headers[foo] Object Camel 2.9.2: refer to the input foo header
header foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key
in.header.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key
in.headers.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key
header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.
in.header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.
in.headers.foo. OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.
out.header.foo Object refer to the out header foo
out.header[foo] Object Camel 2.9.2: refer to the out header foo
out.headers.foo Object refer to the out header foo
out.headers[foo] Object Camel 2.9.2: refer to the out header foo
headerAs(key,type) Type Camel 2.5: Converts the header to the given type determined by its classname
headers Map Camel 2.9: refer to the input headers
in.headers Map Camel 2.9: refer to the input headers
property.foo Object refer to the foo property on the exchange
property[foo] Object Camel 2.9.2: refer to the foo property on the exchange
property.foo. OGNL Object Camel 2.8: refer to the foo property on the exchange and invoke its value using a Camel OGNL expression.
sys.foo String refer to the system property
sysenv.foo String Camel 2.3: refer to the system environment

. . Camel 2.4: Refer to the exception object on the exchange, is null if no exception set on exchange. Will fallback and grab caught
exception Object exceptions (Exchange . EXCEPTION_CAUGHT) if the Exchange has any.
exception.OGNL Object Camel 2.4: Refer to the exchange exception invoked using a Camel OGNL expression object

) . Refer to the exception.message on the exchange, is null if no exception set on exchange. Will fallback and grab caught exceptions
exception.message Sering (Exchange . EXCEPTION_CAUGHT) if the Exchange has any.

. . Camel 2.6. Refer to the exception.stracktrace on the exchange, is null if no exception set on exchange. Will fallback and grab
exception.stacktrace Sering caught exceptions (Exchange . EXCEPTION_CAUGHT) if the Exchange has any.

Date formatting using the java.text.SimpleDataFormat patterns. Supported commands are: now for current timestamp,
date:command:pattern String in.header.xxx or header.xxx to use the Date object in the IN header with the key xxx. out.header.xxx to use the Date
object in the OUT header with the key xxx.

b s O, 1m0 e vt i he e o, g i e o s o . Wes e e
properties:locationstkey ~ String Camel 2.3: Lookup a property with the given key. The locations option is optional. See more at Using PropertyPlaceholder.
routeld String Camel 2.1 I: Returns the id of the current route the Exchange is being routed.
threadName String Camel 2.3: Returns the name of the current thread. Can be used for logging purpose.
refixxx Object Camel 2.6: To lookup a bean from the Registry with the given id.
type:name.field Object Camel 2.11: To refer to a type or field by its FQN name. To refer to a field you can append .FIELD_NAME. For example you can

refer to the constant field from Exchange as: org.apache.camel.Exchange.FILE_NAME

OGNL expression support

Available as of Camel 2.3

The Simple and Bean language now supports a Camel OGNL notation for invoking beans in

a chain like fashion.

Suppose the Message IN body contains a POJO which has a getAddress () method.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

Then you can use Camel OGNL notation to access the address object:

simple ("${body.address}")
simple ("${body.address.street}")
simple ("${body.address.zip}")

Camel understands the shorthand names for getters, but you can invoke any method or use the
real name such as:

simple ("${body.address}")

simple ("${body.getAddress.getStreet}")
simple ("${body.address.getZip}")
simple ("${body.doSomething}")

You can also use the null safe operator (2 .) to avoid NPE if for example the body does NOT
have an address

simple ("$(body?.address?.street}")
Its also possible to index in Map or List types, so you can do:

simple ("$ {body[foo] .name}")
To assume the body is Map based and lookup the value with foo as key, and invoke the
getName method on that value.

You can access the Map or List objects directly using their key name (with or without dots) :

simple ("${body[foo]l}")

simple ("${body[this.is.foo]l}")

Suppose there was no value with the key foo then you can use the null safe operator to avoid
the NPE as shown:

simple ("S${body[foo]?.name}")

You can also access List types, for example to get lines from the address you can do:

{body.address.lines[1]}")
simple ("${body.address.lines[2]}")

simple ("${body.address.lines[0]}")
simple ("$

There is a special 1ast keyword which can be used to get the last value from a list.

LANGUAGES SUPPORTED APPENDIX

265

266

) If the key has space, then you must enclose the key with quotes, for example ‘foo

bar":

simple ("${body['foo bar'].name}")

simple ("${body.address.lines[last]}")

And to get the 2nd last you can subtract a number, so we can use last-1 to indicate this:
simple ("${body.address.lines[last-1]}")

And the 3rd last is of course:

simple ("${body.address.lines[last-2]1}")

And yes you can combine this with the operator support as shown below:

simple ("${body.address.zip} > 1000")

Operator support

The parser is limited to only support a single operator.
To enable it the left value must be enclosed in ${ }. The syntax is:

${leftvValue} OP rightValue

Where the rightValue can be a String literal enclosed in ' ', null, a constant value or
another expression enclosed in ${ }.

Camel will automatically type convert the rightValue type to the leftValue type, so its able to eg.
convert a string into a numeric so you can use > comparison for numeric values.

The following operators are supported:

Operator Description

== equals
> greater than
>= greater than or equals

LANGUAGES SUPPORTED APPENDIX

i Important
There must be spaces around the operator.

< less than
<= less than or equals
I= not equals
contains For testing if contains in a string based value
not L L .
. For testing if not contains in a string based value
contains
Fesex For matching against a given regular expression pattern defined as a String
8 value
For not matching against a given regular expression pattern defined as a String
not regex
value
in For matching if in a set of values, each element must be separated by comma.
not in For matching if not in a set of values, each element must be separated by
comma.
is For matching if the left hand side type is an instanceof the value.
not is For matching if the left hand side type is not an instanceof the value.
For matching if the left hand side is within a range of values defined as
range numbers: from. . to. From Camel 2.9 onwards the range values must be
enclosed in single quotes.
For matching if the left hand side is not within a range of values defined as
not range numbers: from. . to. From Camel 2.9 onwards the range values must be

enclosed in single quotes.

And the following unary operators can be used:

Operator

Description

++

Camel 2.9: To increment a number by one. The left hand side must be a
function, otherwise parsed as literal.

Camel 2.9: To decrement a number by one. The left hand side must be a
function, otherwise parsed as literal.

LANGUAGES SUPPORTED APPENDIX

267

268

Camel 2.9.3 to 2.10.x To escape a value, eg \$, to indicate a $ sign.
Special: Use \n for new line, \t for tab, and \r for carriage return. Notice:

\ Escaping is not supported using the File Language. Notice: From Camel 2.1 |
onwards the escape character is no longer support, but replaced with the
following three special escaping.

\n Camel 2.1 1: To use newline character.
\t Camel 2.1 I: To use tab character.
\r Camel 2.1 I: To use carriage return character.

And the following logical operators can be used to group expressions:

Operator Description

deprecated use && instead. The logical and operator is used to group two

and :
expressions.

or deprecated use || instead. The logical or operator is used to group two
expressions.

&& Camel 2.9: The logical and operator is used to group two expressions.

[l Camel 2.9: The logical or operator is used to group two expressions.

The syntax for AND is:

${leftvValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

${leftvValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

simple("${in.header.foo} == 'foo'")
/ here Camel will typ '100" 4 tyr f in.head ar and 1f its an
Integer '100' will alsc verter to an Integer
simple ("${in.header.bar} == '100'")
simple ("${in.header.bar} == 100")
100 will be converter to the type of in.header.bar so we can do > comparison

simple ("${in.header.bar} > 100")

testing for null
simple ("${in.header.baz} == null")

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/file-language.html

) Using and,or operators
In Camel 2.4 or older the and or or can only be used once in a simple
language expression. From €Camel 2.5 onwards you can use these operators
multiple times.

) Comparing with different types
When you compare with different types such as String and int, then you have to
take a bit care. Camel will use the type from the left hand side as Ist priority. And
fallback to the right hand side type if both values couldn't be compared based on
that type.
This means you can flip the values to enforce a specific type. Suppose the bar value
above is a String. Then you can flip the equation:

simple ("100 < ${in.header.bar}")

which then ensures the int type is used as |st priority.

This may change in the future if the Camel team improves the binary comparison
operations to prefer numeric types over String based. It's most often the String type which
causes problem when comparing with numbers.

testing for not null
simple ("${in.header.baz} != null")

And a bit more advanced example where the right value is another expression

simple ("${in.header.date} == ${date:now:yyyyMMdd}")

simple ("S${in.header.type} == ${bean:orderService?method=getOrderType}")
And an example with contains, testing if the title contains the word Camel
simple ("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a 4 digit value:

simple ("${in.header.number} regex '\\d{4}'")

LANGUAGES SUPPORTED APPENDIX

269

270

And finally an example if the header equals any of the values in the list. Each element must be
separated by comma, and no space around.

This also works for numbers etc, as Camel will convert each element into the type of the left
hand side.

simple ("${in.header.type} in 'gold,silver'")

And for all the last 3 we also support the negate test using not:
simple ("${in.header.type} not in 'gold,silver'")

And you can test if the type is a certain instance, eg for instance a String
simple ("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all java.lang types so you can write it as:
simple("${in.header.type} is 'String'")

Ranges are also supported. The range interval requires numbers and both from and end are
inclusive. For instance to test whether a value is between 100 and 199:

simple ("${in.header.number} range 100..199"

Notice we use . . in the range without spaces. Its based on the same syntax as Groovy.

From Camel 2.9 onwards the range value must be in single quotes

simple ("${in.header.number} range '100..199'")

Using and / or

If you have two expressions you can combine them with the and or or operator.
For instance:

simple ("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the or is also supported. The sample would be:

simple ("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

LANGUAGES SUPPORTED APPENDIX

i Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with all its various
builder methods, you have to resort to use some other languages
for testing with simple operators. Now you can do this with the simple language. In
the sample below we want to test if the header is a widget order:

<from uri="seda:orders">

<filter>
<simple>${in.header.type} == 'widget'</simple>
<to uri="bean:orderService?method=handleWidget"/>
</filter>
</from>

& Camel 2.9 onwards
Use && or || from Camel 2.9 onwards.

Notice: Currently and or or can only be used once in a simple language expression. This
might change in the future.
So you cannot do:

simple ("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and

${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

<from uri="seda:orders">
<filter>
<simple>${in.header.foo}</simple>
<to uri="mock:fooOrders"/>
</filter>
</from>

The Simple language can be used for the predicate test above in the Message Filter pattern,
where we test if the in message has a foo header (a header with the key foo exists). If the
expression evaluates to true then the message is routed to the mock: fooOrders endpoint,
otherwise its lost in the deep blue sea @

The same example in Java DSL:

LANGUAGES SUPPORTED APPENDIX

271

http://camel.apache.org/message-filter.html

272

from("seda:orders")
.filter() .simple("${in.header.foo}") .to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

from("direct:hello") .transform() .simple("Hello ${in.header.user} how are
you?") .to("mock:reply") ;

Notice that we must use ${ } placeholders in the expression now to allow Camel to parse it
correctly.

And this sample uses the date command to output current date.

from("direct:hello") .transform() .simple ("The today is ${date:now:yyyyMMdd} and its
a great day.").to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be
included in the returned string:

from("direct:order") .transform() .simple ("OrderId:
${bean:orderIdGenerator}") .to("mock:reply") ;

Where orderIdGenerator is the id of the bean registered in the Registry. If using Spring
then its the Spring bean id.

If we want to declare which method to invoke on the order id generator bean we must
prepend .method name such as below where we invoke the generateId method.

from("direct:order") .transform() .simple ("OrderId:
$S{bean:orderIdGenerator.generateId}") .to("mock:reply") ;

We can use the ?method=methodname option that we are familiar with the Bean
component itself:

from("direct:order") .transform() .simple ("OrderId:
${bean:orderIdGenerator?method=generateId}") .to("mock:reply");

And from Camel 2.3 onwards you can also convert the body to a given type, for example to
ensure its a String you can do:

<transform>
<simple>Hello ${bodyAs(String)} how are you?</simple>
</transform>

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/bean.html

There are a few types which have a shorthand notation, so we can use String instead of
java.lang.String. Theseare:byte[], String, Integer, Long.All other types
must use their FQN name, e.g. org.w3c.dom.Document.

Its also possible to lookup a value from a header Map in Camel 2.3 onwards:

<transform>
<simple>The gold value is ${header.type[gold]}</simple>
</transform>

In the code above we lookup the header with name type and regard itasa java.util.Map
and we then lookup with the key gold and return the value.

If the header is not convertible to Map an exception is thrown. If the header with name type
does not exist null is returned.

From Camel 2.9 onwards you can nest functions, such as shown below:

<setHeader headerName="myHeader">
<simple>${properties:${header.someKey}}</simple>
</setHeader>

Referring to constants or enums

Available as of Camel 2.11

Suppose you have an enum for customers

public enum Customer {

GOLD, SILVER, BRONZE

And in a Content Based Router we can use the Simple language to refer to this enum, to check
the message which enum it matches.

from("direct:start")
.choice ()
.when () .simple ("${header.customer} ==
${type:org.apache.camel.processor.Customer.GOLD}"
.to("mock:gold")
.when () .simple ("${header.customer} ==
${type:org.apache.camel.processor.Customer.SILVER}")
.to("mock:silver")
.otherwise ()
.to("mock:other");

LANGUAGES SUPPORTED APPENDIX 273

http://camel.apache.org/content-based-router.html
http://camel.apache.org/simple.html

274

Using new lines or tabs in XML DSLs

Available as of Camel 2.9.3

From Camel 2.9.3 onwards its easier to specify new lines or tabs in XML DSLs as you can
escape the value now

<transform>
<simple>The following text\nis on a new line</simple>
</transform>

Setting result type

Available as of Camel 2.8

You can now provide a result type to the Simple expression, which means the result of the
evaluation will be converted to the desired type. This is most useable to define types such as
booleans, integers, etc.

For example to set a header as a boolean type you can do:

.setHeader ("cool", simple("true", Boolean.class))

And in XML DSL

<setHeader headerName="cool">
<!-- use resultType to indicate that the type should be a java.lang.Boolean -->
<simple resultType="java.lang.Boolean">true</simple>

</setHeader>

Changing function start and end tokens

Available as of Camel 2.9.1

You can configure the function start and end tokens - ${ } using the setters
changeFunctionStartToken and changeFunctionEndToken on
SimpleLanguage, using Java code. From Spring XML you can define a <bean> tag with the
new changed tokens in the properties as shown below:

Simple to use custom prefix/su ix tokens -->

<bean id="simple" class="org.apache.camel.language.simple.SimpleLanguage">

<property name="functionStartToken" value="["/>
<property name="functionEndToken" value="]"/>
</bean>

In the example above we use [] as the changed tokens.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/simple.html

Notice by changing the start/end token you change those in all the Camel applications which
share the same camel-core on their classpath.
For example in an OSGi server this may affect many applications, where as a Web Application
as a WAR file it only affects the Web Application.

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .simple ("resource:classpath:mysimple.txt")

Dependencies

The Simple language is part of camel-core.

FILE EXPRESSION LANGUAGE

The File Expression Language is an extension to the Simple language, adding file related
capabilities. These capabilities are related to common use cases working with file path and
names. The goal is to allow expressions to be used with the File and FTP components for
setting dynamic file patterns for both consumer and producer.

Syntax

This language is an extension to the Simple language so the Simple syntax applies also. So the
table below only lists the additional.

As opposed to Simple language File Language also supports Constant expressions so you can
enter a fixed filename.

All the file tokens use the same expression name as the method on the java.io.File
object, for instance file:absolute refers to the java.io.File.getAbsolute ()
method. Notice that not all expressions are supported by the current Exchange. For instance
the FTP component supports some of the options, where as the File component supports all of
them.

File File FTP FTP

Expression Type Consumer Producer Consumer Producer

Description

refers to the file name (is relative to the

file:name Strin; es no es no i g
s Y 4 starting directory, see note below)

LANGUAGES SUPPORTED APPENDIX

275

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/constant.html
absolute
http://camel.apache.org/ftp.html
http://camel.apache.org/file2.html
name

) File language is now merged with Simple language
From Camel 2.2 onwards, the file language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

Camel 2.3: refers to the file extension

file:name.ext Strin; es no es no
8 4 4 only
refers to the file name with no extension
file:name.noext String yes no yes no (is relative to the starting directory, see
note below)
. refers to the file name only with no leading
file:onlyname String yes no yes no
paths.
: refers to the file name only with no
file:onlyname.noext String yes no yes no . . .
extension and with no leading paths.
filezext String yes no yes no refers to the file extension only
file:parent String yes no yes no refers to the file parent
file:path String yes no yes no refers to the file path
refers to whether the file is regarded as
file:absolute Boolean yes no no no .
absolute or relative
file:absolute.path String yes no no no refers to the absolute file path
refers to the file length returned as a Long
file:length Long yes no yes no
type
. Camel 2.5: refers to the file length
file:size Long yes no yes no
returned as a Long type
§ efers to the file last modified returned as a
file:modified Date yes no yes no
Date type
for date formatting using the
java.text.SimepleDataFormat
patterns. Is an extension to the Simple
. language. Additional command is: file
date:command:pattern String yes yes yes yes

(consumers only) for the last modified
timestamp of the file. Notice: all the
commands from the Simple language can
also be used.

File token example

Relative paths

We have a java.io.File handle for the file hello. txt in the following relative
directory: .\filelanguage\test. And we configure our endpoint to use this starting
directory .\filelanguage. The file tokens will return as:

Expression Returns
file:zname test\hello.txt
file:zname.ext txt
file:zname.noext test\hello
filezonlyname hello.txt

276 LANGUAGES SUPPORTED APPENDIX

name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
length
size
modified
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
name
name.ext
name.noext
onlyname
http://camel.apache.org/simple.html

file:onlyname.noext

hello

file:ext txt

file:parent filelanguage\test

file:path filelanguage\test\hello.txt
file:absolute false

file:absolute.path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

Absolute paths

We have a java.io.File handle for the file hello. txt in the following absolute
directory: \workspace\camel\camel-core\target\filelanguage\test. And

we configure out endpoint to use the absolute starting directory \workspace\camel\

camel-core\target\filelanguage. The file tokens will return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

filezname.noext test\hello

file:onlyname hello.txt

filezonlyname.noext hello

file:ext txt

file:parent \workspace\camel\camel-core\target\filelanguage\test

file:path \workspace\camel\camel-core\target\filelanguage\test\hello.txt
file:absolute true

file:absolute.path

\workspace\camel\camel-core\target\filelanguage\test\hello.txt

Samples

You can enter a fixed Constant expression such as myfile.txt:

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup
folder with the current date as a sub folder. This can be archieved using an expression like:

LANGUAGES SUPPORTED APPENDIX

277

onlyname.noext
ext
parent
path
absolute
absolute.path
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
http://camel.apache.org/constant.html

278

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names are also supported so suppose the backup folder should be a sibling folder
then you can append .. as:

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the Simple language we have access to all the goodies from this
language also, so in this use case we want to use the in.header.type as a parameter in the
dynamic expression:

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.ngext}.bak"

If you have a custom Date you want to use in the expression then Camel supports retrieving
dates from the message header.

fileName="orders/
order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd} .xml"

And finally we can also use a bean expression to invoke a POJO class that generates some
String output (or convertible to String) to be used:

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use the File Language,
Simple and the Bean language in one combined expression. This is pretty powerful for those
common file path patterns.

Using Spring PropertyPlaceholderConfigurer together with the File
compohnent

In Camel you can use the File Language directly from the Simple language which makes a
Content Based Router easier to do in Spring XML, where we can route based on file
extensions as shown below:

<from uri="file://input/orders"/>
<choice>
<when>
<simple>${file:ext} == 'txt'</simple>
<to uri="bean:orderService?method=handleTextFiles"/>
</when>
<when>
<simple>${file:ext} == 'xml'</simple>

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html
http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/content-based-router.html

<to uri="bean:orderService?method=handleXmlFiles"/>
</when>
<otherwise>
<to uri="bean:orderService?method=handleOtherFiles"/>
</otherwise>
</choice>

If you use the £i1eName option on the File endpoint to set a dynamic filename using the File
Language then make sure you

use the alternative syntax (available from Camel 2.5 onwards) to avoid clashing with Springs
PropertyPlaceholderConfigurer.

Listing 1. bundle-context.xml

<bean id="propertyPlaceholder"

class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="location" value="classpath:bundle-context.cfg" />

</bean>

<bean id="sampleRoute" class="SampleRoute">
<property name="fromEndpoint" value="${fromEndpoint}" />
<property name="toEndpoint" wvalue="${toEndpoint}" />
</bean>

Listing 1. bundle-context.cfg

fromEndpoint=activemqg:queue:test
toEndpoint=file://fileR >/out?

e/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

Notice how we use the $simple{ } syntax in the toEndpoint above.
If you don't do this, there is a clash and Spring will throw an exception like

org.springframework.beans.factory.BeanDefinitionStoreException:

Invalid bean definition with name 'sampleRoute' defined in class path resource
[bundle-context.xml]:

Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

The File language is part of camel-core.

SQL LANGUAGE

The SQL support is added by JoSQL and is primarily used for performing SQL queries on in-
memory objects. If you prefer to perform actual database queries then check out the JPA
component.

LANGUAGES SUPPORTED APPENDIX

279

http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://josql.sourceforge.net/
http://camel.apache.org/jpa.html

280

i Looking for the SQL component
Camel has both a SQL language and a SQL Component. This page is about the SQL
language. Click on SQL Component if you are looking for the component instead.

To use SQL in your camel routes you need to add the a dependency on camel-josql which

implements the SQL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-josgl</artifactId>

<version>2.5.0</version>

</dependency>

Camel supports SQL to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use SQL to create an Predicate in a Message Filter or as
an Expression for a Recipient List.

from("queue:foo") .setBody () .sql ("select * from MyType").to("queue:bar")

And the spring DSL:

<from uri="queue:foo"/>

<setBody>

<sgl>select * from MyType</sqgl>

</setBody>
<to uri="queue:bar"/>

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message
out Message the exchange.out message

the property

key Object

the Exchange properties

the header key Object

the exchange.in headers

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://en.wikipedia.org/wiki/SQL
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/sql.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/sql-component.html

the variable key Object ir:]z;rt\r):;jditional variables is added using setVariables

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource: scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .sql ("resource:classpath:mysqgl.sqgl")

XPATH

Camel supports XPath to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XPath to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

from ("queue:foo") .
filter () .xpath("//foo")).
to("queue:bar")

from("queue:foo") .

choice() .xpath("//foo")) .to("queue:bar") .
otherwise () .to("queue:others");
Namespaces

You can easily use namespaces with XPath expressions using the Namespaces helper class.

Namespaces ns = new Namespaces ("c", "http://acme.com/cheese'");
from("direct:start").filter ().
xpath ("/c:person[@name="'James']", ns).

to("mock:result");

LANGUAGES SUPPORTED APPENDIX

281

http://www.w3.org/TR/xpath
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Variables

Variables in XPath is defined in different namespaces. The default namespace is
http://camel.apache.org/schema/spring.

Local N
Namespace URI part Type Description
http://camel.apache.org/xml/in/ in Message the exchange.in
message
http://camel.apache.org/xml/out/ out Message the exchange.out
message
C 1 2.5: Additional
http://camel.apache.org/xml/function/ functions Object ame tona
functions
http://camel.apache.org/xml/variables/ . OS environment
. . env Object ,
environment-variables variables
http://camel.apthe.org/xml/varlables/ system Object Java System properties
system-properties
http://camel.apache.org/xml/variables/ £ Object the exchange property

exchange-property

Camel will resolve variables according to either:
* namespace given
* no namespace given

Namespace given

If the namespace is given then Camel is instructed exactly what to return. However when
resolving either in or out Camel will try to resolve a header with the given local part first, and
return it. If the local part has the value body then the body is returned instead.

No namespace given

If there is no namespace given then Camel resolves only based on the local part. Camel will try
to resolve a variable in the following steps:
* from variables that has been set using the variable (name, value) fluent
builder
= from message.in.header if there is a header with the given key
= from exchange.properties if there is a property with the given key

282 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/function/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
http://camel.apache.org/xml/variables/exchange-property

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description

in:body none Object Will return the in message body.

incheader the header Object Will return the in message header.
name

out:body none Object Will return the out message body.
the head

out:header naemeea er Object Will return the out message header.

Camel 2.5: To lookup a property using the

) . key for . .
function:properties String Properties component (property
property
placeholders).
simple Camel 2.5: To evaluate a Simple
function:simple P) Object . P
expression expression.

Notice: function:properties and function:simple is not supported when the
return type is a NodeSet, such as when using with a Splitter EIP.

Here's an example showing some of these functions in use.

from("direct:start") .choice ()
.when () .xpath ("in:header ('foo') = 'bar'").to("mock:x")
.when () .xpath("in:body () = '<two/>'").to("mock:y")

.otherwise () .to("mock:z");

And the new functions introduced in Camel 2.5:

PropertiesComponent properties = new PropertiesComponent () ;
properties.setLocation ("classpath:org/apache/camel/builder/xml/myprop.properties") ;
context.addComponent ("properties", properties);

/ bar=Kong

from("direct:in") .choice ()

> 1s a variable for the hec

s files

// which at runtime will be evaluted to C
.when () .xpath ("$type = function:properties
.to("mock:camel™)

/ here we use the simple language

which runtime will be

.when () .xpath("//name = func tbar}')")

LANGUAGES SUPPORTED APPENDIX

283

http://camel.apache.org/properties.html
http://camel.apache.org/simple.html
http://camel.apache.org/splitter.html

.to ("mock:donkey")
.otherwise ()

.to("mock:other")
.end () ;

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemqg.apache.org/camel/schema/spring"
xmlns:foo="http://example.com/person">
<route>
<from uri="activemq:MyQueue"/>
<filter>
<xpath>/foo:person[@name="'James"']</xpath>
<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XPath expressions!

See also this discussion on the mailinglist about using your own namespaces with xpath

Setting result type

The XPath expression will return a result type using native XML objects such as
org.w3c.dom.NodeList. But many times you want a result type to be a String. To do this
you have to instruct the XPath which result type to use.

In Java DSL:

xpath ("/foo:person/Q@id", String.class)

In Spring DSL you use the resultType attribute to provide a fully qualified classname:

284 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/spring.html
http://camel.465427.n5.nabble.com/fail-filter-XPATH-camel-td476424.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xpath.html

<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In @XPath:
Available as of Camel 2.1

@XPath (value = "concat ('foo-',//order/name/)", resultType = String.class) String name)

Where we use the xpath function concat to prefix the order name with foo-. In this case we
have to specify that we want a String as result type so the concat function works.

Using XPath on Headers

Available as of Camel 2.11

Some users may have XML stored in a header. To apply an XPath to a header's value you
can do this by defining the 'headerName' attribute.

In XML DSL:

<camelContext id="xpathHeaderNameTest" xmlns="http://camel.apache.org/schema/
blueprint">
<route>
<from uri="direct:in"/>

<choice>

<when>
<!-- use headerName attribute to refer a header -->
<xpath headerName="invoiceDetails">/invoice/@orderType = 'premium'</xpath>
<to uri="mock:premium"/>

</when>

<when>
<!-- use headerName attribute to refer to a header -->
<xpath headerName="invoiceDetails">/invoice/QorderType = 'standard'</xpath>
<to uri="mock:standard"/>

</when>

<otherwise>

<to uri="mock:unknown"/>
</otherwise>
</choice>
</route>
</camelContext>

Examples

Here is a simple example using an XPath expression as a predicate in a Message Filter

LANGUAGES SUPPORTED APPENDIX

285

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/message-filter.html

286

from("direct:start").
filter () .xpath("/person[@name="'James']").
to ("mock:result");

If you have a standard set of namespaces you wish to work with and wish to share them across
many different XPath expressions you can use the NamespaceBuilder as shown in this example

// lets

fine

nar

c'1]l need in our filters
Namespaces ns = new Namespaces ("c", "http://ac
.add("xsd", "http://www.w3.0rg/2001/XM

now lets create an xpath based

from("direct:start").

filter (ns.xpath("/c:person[@name="'James']")) .
to("mock:result");

In this sample we have a choice construct. The first choice evaulates if the message has a header
key type that has the value Camel.

The 2nd choice evaluates if the message body has a name tag <name> which values is Kong.
If neither is true the message is routed in the otherwise block:

from("direct:in") .choice ()
// using S$headerName is special notation in Camel
.when () .xpath ("$type = 'Camel'")
.to("mock:camel")
// here we test for the t name tag
.when () .xpath ("//name = ")

.to("mock:donkey")
.otherwise ()

.to("mock:other")
.end () ;

And the spring XML equivalent of the route:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:in"/>
<choice>
<when>
<xpath>S$type = 'Camel'</xpath>
<to uri="mock:camel"/>
</when>
<when>
<xpath>//name = 'Kong'</xpath>
<to uri="mock:donkey"/>
</when>
<otherwise>
<to uri="mock:other"/>
</otherwise>

LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java

</choice>
</route>
</camelContext>

XPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
XPath to extract a value from the message and bind it to a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use
your own namespace URIs in an XPath expression you can use your own copy of the XPath
annotation to create whatever namespace prefixes you want to use.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.w3c.dom.NodeList;

import org.apache.camel.component.bean.XPathAnnotationExpressionFactory;
import org.apache.camel.language.LanguageAnnotation;
import org.apache.camel.language.NamespacePrefix;

@Retention (RetentionPolicy.RUNTIME)
@Target ({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER})
@LanguageAnnotation (language = "xpath", factory =
XPathAnnotationExpressionFactory.class)
public Qinterface MyXPath ({

String value();

as the default value of the annotation

You can add the name g
NamespacePrefix[] namespaces () default ({

@NamespacePrefix (prefix = "nl", uri = "http://exampl s1"™)

2"))

@NamespacePrefix (prefix = "n2", uri = "http://exampl

Class<?> resultType () default Nodelist.class;

i.e. cut and paste upper code to your own project in a different package and/or annotation
name then add whatever namespace prefix/uris you want in scope when you use your
annotation on a method parameter. Then when you use your annotation on a method
parameter all the namespaces you want will be available for use in your XPath expression.

For example

public class Foo {

LANGUAGES SUPPORTED APPENDIX

287

http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html

288

@MessageDriven (uri = "activemg:my.queue'")
public void doSomething (@MyXPath ("/nsl:foo/ns2:bar/text()") String correlationlID,
@Body String body) {
Proc

Using XPathBuilder without an Exchange

Available as of Camel 2.3

You can now use the org.apache.camel.builder.XPathBuilder without the
need for an Exchange. This comes handy if you want to use it as a helper to do custom xpath
evaluations.

It requires that you pass in a CamelContext since a lot of the moving parts inside the
XPathBuilder requires access to the Camel Type Converter and hence why CamelContext is
needed.

For example you can do something like this:

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz") .matches (context, "<foo><bar
xyz="'cheese'/></foo>"));

This will match the given predicate.
You can also evaluate for example as shown in the following three examples:

String name = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>cheese</bar></foo>", String.class);

Integer number = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>123</bar></foo>", Integer.class);

Boolean bool = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate (context,
"<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3
You need to add camel-saxon as dependency to your project.

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/camelcontext.html

Its now easier to use Saxon with the XPathBuilder which can be done in several ways as
shown below.
Where as the latter ones are the easiest ones.

Using a factory

/)

XPathFactory fac = new net.sf.saxon.xpath.XPathFactoryImpl ()

fa DIy

// create a builder to evaluate the

XPathBuilder builder = XPathBuilder.xpath ("tokenize (/foo/bar, ' ") [2]").factory(fac);

th using

// evaluate as a String result
String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");

assertEquals ("def", result);

Using ObjectModel
// create a builder to evaluate the xpath using saxon based on its object model uri
XPathBuilder builder = XPathBuilder.xpath ("tokenize (/foo/bar,
' ") [2]") .objectModel ("http://saxon.sf.net/jaxp/xpath/om") ;
// evaluate as a String result

String result = builder.evaluate (context, "<foo><bar>abc_def ghi</bar></foo>");
assertEquals ("def", result);

The easy one

// create a builder to evaluate the xpath using saxon

XPathBuilder builder = XPathBuilder.xpath("tokenize (/foo/bar, ' ')[2]").saxon();

// evaluate as a String result
String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");

assertEquals ("def", result);

Setting a custom XPathFactory using System Property

Available as of Camel 2.3

Camel now supports reading the JVM system property
javax.xml.xpath.XPathFactory that can be used to set a custom XPathFactory to

use.
This unit test shows how this can be done to use Saxon instead:

// set system pr >rty with the XPath factory to use which is Saxon
System.setProperty (XPathFactory.DEFAULT PROPERTY NAME + ":" + "http://sa f.net/
jaxp/xpath/om", "net.sf.saxon.xpath.XPathFactoryImpl");

LANGUAGES SUPPORTED APPENDIX

289

http://saxon.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

cate a builder to evaluate the th using saxon

XPathBuilder builder = XPathBuilder.xpath("tokenize (/foo/bar, ' ')[2]");

>valuate as a String result
String result = builder.evaluate (context, "<foo><bar>abc def ghi</bar></foo>");
assertEquals ("def", result);

Camel will log at INFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http: saxon.sf.net/jaxp/xpath/om with value:
net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

To use Apache Xerces you can configure the system property

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

Enabling Saxon from Spring DSL

Available as of Camel 2.10
Similarly to Java DSL, to enable Saxon from Spring DSL you have three options:

Specifying the factory

<xpath factoryRef="saxonFactory"
resultType="java.lang.String">current-dateTime () </xpath>

Specifying the object model

<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om"
resultType="java.lang.String">current-dateTime () </xpath>

Shortcut

<xpath saxon="true" resultType="java.lang.String">current-dateTime ()</xpath>

Namespace auditing to aid debugging

Available as of Camel 2.10

A large number of XPath-related issues that users frequently face are linked to the usage of
namespaces. You may have some misalighment between the namespaces present in your
message and those that your XPath expression is aware of or referencing. XPath predicates or
expressions that are unable to locate the XML elements and attributes due to namespaces

290 LANGUAGES SUPPORTED APPENDIX

issues may simply look like "they are not working", when in reality all there is to it is a lack of
namespace definition.

Namespaces in XML are completely necessary, and while we would love to simplify their
usage by implementing some magic or voodoo to wire namespaces automatically, truth is that
any action down this path would disagree with the standards and would greatly hinder
interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by adding two new
features to the XPath Expression Language and are thus accesible from both predicates and
expressions.

Logging the Namespace Context of your XPath expression/
predicate

Every time a new XPath expression is created in the internal pool, Camel will log the
namespace context of the expression under the
org.apache.camel.builder.xml.XPathBuilder logger. Since Camel represents
Namespace Contexts in a hierarchical fashion (parent-child relationships), the entire tree is
output in a recursive manner with the following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix ->
namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:

I. Enable TRACE logging on the
org.apache.camel.builder.xml.XPathBuilder logger, or some parent
logger such as org.apache.camel or the root logger

2. Enable the 1ogNamespaces option as indicated in Auditing Namespaces, in which
case the logging will occur on the INFO level

Auditing namespaces

Camel is able to discover and dump all namespaces present on every incoming message before
evaluating an XPath expression, providing all the richness of information you need to help you
analyse and pinpoint possible namespace issues.

To achieve this, it in turn internally uses another specially tailored XPath expression to
extract all namespace mappings that appear in the message, displaying the prefix and the full
namespace URI(s) for each individual mapping.

Some points to take into account:

* The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/1998/namespace")
is suppressed from the output because it adds no value
* Default namespaces are listed under the DEFAULT keyword in the output

LANGUAGES SUPPORTED APPENDIX

291

292

* Keep in mind that namespaces can be remapped under different scopes. Think of a
top-level 'a' prefix which in inner elements can be assigned a different namespace, or
the default namespace changing in inner scopes. For each discovered prefix, all
associated URls are listed.

You can enable this option in Java DSL and Spring DSL.

Java DSL:

XPathBuilder.xpath ("/foo:person/@id", String.class) .logNamespaces ()
Spring DSL:
<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

The result of the auditing will be appear at the INFO level under the
org.apache.camel.builder.xml.XPathBuilder logger and will look like the
following:

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered
in message:

{xmlns:a=[http:
xmlns:b=[http://ap

rg/default],

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .xpath ("resource:classpath:myxpath.txt", String.class)

Dependencies

The XPath language is part of camel-core.

XQUERY

Camel supports XQuery to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XQuery to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

LANGUAGES SUPPORTED APPENDIX

http://www.w3.org/TR/xquery/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Options

Name Default Value Description

allowStAX false Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

Examples

from("queue:foo").filter() .
xquery ("//foo") .
to ("queue:bar")

You can also use functions inside your query, in which case you need an explicit type
conversion (or you will get a org.w3c.dom.DOMException: HIERARCHY_REQUEST_ERR) by
passing the Class as a second argument to the xquery() method.

from("direct:start").

recipientList () .xquery ("concat ('mock:foo.', /person/@city)", String.class);

Variables

The IN message body will be set as the contextItem. Besides this these Variables is also
added as parameters:

Variable Type Description

exchange Exchange The current Exchange
in.body Object The In message's body
out.body Object The OUT message's body (if any)

You can access the value of exchange.in.headers with key foo

: * .
in.headers. Object by using the variable which name is in.headers.foo

You can access the value of exchange.out.headers with key foo

.headers.* j
out-headers Object by using the variable which name is out.headers.foo variable

Any exchange.properties and exchange.in.headers and any
additional parameters set using setParameters (Map).

key name Object These parameters is added with they own key name, for
instance if there is an IN header with the key name foo then its
added as foo.

LANGUAGES SUPPORTED APPENDIX

293

294

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:foo="http://example.com/person"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>
<from uri="activemqg:MyQueue" />
<filter>
<xquery>/foo:person[@name="'James"']</xquery>
<to uri="mgseries:SomeOtherQueue"/>
</filter>
</route>
</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit type conversion
which is done in the xml configuration via the @type attribute:

<xquery type="java.lang.String">concat ('mock:foo.', /person/@city)</xquery>

Using XQuery as an endpoint

Sometimes an XQuery expression can be quite large; it can essentally be used for Templating.
So you may want to use an XQuery Endpoint so you can route using XQuery templates.

The following example shows how to take a message of an ActiveMQ queue (MyQueue) and
transform it using XQuery and send it to MQSeries.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="activemqg:MyQueue" />
<to uri="xquery:com/acme/someTransform.xquery"/>
<to uri="mgseries:SomeOtherQueue"/>
</route>

</camelContext>

LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/spring.html
http://camel.apache.org/templating.html
http://camel.apache.org/xquery-endpoint.html

Examples

Here is a simple example using an XQuery expression as a predicate in a Message Filter

from("direct:start").filter () .xquery (" /person[@name="'James']") .to("mock:result");

This example uses XQuery with namespaces as a predicate in a Message Filter

Namespaces ns = new Namespaces ("c", "http: acme.com/cheese") ;

from("direct:start").
filter () .xquery("/c:person[@name="'James']", ns).
to("mock:result");

Learning XQuery

XQuery is a very powerful language for querying, searching, sorting and returning XML. For
help learning XQuery try these tutorials

* Mike Kay's XQuery Primer

* the W3Schools XQuery Tutorial
You might also find the XQuery function reference useful

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:","file:",or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader ("myHeader") .xquery ("resource:classpath:myxquery.txt", String.class)

Dependencies
To use XQuery in your camel routes you need to add the a dependency on camel-saxon
which implements the XQuery language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>

LANGUAGES SUPPORTED APPENDIX

295

http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java
http://camel.apache.org/message-filter.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java
http://camel.apache.org/message-filter.html
http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xpath-functions/
http://camel.apache.org/download.html

<version>x.x.x</version>
</dependency>

296 LANGUAGES SUPPORTED APPENDIX

DATA FORMAT

Camel supports a pluggable DataFormat to allow messages to be marshalled to and from binary

or text formats to support a kind of Message Translator.

The following data formats are currently supported:
+ Standard JVM object marshalling
o Serialization

o String
» Object marshalling
° Avro
> JSON
° Protobuf
* Object/XML marshalling
o Castor
> JAXB
o XmlBeans
o XStream
o JiBX
* Object/XML/Webservice marshalling
> SOAP
* Direct JSON / XML marshalling
o XmlJson
* Flat data structure marshalling
° BeanlO
o Bindy
o CSV
> EDI
° Flatpack DataFormat
* Domain specific marshalling
o HL7 DataFormat
* Compression
> GZip data format
o Zip DataFormat
o Zip File DataFormat
* Security
> Crypto
> PGP
o XMLSecurity DataFormat

DATA FORMAT APPENDIX

297

http://camel.apache.org/message-translator.html
http://camel.apache.org/serialization.html
http://camel.apache.org/string.html
http://camel.apache.org/avro.html
http://camel.apache.org/json.html
http://camel.apache.org/protobuf.html
http://camel.apache.org/castor.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/xmlbeans.html
http://camel.apache.org/xstream.html
http://camel.apache.org/jibx.html
http://camel.apache.org/soap.html
http://camel.apache.org/xmljson.html
http://camel.apache.org/beanio.html
http://camel.apache.org/bindy.html
http://camel.apache.org/csv.html
http://camel.apache.org/edi.html
http://camel.apache.org/flatpack-dataformat.html
http://camel.apache.org/hl7-dataformat.html
http://camel.apache.org/gzip-data-format.html
http://camel.apache.org/zip-dataformat.html
http://camel.apache.org/zip-file-dataformat.html
http://camel.apache.org/crypto.html
http://camel.apache.org/crypto.html
http://camel.apache.org/xmlsecurity-dataformat.html

298

* Misc.
o Base64
o Custom DataFormat - to use your own custom implementation
o RSS
o TidyMarkup
o Syslog

And related is the following Type Converters:
= Dozer Type Conversion

Unmarshalling

If you receive a message from one of the Camel Components such as File, HTTP or JMS you
often want to unmarshal the payload into some bean so that you can process it using some
Bean Integration or perform Predicate evaluation and so forth. To do this use the unmarshal
word in the DSL in Java or the Xml Configuration.

For example

DataFormat jaxb = new JaxbDataFormat ("com.acme.model") ;

from("activemg:My.Queue") .
unmarshal (jaxb) .
to("mgseries:Another.Queue") ;

The above uses a named DataFormat of jaxb which is configured with a number of Java package
names. You can if you prefer use a named reference to a data format which can then be defined
in your Registry such as via your Spring XML file.

You can also use the DSL itself to define the data format as you use it. For example the
following uses Java serialization to unmarshal a binary file then send it as an ObjectMessage to
ActiveMQ

from("file: foo/bar") .
unmarshal () .serialization() .
to("activemqg: Some.Queue") ;

Marshalling

Marshalling is the opposite of unmarshalling, where a bean is marshalled into some binary or
textual format for transmission over some transport via a Camel Component. Marshalling is
used in the same way as unmarshalling above; in the DSL you can use a DataFormat instance,
you can configure the DataFormat dynamically using the DSL or you can refer to a named
instance of the format in the Registry.

The following example unmarshals via serialization then marshals using a named JAXB data
format to perform a kind of Message Translator

DATA FORMAT APPENDIX

http://camel.apache.org/base64.html
http://camel.apache.org/custom-dataformat.html
http://camel.apache.org/rss.html
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/syslog.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/dozer-type-conversion.html
http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jms.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/component.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html
http://camel.apache.org/message-translator.html

from("file://fc

bar") .
unmarshal () .serialization() .
marshal ("jaxb") .

to ("activemqg: Some.Queue") ;

Using Spring XML

This example shows how to configure the data type just once and reuse it on multiple routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>
</route>

</camelContext>

You can also define reusable data formats as Spring beans

<bean id="myJaxb" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>

</bean>

SERIALIZATION

Serialization is a Data Format which uses the standard Java Serialization mechanism to
unmarshal a binary payload into Java objects or to marshal Java objects into a binary blob.
For example the following uses Java serialization to unmarshal a binary file then send it as an
ObjectMessage to ActiveMQ

from("file://foo/bar").
unmarshal () .serialization() .
to("activemqg: Some.Queue") ;

DATA FORMAT APPENDIX

299

http://camel.apache.org/data-format.html
http://camel.apache.org/activemq.html

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

JAXB

JAXB is a Data Format which uses the JAXB2 XML marshalling standard which is included in
Java 6 to unmarshal an XML payload into Java objects or to marshal Java objects into an XML
payload.

Using the Java DSL

For example the following uses a named DataFormat of jaxb which is configured with a number
of Java package names to initialize the JAXBContext.

DataFormat jaxb = new JaxbDataFormat ("com.acme.model");

from("activemg:My.Queue") .
unmarshal (jaxb) .
to("mgseries:Another.Queue") ;

You can if you prefer use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemg:My.Queue") .
unmarshal ("myJaxbDataType") .
to("mgseries:Another.Queue") ;

Using Spring XML

The following example shows how to use JAXB to unmarshal using Spring configuring the jaxb
data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<unmarshal>
<jaxb prettyPrint="true" contextPath="org.apache.camel.example"/>
</unmarshal>
<to uri="mock:result"/>
</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.

300 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/spring.html

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>
</route>

</camelContext>

Partial marshalling/unmarshalling

This feature is new to Camel 2.2.0.

JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for
@XmlRootElement annotation on given class to operate on whole XML tree. This is useful
but not always - sometimes generated code does not have @XmlIRootElement annotation,
sometimes you need unmarshall only part of tree.

In that case you can use partial unmarshalling. To enable this behaviours you need set property
partClass. Camel will pass this class to JAXB's unmarshaler.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:marshal"/>
<marshal>
<jaxb prettyPrint="false" contextPath="org.apache.camel.example"

partClass="org.apache.camel.example.PurchaseOrder"
fragment="true"
partNamespace="{http://example.camel.org/apache}po" />

</marshal>

<to uri="mock:marshal"/>
</route>
<route>

<from uri="direct:unmarshal"/>
<unmarshal>
<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.Partial"™ />

</unmarshal>

<to uri="mock:unmarshal"/>

</route>
</camelContext>

DATA FORMAT APPENDIX

301

302

i Multiple context paths
It is possible to use this data format with more than one context path. You can
specify context path using : as separator, for example
com.mycompany : com.mycompany?2. Note that this is handled by JAXB
implementation and might change if you use different vendor than RI.

For marshalling you have to add partNamespace attribute with QName of destination
namespace. Example of Spring DSL you can find above.

Fragment

This feature is new to Camel 2.8.0.

JaxbDataFormat has new property fragment which can set the the

Marshaller.JAXB FRAGMENT encoding property on the JAXB Marshaller. If you don't
want the JAXB Marshaller to generate the XML declaration, you can set this option to be true.
The default value of this property is fales.

Ignoring the NonXML Character

This feature is new to Camel 2.2.0.

JaxbDataFromat supports to ignore the NonXML Character, you just need to set the
filterNonXmIChars property to be true, JaxbDataFormat will replace the NonXML character
with " " when it is marshaling or unmarshaling the message. You can also do it by setting the
Exchange property Exchange .FILTER NON XML CHARS.

E JDK 1.5 JDK 1.6+
Filtering in use StAX APl and implementation No
Filtering not in use StAX APl only No

This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.

Working with the ObjectFactory

If you use X]JC to create the java class from the schema, you will get an ObjectFactory for you
JAXB context. Since the ObjectFactory uses JAXBElement to hold the reference of the schema
and element instance value, jaxbDataformat will ignore the JAXBElement by default and you will
get the element instance value instead of the JAXBElement object form the unmarshaled
message body.

If you want to get the JAXBElement object form the unmarshaled message body, you need to
set the JaxbDataFormat object's ignore]JAXBElement property to be false.

DATA FORMAT APPENDIX

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char
http://camel.apache.org/exchange.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

Setting encoding

You can set the encoding option to use when marshalling. Its the

Marshaller.JAXB ENCODING encoding property on the JAXB Marshaller.

You can setup which encoding to use when you declare the JAXB data format. You can also
provide the encoding in the Exchange property Exchange . CHARSET NAME. This property
will overrule the encoding set on the JAXB data format.

In this Spring DSL we have defined to use 1s0-8859-1 as the encoding:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<marshal>
<jaxb prettyPrint="false" encoding="iso-8859-1"
contextPath="org.apache.camel.example"/>
</marshal>
<to uri="mock:result"/>
</route>
</camelContext>

Controlling namespace prefix mapping

Available as of Camel 2.11

When marshalling using JAXB or SOAP then the JAXB implementation will automatic assign
namespace prefixes, such as ns2, ns3, ns4 etc. To control this mapping, Camel allows you to
refer to a map which contains the desired mapping.

Notice this requires having JAXB-RI 2.1 or better (from SUN) on the classpath, as the
mapping functionality is dependent on the implementation of JAXB, whether its supported.

For example in Spring XML we can define a Map with the mapping. In the mapping file below,
we map SOARP to use soap as prefix. While our custom namespace
"http://www.mycompany.com/foo/2" is not using any prefix.

<util:map id="myMap">
<entry key="http://www.w3.0rg/2003/05/soap-envelope" value="soap"/>
<!-- we dont want any prefix for our namespace -->
<entry key="http://www.mycompany.com/foo/2" value=""/>

</util:map>

To use this in JAXB or SOAP you refer to this map, using the namespacePrefixRef
attribute as shown below. Then Camel will lookup in the Registry a java.util.Map with the
id "myMap", which was what we defined above.

<marshal>
<soapjaxb version="1.2" contextPath="com.mycompany.foo"

DATA FORMAT APPENDIX

303

http://camel.apache.org/exchange.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/registry.html

304

namespacePrefixRef="myMap"/>
</marshal>

Schema validation

Available as of Camel 2.11

The JAXB Data Format supports validation by marshalling and unmarshalling from/to XML.
Your can use the prefix classpaths, file:* or *http: to specify how the resource should by
resolved. You can separate multiple schema files by using the *," character.

Using the Java DSL, you can configure it in the following way:

JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath (Person.class.getPackage () .getName()) ;
jaxbDataFormat.setSchema ("classpath:person.xsd,classpath:address.xsd") ;

You can do the same using the XML DSL:

<marshal>
<jaxb id="jaxb" schema="classpath:person.xsd,classpath:address.xsd"/>
</marshal>

Dependencies

To use JAXB in your camel routes you need to add the a dependency on camel=jaxb which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupld>
<artifactId>camel-jaxb</artifactId>
<version>x.x.x</version>
</dependency>

XMLBEANS

XmlBeans is a Data Format which uses the XmlBeans library to unmarshal an XML payload into
Java objects or to marshal Java objects into an XML payload.

DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
*
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://xmlbeans.apache.org/

from("activemg:My.Queue") .
unmarshal () .xmlBeans () .
to("mgseries:Another.Queue") ;

Dependencies

To use XmlBeans in your camel routes you need to add the dependency on camel-
xmlbeans which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmlbeans</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

XSTREAM

XStream is a Data Format which uses the XStream library to marshal and unmarshal Java
objects to and from XML.

lets turn Object messages into XML then send to MQSeries
from("activemg:My.Queue") .
marshal () .xstream() .
to("mgseries:Another.Queue") ;

XMLInputFactory and XMLOutputFactory

The XStream library uses the javax.xml.stream.XMLInputFactory and
javax.xml.stream.XMLOutputFactory, you can control which implementation of this
factory should be used.

The Factory is discovered using this algorithm:
I. Use the javax.xml.stream.XMLInputFactory,
javax.xml.stream.XMLOutputFactory system property.
2. Use the 1ib/xml.stream.properties file in the JRE HOME directory.
3. Use the Services API, if available, to determine the classname by looking in the META-INF/
services/javax.xml.stream.XMLInputFactory, META-INF/services/
javax.xml.stream.XMLOutputFactory files in jars available to the JRE.
4. Use the platform default XMLInputFactory, XMLOutputFactory instance.

DATA FORMAT APPENDIX

305

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://xstream.codehaus.org/
http://xstream.codehaus.org/

How to set the XML encoding in Xstream DataFormat?

From Camel 2.2.0, you can set the encoding of XML in Xstream DataFormat by setting the
Exchange's property with the key Exchange . CHARSET NAME, or setting the encoding
property on Xstream from DSL or Spring config.

from("activemg:My.Queue") .
marshal () .xstream ("UTF-8") .

to("mgseries:Another.Queue");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

!-- we define the son xstream data formats to be used (xstream is default)
<dataFormats>

<xstream id="xstream-utf8" encoding="UTF-8"/>

<xstream id="xstream-default"/>

</dataFormats>

<route>
<from uri="direct:in"/>
<marshal ref="xstream-default"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:in-UTF-8"/>
<marshal ref="xstream-utf8"/>
<to uri="mock:result"/>
</route>

</camelContext>

Dependencies

To use XStream in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupld>
<artifactId>camel-xstream</artifactId>
<version>x.x.x</version>

</dependency>

306 DATA FORMAT APPENDIX

http://camel.apache.org/download.html

Csv

The CSV Data Format uses Apache Commons CSV to handle CSV payloads (Comma Separated
Values) such as those exported/imported by Excel.

Options
Option Type Description
config CSVConfig Can be used to set a custom CSVConfig object.
Can be used to set a custom CSVStrategy; the default
strategy CSVStrategy .
is CSVStrategy.DEFAULT STRATEGY.
Whether or not columns are auto-generated in the
resulting CSV. The default value is true; subsequent
autogenColumns boolean . .
messages use the previously created columns with new
fields being added at the end of the line.
e , Camel 2.4: The column delimiter to use; the default
delimiter String s
valueis ", ".
Camel 2.10: Whether or not to skip the first line of
skipFirstLine boolean CSV input when unmarshalling (e.g. if the content has

headers on the first line); the default value is false.

Marshalling a Map to CSV

The component allows you to marshal a Java Map (or any other message type that can be
converted in a Map) into a CSV payload.

An example: if you send a message with this map...

Map<String, Object> body = new HashMap<String, Object>();

body.put ("foo",
body.put ("bar",

"abe") ;
123);

... through this route ...

from("direct:start").

marshal () .csv () .

to("mock:result");

... you will end up with a String containing this CSV message

abc, 123

DATA FORMAT APPENDIX

307

http://camel.apache.org/data-format.html
http://commons.apache.org/proper/commons-csv/
http://camel.apache.org/type-converter.html

308

Sending the Map below through this route will result in a CSV message that looks like

foo,bar

Unmarshalling a CSV message into a Java List

Unmarshalling will transform a CSV messsage into a Java List with CSV file lines (containing
another List with all the field values).
An example: we have a CSV file with names of persons, their IQ and their current activity.

Jack Dalton, 115, mad at Averell

Joe Dalton, 105, calming Joe

William Dalton, 105, keeping Joe from killing Averell
Averell Dalton, 80, playing with Rantanplan

Lucky Luke, 120, capturing the Daltons

We can now use the CSV component to unmarshal this file:

from("file:src/test/resources/?fileName=daltons.csv&noop=true") .
unmarshal () .csv () .
to("mock:daltons") ;

The resulting message will contain a List<List<String>> like...

List<List<String>> data = (List<List<String>>) exchange.getIn() .getBody();

for (List<String> line : data) {
LOG.debug (String.format ("%s has an IQ of $s and is currently %s",
line.get (0), line.get(l), line.get(2)));

Marshalling a List<Map> to CSV

Available as of Camel 2.1
If you have multiple rows of data you want to be marshalled into CSV format you can now
store the message payload as a List<Map<String, Object>> object where the list

contains a Map for each row.

File Poller of CSV, then unmarshaling
Given a bean which can handle the incoming data...
Listing 1. MyCsvHandler.java

Some comments here
public void doHandleCsvData (List<List<String>> csvData)
{

DATA FORMAT APPENDIX

// do magic here

... your route then looks as follows

<route>

<!-- poll every 10 onds -->

<from uri="file:///some/path/to/pickup/
csvfiles?delete=true&consumer.delay=10000" />

<unmarshal><csv /></unmarshal>

<to uri="bean:myCsvHandler?method=doHandleCsvData" />
</route>

Marshaling with a pipe as delimiter

Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<marshal>
<csv delimiter="|" />
</marshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSvVConfig config = new CSVConfig();
config.setDelimiter('|");
csv.setConfig(config);

from("direct:start")

.marshal (csv)

.convertBodyTo (String.class)
.to("bean:myCsvHandler?method=doHandleCsv") ;

CsvDataFormat csv = new CsvDataFormat () ;
csv.setDelimiter ("|[");

from("direct:start")
.marshal (csv)
.convertBodyTo (String.class)
.to ("bean:myCsvHandler?method=doHandleCsv") ;

DATA FORMAT APPENDIX

309

Using autogenColumns, configRef and strategyRef attributes inside XML
DSL

Available as of Camel 2.9.2 / 2.10

You can customize the CSV Data Format to make use of your own CSVConfig and/or
CSVStrategy. Also note that the default value of the autogenColumns option is true.
The following example should illustrate this customization.

<route>
<from uri="direct:start" />
<marshal>

<!-- make use o a strategy other than

Strategy.DEFAULT

STRATEGY' -->

'org.apache.commons.csv
<csv autogenColumns="false" delimiter="|" configRef="csvConfig"
strategyRef="excelStrategy" />
</marshal>
<convertBodyTo type="java.lang.String" />

<to uri="mock:result" />
</route>

<bean id="csvConfig" class="org.apache.commons.csv.writer.CSVConfig">
<property name="fields">
<list>
<bean class="org.apache.commons.csv.writer.CSVField">
<property name="name" value="orderId" />
</bean>
<bean class="org.apache.commons.csv.writer.CSVField">
<property name="name" value="amount" />
</bean>
</list>
</property>
</bean>

<bean id="excelStrategy"

class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
<property name="staticField"

value="org.apache.commons.csv.CSVStrategy.EXCEL STRATEGY" />

</bean>

Using skipFirstLine option while unmarshaling

Available as of Camel 2.10

You can instruct the CSV Data Format to skip the first line which contains the CSV headers.
Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>
<csv skipFirstLine="true" />

310 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/data-format.html

</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
csv.setSkipFirstLine (true) ;

from("direct:start")
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

Unmarshaling with a pipe as delimiter

Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>
<csv delimiter="|" />
</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />
</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();

CSVStrategy strategy = CSVStrategy.DEFAULT STRATEGY;

strategy.setDelimiter('|"');
csv.setStrategy(strategy);

from("direct:start")
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

CsvDataFormat csv = new CsvDataFormat () ;
csv.setDelimiter (" |[");

from("direct:start")
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

CsvDataFormat csv = new CsvDataFormat () ;
CSVConfig csvConfig = new CSVConfig();

DATA FORMAT APPENDIX

311

312

csvConfig.setDelimiter (";");
csv.setConfig(csvConfig);

from("direct:start")
.unmarshal (csv)
.to("bean:myCsvHandler?method=doHandleCsv") ;

Dependencies

To use CSV in your Camel routes you need to add a dependency on camel=csv, which
implements this data format.

If you use Maven you can just add the following to your pom.xml, substituting the version
number for the latest and greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-csv</artifactId>
<version>x.x.x</version>
</dependency>

The String Data Format is a textual based format that supports encoding.

Options

Option Default Description

To use a specific charset for encoding. If not provided Camel will use

charset null the JVM default charset.

Marshal

In this example we marshal the file content to String object in UTF-8 encoding.

from("file: data.csv") .marshal () .string ("UTF-8") .to ("jms://myqueue") ;

Unmarshal

In this example we unmarshal the payload from the JMS queue to a String object using UTF-8
encoding, before its processed by the newOrder processor.

from("jms: queue/order") .unmarshal () .string ("UTF-8") .processRef ("newOrder") ;

DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

) Issue in CSVConfig
It looks like that

CSVConfig csvConfig = new CSVConfig();
csvConfig.setDelimiter(';");

doesn't work. You have to set the delimiter as a String!

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

HL7 DataFormat

The HL7 component ships with a HL7 data format that can be used to format between
String and HL7 model objects.
* marshal =from Message to byte stream (can be used when returning as response
using the HL7 MLLP codec)
*= unmarshal = from byte stream to Message (can be used when receiving streamed
data from the HL7 MLLP
To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
from("direct:hl7in") .marshal (hl17) .to("jms:queue:hl7out") ;
In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and

put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat () ;

from("jms:queue:hl7out") .unmarshal (hl7) .to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient
lookup service.

Notice there is a shorthand syntax in Camel for well-known data formats that is commonly
used.

Then you don't need to create an instance of the HL7DataFormat object:

DATA FORMAT APPENDIX

313

http://camel.apache.org/hl7.html

314

. Segment separators
As of Camel 2.11, unmarshal does not automatically fix segment separators
anymore by converting \n to \r. If you
need this conversion,
org.apache.camel.component.hl7.HL7#convertLFToCR provides a
handy Expression for this purpose.

from("direct:hl7in") .marshal () .hl7() .to("jms:queue:hl7out") ;
from("jms:queue:hl7out") .unmarshal () .hl7() .to("patientLookupService");

EDI DATAFORMAT

We encourage end users to look at the Smooks which supports EDI and Camel natively.

FLATPACK DATAFORMAT

The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.

* marshal = from List<Map<String, Object>>to OutputStream (can be
converted to String)

* unmarshal = from java.io.InputStream (suchasa File or String)toa
jJava.util.List asan
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to process each row
one by one you can split the exchange, using Splitter.

Notice: The Flatpack library does currently not support header and trailers for the marshal
operation.

Options

The data format has the following options:

Option Default Description

The flatpack pzmap configuration file. Can be
definition null omitted in simpler situations, but its preferred to
use the pzmap.

fixed false Delimited or fixed.

DATA FORMAT APPENDIX

http://milyn.codehaus.org/Home
http://camel.apache.org/flatpack.html
http://camel.apache.org/splitter.html

i Serializable messages
As of HAPI 2.0 (used by Camel 2.1 1), the HL7v2 model classes are fully
serializable. So you can put HL7v2 messages directly into a JMS queue (i.e. without
calling marshal () and read them again directly from the queue (i.e. without
calling unmarshal ().

Whether the first line is ignored for delimited files

ignoreFirstRecord true
d (for the column headers).

textQualifier " If the text is qualified with a char such as ".
delimiter ’ The delimiter char (could be ; , or similar)
parserFactory null Uses the default Flatpack parser factory.

Camel 2.9.7 and 2.10.5 onwards: Allows for
allowShortLines false lines to be shorter than expected and ignores the
extra characters.

Camel 2.9.7 and 2.10.5 onwards: Allows for
ignoreExtraColumns false lines to be longer than expected and ignores the
extra characters.

Usage

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat () ;
fp.setDefinition (new ClassPathResource ("INVENTORY-Delimited.pzmap.xml")) ;

from("file:order/in") .unmarshal (df) .to ("seda:queue:neworder") ;

The sample above will read files from the order/in folder and unmarshal the input using the
Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the
structure of the files. The result is a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat () ;

df.setDefinition (new ClassPathResource ("PEOPLE-FixedLength.pzmap.xml")) ;
df.setFixed (true) ;

df.setIgnoreFirstRecord(false);

from("seda:people") .marshal (df) .convertBodyTo (String.class) .to ("jms:queue:people");

DATA FORMAT APPENDIX

315

316

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the corresponding
value. This structure can be created in Java code from e.g. a processor. We marshal the data
according to the Flatpack format and convert the result as a St ring object and store it on a
JMS queue.

Dependencies

To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>

</dependency>

JSON

JSON is a Data Format to marshal and unmarshal Java objects to and from JSON.

For JSON to object marshalling, Camel provides integration with three popular JSON
libraries:
* The XStream library and Jettsion
= The Jackson library
= Camel 2.10: The GSon library
By default Camel uses the XStream library.

Using JSON data format with the XStream library

lets turn Object messages into json then send to MQSeries
from("activemqg:My.Queue") .
marshal () .json() .
to("mgseries:Another.Queue") ;

Using JSON data format with the Jackson library

DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://www.json.org/
http://xstream.codehaus.org/
http://jettison.codehaus.org/
http://xircles.codehaus.org/projects/jackson
http://code.google.com/p/google-gson/

i Direct, bi-directional JSON <=> XML conversions
As of Camel 2.10, Camel supports direct, bi-directional JSON <=> XML
conversions via the camel-xmljson data format, which is documented separately.

marshal () .json (JsonLibrary.Jackson) .
to("mgseries:Another.Queue") ;

Using JSON data format with the GSON library

lets turn Object messages into json then send to MQSeries
from("activemqg:My.Queue") .
marshal () .json (JsonLibrary.Gson) .
to("mgseries:Another.Queue") ;

Using JSON in Spring DSL

When using Data Format in Spring DSL you need to declare the data formats first. This is done
in the DataFormats XML tag.

<dataFormats>
<!-- here we define a Json data format with the id jack and that it should
use the TestPojo as the class type when
doing unmarshal. The unmarshalTypeName is optional, if not provided
Camel will use a Map as the type -->
<json id="jack" library="Jackson"
unmarshalTypeName="org.apache.camel.component.jackson.TestPojo"/>
</dataFormats>

And then you can refer to this id in the route:

<route>
<from uri="direct:back"/>
<unmarshal ref="jack"/>

<to uri="mock:reverse"/>
</route>

Excluding POJO fields from marshalling

As of Camel 2.10
When marshalling a POJO to JSON you might want to exclude certain fields from the JSON

DATA FORMAT APPENDIX 317

http://camel.apache.org/data-format.html
http://camel.apache.org/xmljson.html

output. With Jackson you can use JSON views to accomplish this. First create one or more
marker classes.

public class Views {

static class Weight { }
static class Age { }

Use the marker classes with the @ JsonView annotation to include/exclude certain fields. The
annotation also works on getters.

@JsonView (Views.Age.class)
private int age = 30;

private int height = 190;

@JsonView (Views.Weight.class)
private int weight = 70;

Finally use the Camel JacksonDataFormat to marshall the above POJO to JSON.

JacksonDataFormat ageViewFormat = new JacksonDataFormat (TestPojoView.class,
Views.Age.class);
from("direct:inPojoAgeView") .marshal (ageViewFormat) ;

Note that the weight field is missing in the resulting JSON:

{"age":30, "height":190}

The GSON library supports a similar feature through the notion of ExclusionStrategies:

/**
* Strategy to exclude {Q@link ExcludeAge} annotated fields
=/

protected static class AgeExclusionStrategy implements ExclusionStrategy {

@Override

public boolean shouldSkipField (FieldAttributes f) {
return f.getAnnotation (ExcludeAge.class) != null;

}

@Override

public boolean shouldSkipClass(Class<?> clazz) {
return false;

318 DATA FORMAT APPENDIX

http://wiki.fasterxml.com/JacksonJsonViews
http://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/ExclusionStrategy.html

The GsonDataFormat accepts an ExclusionStrategy in its constructor:

GsonDataFormat ageExclusionFormat = new GsonDataFormat (TestPojoExclusion.class, new
AgeExclusionStrategy());
from("direct:inPojoExcludeAge") .marshal (ageExclusionFormat) ;

The line above will exclude fields annotated with @ExcludeAge when marshalling to JSON.

Configuring field naming policy
Available as of Camel 2.11

The GSON library supports specifying policies and strategies for mapping from json to
POJO fields. A common naming convention is to map json fields using lower case with
underscores.

We may have this J[SON string

"id" : 123,
"first name" : "Donald"
"last_name" : "Duck"

Which we want to map to a POJO that has getter/setters as

public class PersonPojo {

private int id;
private String firstName;
private String lastName;

public int getId() {
return id;

public void setId(int id) {
this.id = id;

public String getFirstName () {
return firstName;

public void setFirstName (String firstName) {
this.firstName = firstName;

public String getLastName () {
return lastName;

DATA FORMAT APPENDIX

319

public void setLastName (String lastName) {
this.lastName = lastName;

Then we can configure the org.apache.camel.component.gson.GsonDataFormat
in a Spring XML files as shown below. Notice we use fieldNamingPolicy property to set
the field mapping. This property is an enum from GSon
com.google.gson.FieldNamingPolicy which has a number of pre defined mappings.
If you need full control you can use the property FieldNamingStrategy and implement a
custom com.google.gson.FieldNamingStrategy where you can control the

mapping.

<!-- define the gson data format, where we configure the data format using the
properties -->
<bean id="gson" class="org.apache.camel.component.gson.GsonDataFormat">
<!-- we want to unmarshal to person pojo -->
<property name="unmarshalType"
value="org.apache.camel.component.gson.PersonPojo" />

<!-- we want to map fields to use lower case and underscores -->
<property name="fieldNamingPolicy" value="LOWER CASE WITH UNDERSCORES"/>
</bean>

And use it in Camel routes by referring to its bean id as shown:

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:inPojo"/>
<marshal ref="gson"/>
</route>

<route>
<from uri="direct:backPojo"/>
<unmarshal ref="gson"/>
</route>

</camelContext>

Dependencies for XStream

To use JSON in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

320 DATA FORMAT APPENDIX

http://camel.apache.org/download.html

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for Jackson

To use JSON in your camel routes you need to add the a dependency on camel-jackson
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-jackson</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for GSON

To use JSON in your camel routes you need to add the a dependency on camel-gson which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gson</artifactId>
<version>2.10.0</version>
</dependency>

The Zip Data Format is a message compression and de-compression format. Messages
marshalled using Zip compression can be unmarshalled using Zip decompression just prior to
being consumed at the endpoint. The compression capability is quite useful when you deal with
large XML and Text based payloads. It facilitates more optimal use of network bandwidth while
incurring a small cost in order to compress and decompress payloads at the endpoint.

Options

Option Default Description

DATA FORMAT APPENDIX

321

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

322

 About using with Files
The Zip data format, does not (yet) have special support for files. Which means that
when using big files, the entire file content is loaded into memory.
This is subject to change in the future, to allow a streaming based solution to have a
low memory footprint.

To specify a specific compression Level use
java.util.zip.Deflater settings. The possible
settings areE

compressionLevel null aiiainan
P EEEEEEEEE - Deflater. DEFAULT COMPRESSION
If compressionLevel is not explicitly specified the
compressionLevel employed is
Deflater.DEFAULT COMPRESSION
Marshal

In this example we marshal a regular text/XML payload to a compressed payload employing zip
compression Deflater .BEST COMPRESSION and send it an ActiveMQ queue called
MY_QUEUE.

from("direct:start") .marshal () .zip(Deflater.BEST COMPRESSION) .to("activemg:queue:MY QUEUE") ;

Alternatively if you would like to use the default setting you could send it as

from("direct:start") .marshal().zip().to("activemg:queue:MY QUEUE");

Unmarshal

In this example we unmarshalEa zippedEpayload from an ActiveMQ queue called
MY_QUEUEEto its original format,Eand forward it forEprocessingEto the
UnZippedMessageProcessor. Note that the compression Level employed during the marshalling
should be identical to the one employed during unmarshalling to avoid errors.

from("activemg:queue:MY QUEUE").unmarshal().zip().process (new
UnZippedMessageProcessor()) ;B

DATA FORMAT APPENDIX

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

TIDYMARKUP

TidyMarkup is a Data Format that uses the TagSoup to tidy up HTML. It can be used to parse
ugly HTML and return it as pretty wellformed HTML.

TidyMarkup only supports the unmarshal operation as we really don't want to turn well
formed HTML into ugly HTML ()

Java DSL Example

An example where the consumer provides some HTML

from("file://site/inbox") .unmarshal () .tidyMarkup() .to("file://site/blogs");

Spring XML Example

The following example shows how to use TidyMarkup to unmarshal using Spring

<camelContext id="camel" xmlns="http://camel.
<route>
<from uri="file: site/inbox" />
<unmarshal>
<tidyMarkup/>
</unmarshal>
<to uri="file://site/blogs"/>
</route>
</camelContext>

Dependencies

To use TidyMarkup in your camel routes you need to add the a dependency on camel-
tagsoup which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-tagsoup</artifactId>
<version>x.x.x</version>

</dependency>

DATA FORMAT APPENDIX

323

http://camel.apache.org/data-format.html
http://www.ccil.org/~cowan/XML/tagsoup/
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/download.html

324

{2 Camel eats our own dogfood soap

We had some issues in our pdf Manual where we had some strange symbols. So
Jonathan used this data format to tidy up the wiki html pages that are used as base
for rendering the pdf manuals. And then the mysterious symbols vanished.

BINDY

The goal of this component is to allow the parsing/binding of non-structured data (or to be
more precise non-XML data)
to/from Java Beans that have binding mappings defined with annotations. Using Bindy, you can
bind data from sources such as :

= CSV records,

* Fixed-length records,

* FIX messages,

* or almost any other non-structured data
to one or many Plain Old Java Object (POJO). Bindy converts the data according to the type of
the java property. POJOs can be linked together with one-to-many relationships available in
some cases. Moreover, for data type like Date, Double, Float, Integer, Short, Long and
BigDecimal, you can provide the pattern to apply during the formatting of the property.

For the BigDecimal numbers, you can also define the precision and the decimal or grouping
separators.

Type Format Pattern Link
YP Type example
Date DateFormat "dd-MM-yyyy" http://java.sun.com/j2se/|.5.0/docs/apiljava/

text/SimpleDateFormat.html

http://java.sun.com/j2se/|.5.0/docs/apiljava/

Decimal* Decimalformat "t #HH HHHE" .
text/DecimalFormat.html

Decimal* = Double, Integer, Float, Short, Long

To work with camel-bindy, you must first define your model in a package (e.g.
com.acme.model) and for each model class (e.g. Order, Client, Instrument, ...) add the required
annotations (described hereafter) to the Class or field.

ANNOTATIONS

The annotations created allow to map different concept of your model to the POJO like :
= Type of record (csv, key value pair (e.g. FIX message), fixed length ...),
= Link (to link object in another object),
= DataField and their properties (int, type, ...),
* KeyValuePairField (for key = value format like we have in FIX financial messages),

DATA FORMAT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://camel.apache.org/manual.html
http://janstey.blogspot.com/

. Format supported
This first release only support comma separated values fields and key value pair
fields (e.g. : FIX messages).

= Section (to identify header, body and footer section),

= OneToMany

This section will describe them :

I. CsvRecord

The CsvRecord annotation is used to identified the root class of the model. It represents a
record = a line of a CSV file and can be linked to several children model classes.

Annotation name Record type Level

CsvRecord

csv

Class

Parameter name

type

Info

separator

string

mandatory - can be ;' or '} or 'anything'. This value is
interpreted as a regular expression. If you want to use
a sign which has a special meaning in regular
expressions, e.g. the '[' sign, than you have to mask it,
like '

I

skipFirstLine

boolean

optional - default value = false - allow to skip the first
line of the CSV file

crif

string

optional - possible values = WINDOWS,UNIX,MAC,
or custom; default value = WINDOWS - allow to
define the carriage return character to use. If you
specify a value other than the three listed before, the
value you enter (custom) will be used as the CRLF
character(s)

generateHeaderColumns

boolean

optional - default value = false - uses to generate the
header columns of the CSV generates

isOrdered

boolean

optional - default value = false - allow to change the
order of the fields when CSV is generated

quote

String

Camel 2.8.3/2.9: option - allow to specify a quote
character of the fields when CSV is generated

DATA FORMAT APPENDIX

325

This annotation is associated to the root class of the
model and must be declared one time.

m

E

case | : separator =',’
The separator used to segregate the fields in the CSV record is ',' :
10, J, Pauline, M, XD 12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

@CsvRecord(separator = ",")
public Class Order {

}

case 2 : separator = ;'
Compare to the previous case, the separator here is ';' instead of ', :
10; J; Pauline; M; XD12345678; Fortis Dynamic 15/15; 2500; USD; 08-01-2009

@CsvRecord(separator = ";")
public Class Order {

}

case 3 : separator = |"
Compare to the previous case, the separator here is '|' instead of ;' :
10| J| Pauline] M| XD12345678| Fortis Dynamic 15/15| 2500] USD| 08-01-2009

@CsvRecord(separator = "\\[")
public Class Order {

}

case 4 : separator = "\",\"
Applies for Camel 2.8.2 or older

When the field to be parsed of the CSV record contains ', or ';' which is also used as
separator, we whould find another strategy
to tell camel bindy how to handle this case. To define the field containing the data with a
comma, you will use simple or double quotes
as delimiter (e.g: 'l0', 'Street 10, NY', 'USA' or "10", "Street 10, NY", "USA").
Remark : In this case, the first and last character of the line which are a simple or double quotes
will removed by bindy

"10",")","Pauline"," M","XD12345678","Fortis Dynamic 15,15" 2500","USD","08-01-2009"

@CsvRecord(separator = "\",\"")
public Class Order {

326 DATA FORMAT APPENDIX

From Camel 2.8.3/2.9 or never bindy will automatic detect if the record is enclosed with
either single or double quotes and automatic remove those quotes when unmarshalling from
CSV to Object. Therefore do not include the quotes in the separator, but simple do as below:

"10",")","Pauline"," M","XD12345678","Fortis Dynamic 15,15" 2500","USD","08-01-2009"

@CsvRecord(separator = ",")
public Class Order {

}

Notice that if you want to marshal from Object to CSV and use quotes, then you need to
specify which quote character to use, using the quote attribute on the @CsvRecord as shown
below:

@CsvRecord(separator = ",", quote = "\"")
public Class Order ({

}

case 5 : separator & skipfirstline

The feature is interesting when the client wants to have in the first line of the file, the name
of the data fields :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date

To inform bindy that this first line must be skipped during the parsing process, then we use
the attribute :

@CsvRecord (separator = ",", skipFirstLine = true)
public Class Order ({

}

case 6 : generateHeaderColumns

To add at the first line of the CSV generated, the attribute generateHeaderColumns must be
set to true in the annotation like this :

@CsvRecord(generateHeaderColumns = true)
public Class Order {

}

As a result, Bindy during the unmarshaling process will generate CSV like this :

DATA FORMAT APPENDIX

327

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date
10, J, Pauline, M, XD 12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

case 7 : carriage return

If the platform where camel-bindy will run is not Windows but Macintosh or Unix, than you
can change the crlf property like this. Three values are available : WINDOWS, UNIX or MAC

@CsvRecord (separator = ",", crlf="MAC")
public Class Order ({

Additionally, if for some reason you need to add a different line ending character, you can opt
to specify it using the crif parameter. In the following example, we can end the line with a
comma followed by the newline character:

@CsvRecord (separator = ",", crlf=",\n")
public Class Order {

case 8 : isOrdered

Sometimes, the order to follow during the creation of the CSV record from the model is
different from the order used during the parsing. Then, in this case, we can use the attribute
isOrdered = true to indicate this in combination with attribute 'position’ of the DataField
annotation.

@CsvRecord (isOrdered = true)
public Class Order {

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

Remark : pos is used to parse the file, stream while positions is used to generate the CSV

2. Link

The link annotation will allow to link objects together.

Annotation name Record type Level

Link all Class & Property

328 DATA FORMAT APPENDIX

Parameter type Info

name

linkType LinkType optional - b.y default the.vaIL.Je is LinkType.oneToOne - so you
are not obliged to mention it

E E Only one-to-one relation is allowed.

e.g : If the model Class Client is linked to the Order class, then use annotation Link in the
Order class like this :

Listing 1. Property Link

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@Link
private Client client;

AND for the class Client :
Listing 1. Class Link

@QLink
public class Client {

}

3. DataField

The DataField annotation defines the property of the field. Each datafield is identified by its
position in the record, a type (string, int, date, ...) and optionally of a pattern

Annotation name Record type Level

DataField all Property

Parameter name type Info

pos int mandatory - digit number starting from | to ...
pattern string optional - default value ="" - will be used to format

Decimal, Date, ...

optional - represents the length of the field for fixed

length nt length format

DATA FORMAT APPENDIX

329

optional - represents the precision to be used when

precision nt the Decimal number will be formatted/parsed
optional - default value = "" - is used by the Java
pattern string Formater (SimpleDateFormat by example) to format/
validate data
optional - must be used when the position of the field
position int in the CSV generated must be different compare to
pos
required boolean optional - default value = "false"
trim boolean optional - default value = "false"
optional - default value = "" - defines the field's default
defaultValue string value when the respective CSV field is empty/not
available
Camel 2.1 1: optional - default value = "false" -
impliedDecimalSeparator boolean Indicates if there is a decimal point implied at a
specified location
Camel 2.1 I: optional - can be used to identifyEa
lengthPos int data field in a fixed-length record that defines the
fixed length for this field
Camel 2.1 1: optional - can be used to demarcate
delimiter string the end of a variable-length field within a fixed-length

record

case | : pos

This parameter/attribute represents the position of the field in the csv record

Listing 1. Position

@CsvRecord (separator =
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)

momy

private String isinCode;

As you can see in this example the position starts at '|' but continues at '5' in the class Order.
The numbers from "2' to '4' are defined in the class Client (see here after).

Listing 1. Position continues in another model class

330 DATA FORMAT APPENDIX

public class Client {

@DataField(pos = 2)
private String clientNr;

@DataField(pos = 3)
private String firstName;

@DataField(pos = 4)
private String lastName;

case 2 : pattern

The pattern allows to enrich or validates the format of your data
Listing 1. Pattern

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField (pos = 5)
private String isinCode;

@DataField (name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2)
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy") -- pattern used during parsing or when
the date is created
private Date orderDate;

case 3 : precision

The precision is helpful when you want to define the decimal part of your number
Listing 1. Precision

@CsvRecord (separator = ", ")
public class Order ({

@DataField(pos = 1)
private int orderNr;

DATA FORMAT APPENDIX 331

332

@QLink
private Client client;

@DataField(pos = 5)

private String isinCode;
@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2) -- precision
private BigDecimal amount;

@DataField (pos = 8)

private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy")

private Date orderDate;

case 4 : Position is different in output

The position attribute will infform bindy how to place the field in the CSV record generated.
By default, the position used corresponds to the position defined with the attribute 'pos'. If the
position is different (that means that we have an asymetric processus comparing marshaling
from unmarshaling) than we can use 'position’ to indicate this.

Here is an example
Listing 1. Position is different in output

@CsvRecord (separator = ", ")
public class Order {
@CsvRecord (separator = ", ",

public class Order {

isOrdered = true)

Positions of the fields start from 1 and not from 0

@DataField(pos = 1,
private int orderNr;

position = 11)

@DataField(pos = 2, position = 10)

private String clientNr;
@DataField(pos = 3, position = 9)
private String firstName;
@DataField(pos = 4, position = 8)
private String lastName;
@DataField(pos = 5, position = 7)

private String

instrumentCode;

DATA FORMAT APPENDIX

@DataField(pos = 6, position = 6)
private String instrumentNumber;

case 5 : required

If a field is mandatory, simply use the attribute 'required' setted to true

Listing 1. Required

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2, required = true)
private String clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, required = true)
private String lastName;

If this field is not present in the record, than an error will be raised by the parser with the

following information :

Some fields are missing (optional or mandatory), line :

case 6 : trim

If a field has leading and/or trailing spaces which should be removed before they are

processed, simply use the attribute 'trim' setted to true

Listing 1. Trim

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1, trim = true)
private int orderNr;

@DataField(pos = 2, trim true)

private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField (pos = 4)
private String lastName;

DATA FORMAT APPENDIX

333

334

. This attribute of the annotation @DataField must be used in combination with
attribute isOrdered = true of the annotation @CsvRecord

case 7 : defaultValue
If a field is not defined then uses the value indicated by the defaultValue attribute

Listing 1. Default value

@CsvRecord (separator = ", ")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2)
private Integer clientNr;

@DataField(pos = 3, required true)
private String firstName;
@DataField(pos = 4, defaultValue = "Barin")

private String lastName;

4. FixedLengthRecord

The FixedLengthRecord annotation is used to identified the root class of the model. It
represents a record = a line of a file/message containing data fixed length formatted and can be
linked to several children model classes. This format is a bit particular beause data of a field can
be aligned to the right or to the left.

When the size of the data does not fill completely the length of the field, we can then add 'padd’
characters.

Annotation name Record type Level
FixedLengthRecord fixed Class
Parameter

type Info
name

DATA FORMAT APPENDIX

. This attribute is only applicable to optional fields.

crif

string

optional - possible values = WINDOWS,UNIX,MAC, or custom;
default value = WINDOWS - allow to define the carriage return
character to use. If you specify a value other than the three listed
before, the value you enter (custom) will be used as the CRLF
character(s)

paddingChar

char

mandatory - default value ="'

length

int

mandatory = size of the fixed length record

hasHeader

boolean

Camel 2.11 - optional - Indicates that the record(s) of this type
may be preceded by a single header record at the beginning of
the file / stream

hasFooter

boolean

Camel 2.11 - optional - Indicates that the record(s) of this type
may be followed by a single footer record at the end of the file /
stream

skipHeader

boolean

Camel 2.11 - optional - Configures the data format to skip
marshalling / unmarshalling of the header record. Configure this

parameter on the primary record (e.g., not the header or footer).

skipFooter

boolean

Camel 2.11 - optional - Configures the data format to skip
marshalling / unmarshalling of the footer record Configure this
parameter on the primary record (e.g., not the header or
footer)..

isHeader

boolean

Camel 2.11 - optional - Identifies this FixedLengthRecord as a
header record

isFooter

boolean

Camel 2.11 - optional - Identifies this FixedLengthRecords as a
footer record

E

E

This annotation is associated to the root class of the model and
must be declared one time.

case | : Simple fixed length record

This simple example shows how to design the model to parse/format a fixed message
[0A9PaulineMISINXD 1 2345678BUY Share2500.45USDO0 [-08-2009

Listing 1. Fixed-simple

@FixedLengthRecord (length=54, paddingChar=' ")
public static class Order {

DATA FORMAT APPENDIX

335

1, The hasHeader/hasFooter parameters are mutually exclusive with isHeader/
isFooter. A record may not be both a header/footer and a primary fixed-length
record.

@DataField(pos = 1,
private int orderNr;

length=2)

@DataField(pos = 3, length=2)

private String clientNr;

@DataField(pos = 5, length=7)

private String firstName;

@DataField(pos = 12, length=1, align="L")
private String lastName;

@DataField(pos = 13, length=4)

private String instrumentCode;
@DataField(pos = 17, length=10)

private String

instrumentNumber;

@DataField(pos = 27, length=3)

private String orderType;

@DataField(pos = 30, length=5)

private String instrumentType;

@DataField(pos = 35, precision = 2, length=7)

private BigDecimal amount;

@DataField(pos = 42, length=3)

private String currency;

@DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")

private Date orderDate;

case 2 : Fixed length record with alignment and padding

This more elaborated example show how to define the alignment for a field and how to
assign a padding character which is ' ' here"

I0A9 PaulineM ISINXD12345678BUY Share2500.45USDO01-08-2009
Listing 1. Fixed-padding-align

@FixedLengthRecord (length=60,
public static class Order {

paddingChar=" ")

336 DATA FORMAT APPENDIX

@DataField (pos

= 1, length=2)

private int orderNr;

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
K

private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

= 3, length=2)
clientNr;

= 5, length=9)
firstName;

= 14, length=5, align="L") align text to

lastName;

= 19, length=4)
instrumentCode;

= 23, length=10)
instrumentNumber;

= 33, length=3)
orderType;

= 36, length=5)
instrumentType;

he LEF

zone of

@DataField(pos = 41, precision = 2, length=7)

private BigDecimal amount;

@DataField(pos = 48, length=3)
private String currency;

@DataField(pos = 51,
private Date orderDate;

case 3 : Field padding

length=10, pattern = "dd-MM-yyyy")

Sometimes, the default padding defined for record cannnot be applied to the field as we have
a number format where we would like to padd with '0" instead of ' . In this case, you can use in

the model the attribute paddingField to set this value.

[0A9 PaulineM ISINXD 12345678BUY Share000002500.45USDO01-08-2009

Listing 1. Fixed-padding-field

@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;
@DataField(pos = 3, length = 2)

private String clientNr;

DATA FORMAT APPENDIX

337

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos

private BigDecimal amount;

@DataField (pos
private String

@DataField (pos

= 5, length = 9)

firstName;

= 14, length = 5, align = "L")

lastName;

= 19, length = 4)

instrumentCode;

= 23, length = 10)

instrumentNumber;

= 33, length = 3)

orderType;

= 36, length = 5)

instrumentType;

= 41, precision = 2, length = 12, paddingChar = '0'")
= 53, length = 3)

currency;

= 56, length = 10, pattern = "dd-MM-yyyy")

private Date orderDate;

case 4: Fixed length record with delimiter

Fixed-length records sometimes have delimited content within the record. The firstName
and lastName fields are delimited with the 'A' character in the following example:

10A9PaulineMAISINXD 12345678BUY Share000002500.45USDO0 1 -08-2009
Listing 1. Fixed-delimited

@FixedLengthRecord ()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;
@DataField(pos = 3, delimiter = """
private String firstName;
@DataField(pos = 4, delimiter = """
private String lastName;
@DataField(pos = 5, length = 4)

private String

338

instrumentCode;

DATA FORMAT APPENDIX

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision =
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10,

private Date orderDate;

paddingChar = '0"')

= "dd-MM-yyyy")

case 5 : Fixed length record with record-defined field length

Occasionally a fixed-length record may contain a field that define the expected length of
another field within the same record. In the following example the length of the
instrumentNumber field value is defined by the value of instrumentNumberLen field in the

record.

[0A9Pauline”MAISIN10XD 12345678BUY Share000002500.45USDO | -08-2009

Listing 1. Fixed-delimited

@FixedLengthRecord ()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, delimiter =

private String

@DataField (pos
private String

@DataField (pos
private String

@DataField (pos

firstName;

mam)

= 4, delimiter =
lastName;

= 5, length = 4)
instrumentCode;

= 6, length = 2, align = "R", paddingChar = '0')

private int instrumentNumberLen;

@DataField(pos = 7, lengthPos=6)
private String instrumentNumber;

DATA FORMAT APPENDIX

339

340

1. As of Camel 2.11 the 'pos’ value(s) in a fixed-length record may optionally be
defined using ordinal, sequential values instead of precise column numbers.

@DataField(pos = 8, length = 3)
private String orderType;

@DataField(pos = 9, length = 5)
private String instrumentType;

@DataField(pos = 10, precision = 2, length = 12, paddingChar = '0'")
private BigDecimal amount;

@DataField(pos = 11, length = 3)
private String currency;

@DataField(pos = 12, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 6 : Fixed length record with header and footer

Bindy will discover fixed-length header and footer records that are configured as part of the
model D provided that the annotated classes exist either in the same package as the primary
@FixedLengthRecord class, or within one of the configured scan packages. The following text
illustrates two fixed-length records that are bracketed by a header record and footer record.

101-08-2009
[0A9 PaulineM ISINXD 12345678BUYShare000002500.45USDO0 [-08-2009
[0A9 RichN ISINXD 12345678BUY Share000002700.45USDO [-08-2009
9000000002

Listing 1. Fixed-header-and-footer-main-class

@FixedLengthRecord (hasHeader = true, hasFooter = true)
public class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length =
private String clientNr;

[
N

@DataField(pos = 3, length = 9)
private String firstName;

@DataField(pos = 4, length = 5, align = "L")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

DATA FORMAT APPENDIX

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision = 2, length = 12, paddingChar = '0'")
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

@FixedLengthRecord (isHeader = true)

public class OrderHeader {
@DataField(pos = 1, length = 1)
private int recordType = 1;

@DataField(pos = 2, length = 10, pattern = "dd-MM-yyyy")
private Date recordDate;

@FixedLengthRecord (isFooter = true)
public class OrderFooter ({

@DataField(pos = 1, length = 1)
private int recordType = 9;

@DataField(pos = 2, length = 9, align = "R", paddingChar = '0'")
private int numberOfRecordsInTheFile;

5. Message

The Message annotation is used to identified the class of your model who will contain key value
pairs fields. This kind of format is used mainly in Financial Exchange Protocol Messages (FIX).
Nevertheless, this annotation can be used for any other format where data are identified by

DATA FORMAT APPENDIX 34l

342

keys. The key pair values are separated each other by a separator which can be a special
character like a tab delimitor (unicode representation : \u0009) or a start of heading (unicode
representation : \u0001)

Annotation name Record type Level

Message key value pair Class
Parameter
type Info
name
pairSeparator string mandatory - can be '=' or '}’ or 'anything'

keyValuePairSeparair string mandatory - can be \u0001', \u0009', '#' or 'anything'

optional - possible values = WINDOWS,UNIX,MAC, or
custom; default value = WINDOWS - allow to define the

crif string carriage return character to use. If you specify a value
other than the three listed before, the value you enter
(custom) will be used as the CRLF character(s)

type string optional - define the type of message (e.g. FIX, EMX; ..))

version string optional - version of the message (e.g. 4.1)

optional - default value = false - allow to change the order

isOrdered boolean of the fields when FIX message is generated

E E This annotation is associated to the message class of the
model and must be declared one time.

case | : separator = "'u0001’

The separator used to segregate the key value pair fields in a FIX message is the ASCII '0I"
character or in unicode format \u0001|". This character must be escaped a second time to avoid
a java runtime error. Here is an example :

8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR 1=BE.CHM.00| 11=CHMO0001-01 22=4

and how to use the annotation
Listing 1. FIX - message
@Message (keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",

version="4.1"
public class Order {

}

DATA FORMAT APPENDIX

. "FIX information"
More information about FIX can be found on this web site :
http://lwww.fixprotocol.org/. To work with FIX messages, the model must contain a
Header and Trailer classes linked to the root message class which could be a Order
class. This is not mandatory but will be very helpful when you will use camel-bindy
in combination with camel-fix which is a Fix gateway based on quickFix project
http://www.quickfixj.org/.

1, Look at test cases
The ASCII character like tab, ... cannot be displayed in WIKI page. So, have a look to
the test case of camel-bindy to see exactly how the FIX message looks like (src\test\
data\fix\fix.txt) and the Order, Trailer, Header classes (src\test\java\org\apache\
camel\dataformat\bindy\model\fix\simple\Order-.java)

6. KeyValuePairField

The KeyValuePairField annotation defines the property of a key value pair field. Each
KeyValuePairField is identified by a tag (= key) and its value associated, a type (string, int, date,
...), optionaly a pattern and if the field is required

Annotation name Record type Level

KeyValuePairField Key Value Pair - FIX Property

Parameter name type Info

mandatory - digit number identifying the field in the

tag int .
message - must be unique
. optional - default value ="" - will be used to format
pattern string .
Decimal, Date, ...
optional - digit number - represents the precision to
precision int be used when the Decimal number will be formatted/
parsed
. . optional - must be used when the position of the key/
position int) .
tag in the FIX message must be different
required boolean optional - default value = "false"

Camel 2.1 I: optional - default value = "false" -
impliedDecimalSeparator boolean Indicates if there is a decimal point implied at a
specified location

DATA FORMAT APPENDIX

343

http://www.fixprotocol.org/
http://www.quickfixj.org/

case | : tag

This parameter represents the key of the field in the message
Listing 1. FIX message - Tag

@Message (keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1")
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1) // Client
private String Account;

@KeyValuePairField(tag = 11)
private String ClOrdId;

@KeyValuePairField(tag = 22) // Fund ID type
private String IDSource;

@KeyValuePairField(tag = 48) // Fund
private String SecurityId;

@KeyValuePairField(tag = 54) // (1 = 1y, 2 = sell)
private String Side;
@KeyValuePairField(tag = 58) // Free text

private String Text;

case 2 : Different position in output

If the tags/keys that we will put in the FIX message must be sorted according to a predefine
order, then use the attribute 'position’ of the annotation @KeyValuePairField

Listing 1. FIX message - Tag - sort
@Message (keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version

= "4.1", isOrdered = true)
public class Order ({

@Link Header header;
@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) // Client refere
private String account;

@KeyValuePairField(tag = 11, position = 3) // Order reference
private String clOrdId;

DATA FORMAT APPENDIX

7. Section

In FIX message of fixed length records, it is common to have different sections in the
representation of the information : header, body and section. The purpose of the annotation
@Section is to inform bindy about which class of the model represents the header (= section
), body (= section 2) and footer (= section 3)

Only one attribute/parameter exists for this annotation.

Annotation name Record type Level

Section FIX Class

Parameter name type Info

number int digit number identifying the section position

case | : Section

A. Definition of the header section
Listing 1. FIX message - Section - Header

@Section (number = 1)
public class Header ({

@KeyValuePairField(tag = 8, position = 1) Message Header
private String beginString;

@KeyValuePairField(tag = 9, position =
private int bodyLength;

I
N

B. Definition of the body section
Listing 1. FIX message - Section - Body

@Section (number = 2)

@Message (keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version
= "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) Client reference
private String account;

DATA FORMAT APPENDIX

345

346

@KeyValuePairField(tag = 11, position = 3) Order reference
private String clOrdId;

C. Definition of the footer section
Listing 1. FIX message - Section - Footer

@Section (number = 3)
public class Trailer {

@KeyValuePairField(tag = 10, position = 1)
CheckSum

private int checkSum;

public int getCheckSum() {
return checkSum;

}

8. OneToMany

The purpose of the annotation @OneToMany is to allow to work with a List<?> field defined a
POJO class or from a record containing repetitive groups.
The relation OneToMany ONLY WORKS in the following cases :

= Reading a FIX message containing repetitive groups (= group of tags/keys)

= Generating a CSV with repetitive data

Annotation name Record type Level

OneToMany all property

Parameter

name type Info

optional - string - class name associated to the type of the

mappedTo S8 |ist<Type of the Class>

case | : Generating CSV with repetitive data
Here is the CSV output that we want :

Claus,lbsen,Camel in Action 1,2010,35
Claus,lbsen,Camel in Action 2,2012,35
Claus,lbsen,Camel in Action 3,2013,35
Claus,lbsen,Camel in Action 4,2014,35

Remark : the repetitive data concern the title of the book and its publication date while first,
last name and age are common

and the classes used to modeling this. The Author class contains a List of Book.

Listing 1. Generate CSV with repetitive data

DATA FORMAT APPENDIX

. Restrictions OneToMany
Be careful, the one to many of bindy does not allow to handle repetitions defined
on several levels of the hierarchy

@CsvRecord (separator=",")
public class Author ({

@DataField(pos = 1)
private String firstName;

@DataField(pos = 2)
private String lastName;

@OneToMany
private List<Book> books;

@DataField(pos = 5)
private String Age;

public class Book {

@DataField (pos = 3)
private String title;

@DataField(pos = 4)
private String year;

Very simple isn't it !!!
case 2 : Reading FIX message containing group of tags/keys
Here is the message that we would like to process in our model :

"8=FIX 4.19=2034=135=049=INVMGR56=BRKR"

"1=BE.CHM.001I | I=CHMO0001-0158=this is a camel - bindy test"
"22=448=BE000124567854=1"
"22=548=BE000987654354=2"
"22=648=BE000999999954=3"
"10=220"

tags 22, 48 and 54 are repeated

and the code
Listing 1. Reading FIX message containing group of tags/keys

public class Order {

@Link Header header;

DATA FORMAT APPENDIX 347

@Link Trailer trailer;

@KeyValuePairField(tag =
private String account;

I
-
=s
-

+
i

@KeyValuePairField(tag = 11) ref
private String clOrdId;
@KeyValuePairField(tag = 58) // Free text

private String text;

@OneToMany (mappedTo =
"org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")

List<Security> securities;

public class Security {

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String idSource;

@KeyValuePairField(tag = 48) // Fund code
private String securityCode;

@KeyValuePairField(tag = 54)
private String side;

Using the Java DSL

The next step consists in instantiating the DataFormat bindy class associated with this record
type and providing Java package name(s) as parameter.

For example the following uses the class BindyCsvDataFormat (who correspond to the
class associated with the CSV record type) which is configured with "com.acme.model"
package name to initialize the model objects configured in this package.

DataFormat bindy = new BindyCsvDataFormat ("com.acme.model") ;

Unmarshaling

from("file://inbox")
.unmarshal (bindy)
.to("direct:handleOrders") ;

348 DATA FORMAT APPENDIX

Alternatively, you can use a named reference to a data format which can then be defined in
your Registry e.g. your Spring XML file:

from("file://inbox")
.unmarshal ("myBindyDataFormat")
.to("direct:handleOrders") ;

The Camel route will pick-up files in the inbox directory, unmarshall CSV records into a
collection of model objects and send the collection
to the route referenced by 'handleOrders'".

The collection returned is a List of Map objects. Each Map within the list contains the
model objects that were marshalled out of each line of the CSV. The reason behind this is that
each line can correspond to more than one object. This can be confusing when you simply expect
one object to be returned per line.

Each object can be retrieve using its class name.

List<Map<String, Object>> unmarshaledModels = (List<Map<String, Object>>)
exchange.getIn() .getBody () ;

int modelCount = 0;
for (Map<String, Object> model : unmarshaledModels) {

for (String className : model.keySet()) {
Object obj = model.get (className) ;
LOG.info ("Count : " + modelCount + ", " + obj.toString());
}
modelCount++;
}
LOG.info ("Total CSV records received by the csv bean : " + modelCount) ;

Assuming that you want to extract a single Order object from this map for processing in a
route, you could use a combination of a Splitter and a Processor as per the following:

from("file: inbox")
.unmarshal (bindy)
.split (body())
.process (new Processor () {
public void process (Exchange exchange) throws Exception ({

Message in = exchange.getIn();
Map<String, Object> modelMap = (Map<String, Object>) in.getBody () ;
in.setBody (modelMap.get (Order.class.getCanonicalName()));

3]

.to("direct:handleSingleOrder")
.end () ;

DATA FORMAT APPENDIX

349

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/splitter.html
http://camel.apache.org/processor.html

Marshaling

To generate CSV records from a collection of model objects, you create the following route :

from("direct:handleOrders")
.marshal (bindy)
.to("file://outbox")

Unit test
Here is two examples showing how to marshall or unmarshall a CSV file with Camel
Listing 1. Marshall

package org.apache.camel.dataformat.bindy.csv;

import java.math.BigDecimal;

import java.util.ArrayList;

import java.util.Calendar;

import java.util.GregorianCalendar;
import java.util.HashMap;

import java.util.List;

import java.util.Map;

import org.apache.camel.EndpointInject;

import org.apache.camel.Produce;

import org.apache.camel.ProducerTemplate;

import org.apache.camel.builder.RouteBuilder;

import org.apache.camel.component.mock.MockEndpoint;

import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Client;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Order;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;

import org.junit.Test;

import org.springframework.config.java.annotation.Bean;

import org.springframework.config.java.annotation.Configuration;

import org.springframework.config.java.test.JavaConfigContextLoader;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.AbstractdJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvMarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class BindyComplexCsvMarshallTest extends AbstractJUnit4SpringContextTests {

private List<Map<String, Object>> models = new ArrayList<Map<String, Object>>();
private String result = "10,Al,Julia,Roberts,BE123456789,Belgium Ventage 10/
12,150,USD,14-01-2009";

@Produce (uri = "direct:start")
private ProducerTemplate template;

Q@EndpointInject (uri = "mock:result")

350 DATA FORMAT APPENDIX

private MockEndpoint resultEndpoint;

@QTest
public void testMarshallMessage () throws Exception {
resultEndpoint.expectedBodiesReceived (result);

template.sendBody (generateModel ()) ;

resultEndpoint.assertIsSatisfied();

private List<Map<String, Object>> generateModel () {
Map<String, Object> model = new HashMap<String, Object>();

Order order = new Order();

order.setOrderNr (10) ;

order.setAmount (new BigDecimal ("150")) ;
order.setIsinCode ("BE123456789") ;
order.setInstrumentName ("Belgium Ventage 10/12");
order.setCurrency ("USD") ;

Calendar calendar = new GregorianCalendar();
calendar.set (2009, 0, 14);
order.setOrderDate (calendar.getTime ()) ;

Client client = new Client();
client.setClientNr ("A1l");

client.setFirstName ("Julia");
client.setLastName ("Roberts");

order.setClient (client);

model.put (order.getClass () .getName (), order);
model.put (client.getClass () .getName (), client);

models.add (0, model);

return models;

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration ({
BindyCsvDataFormat camelDataFormat = new
BindyCsvDataFormat ("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink") ;

QOverride
@Bean
public RouteBuilder route() {
return new RouteBuilder () {
@Override
public void configure() {
from("direct:start") .marshal (camelDataFormat) .to ("mock:result");

DATA FORMAT APPENDIX 351

Listing 1. Unmarshall

package org.apache.camel.dataformat.bindy.csv;

import org.apache.camel.EndpointInject;

import org.apache.camel.builder.RouteBuilder;

import org.apache.camel.component.mock.MockEndpoint;

import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;

import org.junit.Test;

import org.springframework.config.java.annotation.Bean;

import org.springframework.config.java.annotation.Configuration;

import org.springframework.config.java.test.JavaConfigContextLoader;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvUnmarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class BindyComplexCsvUnmarshallTest extends AbstractJUnit4SpringContextTests {

@EndpointInject (uri = "mock:result")
private MockEndpoint resultEndpoint;

@QTest

public void testUnMarshallMessage () throws Exception ({
resultEndpoint.expectedMessageCount (1) ;
resultEndpoint.assertIsSatisfied();

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration ({
BindyCsvDataFormat csvBindyDataFormat = new
BindyCsvDataFormat ("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink") ;

@Override
@Bean
public RouteBuilder route() {
return new RouteBuilder() {
QOverride
public void configure() {
from("file://src/test/
data?noop=true") .unmarshal (csvBindyDataFormat) .to ("mock:result") ;
}
}i
}

352 DATA FORMAT APPENDIX

In this example, BindyCsvDataFormat class has been instantiated in a traditional way but it is
also possible to provide information directly to the function (un)marshal like this where
BindyType corresponds to the Bindy DataFormat class to instantiate and the parameter
contains the list of package names.

public static class ContextConfig extends SingleRouteCamelConfiguration ({
QOverride
@Bean
public RouteBuilder route() {
return new RouteBuilder () {
QOverride
public void configure() {
from("direct:start")
.marshal () .bindy (BindyType.Csv,
"org.apache.camel.dataformat.bindy.model.simple.oneclass")
.to("mock:result");

Using Spring XML

This is really easy to use Spring as your favorite DSL language to declare the routes to be used
for camel-bindy. The following example shows two routes where the first will pick-up records
from files, unmarshal the content and bind it to their model. The result is then send to a pojo
(doing nothing special) and place them into a queue.

The second route will extract the pojos from the queue and marshal the content to
generate a file containing the csv record

Listing 1. spring dsl

<?xml version="1.0" encoding="UTF-8"?2>

<beans xmlns="http://v vork.

xmlns:xsi="http://w rg/2001/3
xsi:schemalocation="

http:/
http:/ 5P
http://came
http://c

<bean id="bindyDataformat"
class="org.apache.camel.dataformat.bindy.csv.BindyCsvDataFormat">
<constructor-arg value="org.apache.camel.bindy.model" />
</bean>

<bean id="csv" class="org.apache.camel.bindy.csv.HandleOrderBean" />

DATA FORMAT APPENDIX

353

354

<!-- Queuing engine - ActiveMg - work locally in mode virtual memory -->
<bean id="activemg"
class="org.apache.activemqg.camel.component.ActiveMQComponent">
<property name="brokerURL" value="vm: localhost:61616"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<jmxAgent id="agent" disabled="false" />

<route>
<from uri="file: src/data/csv/?noop=true" />
<unmarshal ref="bindyDataformat" />
<to uri="bean:csv" />
<to uri="activemqg:queue:in" />
</route>

<route>
<from uri="activemqg:queue:in" />
<marshal ref="bindyDataformat" />
<to uri="file://src/data/csv/out/" />
</route>
</camelContext>
</beans>

Dependencies

To use Bindy in your camel routes you need to add the a dependency on camel-bindy which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-bindy</artifactId>
<version>x.x.x</version>
</dependency>

XMLSECURITY DATA FORMAT

The XMLSecurity Data Format facilitates encryption and decryption of XML payloads at the
Document, Element, and Element Content levels (including simultaneous multi-node encryption/
decryption using XPath).

The encryption capability is based on formats supported using the Apache XML Security
(Santaurio) project. Symmetric encryption/decryption is currently supported using Triple-DES
and AES (128, 192, and 256) encryption formats. Additional formats can be easily added later as

DATA FORMAT APPENDIX

http://camel.apache.org/download.html

1, Be careful
Please verify that your model classes implements serializable otherwise the queue
manager will raise an error

needed. This capability allows Camel users to encrypt/decrypt payloads while being dispatched
or received along a route.

Available as of Camel 2.9
The XMLSecurity Data Format supports asymmetric key encryption. In this encryption model a
symmetric key is generated and used to perform XML content encryption or decryption. This
"content encryption key" is then itself encrypted using an asymmetric encryption algorithm that
leverages the recipient's public key as the "key encryption key". Use of an asymmetric key
encryption algorithm ensures that only the holder of the recipient's private key can access the
generated symmetric encryption key. Thus, only the private key holder can decode the
message. The XMLSecurity Data Format handles all of the logic required to encrypt and decrypt
the message content and encryption key(s) using asymmetric key encryption.

The XMLSecurity Data Format also has improved support for namespaces when processing
the XPath queries that select content for encryption. A namespace definition mapping can be
included as part of the data format configuration. This enables true namespace matching, even if
the prefix values in the XPath query and the target xml document are not equivalent strings.

Basic Options

Option Default Description

The XPath reference to the XML Element
selected for encryption/decryption. If no tag is
specified, the entire payload is encrypted/
decrypted.

secureTag null

A boolean value to specify whether the XML
Element is to be encrypted or the contents of
secureTagContents false the XML Element
* false = Element Level
* true = Element Content Level

DATA FORMAT APPENDIX

355

356

A String used as passPhrase to encrypt/decrypt
content. The passPhrase has to be provided. If
no passPhrase is specified, a default passPhrase
is used. The passPhrase needs to be put
together in conjunction with the appropriate
encryption algorithm. For example using
TRIPLEDES the passPhase can bea "Only
another 24 Byte key"

passPhrase null

The cipher algorithm to be used for
encryption/decryption of the XML message
content. The available choices are:
xmlCipherAlgorithm TRIPLEDES * XMLCipher.TRIPLEDES
* XMLCipher.AES 128
* XMLCipher.AES 192
* XMLCipher.AES 256

A map of namespace values indexed by prefix.
namespaces null The index values must match the prefixes used
in the secureTag XPath query.

Asymmetric Encryption Options

These options can be applied in addition to relevant the Basic options to use asymmetric key
encryption.

Option Default Description

The key alias to be used when retrieving
the recipient's public or private key from
a KeyStore when performing asymmetric
key encryption or decryption.

recipientKeyAlias null

The cipher algorithm to be used for
encryption/decryption of the asymmetric
keyCipherAlgorithm null key. The available choices are:
* XMLCipher.RSA vldot5
* XMLCipher.RSA OAEP

Configuration options for creating and
loading a KeyStore instance that
represents the sender's trustStore or
recipient's keyStore.

keyOrTrustStoreParameters null

DATA FORMAT APPENDIX

Camel 2.10.2 / 2.1 1: The password
to be used for retrieving the private key
from the KeyStore. This key is used for
asymmetric decryption.

keyPassword null

Marshal

In order to encrypt the payload, the marshal processor needs to be applied on the route
followed by the secureXML () tag.

Unmarshal

In order to decrypt the payload, the unmarshal processor needs to be applied on the route
followed by the secureXML () tag.

Examples

Given below are several examples of how marshalling could be performed at the Document,
Element, and Content levels.

Full Payload encryption/decryption

from("direct:start")
.marshal () .secureXML ()
.unmarshal () .secureXML ()
.to("direct:end");

Partial Payload Content Only encryption/decryption

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;

from("direct:start")
.marshal () .secureXML (tagXPATH, secureTagContent)
.unmarshal () .secureXML (tagXPATH, secureTagContent)
.to("direct:end");

DATA FORMAT APPENDIX 357

358

Partial Multi Node Payload Content Only encryption/
decryption

String tagXPATH = " cesesites/*/cheese"

boolean secureTagContent = true;

from("direct:start")
.marshal () .secureXML (tagXPATH, secureTagContent)
.unmarshal () .secureXML (tagXPATH, secureTagContent)
.to("direct:end");

Partial Payload Content Only encryption/decryption with
choice of passPhrase(password)

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
String passPhrase = "Just another 24 Byte key";

from("direct:start")
.marshal () .secureXML (tagXPATH, secureTagContent, passPhrase)
.unmarshal () .secureXML (tagXPATH, secureTagContent, passPhrase)
.to("direct:end");

Partial Payload Content Only encryption/decryption with
passPhrase(password) and Algorithm

import org.apache.xml.security.encryption.XMLCipher;

String tagXPATH = "//chee sesites/italy/cheese"

boolean secureTagContent = true;

String passPhrase = "Just another 24 Byte key";

String algorithm= XMLCipher.TRIPLEDES;

from("direct:start")
.marshal () .secureXML (tagXPATH, secureTagContent, passPhrase, algorithm)
.unmarshal () .secureXML (tagXPATH, secureTagContent, passPhrase, algorithm)
.to("direct:end");

DATA FORMAT APPENDIX

Partial Paryload Content with Namespace support

Java DSL

final Map<String, String> namespaces = new HashMap<String, String>();
namespaces.put ("cust", "http://c

.xmlsecurity.camel.ar

org/");

final KeyStoreParameters tsParameters = new KeyStoreParameters();
tsParameters.setPassword ("password") ;
tsParameters.setResource ("sender.ts");

context.addRoutes (new RouteBuilder () {
public void configure() {
from("direct:start")

.marshal () .secureXML ("//cust:cheesesites/italy", namespaces, true,

"recipient",
testCypherAlgorithm, XMLCipher.RSA vldot5,

tsParameters)

.to("mock:encrypted") ;

}
}
Spring XML

A namespace prefix that is defined as part of the camelContext definition can be re-used in
context within the data format secureTag attribute of the secureXMIL element.

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">
<route>
<from uri="direct://start"/>
<marshal>
<secureXML secureTag="//cheese:cheesesites/italy"
secureTagContents="true"/>
</marshal>

Asymmetric Key Encryption

Spring XML Sender

<!-- trust store configuration -->

<camel:keyStoreParameters id="trustStoreParams" resource="./sender.ts"

DATA FORMAT APPENDIX

359

password="password"/>

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">
<route>
<from uri="direct://start"/>
<marshal>
<secureXML secureTag="//cheese:cheesesites/italy"

secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.0rg/2001/04/

xmlenc#aesl28-cbc"
keyCipherAlgorithm="http://www.w3.0rg/2001/04/

xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="trustStoreParams"/>

</marshal>

Spring XML Recipient

guration -->

Hh

<!-- key store con
<camel:keyStoreParameters id="keyStoreParams" resource="./recipient.ks"

password="password" />

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">
<route>
<from uri="direct://encrypted"/>
<unmarshal>
<secureXML secureTag="//cheese:cheesesites/italy"
secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.0rg/2001/04/
xmlenc#aesl28-cbc"
keyCipherAlgorithm="http://www.w3.0rg/2001/04/
xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="keyStoreParams"
keyPassword="privateKeyPassword" />

</unmarshal>

Dependencies

This data format is provided within the camel-xmlsecurity component.

The GZip Data Format is a message compression and de-compression format. It uses the
same deflate algorithm that is used in Zip DataFormat, although some additional headers are

360 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/zip-dataformat.html

provided. This format is produced by popular gzip/gunzip tool. Messages marshalled using
GZip compression can be unmarshalled using GZip decompression just prior to being
consumed at the endpoint. The compression capability is quite useful when you deal with large
XML and Text based payloads or when you read messages previously comressed using gzip
tool.

Options

There are no options provided for this data format.

Marshal
In this example we marshal a regular text/XML payload to a compressed payload employing gzip

compression format and send it an ActiveMQ queue called MY_QUEUE.

from("direct:start") .marshal() .gzip() .to("activemqg:queue:MY QUEUE") ;

Unmarshal

In this example we unmarshalEa gzippedEpayload from an ActiveMQ queue called
MY_QUEUEEto its original format,Eand forward it forEprocessingEto the
UnGZippedMessageProcessor.

from("activemq:queue:MY QUEUE") .unmarshal().gzip () .process (new
UnGZippedMessageProcessor ());

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

CASTOR

Available as of Camel 2.1

Castor is a Data Format which uses the Castor XML library to unmarshal an XML payload
into Java objects or to marshal Java objects into an XML payload.

As usually you can use either Java DSL or Spring XML to work with Castor Data Format.

DATA FORMAT APPENDIX

361

http://camel.apache.org/data-format.html
http://www.castor.org/

362

Using the Java DSL

from("direct:order").
marshal () .castor() .
to("activemg:queue:order");

For example the following uses a named DataFormat of Castor which uses default Castor data
binding features.

CastorDataFormat castor = new CastorDataFormat ();

from("activemg:My.Queue") .
unmarshal (castor) .
to("mgseries:Another.Queue") ;

If you prefer to use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemg:My.Queue") .
unmarshal ("mycastorType") .
to("mgseries:Another.Queue") ;

If you want to override default mapping schema by providing a mapping file you can set it as
follows.

CastorDataFormat castor = new CastorDataFormat ();
castor.setMappingFile ("mapping.xml") ;

Also if you want to have more control on Castor Marshaller and Unmarshaller you can access
them as below.

castor.getMarshaller();
castor.getUnmarshaller () ;

Using Spring XML

The following example shows how to use Castor to unmarshal using Spring configuring the
castor data type

<camelContext id="camel" xmlns="http://camel.
<route>
<from uri="direct:start"/>
<unmarshal>
<castor validation="true" />
</unmarshal>

DATA FORMAT APPENDIX

<to uri="mock:result"/>
</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.
You have to set the <castor> element directly in <camelContext>.

<camelContext>
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<castor id="myCastor"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myCastor"/>
<to uri="direct:marshalled"/>
</route>
<route>
<from uri="direct:marshalled"/>
<unmarshal ref="myCastor"/>
<to uri="mock:result"/>
</route>

</camelContext>

Options

Castor supports the following options

Option Type Default Description

encoding String UTF-8 Encoding to use when marshalling an Object to XML

validation Boolean false Whether validation is turned on or off.

mappingFile String null Path to a Castor mapping file to load from the

classpath.
packages String[] null Add additional packages to Castor XmlContext
classNames String[] null Add additional class names to Castor XmlContext

Dependencies

To use Castor in your camel routes you need to add the a dependency on camel-castor
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

DATA FORMAT APPENDIX

363

http://camel.apache.org/download.html

364

"Protocol Buffers - Google's data interchange format"
Camel provides a Data Format to serialse between Java and the Protocol Buffer protocol. The
project's site details why you may wish to choose this format over xml. Protocol Buffer is
language-neutral and platform-neutral, so messages produced by your Camel routes may be
consumed by other language implementations.

API Site
Protobuf Implementation
Protobuf Java Tutorial

PROTOBUF OVERVIEW

This quick overview of how to use Protobuf. For more detail see the complete tutorial

Defining the proto format

The first step is to define the format for the body of your exchange. This is defined in a .proto
file as so:

Listing 1. addressbook.proto

package org.apache.camel.component.protobuf;

option java_package = "org.apache.camel.component.protobuf";
option java outer classname = "AddressBookProtos";

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/
http://code.google.com/p/protobuf/
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html

) Available from Camel 2.2

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

repeated PhoneNumber phone = 4;

message AddressBook {
repeated Person person = 1;

Generating Java classes

The Protobuf SDK provides a compiler which will generate the Java classes for the format we
defined in our .proto file. You can run the compiler for any additional supported languages you
require.

protoc --java out=. ./addressbook.proto

This will generate a single Java class named AddressBookProtos which contains inner classes
for Person and AddressBook. Builders are also implemented for you. The generated classes
implement com.google.protobuf.Message which is required by the serialisation mechanism. For
this reason it important that only these classes are used in the body of your exchanges. Camel
will throw an exception on route creation if you attempt to tell the Data Format to use a class
that does not implement com.google.protobuf.Message. Use the generated builders to translate
the data from any of your existing domain classes.

JAVA DSL

You can use create the ProtobufDataFormat instance and pass it to Camel DataFormat marshal
and unmarsha APl like this.

ProtobufDataFormat format = new ProtobufDataFormat (Person.getDefaultInstance());

from("direct:in") .marshal (format) ;
from("direct:back") .unmarshal (format) .to ("mock:reverse");

PROTOBUF - PROTOCOL BUFFERS

365

http://camel.apache.org/data-format.html

366

Or use the DSL protobuf() passing the unmarshal default instance or default instance class name
like this.

You don

specify the default instance for protobuf
marshaling
from("direct:marshal") .marshal () .protobuf () ;
from("direct:unmarshalA") .unmarshal () .
protobuf ("org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person") .

to ("mock:reverse");

from("direct:unmarshalB") .unmarshal () .protobuf (Person.getDefaultInstance()) .to("mock:reverse");

SPRING DSL

The following example shows how to use Castor to unmarshal using Spring configuring the
protobuf data type

<camelContext id="camel" xmlns="http://camel.apache.o

<route>
<from uri="direct:start"/>
<unmarshal>
<protobuf
instanceClass="org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person"
/>
</unmarshal>
<to uri="mock:result"/>
</route>
</camelContext>

Dependencies

To use Protobuf in your camel routes you need to add the a dependency on camel-
protobuf which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-protobuf</artifactId>
<version>2.2.0</version>

</dependency>

PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/download.html

SOAP DATAFORMAT

Available as of Camel 2.3

SOAP is a Data Format which uses JAXB2 and JAX-WS annotations to marshal and
unmarshal SOAP payloads. It provides the basic features of Apache CXF without need for the
CXF Stack.

ElementNameStrategy

An element name strategy is used for two purposes. The first is to find a xml element name for
a given object and soap action when marshaling the object into a SOAP message. The second is
to find an Exception class for a given soap fault name.

Strategy Usage

Uses a fixed gName that is configured on instantiation. Exception

N
QNameStrategy lookup is not supported

Uses the name and namespace from the @XMLType annotation
TypeNameStrategy of the given type. If no namespace is set then package-info is used.
Exception lookup is not supported

Uses information from a webservice interface to determine the

icelnterf;
ServicelnterfaceStrategy type name and to find the exception class for a SOAP fault

If you have generated the web service stub code with cxf-codegen or a similar tool then you
probably will want to use the ServicelnterfaceStrategy. In the case you have no annotated
service interface you should use QNameStrategy or TypeNameStrategy.

Using the Java DSL

The following example uses a named DataFormat of soap which is configured with the package
com.example.customerservice to initialize the JAXBContext. The second parameter is the
ElementNameStrategy. The route is able to marshal normal objects as well as exceptions. (Note
the below just sends a SOAP Envelope to a queue. A web service provider would actually need
to be listening to the queue for a SOAP call to actually occur, in which case it would be a one
way SOAP request. If you need request reply then you should look at the next example.)

SoapJaxbDataFormat soap = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:start")

.marshal (soap)

.to("jms:myQueue") ;

PROTOBUF - PROTOCOL BUFFERS

367

http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

368

) Supported SOAP versions
SOAP |.1 is supported by default. SOAP 1.2 is supported from Camel 2.1 |
onwards.

&2 Namespace prefix mapping
See JAXB for details how you can control namespace prefix mappings when
marshalling using SOAP data format.

i Seealso
As the SOAP dataformat inherits from the JAXB dataformat most settings apply
here as well

Using SOAP 1.2

Available as of Camel 2.11

SoapJaxbDataFormat soap = new SoapJaxbDataFormat ("com.example.customerservice", new
ServicelnterfaceStrategy (CustomerService.class));
soap.setVersion("1.2");
from("direct:start")
.marshal (soap)
.to ("jms:myQueue") ;

When using XML DSL there is a version attribute you can set on the <soap> element.

{!-- Defining a Servicelr
marshalling -->
<bean id="myNameStrategy"
class="org.apache.camel.dataformat.soap.name.ServiceInterfaceStrategy">
<constructor-arg value="com.example.customerservice.CustomerService"/>
<constructor-arg value="true"/>
</bean>

And in the Camel route

<route>
<from uri="direct:start"/>
<marshal>
<soap contentPath="com.example.customerservice" version="1.2"

PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/jaxb.html

elementNameStrategyRef="myNameStrategy"/>
</marshal>
<to uri="jms:myQueue"/>

</route>

Multi-part Messages

Available as of Camel 2.8.1

Multi-part SOAP messages are supported by the ServicelnterfaceStrategy. The
ServicelnterfaceStrategy must be initialized with a service interface definition that is annotated
in accordance with JAX-WS 2.2 and meets the requirements of the Document Bare style. The
target method must meet the following criteria, as per the JAX-WS specification: 1) it must
have at most one in or in/out non-header parameter, 2) if it has a return type other than
void it must have no in/out or out non-header parameters, 3) if it it has a return type of
void it must have at most one in/out or out non-header parameter.

The ServicelnterfaceStrategy should be initialized with a boolean parameter that indicates
whether the mapping strategy applies to the request parameters or response parameters.

ServiceInterfaceStrategy strat = new
ServiceInterfaceStrategy(com.example.customerservice.multipart.MultiPartCustomerService.class,
true);

SoapJaxbDataFormat soapDataFormat = new

SoapJaxbDataFormat ("com.example.customerservice.multipart", strat):;

Multi-part Request

The payload parameters for a multi-part request are initiazlied using a BeanInvocation
object that reflects the signature of the target operation. The camel-soap DataFormat maps the
content in the BeanInvocation to fields in the SOAP header and body in accordance with
the JAX-WS mapping when the marshal () processor is invoked.

BeanInvocation beanInvocation = new BeanInvocation();

Identify he arge method
beanInvocation.setMethod (MultiPartCustomerService.class.getMethod ("getCustomersByName",
GetCustomersByName.class, com.example.customerservice.multipart.Product.class));

opulate the method a:

GetCustomersByName getCustomersByName = new GetCustomersByName () ;
getCustomersByName.setName ("Dr. Multipart");

jumentcs

Product product = new Product () ;
product.setName ("Multiuse Product");

PROTOBUF - PROTOCOL BUFFERS 369

370

product.setDescription ("Useful for lots of things.");
Object[] args = new Object[] {getCustomersByName, product};

dd the arguments to the bean invocation

beanInvocation.setArgs (args) ;

Se he bean invocation objec as he message body

exchange.getIn () .setBody (beanInvocation) ;

Multi-part Response

A multi-part soap response may include an element in the soap body and will have one or more
elements in the soap header. The camel-soap DataFormat will unmarshall the element in the
soap body (if it exists) and place it onto the body of the out message in the exchange. Header
elements will not be marshaled into their JAXB mapped object types. Instead, these elements
are placed into the camel out message header
org.apache.camel.dataformat.soap.UNMARSHALLED HEADER LIST. The
elements will appear either as element instance values, or as JAXBElement values, depending
upon the setting for the ignoreJAXBElement property. This property is inherited from
camel-jaxb.

You can also have the camel-soap DataFormate ignore header content all-together by
setting the ignoreUnmarshalledHeaders value to true.

Holder Object mapping

JAX-WS specifies the use of a type-parameterized javax.xml.ws.Holder object for In/
Out and Out parameters. A Holder object may be used when building the
BeanInvocation, or you may use an instance of the parameterized-type directly. The
camel-soap DataFormat marshals Holder values in accordance with the JAXB mapping for the
class of the Holder's value. No mapping is provided for Holder objects in an unmarshalled
response.

Examples

Webservice client

The following route supports marshalling the request and unmarshalling a response or fault.

PROTOBUF - PROTOCOL BUFFERS

String WS_URI = "cxf:/

customerservic

serviceClass=cc e.customerservic

JataFormat=MESSAGE";
SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy (CustomerService.class));
from("direct:customerServiceClient")
.onException (Exception.class)
.handled (true)
.unmarshal (soapDF)
.end ()
.marshal (soapDF)
.to (WS_URI)
.unmarshal (soapDF) ;

The below snippet creates a proxy for the service interface and makes a SOAP call to the
above route.

import org.apache.camel.Endpoint;
import org.apache.camel.component.bean.ProxyHelper;

Endpoint startEndpoint = context.getEndpoint ("direct:customerServiceClient");
ClassLoader classLoader = Thread.currentThread() .getContextClassLoader () ;

v is the service endpoint interface, *not* the
javax.xml.ws.Serv g lass

CustomerService proxy = ProxyHelper.createProxy (startEndpoint, classLoader,
CustomerService.class);

GetCustomersByNameResponse response = proxy.getCustomersByName (new
GetCustomersByName ()) ;

Webservice Server

Using the following route sets up a webservice server that listens on jms queue
customerServiceQueue and processes requests using the class CustomerServicelmpl. The
customerServicelmpl of course should implement the interface CustomerService. Instead of
directly instantiating the server class it could be defined in a spring context as a regular bean.

SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat ("com.example.customerservice", new
ServiceInterfaceStrategy (CustomerService.class));

CustomerService serverBean = new CustomerServiceImpl () ;
from("jms://queue:customerServic ue")

.onException (Exception.class)
.handled (true)
.marshal (soapDF)

.end ()

.unmarshal (soapDF)

.bean (serverBean)

.marshal (soapDF) ;

PROTOBUF - PROTOCOL BUFFERS

371

372

Dependencies

To use the SOAP dataformat in your camel routes you need to add the following dependency

to your pom.

<dependency>

<groupIld>org.apache.camel</groupId>
<artifactId>camel-soap</artifactId>

<version>2.3.0</version>

</dependency>

CRYPTO

Available as of Camel 2.3
PGP Available as of Camel 2.9

The Crypto Data Format integrates the Java Cryptographic Extension into Camel, allowing
simple and flexible encryption and decryption of messages using Camel's familiar marshall and
unmarshal formatting mechanism. It assumes marshalling to mean encryption to cyphertext and
unmarshalling to mean decryption back to the original plaintext.

Options
Name Type Default Description
DES/CBC/

1 ith Stri i indicati i i il .
algorithm ring PKCS5Padding The JCE algoorithm name indicating the cryptographic algorithm that will be used.
algorithmParamterSpec AlgorithmParameterSpec null A JCE AlgorithmParameterSpec used to initialize the Cipher.
bufferSize Integer 2048 the size of the buffer used in the signature process.
cryptoProvider String null The name of the JCE Security Provider that should be used.
initializationVector bytel] null A.by(e array containing the Initialization Vector that will be used to initialize the

Cipher.
inline boolean false Flag indicating that the configured IV should be inlined into the encrypted data
stream.
macAlgorithm String null The JCE algorithm name indicating the Message Authentication algorithm.
shouldAppendHMAC boolean null Flag indicating that a Message Authentication Code should be calculated and

appended to the encrypted data.

Basic Usage

At its most basic all that is required to encrypt/decrypt an exchange is a shared secret key. If
one or more instances of the Crypto data format are configured with this key the format can
be used to encrypt the payload in one route (or part of one) and decrypted in another. For

example, using the Java DSL as follows:

KeyGenerator generator = KeyGenerator.getInstance ("DES");

PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());

from("direct:basic-encryption")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

In Spring the dataformat is configured first and then used in routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>
<crypto id="basic" algorithm="DES" keyRef="desKey" />
</dataFormats>
<route>
<from uri="direct:basic-encryption" />
<marshal ref="basic" />
<to uri="mock:encrypted" />
<unmarshal ref="basic" />
<to uri="mock:unencrypted" />
</route>
</camelContext>

Specifying the Encryption Algorithm

Changing the algorithm is a matter of supplying the JCE algorithm name. If you change the
algorithm you will need to use a compatible key.

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey()):;

cryptoFormat.setShouldAppendHMAC (true) ;
cryptoFormat.setMacAlgorithm ("HmacMD5") ;

from("direct:hmac-algorithm")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to ("mock:unencrypted") ;

Specifying an Initialization Vector

Some crypto algorhithms, particularly block algorithms, require configuration with an initial
block of data known as an Initialization Vector. In the JCE this is passed as an
AlgorithmParameterSpec when the Cipher is initialized. To use such a vector with the
CryptoDataFormat you can configure it with a byte[] contianing the required data e.g.

PROTOBUF - PROTOCOL BUFFERS

373

KeyGenerator generator = KeyGenerator.getInstance ("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding",
generator.generateKey()) ;
cryptoFormat.setInitializationVector (initializationVector);

from("direct:init-vector"
.marshal (cryptoFormat)
.to ("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring, suppling a reference to a byte[]

<crypto id="initvector" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector" />

The same vector is required in both the encryption and decryption phases. As it is not
necessary to keep the IV a secret, the DataFormat allows for it to be inlined into the encrypted
data and subsequently read out in the decryption phase to initialize the Cipher. To inline the IV
set the /oinline flag.

KeyGenerator generator = KeyGenerator.getInstance ("DES");

byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

SecretKey key = generator.generateKey();

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding", key);
cryptoFormat.setInitializationVector (initializationVector);
cryptoFormat.setShouldInlineInitializationVector (true) ;

CryptoDataFormat decryptFormat = new CryptoDataFormat ("DES/CBC/PKCS5Padding", key);
decryptFormat.setShouldInlineInitializationVector (true);

from("direct:inline")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (decryptFormat)
.to("mock:unencrypted") ;

or with spring.

<crypto id="inline" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector"

inline="true" />
<crypto id="inline-decrypt" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
inline="true" />

374 PROTOBUF - PROTOCOL BUFFERS

For more information of the use of Initialization Vectors, consult
* http://en.wikipedia.org/wiki/Initialization_vector
* http://www.herongyang.com/Cryptography/
* http://en.wikipedia.org/wiki/Block_cipher_modes_of operation

Hashed Message Authentication Codes (HMAC)

To avoid attacks against the encrypted data while it is in transit the CryptoDataFormat can also
calculate a Message Authentication Code forthe encrypted exchange contents based on a
configurable MAC algorithm. The calculated HMAC is appended to the stream after encryption.
It is separated from the stream in the decryption phase. The MAC is recalculated and verified
against the transmitted version to insure nothing was tampered with in transit.For more
information on Message Authentication Codes see http://en.wikipedia.org/wiki’HMAC

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC (true) ;

from("direct:hmac")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring.
<crypto id="hmac" algorithm="DES" keyRef="desKey" shouldAppendHMAC="true" />

By default the HMAC is calculated using the HmacSHAI mac algorithm though this can be easily
changed by supplying a different algorithm name. See [here] for how to check what algorithms
are available through the configured security providers

KeyGenerator generator = KeyGenerator.getInstance ("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC (true) ;
cryptoFormat.setMacAlgorithm ("HmacMD5") ;

from("direct:hmac-algorithm")
.marshal (cryptoFormat)
.to("mock:encrypted")
.unmarshal (cryptoFormat)
.to("mock:unencrypted") ;

or with spring.

PROTOBUF - PROTOCOL BUFFERS

375

http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/HMAC

<crypto id="hmac-algorithm" algorithm="DES" keyRef="desKey" macAlgorithm="HmacMD5"
shouldAppendHMAC="true" />

Supplying Keys Dynamically

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically.
Using the same key across all recipients may neither be feasible or desirable. It would be useful
to be able to specify keys dynamically on a per exchange basis. The exchange could then be
dynamically enriched with the key of its target recipient before being processed by the data
format. To facilitate this the DataFormat allow for keys to be supplied dynamically via the
message headers below

* CryptoDataFormat.KEY "CamelCryptoKey"

CryptoDataFormat cryptoFormat = new CryptoDataFormat ("DES", null);
/**
* Note: the header containing the key should be cleared after
* marshalling to stop it from leaking by accident and
* potentially being compromised. The processor version below is
* arguably better as the key is left in the header when you use
* the DSL leaks the fact that camel encryption was used.
*/
from("direct:key-in-header-encrypt")
.marshal (cryptoFormat)
.removeHeader (CryptoDataFormat.KEY)
.to("mock:encrypted") ;

from("direct:key-in-header-decrypt") .unmarshal (cryptoFormat) .process (new Processor () {
public void process (Exchange exchange) throws Exception {
exchange.getIn() .getHeaders () .remove (CryptoDataFormat.KEY) ;
exchange.getOut () .copyFrom(exchange.getIn());
}

}) .to("mock:unencrypted") ;
or with spring.

<crypto id="nokey" algorithm="DES" />

PGPDataFormat Options

Name Type Default Description

keyUserid String null The userid of the key in the PGP keyring.

password String null Password used when opening the private key (not used for encryption).

keyFileName String null Filename of t.he keyrv:ng: Tust be accessible as a classpath resource (but you can specify a location in the file
system by using the "file:" prefix).

signatureKeyUserid String null Since Camel 2.11.0 Optional userid of the key in the PGP keyring to use for signing (during encryption) or

signature verification (during decryption) .

376 PROTOBUF - PROTOCOL BUFFERS

Since Camel 2.11.0 Optional password used when opening the private key used for signing (during

signaturePassword String null)
encryption).
Since Camel 2.1 1.0 Optional filename of the keyring to use for signing (during encryption) or for signature
signatureKeyFileName String null verification (during decryption); must be accessible as a classpath resource (but you can specify a location in the
file system by using the "file:" prefix).
armored boolean false This option will cause PGP to base64 encode the encrypted text, making it available for copy/paste, etc.
integrity boolean true Adds an integrity check/sign into the encryption file.

PGPDataFormat Message Headers

You can override the PGPDataFormat options by applying below headers into message

dynamically.

Name

Type

Description

CamelPGPDataFormatKeyFileName

String

Since Camel
2.11.0 Filename of
the keyring; will
override existing
setting directly on the
PGPDataFormat.

CamelPGPDataFormatKeyUserid

String

Since Camel
2.11.0 The userid of
the key in the PGP
keyring; will override
existing setting
directly on the
PGPDataFormat.

CamelPGPDataFormatKeyPassword

String

Since Camel
2.11.0 Password
used when opening
the private key; will
override existing
setting directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyFileName

String

Since Camel
2.11.0 Filename of
the signature keyring;
will override existing
setting directly on the
PGPDataFormat.

PROTOBUF - PROTOCOL BUFFERS

377

Since Camel
2.11.0 The userid of
the signature key in
CamelPGPDataFormatSignatureKeyUserid String the PGP keyring; will
override existing
setting directly on the
PGPDataFormat.

Since Camel
2.11.0 Password
used when opening
the signature private
key; will override
existing setting
directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyPassword String

Encrypting with PGPDataFormat
The following sample uses the popular PGP format for encrypting/decrypting files using the

Bouncy Castle Java libraries:

Public Key Filel

String keyFileName = getKeyFileName () ;

>rivate Key FileName
String keyFileNameSec = getKeyFileNameSec();
/ Keyring Userid Used to Encrypt
String keyUserid = getKeyUserId();
Private key password

String keyPassword = getKeyPassword() ;

from("direct:inline")
.marshal () .pgp (keyFileName, keyUserid)
.to("mock:encrypted")
.unmarshal () .pgp (keyFileNameSec, keyUserid, keyPassword)
.to("mock:unencrypted") ;

The following sample performs signing + encryption, and then signature verification +
decryption. It uses the same keyring for both signing and encryption, but you can obviously use
different keys:

PGPDataFormat pgpSignAndEncrypt = new PGPDataFormat () ;
pgpSignAndEncrypt.setKeyFileName (keyFileName) ;
pgpSignAndEncrypt.setKeyUserid (keyUserid) ;
pgpSignAndEncrypt.setSignatureKeyFileName (keyFileNameSec) ;
pgpSignAndEncrypt.setSignatureKeyUserid (keyUserid) ;

378 PROTOBUF - PROTOCOL BUFFERS

http://www.bouncycastle.org/java.html

pgpSignAndEncrypt.setSignaturePassword (keyPassword) ;

PGPDataFormat pgpVerifyAndDecrypt = new PGPDataFormat () ;
pgpVerifyAndDecrypt.setKeyFileName (keyFileNameSec) ;
pgpVerifyAndDecrypt.setKeyUserid (keyUserid) ;
pgpVerifyAndDecrypt.setPassword (keyPassword) ;
pgpVerifyAndDecrypt.setSignatureKeyFileName (keyFileName) ;
pgpVerifyAndDecrypt.setSignatureKeyUserid (keyUserid) ;

from("direct:inline-sign")
.marshal (pgpSignAndEncrypt)
.to("mock:encrypted")
.unmarshal (pgpVerifyAndDecrypt)
.to("mock:unencrypted") ;

Or using Spring:

<dataFormats>
<!-- will load the file from classpath by

load from file s

with file: to

m -->

<pgp id="encrypt" keyFileName="org/apache/camel/component/crypto/pubring.gpg"
keyUserid="sdude@nowhere.net"/>
<pgp 1id="decrypt" keyFileName="org/apache/camel/component/crypto/secring.gpg"
keyUserid="sdude@nowhere.net" password="sdude"/>
</dataFormats>

<route>
<from uri="direct:inline"/>
<marshal ref="encrypt"/>
<to uri="mock:encrypted"/>
<unmarshal ref="decrypt"/>
<to uri="mock:unencrypted"/>
</route>

To work with the previous example you need the following

* A public keyring file which contains the public keys used to encrypt the data
» A private keyring file which contains the keys used to decrypt the data
* The keyring password

Managing your keyring

To manage the keyring, | use the command line tools, | find this to be the simplest approach in
managing the keys. There are also Java libraries available from http://www.bouncycastle.org/
java.html if you would prefer to do it that way.

I. Install the command line utilities on linux

PROTOBUF - PROTOCOL BUFFERS

379

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html

apt-get install gnupg
2. Create your keyring, entering a secure password
gpg --gen-key

3. If you need to import someone elses public key so that you can encrypt a file for
them.

gpg --import <filename.key

4. The following files should now exist and can be used to run the example

1s -1 ~/.gnupg/pubring.gpg ~/.gnupg/secring.gpg

Dependencies

To use the Crypto dataformat in your camel routes you need to add the following dependency
to your pom.

<dependency>
<groupld>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>2.9.0</version>
</dependency>

See Also
* Data Format
* Crypto (Digital Signatures)
* http://www.bouncycastle.org/java.html

SYSLOG DATAFORMAT

Available as of Camel 2.6
The syslog dataformat is used for working with RFC3 164 messages.
This component supports the following:
= UDP consumption of syslog messages
= Agnostic data format using either plain String objects or SyslogMessage model objects.
= Type Converter from/to SyslogMessage and String
= Integration with the camel-mina component.

380 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/crypto.html
http://camel.apache.org/data-format.html
http://camel.apache.org/crypto-digital-signatures.html
http://www.bouncycastle.org/java.html
http://www.ietf.org/rfc/rfc3164.txt
http://camel.apache.org/type-converter.html
http://camel.apache.org/mina.html

* Integration with the camel-netty component.
Maven users will need to add the following dependency to their pom. xm1 for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-syslog</artifactId>
<version>x.x.x</version>
<!-- S€e “he same version as your Camel core version -->

</dependency>

RFC3164 Syslog protocol
Syslog uses the user datagram protocol (UDP) [1] as its underlying transport layer mechanism.
The UDP port that has been assigned to syslog is 514.

To expose a Syslog listener service we reuse the existing camel-mina component or camel-
netty where we just use the Rfc3164SyslogDataFormat to marshal and unmarshal

messages

Exposing a Syslog listener

In our Spring XML file, we configure an endpoint to listen for udp messages on port 10514,
note that in netty we disable the defaultCodec, this
will allow a fallback to a NettyTypeConverter and delivers the message as an InputStream:

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>
</dataFormats>

<route>
<from
uri="netty:udp://localhost:10514?sync=false&allowDefaultCodec=false"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stopl"/>
</route>

</camelContext>

The same route using camel-mina

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<syslog id="mySyslog"/>
</dataFormats>

PROTOBUF - PROTOCOL BUFFERS

38l

http://camel.apache.org/netty.html
http://camel.apache.org/mina.html
http://camel.apache.org/netty.html
http://camel.apache.org/netty.html
http://camel.apache.org/mina.html

382

<route>
<from uri="mina:udp://localhost:10514"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stopl"/>

</route>

</camelContext>

Sending syslog messages to a remote destination

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>
</dataFormats>

<route>
<from uri="direct:syslogMessages"/>
<marshal ref="mySyslog"/>
<to uri="mina:udp://remotehost:10514"/>
</route>

</camelContext>

See Also

* Configuring Camel
* Component

* Endpoint

* Getting Started

PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

There now follows a breakdown of the various Enterprise Integration Patterns that Camel
supports

MESSAGING SYSTEMS

Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal
implementation detail of the Endpoint interface and all interactions with the Message Channel

are via the Endpoint interfaces.

Message
Channel .

Sender Messaging Receiver
Application Systemn Application

For more details see
* Message
* Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

CHAPTER 10 - PATTERN APPENDIX

383

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/message.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html

-

Sender Message Receiver

To support various message exchange patterns like one way Event Message and Request
Reply messages Camel uses an Exchange interface which has a pattern property which can be
set to INnOnly for an Event Message which has a single inbound Message, or InOut for a
Request Reply where there is an inbound and outbound message.

Here is a basic example of sending a Message to a route in InOnly and InOut modes

Requestor Code

InOnl

getContext () .createProducerTemplate () .sendBody ("direct:startInOnly", "Hello World");
InOut

String result = (String)

getContext () .createProducerTemplate () .requestBody ("direct:startInOut", "Hello World");

Route Using the Fluent Builders

from("direct:startInOnly") .inOnly ("bean:process");

from("direct:startInOut") .inOut ("bean:process") ;

Route Using the Spring XML Extensions

<route>
<from uri="direct:startInOnly"/>
<inOnly uri="bean:process"/>
</route>

<route>
<from uri="direct:startInOut"/>
<inOut uri="bean:process"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

384 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

Pipe Pipe Pipe Pipe
—| Decrypt Authenticate De-Dup |— 1
InGoming Fitter Fitter Fitter Clean’
Craler Craler

With Camel you can split your processing across multiple independent Endpoint instances
which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as
follows

from("direct:a") .pipeline ("direct:x", "direct:y", "direct:z", "mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel.
The opposite to pipeline is multicast; which fires the same message into each of its outputs.
(See the example below).

In Spring XML you can use the <pipeline/> element

<route>
<from uri="activemq:SomeQueue"/>
<pipeline>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemqg:OutputQueue"/>
</pipeline>
</route>

In the above the pipeline element is actually unnecessary, you could use this...

<route>
<from uri="activemq:SomeQueue"/>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemqg:OutputQueue"/>
</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send
the same message into multiple pipelines - then the <pipeline/> element comes into its own.

<route>
<from uri="activemq:SomeQueue"/>

CHAPTER 10 - PATTERN APPENDIX

385

http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/message-translator.html

386

<multicast>
<pipeline>
<bean ref="something"/>
<to uri="log:Something"/>
</pipeline>
<pipeline>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemqg:OutputQueue"/>
</pipeline>
</multicast>
</route>

In the above example we are routing from a single Endpoint to a list of different endpoints
specified using URIs. If you find the above a bit confusing, try reading about the Architecture or
try the Examples

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

outGueue 1

L

o

—

outGiueue 2

1 —

Message
Router

The following example shows how to route a request from an input queue:a endpoint to
either queue:b, queue:c or queue:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("direct:a")

.choice ()
.when (header ("foo") .isEqualTo ("bar"))

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/architecture.html
http://camel.apache.org/examples.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

.to("direct:b")

.when (header ("foo") .isEqualTo ("cheese"))
.to("direct:c")

.otherwise ()
.to("direct:d");

}i
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>
</when>
<otherwise>
<to uri="direct:d"/>
</otherwise>
</choice>
</route>
</camelContext>

Choice without otherwise

If you use a choice without adding an otherwise, any unmatched exchanges will be
dropped by default.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor
in the routing logic, by using a bean to perform the transformation, or by using transform() in

CHAPTER 10 - PATTERN APPENDIX 387

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean-integration.html

388

the DSL. You can also use a Data Format to marshal and unmarshal messages in different
encodings.

Translator

—

Incoming Message Translated Message

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in
your Registry such as your Spring XML configuration file as follows

from("activemqg: SomeQueue") .
beanRef ("myTransformerBean", "myMethodName") .
to("mgseries:AnotherQueue") ;

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc.
You can omit the method name parameter from beanRef() and the Bean Integration will try to
deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start") .process (new Processor() {
public void process (Exchange exchange) {
Message in = exchange.getIn();
in.setBody(in.getBody (String.class) + " World!");
}

}) .to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start") .transform(body () .append (" World!")) .to("mock:result");

Use Spring XML

You can also use Spring XML Extensions to do a transformation. Basically any Expression
language can be substituted inside the transform element as shown below

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<transform>
<simple>${in.body} extra data!</simple>
</transform>
<to uri="mock:end"/>
</route>
</camelContext>

Or you can use the Bean Integration to invoke a bean

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-integration.html

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemqg:Output"/>

</route>

You can also use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") .
to("activemg:Another.Queue") ;

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemg:My.Queue") .
to("velocity:com/acme/MyResponse.vm") ;

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

= Content Enricher

= Using getln or getOut methods on Exchange

Message Endpoint
Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

o 1%t =%l ¢

Data

Message Message
Endpoint Massage Channel Endpoint
Sender Receiver
Application Application

When using the DSL to create Routes you typically refer to Message Endpoints by their
URIs rather than directly using the Endpoint interface. Its then a responsibility of the
CamelContext to create and activate the necessary Endpoint instances using the available
Component implementations.

For more details see

CHAPTER 10 - PATTERN APPENDIX

389

http://camel.apache.org/templating.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/activemq.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/using-getin-or-getout-methods-on-exchange.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html

390

* Message

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following
components
» SEDA for in-VM seda based messaging
* JMS for working with JMS Queues for high performance, clustering and load balancing
» JPA for using a database as a simple message queue
* XMPP for point-to-point communication over XMPP (Jabber)
* and others

Yty = % % % —

Sender Order Order Order Puaint-to-Foint Order Order Order Receiver
#3 #2 # Channel #3 #2 #

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using for example the
following components:
* JMS for working with JMS Topics for high performance, clustering and load balancing
* XMPP when using rooms for group communication
» SEDA for working with SEDA in the same CamelContext which can work in pub-sub,
but allowing multiple consumers.
* VM as SEDA but for intra-JVM.

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/seda.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/vm.html

— Ez —
Address Subscriber
Changed

¢, —a=—— 9, —

Fublisher Address Address Subscriber
Changed Changed
tﬂ
Fublish-Subscribe Address Subscriber
Channel Changed

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this
keeps the producer and consumer decoupled but lets you control the fine grained routing
configuration using the DSL or Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {
errorHandler (deadLetterChannel ("mock:erroxr"));

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d"):;

bi
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>
<multicast>
<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>
</multicast>
</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX 391

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

392

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DEAD LETTER CHANNEL

Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel
processor which is an Error Handler.

— %

Sender Message

Delivery Fails

Channel Intended

Receiver

Reroute Delivery -

—
®

Dead Dead Letter
Message Channel

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it will
complete fine. So we typically wish to use some kind of redelivery policy to decide how many
times to try redeliver a message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize
things like
* how many times a message is attempted to be redelivered before it is considered a
failure and sent to the dead letter channel
* the initial redelivery timeout
* whether or not exponential backoff is used (i.e. the time between retries increases
using a backoff multiplier)
* whether to use collision avoidance to add some randomness to the timings
* delay pattern (see below for details)
+ Camel 2.1 I: whether to allow redelivery during stopping/shutdown
Once all attempts at redelivering the message fails then the message is forwarded to the dead
letter queue.

About moving Exchange to dead letter queue and using handled

Handled on Dead Letter Channel

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/dead-letter-channel.html

% Difference between Dead Letter Channel and Default Error
Handler
The major difference is that Dead Letter Channel has a dead letter queue that
whenever an Exchange could not be processed is moved to. It will always move
failed exchanges to this queue.

Unlike the Default Error Handler that does not have a dead letter queue. So whenever an
Exchange could not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with
the handled option.

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue
(the dead letter endpoint). The exchange is then complete and from the client point of view it
was processed. As such the Dead Letter Channel have handled the Exchange.

For instance configuring the dead letter channel as:

Using the Fluent Builders

errorHandler (deadLetterChannel ("jms:queue:dead")
.maximumRedeliveries (3) .redeliveryDelay (5000)) ;

Using the Spring XML Extensions

<route errorHandlerRef="myDeadLetterErrorHandler">

</route>

<bean id="myDeadLetterErrorHandler"

class="org.apache.camel.builder.DeadLetterChannelBuilder">
<property name="deadLetterUri" value="jms:queue:dead"/>

<property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>
</bean>

<bean id="myRedeliveryPolicyConfig"
class="org.apache.camel.processor.RedeliveryPolicy">
<property name="maximumRedeliveries" value="3"/>
<property name="redeliveryDelay" value="5000"/>
</bean>

The Dead Letter Channel above will clear the caused exception (setException (null)), by
moving the caused exception to a property on the Exchange, with the key

Exchange .EXCEPTION CAUGHT. Then the Exchange is moved to the

"Jms : queue : dead" destination and the client will not notice the failure.

CHAPTER 10 - PATTERN APPENDIX 393

http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html

About moving Exchange to dead letter queue and using the original message

The option useOriginalMessage is used for routing the original input message instead of
the current message that potentially is modified during routing.

For instance if you have this route:

from("jms:queue:order:input")
.to("bean:validateOrder")
.to("bean:transformOrder")
.to("bean:handleOrder") ;

The route listen for JMS messages and validates, transforms and handle it. During this the
Exchange payload is transformed/modified. So in case something goes wrong and we want to
move the message to another JMS destination, then we can configure our Dead Letter Channel
with the useOriginalMessage option. But when we move the Exchange to this destination
we do not know in which state the message is in. Did the error happen in before the
transformOrder or after? So to be sure we want to move the original input message we
received from jms:queue:order:input. So we can do this by enabling the
useOriginalMessage option as shown below:

will use original body
errorHandler (deadLetterChannel ("jms:queue:dead")
.useOriginalMessage () .mamimumRedeliveries (5) .redeliverDelay (5000) ;

Then the messages routed to the jms : queue : dead is the original input. If we want to
manually retry we can move the JMS message from the failed to the input queue, with no
problem as the message is the same as the original we received.

OnRedelivery

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered. See below for sample.

Redelivery default values

Redelivery is disabled by default.

The default redeliver policy will use the following values:
* maximumRedeliveries=0
* redeliverDelay=1000L (| second)
* maximumRedeliveryDelay = 60 * 1000L (60 seconds)
* And the exponential backoff and collision avoidance is turned off.
* The retriesExhaustedLoglevel are set to LogginglLeve ERROR
* The retryAttemptedLoglevel are set to LogginglLevel. DEBUG

394 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html

i onException and onRedeliver
We also support for per onException to set a onRedeliver. That means you
can do special on redelivery for different exceptions, as opposed to onRedelivery
set on Dead Letter Channel can be viewed as a global scope.

» Stack traces is logged for exhausted messages from Camel 2.2 onwards.

* Handled exceptions is not logged from Camel 2.3 onwards
The maximum redeliver delay ensures that a delay is never longer than the value, default |
minute. This can happen if you turn on the exponential backoff.

The maximum redeliveries is the number of re delivery attempts. By default Camel will try
to process the exchange | + 5 times. | time for the normal attempt and then 5 attempts as
redeliveries.

Setting the maximumRedeliveries to a negative value such as -1 will then always redelivery
(unlimited).
Setting the maximumRedeliveries to 0 will disable any re delivery attempt.

Camel will log delivery failures at the DEBUG logging level by default. You can change this by
specifying retriesExhaustedLoglevel and/or retryAttemptedLoglevel. See
ExceptionBuilderWithRetryLogginglLevelSetTest for an example.

You can turn logging of stack traces on/off. If turned off Camel will still log the redelivery
attempt. Its just much less verbose.

Redeliver Delay Pattern

Delay pattern is used as a single option to set a range pattern for delays. If used then the
following options does not apply: (delay, backOffMultiplier, useExponentialBackOff,
useCollisionAvoidance, maximumRedeliveryDelay).
The idea is to set groups of ranges using the following syntax: 1imit:delay;limit
2:delay 2;1limit 3:delay 3;...;limit N:delay N
Each group has two values separated with colon
= limit = upper limit
= delay = delay in millis
And the groups is again separated with semi colon.
The rule of thumb is that the next groups should have a higher limit than the previous
group.
Lets clarify this with an example:
delayPattern=5:1000;10:5000;20:20000

That gives us 3 groups:
= 5:1000
= 10:5000

CHAPTER 10 - PATTERN APPENDIX

395

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/dead-letter-channel.html

396

= 20:20000
Resulting in these delays for redelivery attempt:

* Redelivery attempt number 1..4 = 0 millis (as the first group start with 5)

= Redelivery attempt number 5..9 = 1000 millis (the first group)

* Redelivery attempt number 10..19 = 5000 millis (the second group)

= Redelivery attempt number 20.. = 20000 millis (the last group)
Note: The first redelivery attempt is |, so the first group should start with | or higher.

You can start a group with limit | to eg have a starting delay:

delayPattern=1:1000;5:5000

* Redelivery attempt number 1..4 = 1000 millis (the first group)

= Redelivery attempt number 5.. = 5000 millis (the last group)
There is no requirement that the next delay should be higher than the previous. You can use
any delay value you like. For example with delayPattern=1:5000;3:1000 we start with
5 sec delay and then later reduce that to | second.

Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to
the message to indicate how many times its been redelivered.
Before Camel 2.6: The header is CamelRedeliveryCounter, which is also defined on the
Exchange.REDELIVERY COUNTER.
Starting with 2.6: The header CamelRedeliveryMaxCounter, which is also defined on the
Exchange.REDELIVERY MAX COUNTER, contains the maximum redelivery setting. This
header is absent if you use retryWhile or have unlimited maximum redelivery configured.
And a boolean flag whether it is being redelivered or not (first attempt)
The header CamelRedelivered contains a boolean if the message is redelivered or not,
which is also defined on the Exchange .REDELIVERED.
Dynamically calculated delay from the exchange
In Camel 2.9 and 2.8.2: The header is CamelRedeliveryDelay, which is also defined on the
Exchange.REDELIVERY DELAY.
Is this header is absent, normal redelivery rules apply.

Which endpoint failed

Available as of Camel 2.1

When Camel routes messages it will decorate the Exchange with a property that contains
the last endpoint Camel send the Exchange to:

String lastEndpointUri = exchange.getProperty (Exchange.TO ENDPOINT, String.class);

The Exchange.TO_ENDPOINT have the constant value CamelToEndpoint.

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

This information is updated when Camel sends a message to any endpoint. So if it exists its
the last endpoint which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be
moved into the dead letter queue, then Camel also decorates the Exchange with another
property that contains that last endpoint:

String failedEndpointUri = exchange.getProperty (Exchange.FAILURE ENDPOINT,

String.class);

The Exchange .FAILURE ENDPOINT have the constant value
CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter queue and use that
for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic Recipient List so you
know which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully
processed by a given endpoint, and then later fails for example in a local Bean processing
instead. So beware that this is a hint that helps pinpoint errors.

from("activemqg:queue:foo")
.to("http://somese
.beanRef ("foo") ;

Now suppose the route above and a failure happens in the foo bean. Then the
Exchange.TO ENDPOINT and Exchange.FAILURE ENDPOINT will still contain the
value of http://someserver/somepath.

Which route failed
Available as of Camel 2.10.4/2.11

When Camel error handler handles an error such as Dead Letter Channel or using
Exception Clause with handled=true, then Camel will decorate
the Exchange with the route id where the error occurred.

String failedRouteId = exchange.getProperty (Exchange.FAILURE ROUTE ID, String.class);

The Exchange.FAILURE ROUTE ID have the constant value CamelFailureRouteId.

This allows for example you to fetch this information in your dead letter queue and use that
for error reporting.

Control if redelivery is allowed during stopping/shutdown

Available as of Camel 2.11

CHAPTER 10 - PATTERN APPENDIX

397

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean.html
http://someserver/somepath
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exchange.html

398

Prior to Camel 2.10, Camel will perform redelivery while stopping a route, or shutting down
Camel. This has improved a bit in Camel 2.10 onwards, as Camel will not perform redelivery
attempts when shutting down aggressively (eg during Graceful Shutdown and timeout hit). From
Camel 2.1 onwards there is a new option allowRedeliveryWhileStopping which you
can use to control if redelivery is allowed or not; notice that any in progress redelivery will still
be executed. This option can only disallow any redelivery to be executed after the stopping of
a route/shutdown of Camel has been triggered. If a redelivery is dissallowed then a
RejectedExcutionException is set on the Exchange and the processing of the Exchange
stops. This means any consumer will see the Exchange as failed due the
RejectedExecutionException.

The default value is t rue to be backwards compatible as before. For example the following
sample shows how to do this with Java DSL and XML DSL

this error handler will try up till 20 redelivery
do not allow any

ho er if we are stopping
errorHandler (defaultErrorHandler ()
.allowRedeliveryWhileStopping (false)

.maximumRedeliveries (20) .redeliveryDelay (1000) .retryAttemptedLogLevel (LoggingLevel.INFO))) ;
from("seda:foo") .routeId("foo")

.to("mock:foo")
.throwException (new IllegalArgumentException ("Forced"));

And the sample sample with XML DSL

== we use the errorHandlerRef attribute to refer to the error handler to use
as default -->

<camelContext errorHandlerRef="myErrorHandler" xmlns="http://camel.apache.org/
schema/spring">

<!-- configure error handler, to redeliver up till 10 times, with 1 sec delay
and if we are stopping then do not allow redeliveries, to stop faster -->
<errorHandler id="myErrorHandler" type="DefaultErrorHandler">
<redeliveryPolicy maximumRedeliveries="20" redeliveryDelay="1000"
allowRedeliveryWhileStopping="false" retryAttemptedLogLevel="INFO"/>
</errorHandler>

<route id="foo">
<from uri="seda:foo"/>
<to uri="mock:foo"/>
<throwException ref="forced"/>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/graceful-shutdown.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Samples

The following example shows how to configure the Dead Letter Channel configuration using
the DSL

RouteBuilder builder = new RouteBuilder () {
public void configure() {
'/ ng dead letter channel with a se

errorHandler (deadLetterChannel ("seda:errors"));

/ here is our route
"seda:b");

from("seda:a") .to(

bi
You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder () {

public void configure () {
// configures dead letter channel to use seda queue for errors and use at most
2 redelve
exponential backoff
errorHandler (deadLetterChannel ("seda:errors") .maximumRedeliveries (2) .useExponentialBackOff ());

here is our route
from("seda:a").to("seda:b");

How can | modify the Exchange before redelivery?

We support directly in Dead Letter Channel to set a Processor that is executed before each
redelivery attempt.

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered.

Here we configure the Dead Letter Channel to use our processor
MyRedeliveryProcessor to be executed before each redelivery.

attempted This allows us to € the me ore
errorHandler (deadLetterChannel ("mock:error") .maximumRedeliveries (5)
.onRedelivery (new MyRedeliverProcessor ()
// setting delay to zero is just to make unit testing faster

.redeliveryDelay (0L)) ;

CHAPTER 10 - PATTERN APPENDIX

399

http://camel.apache.org/dsl.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html

400

And this is the processor MyRedeliveryProcessor where we alter the message.

/ here we can do €T we want 1n €

va e such as
c ; SU c

public class MyRedeliverProcessor implements Processor ({

public void process (Exchange exchange) throws Exception ({
the message is being redelivered so we can alter it
we just append the redelivery nter to the body

can of course do all kind of stuff instead

String body = exchange.getIn().getBody(String.class);
int count = exchange.getIn() .getHeader (Exchange.REDELIVERY COUNTER,
Integer.class);

exchange.getIn() .setBody(body + count);

the maximum redelivery was set > 5

int max = exchange.getIn().getHeader (Exchange.REDELIVERY MAX COUNTER,
Integer.class);
assertEquals (5, max);

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

= Error Handler

= Exception Clause

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using among others the
following components:
* File for using file systems as a persistent store of messages
* JMS when using persistent delivery (the default) for working with JMS Queues and
Topics for high performance, clustering and load balancing
» JPA for using a database as a persistence layer, or use any of the many other database
component such as SQL, JDBC, iBATIS/MyBatis, Hibernate
» HawtDB for a lightweight key-value persistent store

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/exception-clause.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/file2.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/sql.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/mybatis.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/hawtdb.html

Wi %

Sender Receiver

Disk Disk

Computer 1 Computer 2

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message
Bus itself as it allows producers and consumers to be decoupled.

Application

Application + >

Message Application
Bus

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS
component for traditional MOM support.
Also worthy of note is the XMPP component for supporting messaging over XMPP (Jabber)

Of course there are also ESB products such as Apache ServiceMix which serve as full fledged
message busses.
You can interact with Apache ServiceMix from Camel in many ways, but in particular you can
use the NMR or JBI component to access the ServiceMix message bus directly.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX

401

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://camel.apache.org/nmr.html
http://camel.apache.org/jbi.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

402

Message Construction

EVENT MESSAGE

Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOnly to indicate a oneway event message. Camel
Components then implement this pattern using the underlying transport or protocols.

Observer
8 % | @
Subject Event Observer
Message
|E| = aPriceChangedEvent Observer

The default behaviour of many Components is InOnly such as for JMS, File or SEDA

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange Pattern
for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl.
Using the Fluent Builders

from("mg:someQueue") .
inOnly () .
bean (Foo.class) ;

or you can invoke an endpoint with an explicit pattern

from("mg:someQueue") .
inOnly ("mg:anotherQueue") ;

Using the Spring XML Extensions

CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://camel.apache.org/jms.html
http://camel.apache.org/file2.html
http://camel.apache.org/seda.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

i Related
See the related Request Reply message.

<route>

<from uri="mqg:someQueue"/>

<inOnly uri="bean:foo"/>
</route>

<route>

<from uri="mgqg:someQueue"/>

<inOnly uri="mqg:anotherQueue"/>
</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

REQUEST REPLY

Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOut to indicate a request/reply. Camel Components then
implement this pattern using the underlying transport or protocols.

'tD':J'
Request Request
Channel

e — ¥,

Reply Reply

Reguestar Channel Replier

For example when using JMS with InOut the component will by default perform these

actions

create by default a temporary inbound queue

set the JMSReplyTo destination on the request message

set the JMSCorrelationID on the request message

send the request message

consume the response and associate the inbound message to the request using the
JMSCorrelationID (as you may be performing many concurrent request/responses).

CHAPTER 10 - PATTERN APPENDIX

403

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/jms.html
http://camel.apache.org/request-reply.html

i Related
See the related Event Message message

Explicitly specifying InOut

When consuming messages from JMS a Request-Reply is indicated by the presence of the
JMSReplyTo header.

You can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

jms :MyQueue?exchangePattern=InOut

You can specify the exchange pattern in DSL rule or Spring configuration.

// Send to an en

from("direct:testInOut") .inOut ("mock:result");

>int using InOut

// Send to an en

from("direct:testInOnly") .inOnly ("mock:result");

point using InOut

pattern to InOut, then send it from direct:inOnly to mock:result

the exchange

endpoint

from("direct:testSetToInOnlyThenTo")
.setExchangePattern (ExchangePattern.InOnly)
.to("mock:result");

from("direct:testSetToInOutThenTo")
.setExchangePattern (ExchangePattern.InOut)
.to("mock:result");

// Or we can pass the pattern as a parameter to the to() method
from("direct:testToWithInOnlyParam") .to (ExchangePattern.InOnly, "mock:result");
from("direct:testToWithInOutParam") .to (ExchangePattern.InOut, "mock:result");

from("direct:testToWithRobustInOnlyParam") .to (ExchangePattern.RobustInOnly,

"mock:result") ;

// Set the exchange

t je pattern to InOut, then send it on
from("direct:testSetExchangePatternInOnly")
.setExchangePattern (ExchangePattern.InOnly) .to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">

<!-- Send the exchar as InOnly —-->

<route>
<from uri="direct:testInOut"/>
<inOut uri="mock:result"/>
</route>

nd the exchan as InOnly —-->

404 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/event-message.html

<route>
<from uri="direct:testInOnly"/>
<inOnly uri="mock:result"/>
</route>

<!-- lets set pattern then send it on —-->
<route>
<from uri="direct:testSetToInOnlyThenTo"/>

<setExchangePattern pattern="InOnly"/>

<to uri="mock:result"/>

</route>

<route>
<from uri="direct:testSetToInOutThenTo"/>
<setExchangePattern pattern="InOut"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:testSetExchangePatternInOnly"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:testToWithInOnlyParam"/>
<to uri="mock:result" pattern="InOnly"/>
</route>
<route>
<from uri="direct:testToWithInOutParam"/>
<to uri="mock:result" pattern="InOut"/>
</route>
<route>
<from uri="direct:testToWithRobustInOnlyParam"/>
<to uri="mock:result" pattern="RobustInOnly"/>
</route>
</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Correlation Identifier

Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header
on a Message.

CHAPTER 10 - PATTERN APPENDIX

405

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message.html

406

When working with the ActiveMQ or JMS components the correlation identifier header is
called JMSCorrelationlID. You can add your own correlation identifier to any message
exchange to help correlate messages together to a single conversation (or business process).

Colrrefat.fon Message I0)
Eg
7 il
Requests
—]
Reguestar Replies \‘\ Replier

Clorrefat.fon D

The use of a Correlation Identifier is key to working with the Camel Business Activity
Monitoring Framework and can also be highly useful when testing with simulation or canned
data such as with the Mock testing framework

Some EIP patterns will spin off a sub message, and in those cases, Camel will add a
correlation id on the Exchange as a property with they key Exchange . CORRELATION ID,
which links back to the source Exchange. For example the Splitter, Multicast, Recipient List, and
Wire Tap EIP does this.

See Also
« BAM

RETURN ADDRESS

Camel supports the Return Address from the EIP patterns by using the JMSReplyTo header.

Reply Reply
Channel 1 Channel 2
Reqguest
Ch: | .
Requestor 1 |—— E E NS Replier

7 N
Requests
" | "
| Reply
Reply
Requestor 2 Chennel 1

t@
Reply
Channel 2 Reply

For example when using JMS with InOut the component will by default return to the address
given in JMSReplyTo.

Requestor Code

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/bam.html
http://camel.apache.org/bam.html
http://camel.apache.org/mock.html
http://camel.apache.org/eip.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/multicast.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/bam.html
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html

getMockEndpoint ("mock:bar") .expectedBodiesReceived ("Bye World") ;
template.sendBodyAndHeader ("direct:start”, "World", "JIMSReplyTo", "queue:bar");

Route Using the Fluent Builders

from("direct:start") .to("activemg:queue: foo?preserveMessageQos=true") ;
from("activemqg:queue:foo") .transform(body () .prepend("Bye ")) ;
from("activemqg:queue:bar?disableReplyTo=true") .to("mock:bar");

Route Using the Spring XML Extensions

<route>

<from uri="direct:start"/>

<to uri="activemq:queue: foo?preserveMessageQos=true"/>
</route>

<route>
<from uri="activemq:queue:foo"/>
<transform>
<simple>Bye ${in.body}</simple>
</transform>
</route>

<route>
<from uri="activemq:queue:bar?disableReplyTo=true"/>

<to uri="mock:bar"/>
</route>

For a complete example of this pattern, see this junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE ROUTING

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct
destination based on the contents of the message exchanges.

CHAPTER 10 - PATTERN APPENDIX 407

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://camel.apache.org/enterprise-integration-patterns.html

408

> Widget
Inventory
‘T%% —r —a’//:: —
-—
Gadget
NewOrder N
Router @ P Q| Inventory

The following example shows how to route a request from an input sedasa endpoint to
either seda:b, seda:c or seda:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:erroxr")) ;

from("direct:a")
.choice ()
.when (header ("foo"
.to("direct:b"
.when (header ("foo"

.isEqualTo ("bar")

)
)
) .isEqualTo ("cheese"))
.to("direct:c")

.otherwise ()

.to("direct:d");

}i
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>
</when>
<otherwise>
<to uri="direct:d"/>
</otherwise>
</choice>
</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup

i See Why can | not use when or otherwise in a Java Camel route if you have
problems with the Java DSL, accepting using when or otherwise.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

w % o e Y -@tnmtm]]

Widget Gadget ‘Widget Widget wWidget
Quote Quote Quote Message Quote Quote

Filter

The following example shows how to create a Message Filter route consuming messages
from an endpoint called queue:a, which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:erroxr"));

from("direct:a")
.filter (header ("foo") .isEqualTo ("bar"))
.to("direct:b");
bi

You can, of course, use many different Predicate languages such as XPath, XQuery, SQL or
various Scripting Languages. Here is an XPath example

from("direct:start").
filter () .xpath("/person[@name="'James']").
to("mock:result");

Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter () .method (MyBean.class, "isGoldCustomer").to("mock:result") .end()

.to("mock:end") ;

CHAPTER 10 - PATTERN APPENDIX

409

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/why-can-i-not-use-when-or-otherwise-in-a-java-camel-route.html

410

public static class MyBean {
public boolean isGoldCustomer (@Header ("level™) String level) {
return level.equals("gold");

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>

<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>
</filter>
</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using stop

Available as of Camel 2.0

Stop is a bit different than a message filter as it will filter out all messages and end the route
entirely (filter only applies to its child processor). Stop is convenient to use in a Content Based
Router when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word Bye
in the message body. Notice how we prevent this in the when predicate by using the
.stop ().

from("direct:start")

.choice ()
.when (body () .contains ("Hello")) .to("mock:hello")
.when (body () .contains ("Bye")) .to ("mock:bye") .stop ()
.otherwise () .to("mock:other")

.end ()

.to("mock:result");

Knowing if Exchange was filtered or not

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange that states if it was filtered or
not.

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/exchange.html

) filtered endpoint required inside </filter> tag
make sure you put the endpoint you want to filter (<to uri="seda:b"/>, etc.) before
the closing </filter> tag or the filter will not be applied (in 2.8+, omitting this will
result in an error)

The property has the key Exchange . FILTER MATCHED, which has the String value of
CamelFilterMatched. Its value is a boolean indicating t rue or false. If the value is
true then the Exchange was routed in the filter block. This property will be visible within the
Message Filter block who's Predicate matches (value set to true), and to the steps immediately
following the Message Filter with the value set based on the results of the last Message Filter
Predicate evaluated.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DYNAMIC ROUTER

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the
dependency of the router on all possible destinations while maintaining its efficiency.

Dynamic Router Qutput Channel

Message Router
Input Channel Qutput Channel
— |~ — | -] & |

—_—
| Qutput Channel
C

O

Drynamic Eule Base

Contral Channel

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a dynamic
Routing Slip which evaluates the slip on-the-fly.

Options

Default s
Name Value Description

uriDelimiter ’ Delimiter used if the Expression returned multiple endpoints.

CHAPTER 10 - PATTERN APPENDIX

411

http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/expression.html

412

i Beware
You must ensure the expression used for the dynamicRouter such as a bean,
will return null to indicate the end. Otherwise the dynamicRouter will keep
repeating endlessly.

If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will thrown an exception stating the

ignoreInvalidEndpoints false " e :
endpoint uri is not valid.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5 the Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the
Exchange which contains the current endpoint as it advanced though the slip. This allows you to
know how far we have processed in the slip. (It's a slip because the Dynamic Router
implementation is based on top of Routing Slip).

Java DSL

In Java DSL you can use the dynamicRouter as shown below:

from("direct:start"

a bean as the dynamic rou

.dynamicRouter (method (DynamicRouterTest.class, "slip"));

Which will leverage a Bean to compute the slip on-the-fly, which could be implemented as
follows:

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @return endpoints to go, or <tt>null</tt> to indicate the end
Sy
public String slip(String body) {
bodies.add (body) ;
invoked++;

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) ({
return "mock:result";

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/dynamic-router.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean.html

// no more so return null
return null;

Mind that this example is only for show and tell. The current implementation is not thread safe.
You would have to store the state on the Exchange, to ensure thread safety, as shown below:

/**
* Use this method to compute dynamic where we should route next.

*

* @param body the message body
* (@param properties the exchange properties where we can store state between
invocations
* @return endpoints to go, or <tt>null</tt> to indicate the end
o/
public String slip(String body, @Properties Map<String, Object> properties) {
bodies.add (body) ;

// get the state from the exchange properties and keep track how many times
// we have been invoked

int invoked = 0;

Object current = properties.get("invoked");

if (current != null) {

invoked = Integer.valueOf (current.toString()):
}
invoked++;

// and stc

properties.put ("invoked", invoked);

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

// no more so return null

return null;

You could also store state as message headers, but they are not guaranteed to be preserved
during routing, where as properties on the Exchange are. Although there was a bug in the
method call expression, see the warning below.

CHAPTER 10 - PATTERN APPENDIX 413

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

414

i Using beans to store state
Mind that in Camel 2.9.2 or older, when using a Bean the state is not propagated, so
you will have to use a Processor instead. This is fixed in Camel 2.9.3 onwards.

Spring XML

The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>

<dynamicRouter>
<!-- use a method call on a bean as dynamic router -->
<method ref="mySlip" method="slip"/>
</dynamicRouter>
</route>
<route>

<from uri="direct:foo"/>
<transform><constant>Bye World</constant></transform>
<to uri="mock:foo"/>

</route>

</camelContext>

@DynamicRouter annotation

You can also use the @DynamicRouter annotation, for example the Camel 2.4 example
below could be written as follows. The route method would then be invoked repeatedly as
the message is processed dynamically. The idea is to return the next endpoint uri where to go.
Return null to indicate the end. You can return multiple endpoints if you like, just as the
Routing Slip, where each endpoint is separated by a delimiter.

public class MyDynamicRouter {

@Consume (uri = "activemg:foo")
@DynamicRouter
public String route (@XPath("/customer/id") String customerId, @Header ("Location")
String location, Document body) {
query a database to find the best match of the endpoint based on the input

parameteres

return the next endpoint uri, where to go. Return null to indicate the

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean.html
http://camel.apache.org/processor.html

Dynamic Router in Camel 2.4 or older

The simplest way to implement this is to use the RecipientList Annotation on a Bean method to
determine where to route the message.

public class MyDynamicRouter ({

@Consume (uri = "activemg:foo")
@RecipientList
public List<String> route (@XPath("/customer/id") String customerId,
QHeader ("Location") String location, Document body) {
query a database to find the best match of the endpoint based on the input

In the above we can use the Parameter Binding Annotations to bind different parts of the
Message to method parameters or use an Expression such as using XPath or XQuery.
The method can be invoked in a number of ways as described in the Bean Integration such
as
* POJO Producing
* Spring Remoting
* Bean component

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of
dynamically specified recipients.

CHAPTER 10 - PATTERN APPENDIX

415

http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/bean.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/enterprise-integration-patterns.html

416

— =

Recipient List

Recipient Channel

The recipients will receive a copy of the same Exchange, and Camel will execute them

sequentially.

Options

Name

Default
Value

Description

delimiter

Delimiter used if the Expression returned multiple endpoints.

strategyRef

An AggregationStrategy that will assemble the replies from recipients into a single outgoing message from the Recipient List.
By default Camel will use the last reply as the outgoing message.

parallelProcessing

false

Camel 2.2: If enabled, messages are sent to the recipients concurrently. Note that the calling thread will still wait until all
messages have been fully processed before it continues; it's the sending and processing of replies from recipients which
happens in parallel.

executorServiceRef

Camel 2.2: A custom Thread Pool to use for parallel processing. Note that enabling this option implies parallel processing,
so you need not enable that option as well.

stopOnException

false

Camel 2.2: Whether to immediately stop processing when an exception occurs. If disabled, Camel will send the message
to all recipients regardless of any individual failures. You can process exceptions in an AggregationStrategy implementation,
which supports full control of error handling.

ignoreInvalidEndpoints

false

Camel 2.3: Whether to ignore an endpoint URI that could not be resolved. If disabled, Camel will throw an exception
identifying the invalid endpoint URI.

streaming

false

Camel 2.5: If enabled, Camel will process replies out-of-order - that is, in the order received in reply from each recipient.
If disabled, Camel will process replies in the same order as specified by the Expression.

timeout

Camel 2.5: Specifies a processing timeout milliseconds. If the Recipient List hasn't been able to send and process all replies
within this timeframe, then the timeout triggers and the Recipient List breaks out, with message flow continuing to the next
element. Note that if you provide a TimeoutAwareAggregationStrategy, its t imeout method is invoked before breaking
out. Beware: If the timeout is reached with running tasks still remaining, certain tasks for which it is difficult for Camel to
shut down in a graceful manner may continue to run. So use this option with a bit of care. We may be able to improve this
functionality in future Camel releases.

onPrepareRef

Camel 2.8: A custom Processor to prepare the copy of the Exchange each recipient will receive. This allows you to
perform arbitrary transformations, such as deep-cloning the message payload (or any other custom logic).

shareUnitOfWork

false

Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more details.

Static Recipient List

The following example shows how to route a request from an input queuesa endpoint to a
static list of destinations

Using Annotations
You can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For
more details see the Bean Integration.

Using the Fluent Builders

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d");

}i
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>
<multicast>
<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>
</multicast>
</route>
</camelContext>

Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients
is dynamic and calculated at runtime. The following example demonstrates how to create a
dynamic recipient list using an Expression (which in this case it extracts a named header value
dynamically) to calculate the list of endpoints which are either of type Endpoint or are
converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder () {
public void configure() {
errorHandler (deadLetterChannel ("mock:error")) ;

from("direct:a")
.recipientList (header ("foo"));

}i

The above assumes that the header contains a list of endpoint URIs. The following takes a single
string header and tokenizes it

from("direct:a") .recipientList (
header ("recipientListHeader") .tokenize(","));

CHAPTER 10 - PATTERN APPENDIX

417

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html

418

Iteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:
* java.util.Collection
* java.util.Iterator
= arrays
* org.w3c.dom.NodelList
= asingle String with values separated with comma
= any other type will be regarded as a single value
Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">
<route>
<from uri="direct:a"/>
<recipientList>
<xpath>$foo</xpath>
</recipientList>
</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using delimiter in Spring XML

In Spring DSL you can set the delimiter attribute for setting a delimiter to be used if the
header value is a single String with multiple separated endpoints. By default Camel uses comma
as delimiter, but this option lets you specify a customer delimiter to use instead.

<route>
<from uri="direct:a" />
q! use comma as a delimiter for String based values
<recipientlList delimiter=", ">
<header>myHeader</header>
</recipientList>
</route>

So if myHeader contains a String with the value "activemq: queue: foo,
activemg:topic:hello , log:bar" then Camel will split the String using the
delimiter given in the XML that was comma, resulting into 3 endpoints to send to. You can use
spaces between the endpoints as Camel will trim the value when it lookup the endpoint to send
to.

Note: In Java DSL you use the tokenizer to archive the same. The route above in Java
DSL:

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup

from("direct:a") .recipientList (header ("myHeader") .tokenize (", "))

In Camel 2.1 its a bit easier as you can pass in the delimiter as 2nd parameter:

from("direct:a") .recipientlList (header ("myHeader"), "#");

Sending to multiple recipients in parallel

Available as of Camel 2.2

The Recipient List now supports parallelProcessing that for example Splitter also
supports. You can use it to use a thread pool to have concurrent tasks sending the Exchange to
multiple recipients concurrently.

from("direct:a") .recipientlList (header ("myHeader")) .parallelProcessing();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList parallelProcessing="true">
<header>myHeader</header>
</recipientList>
</route>

Stop continuing in case one recipient failed

Available as of Camel 2.2
The Recipient List now supports stopOnException that for example Splitter also
supports. You can use it to stop sending to any further recipients in case any recipient failed.

from("direct:a") .recipientlList (header ("myHeader")) .stopOnException () ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList stopOnException="true">
<header>myHeader</header>
</recipientList>
</route>

CHAPTER 10 - PATTERN APPENDIX

419

http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html

420

Note: You can combine parallelProcessing and stopOnException and have them
both true.

Ignore invalid endpoints

Available as of Camel 2.3

The Recipient List now supports ignoreInvalidEndpoints which the Routing Slip
also supports. You can use it to skip endpoints which is invalid.

from("direct:a") .recipientList (header ("myHeader")) .ignoreInvalidEndpoints () ;

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientlList ignoreInvalidEndpoints="true">
<header>myHeader</header>
</recipientList>
</route>

Then lets say the myHeader contains the following two endpoints direct:foo, xxx:bar.
The first endpoint is valid and works. However the 2nd is invalid and will just be ignored. Camel
logs at INFO level about, so you can see why the endpoint was invalid.

Using custom AggregationStrategy

Available as of Camel 2.2

You can now use you own AggregationStrategy with the Recipient List. However its
not that often you need that. What its good for is that in case you are using Request Reply
messaging then the replies from the recipient can be aggregated. By default Camel uses
UselatestAggregationStrategy which just keeps that last received reply. What if you
must remember all the bodies that all the recipients send back, then you can use your own
custom aggregator that keeps those. Its the same principle as with the Aggregator EIP so check
it out for details.

from("direct:a")
.recipientlList (header ("myHeader")) .aggregationStrategy (new
MyOwnAggregationStrategy ())
.to("direct:b");

And in Spring XML its an attribute on the recipient list tag.

CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/recipient-list.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/aggregator.html

<route>
<from uri="direct:a"/>
<recipientlist strategyRef="myStrategy">
<header>myHeader</header>

</recipientList>
<to uri="direct:b"/>
</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

Using custom thread pool

Available as of Camel 2.2

A thread pool is only used for parallelProcessing. You supply your own custom
thread pool via the ExecutorServiceStrategy (see Camel's Threading Model), the same
way you would do it for the aggregationStrategy. By default Camel uses a thread pool
with 10 threads (subject to change in a future version).

Using method call as recipient list

You can use a Bean to provide the recipients, for example:

from("activemg:queue:test") .recipientlList () .method (MessageRouter.class, "routeTo");

And then MessageRouter:

public class MessageRouter ({

public String routeTo() {
String queueName = "activemqg:queue:test2";

return queueName;

When you use a Bean then do not also use the @RecipientList annotation as this will in
fact add yet another recipient list, so you end up having two. Do not do like this.

public class MessageRouter ({
QRecipientList
public String routeTo() {

String queueName = "activemqg:queue:test2";
return queueName;

CHAPTER 10 - PATTERN APPENDIX

421

http://camel.apache.org/threading-model.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html

422

Well you should only do like that above (using @RecipientList) if you route just route to a
Bean which you then want to act as a recipient list.
So the original route can be changed to:

from("activemg:queue:test") .bean (MessageRouter.class, "routeTo");

Which then would invoke the routeTo method and detect its annotated with
@RecipientList and then act accordingly as if it was a recipient list EIP.

Using timeout

Available as of Camel 2.5

If you use parallelProcessing then you can configure a total timeout value in millis.
Camel will then process the messages in parallel until the timeout is hit. This allows you to
continue processing if one message is slow. For example you can set a timeout value of 20 sec.
For example in the unit test below you can see we multicast the message to 3 destinations. We
ha