
Apache Camel

U S E R G U I D E

Version 2.9.7

Copyright 2007-2013, Apache Software Foundation

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents... ii

Chapter 1
Introduction ...1

Chapter 1
Quickstart...1

Chapter 1
Getting Started..7

Chapter 1
Architecture.. 17

Chapter 1
Enterprise Integration Patterns.. 37

Chapter 1
Cook Book ... 42

Chapter 1
Tutorials... 122

Chapter 1
Language Appendix.. 221

Chapter 1
DataFormat Appendix... 297

Chapter 1
Pattern Appendix... 383

Chapter 1
Component Appendix ... 532

Index ..0

ii APACHE CAMEL

C H A P T E R 1

° ° ° °

Introduction

Apache Camel ª is a versatile open-source integration framework based on known Enterprise
Integration Patterns.
Camel empowers you to define routing and mediation rules in a variety of domain-specific
languages, including a Java-based Fluent API, Spring or Blueprint XML Configuration files, and a
Scala DSL. This means you get smart completion of routing rules in your IDE, whether in a Java,
Scala or XML editor.

Apache Camel uses URIs to work directly with any kind of Transport or messaging model
such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as well as pluggable Components and
Data Format options. Apache Camel is a small library with minimal dependencies for easy
embedding in any Java application. Apache Camel lets you work with the same API regardless
which kind of Transport is used - so learn the API once and you can interact with all the
Components provided out-of-box.

Apache Camel provides support for Bean Binding and seamless integration with popular
frameworks such as Spring, Blueprint and Guice. Camel also has extensive support for unit
testing your routes.

The following projects can leverage Apache Camel as a routing and mediation engine:
• Apache ServiceMix - a popular distributed open source ESB and JBI container
• Apache ActiveMQ - a mature, widely used open source message broker
• Apache CXF - a smart web services suite (JAX-WS and JAX-RS)
• Apache Karaf - a small OSGi based runtime in which applications can be deployed
• Apache MINA - a high-performance NIO-driven networking framework

So don't get the hump - try Camel today!

CHAPTER 1 - INTRODUCTION 1

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/scala-dsl.html
http://camel.apache.org/uris.html
http://camel.apache.org/transport.html
http://camel.apache.org/http.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jbi.html
http://camel.apache.org/mina.html
http://camel.apache.org/cxf.html
http://camel.apache.org/components.html
http://camel.apache.org/data-format.html
http://camel.apache.org/what-are-the-dependencies.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transport.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://karaf.apache.org/
http://mina.apache.org/
http://en.wikipedia.org/wiki/New_I/O

Too many buzzwords - what exactly is Camel?
Okay, so the description above is technology focused.
There's a great discussion about Camel at Stack Overflow. We suggest you view the
post, read the comments, and browse the suggested links for more details.

2 CHAPTER 1 - INTRODUCTION

http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel

C H A P T E R 2

° ° ° °

Quickstart

To start using Apache Camel quickly, you can read through some simple examples in this
chapter. For readers who would like a more thorough introduction, please skip ahead to
Chapter 3.

WALK THROUGH AN EXAMPLE CODE

This mini-guide takes you through the source code of a simple example.

Camel can be configured either by using Spring or directly in Java - which this example does.

This example is available in the examples\camel-example-jms-file directory of
the Camel distribution.

We start with creating a CamelContext - which is a container for Components, Routes etc:

CamelContext context = new DefaultCamelContext();

There is more than one way of adding a Component to the CamelContext. You can add
components implicitly - when we set up the routing - as we do here for the FileComponent:

context.addRoutes(new RouteBuilder() {
public void configure() {

from("test-jms:queue:test.queue").to("file://test");
}

});

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("vm://localhost?broker.persistent=false");
// Note we can explicit name the component
context.addComponent("test-jms",
JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

The above works with any JMS provider. If we know we are using ActiveMQ we can use an
even simpler form using the activeMQComponent() method while specifying the
brokerURL used to connect to ActiveMQ

CHAPTER 2 - QUICKSTART 1

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/spring.html
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/download.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/components.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/activemq.html
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/configuring-transports.html

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

In normal use, an external system would be firing messages or events directly into Camel
through one if its Components but we are going to use the ProducerTemplate which is a really
easy way for testing your configuration:

ProducerTemplate template = context.createProducerTemplate();

Next you must start the camel context. If you are using Spring to configure the camel context
this is automatically done for you; though if you are using a pure Java approach then you just
need to call the start() method

camelContext.start();

This will start all of the configured routing rules.

So after starting the CamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody("test-jms:queue:test.queue", "Test Message: " + i);

}

WHAT HAPPENS?

From the ProducerTemplate - we send objects (in this case text) into the CamelContext to the
Component test-jms:queue:test.queue. These text objects will be converted automatically into
JMS Messages and posted to a JMS Queue named test.queue. When we set up the Route, we
configured the FileComponent to listen of the test.queue.

The File FileComponent will take messages off the Queue, and save them to a directory
named test. Every message will be saved in a file that corresponds to its destination and message
id.

Finally, we configured our own listener in the Route - to take notifications from the
FileComponent and print them out as text.

That's it!

If you have the time then use 5 more minutes to Walk through another example that
demonstrates the Spring DSL (XML based) routing.

2 CHAPTER 2 - QUICKSTART

http://camel.apache.org/components.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/spring.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/walk-through-another-example.html

WALK THROUGH ANOTHER EXAMPLE

Introduction

Continuing the walk from our first example, we take a closer look at the routing and explain a
few pointers - so you won't walk into a bear trap, but can enjoy an after-hours walk to the local
pub for a large beer

First we take a moment to look at the Enterprise Integration Patterns - the base pattern
catalog for integration scenarios. In particular we focus on Pipes and Filters - a central pattern.
This is used to route messages through a sequence of processing steps, each performing a
specific function - much like the Java Servlet Filters.

Pipes and filters

In this sample we want to process a message in a sequence of steps where each steps can
perform their specific function. In our example we have a JMS queue for receiving new orders.
When an order is received we need to process it in several steps:

▪ validate
▪ register
▪ send confirm email

This can be created in a route like this:

<route>
<from uri="jms:queue:order"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</route>

Where as the bean ref is a reference for a spring bean id, so we define our beans using
regular Spring XML as:

<bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

Our validator bean is a plain POJO that has no dependencies to Camel what so ever. So you
can implement this POJO as you like. Camel uses rather intelligent Bean Binding to invoke your
POJO with the payload of the received message. In this example we will not dig into this how
this happens. You should return to this topic later when you got some hands on experience
with Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from the JMS queue
the message is routed like Pipes and Filters:
1. payload from the JMS is sent as input to the validateOrder bean

CHAPTER 2 - QUICKSTART 3

http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html

Pipeline is default
In the route above we specify pipeline but it can be omitted as its default, so
you can write the route as:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a multicast and "one" of
the endpoints to send to (as a logical group) is a pipeline of other endpoints. For example.

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</multicast>

</route>

The above sends the order (from jms:queue:order) to two locations at the same time,
our log component, and to the "pipeline" of beans which goes one to the other. If you
consider the opposite, sans the <pipeline>

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</multicast>
</route>

you would see that multicast would not "flow" the message from one bean to the next, but
rather send the order to all 4 endpoints (1x log, 3x bean) in parallel, which is not (for this

4 CHAPTER 2 - QUICKSTART

example) what we want. We need the message to flow to the validateOrder, then to the
registerOrder, then the sendConfirmEmail so adding the pipeline, provides this facility.

2. the output from validateOrder bean is sent as input to the registerOrder bean
3. the output from registerOrder bean is sent as input to the sendConfirmEmail bean

Using Camel Components

In the route lets imagine that the registration of the order has to be done by sending data to a
TCP socket that could be a big mainframe. As Camel has many Components we will use the
camel-mina component that supports TCP connectivity. So we change the route to:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<bean ref="sendConfirmEmail"/>

</route>

What we now have in the route is a to type that can be used as a direct replacement for the
bean type. The steps is now:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as text to the mainframe using TCP
3. the output from mainframe is sent back as input to the sendConfirmEmai bean

What to notice here is that the to is not the end of the route (the world) in this

example it's used in the middle of the Pipes and Filters. In fact we can change the bean types to
to as well:

<route>
<from uri="jms:queue:order"/>
<to uri="bean:validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<to uri="bean:sendConfirmEmail"/>

</route>

As the to is a generic type we must state in the uri scheme which component it is. So we must
write bean: for the Bean component that we are using.

CHAPTER 2 - QUICKSTART 5

http://camel.apache.org/components.html
http://camel.apache.org/mina.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/bean.html

Conclusion

This example was provided to demonstrate the Spring DSL (XML based) as opposed to the
pure Java DSL from the first example. And as well to point about that the to doesn't have to be
the last node in a route graph.

This example is also based on the in-only message exchange pattern. What you must
understand as well is the in-out message exchange pattern, where the caller expects a
response. We will look into this in another example.

See also

▪ Examples
▪ Tutorials
▪ User Guide

6 CHAPTER 2 - QUICKSTART

http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/examples.html
http://camel.apache.org/tutorials.html
http://camel.apache.org/user-guide.html

C H A P T E R 3

° ° ° °

Getting Started with Apache
Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK

The purpose of a "patterns" book is not to advocate new techniques that the authors have
invented, but rather to document existing best practices within a particular field. By doing this,
the authors of a patterns book hope to spread knowledge of best practices and promote a
vocabulary for discussing architectural designs.
One of the most famous patterns books is Design Patterns: Elements of Reusable Object-oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, commonly known as
the "Gang of Four" (GoF) book. Since the publication of Design Patterns, many other pattern
books, of varying quality, have been written. One famous patterns book is called Enterprise
Integration Patterns: Designing, Building, and Deploying Messaging Solutions by Gregor Hohpe and
Bobby Woolf. It is common for people to refer to this book by its initials EIP. As the subtitle of
EIP suggests, the book focuses on design patterns for asynchronous messaging systems. The
book discusses 65 patterns. Each pattern is given a textual name and most are also given a
graphical symbol, intended to be used in architectural diagrams.

THE CAMEL PROJECT

Camel (http://camel.apache.org) is an open-source, Java-based project that helps the user
implement many of the design patterns in the EIP book. Because Camel implements many of the
design patterns in the EIP book, it would be a good idea for people who work with Camel to
have the EIP book as a reference.

ONLINE DOCUMENTATION FOR CAMEL

The documentation is all under the Documentation category on the right-side menu of the
Camel website (also available in PDF form. Camel-related books are also available, in particular
the Camel in Action book, presently serving as the Camel bible--it has a free Chapter One
(pdf), which is highly recommended to read to get more familiar with Camel.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 7

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://camel.apache.org
http://camel.apache.org/manual.html
http://camel.apache.org/books.html
http://manning.com/ibsen
http://www.manning.com/ibsen/chapter1sample.pdf
http://www.manning.com/ibsen/chapter1sample.pdf

A useful tip for navigating the online documentation

The breadcrumbs at the top of the online Camel documentation can help you navigate between
parent and child subsections.
For example, If you are on the "Languages" documentation page then the left-hand side of the
reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home page of the
Apache Camel project, and clicking on "Documentation" takes you to the main documentation
page. You can interpret the "Architecture" and "Languages" buttons as indicating you are in the
"Languages" section of the "Architecture" chapter. Adding browser bookmarks to pages that
you frequently reference can also save time.

ONLINE JAVADOC DOCUMENTATION

The Apache Camel website provides Javadoc documentation. It is important to note that the
Javadoc documentation is spread over several independent Javadoc hierarchies rather than being
all contained in a single Javadoc hierarchy. In particular, there is one Javadoc hierarchy for the
core APIs of Camel, and a separate Javadoc hierarchy for each component technology supported
by Camel. For example, if you will be using Camel with ActiveMQ and FTP then you need to
look at the Javadoc hierarchies for the core API and Spring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL

In this section some of the concepts and terminology that are fundamental to Camel are
explained. This section is not meant as a complete Camel tutorial, but as a first step in that
direction.

Endpoint

The term endpoint is often used when talking about inter-process communication. For example,
in client-server communication, the client is one endpoint and the server is the other endpoint.
Depending on the context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is contactable at that
address. For example, if somebody uses "www.example.com:80" as an example of an endpoint,
they might be referring to the actual port at that host name (that is, an address), or they might
be referring to the web server (that is, software contactable at that address). Often, the
distinction between the address and software contactable at that address is not an important
one.
Some middleware technologies make it possible for several software entities to be contactable
at the same physical address. For example, CORBA is an object-oriented, remote-procedure-

8 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

call (RPC) middleware standard. If a CORBA server process contains several objects then a
client can communicate with any of these objects at the same physical address (host:port), but a
client communicates with a particular object via that object's logical address (called an IOR in
CORBA terminology), which consists of the physical address (host:port) plus an id that uniquely
identifies the object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA, some people may
use the term "endpoint" to refer to a CORBA server's physical address, while other people may
use the term to refer to the logical address of a single CORBA object, and other people still
might use the term to refer to any of the following:

• The physical address (host:port) of the CORBA server process
• The logical address (host:port plus id) of a CORBA object.
• The CORBA server process (a relatively heavyweight software entity)
• A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least two ways. First, it is
ambiguous because it might refer to an address or to a software entity contactable at that
address. Second, it is ambiguous in the granularity of what it refers to: a heavyweight versus
lightweight software entity, or physical address versus logical address. It is useful to understand
that different people use the term endpoint in slightly different (and hence ambiguous) ways
because Camel's usage of this term might be different to whatever meaning you had previously
associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many different
communication technologies. Here are some examples of the Camel-supported endpoint
technologies.

• A JMS queue.
• A web service.
• A file. A file may sound like an unlikely type of endpoint, until you realize that in some

systems one application might write information to a file and, later, another
application might read that file.

• An FTP server.
• An email address. A client can send a message to an email address, and a server can

read an incoming message from a mail server.
• A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some endpoints and
connect these endpoints with routes, which I will discuss later in Section 4.8 ("Routes,
RouteBuilders and Java DSL"). Camel defines a Java interface called Endpoint. Each Camel-
supported endpoint has a class that implements this Endpoint interface. As I discussed in
Section 3.3 ("Online Javadoc documentation"), Camel provides a separate Javadoc hierarchy for
each communications technology supported by Camel. Because of this, you will find
documentation on, say, the JmsEndpoint class in the JMS Javadoc hierarchy, while
documentation for, say, the FtpEndpoint class is in the FTP Javadoc hierarchy.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 9

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/

CamelContext

A CamelContext object represents the Camel runtime system. You typically have one
CamelContext object in an application. A typical application executes the following steps.

1. Create a CamelContext object.
2. Add endpoints Ð and possibly Components, which are discussed in Section 4.5

("Components") Ð to the CamelContext object.
3. Add routes to the CamelContext object to connect the endpoints.
4. Invoke the start() operation on the CamelContext object. This starts Camel-

internal threads that are used to process the sending, receiving and processing of
messages in the endpoints.

5. Eventually invoke the stop() operation on the CamelContext object. Doing this
gracefully stops all the endpoints and Camel-internal threads.

Note that the CamelContext.start() operation does not block indefinitely. Rather, it
starts threads internal to each Component and Endpoint and then start() returns.
Conversely, CamelContext.stop() waits for all the threads internal to each Endpoint
and Component to terminate and then stop() returns.
If you neglect to call CamelContext.start() in your application then messages will not be
processed because internal threads will not have been created.
If you neglect to call CamelContext.stop() before terminating your application then the
application may terminate in an inconsistent state. If you neglect to call
CamelContext.stop() in a JUnit test then the test may fail due to messages not having
had a chance to be fully processed.

CamelTemplate

Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other open-source
projects, such as the TransactionTemplate and JmsTemplate classes in Spring.
The CamelTemplate class is a thin wrapper around the CamelContext class. It has
methods that send a Message or Exchange Ð both discussed in Section 4.6 ("Message and
Exchange")) Ð to an Endpoint Ð discussed in Section 4.1 ("Endpoint"). This provides a way to
enter messages into source endpoints, so that the messages will move along routes Ð discussed
in Section 4.8 ("Routes, RouteBuilders and Java DSL") Ð to destination endpoints.

The Meaning of URL, URI, URN and IRI

Some Camel methods take a parameter that is a URI string. Many people know that a URI is
"something like a URL" but do not properly understand the relationship between URI and URL,
or indeed its relationship with other acronyms such as IRI and URN.
Most people are familiar with URLs (uniform resource locators), such as "http://...", "ftp://...",
"mailto:...". Put simply, a URL specifies the location of a resource.
A URI (uniform resource identifier) is a URL or a URN. So, to fully understand what URI means,

10 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://www.springframework.org/

you need to first understand what is a URN.
URN is an acronym for uniform resource name. There are may "unique identifier" schemes in the
world, for example, ISBNs (globally unique for books), social security numbers (unique within a
country), customer numbers (unique within a company's customers database) and telephone
numbers. Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-name>:<unique-
identifier>". A URN uniquely identifies a resource, such as a book, person or piece of equipment.
By itself, a URN does not specify the location of the resource. Instead, it is assumed that a
registry provides a mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server application, a wall chart
or anything else that is convenient. Some hypothetical examples of URNs are
"urn:employee:08765245", "urn:customer:uk:3458:hul8" and
"urn:foo:0000-0000-9E59-0000-5E-2". The <scheme-name> ("employee", "customer" and "foo"
in these examples) part of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you know the semantics
implied by the <scheme-name>, and (2) you have access to the registry appropriate for the
<scheme-name>. A registry does not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely misused as a
synonym for URL.
IRI is an acronym for internationalized resource identifier. An IRI is simply an internationalized
version of a URI. In particular, a URI can contain letters and digits in the US-ASCII character
set, while a IRI can contain those same letters and digits, and also European accented characters,
Greek letters, Chinese ideograms and so on.

Components

Component is confusing terminology; EndpointFactory would have been more appropriate because
a Component is a factory for creating Endpoint instances. For example, if a Camel-based
application uses several JMS queues then the application will create one instance of the
JmsComponent class (which implements the Component interface), and then the application
invokes the createEndpoint() operation on this JmsComponent object several times.
Each invocation of JmsComponent.createEndpoint() creates an instance of the
JmsEndpoint class (which implements the Endpoint interface). Actually, application-level
code does not invoke Component.createEndpoint() directly. Instead, application-level
code normally invokes CamelContext.getEndpoint(); internally, the CamelContext
object finds the desired Component object (as I will discuss shortly) and then invokes
createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 11

The parameter to getEndpoint() is a URI. The URI prefix (that is, the part before ":")
specifies the name of a component. Internally, the CamelContext object maintains a mapping
from names of components to Component objects. For the URI given in the above example,
the CamelContext object would probably map the pop3 prefix to an instance of the
MailComponent class. Then the CamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")
on that MailComponent object. The createEndpoint() operation splits the URI into its
component parts and uses these parts to create and configure an Endpoint object.
In the previous paragraph, I mentioned that a CamelContext object maintains a mapping
from component names to Component objects. This raises the question of how this map is
populated with named Component objects. There are two ways of populating the map. The
first way is for application-level code to invoke CamelContext.addComponent(String
componentName, Component component). The example below shows a single
MailComponent object being registered in the map under 3 different names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named Component objects in the
CamelContext object is to let the CamelContext object perform lazy initialization. This
approach relies on developers following a convention when they write a class that implements
the Component interface. I illustrate the convention by an example. Let's assume you write a
class called com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write a properties file
called "META-INF/services/org/apache/camel/component/foo" (without a ".properties" file
extension) that has a single entry in it called class, the value of which is the fully-scoped name
of your class. This is shown below.

Listing 1.Listing 1. META-INF/services/org/apache/camel/component/fooMETA-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you write another
properties file in the same directory called "bar" that has the same contents. Once you have
written the properties file(s), you create a jar file that contains the
com.example.myproject.FooComponent class and the properties file(s), and you add
this jar file to your CLASSPATH. Then, when application-level code invokes
createEndpoint("foo:...") on a CamelContext object, Camel will find the "foo""
properties file on the CLASSPATH, get the value of the class property from that properties
file, and use reflection APIs to create an instance of the specified class.
As I said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support for numerous
communication technologies. The out-of-the-box support consists of classes that implement the

12 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Component interface plus properties files that enable a CamelContext object to populate
its map of named Component objects.
Earlier in this section I gave the following example of calling
CamelContext.getEndpoint().

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to getEndpoint() was a URI.
I said that because the online Camel documentation and the Camel source code both claim the
parameter is a URI. In reality, the parameter is restricted to being a URL. This is because when
Camel extracts the component name from the parameter, it looks for the first ":", which is a
simplistic algorithm. To understand why, recall from Section 4.4 ("The Meaning of URL, URI,
URN and IRI") that a URI can be a URL or a URN. Now consider the following calls to
getEndpoint.

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms", "urn" and "urn". It
would be more useful if the latter components were identified as "urn:foo" and "urn:bar" or,
alternatively, as "foo" and "bar" (that is, by skipping over the "urn:" prefix). So, in practice you
must identify an endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for URNs means the
you should consider the parameter to getEndpoint() as being a URL rather than (as
claimed) a URI.

Message and Exchange

The Message interface provides an abstraction for a single message, such as a request, reply
or exception message.
There are concrete classes that implement the Message interface for each Camel-supported
communications technology. For example, the JmsMessage class provides a JMS-specific
implementation of the Message interface. The public API of the Message interface provides
get- and set-style methods to access the message id, body and individual header fields of a
messge.
The Exchange interface provides an abstraction for an exchange of messages, that is, a
request message and its corresponding reply or exception message. In Camel terminology, the
request, reply and exception messages are called in, out and fault messages.
There are concrete classes that implement the Exchange interface for each Camel-supported
communications technology. For example, the JmsExchange class provides a JMS-specific
implementation of the Exchange interface. The public API of the Exchange interface is quite

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 13

limited. This is intentional, and it is expected that each class that implements this interface will
provide its own technology-specific operations.
Application-level programmers rarely access the Exchange interface (or classes that
implement it) directly. However, many classes in Camel are generic types that are instantiated
on (a class that implements) Exchange. Because of this, the Exchange interface appears a
lot in the generic signatures of classes and methods.

Processor

The Processor interface represents a class that processes a message. The signature of this
interface is shown below.

Listing 1.Listing 1. ProcessorProcessor

package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the process() method is an Exchange rather than a
Message. This provides flexibility. For example, an implementation of this method initially
might call exchange.getIn() to get the input message and process it. If an error occurs
during processing then the method can call exchange.setException().
An application-level developer might implement the Processor interface with a class that
executes some business logic. However, there are many classes in the Camel library that
implement the Processor interface in a way that provides support for a design pattern in the
EIP book. For example, ChoiceProcessor implements the message router pattern, that is, it
uses a cascading if-then-else statement to route a message from an input queue to one of
several output queues. Another example is the FilterProcessor class which discards
messages that do not satisfy a stated predicate (that is, condition).

Routes, RouteBuilders and Java DSL

A route is the step-by-step movement of a Message from an input queue, through arbitrary
types of decision making (such as filters and routers) to a destination queue (if any). Camel
provides two ways for an application developer to specify routes. One way is to specify route
information in an XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific language).

Introduction to Java DSL

For many people, the term "domain-specific language" implies a compiler or interpreter that can
process an input file containing keywords and syntax specific to a particular domain. This is not
the approach taken by Camel. Camel documentation consistently uses the term "Java DSL"

14 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

instead of "DSL", but this does not entirely avoid potential confusion. The Camel "Java DSL" is a
class library that can be used in a way that looks almost like a DSL, except that it has a bit of
Java syntactic baggage. You can see this in the example below. Comments afterwards explain
some of the constructs used in the example.

Listing 1.Listing 1. Example of Camel's "Java DSL"Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of an anonymous
subclass of RouteBuilder with the specified configure() method.
The CamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) Ð so the RouteBuilder object knows which
CamelContext object it is associated with Ð and then invokes builder.configure().
The body of configure() invokes methods such as from(), filter(), choice(),
when(), isEqualTo(), otherwise() and to().
The RouteBuilder.from(String uri) method invokes getEndpoint(uri) on the
CamelContext associated with the RouteBuilder object to get the specified Endpoint
and then puts a FromBuilder "wrapper" around this Endpoint. The
FromBuilder.filter(Predicate predicate) method creates a
FilterProcessor object for the Predicate (that is, condition) object built from the
header("foo").isEqualTo("bar") expression. In this way, these operations
incrementally build up a Route object (with a RouteBuilder wrapper around it) and add it
to the CamelContext object associated with the RouteBuilder.

Critique of Java DSL

The online Camel documentation compares Java DSL favourably against the alternative of
configuring routes and endpoints in a XML-based Spring configuration file. In particular, Java
DSL is less verbose than its XML counterpart. In addition, many integrated development
environments (IDEs) provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write Java DSL.
However, there is another option that the Camel documentation neglects to consider: that of
writing a parser that can process DSL stored in, say, an external file. Currently, Camel does not
provide such a DSL parser, and I do not know if it is on the "to do" list of the Camel

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 15

maintainers. I think that a DSL parser would offer a significant benefit over the current Java
DSL. In particular, the DSL would have a syntactic definition that could be expressed in a
relatively short BNF form. The effort required by a Camel user to learn how to use DSL by
reading this BNF would almost certainly be significantly less than the effort currently required
to study the API of the RouterBuilder classes.

Continue Learning about Camel

Return to the main Getting Started page for additional introductory reference information.

16 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/getting-started.html

C H A P T E R 4

° ° ° °

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml Configuration to
configure routing and mediation rules which are added to a CamelContext to implement the
various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a collection of Component
instances. A Component is essentially a factory of Endpoint instances. You can explicitly
configure Component instances in Java code or an IoC container like Spring or Guice, or they
can be auto-discovered using URIs.

An Endpoint acts rather like a URI or URL in a web application or a Destination in a JMS
system; you can communicate with an endpoint; either sending messages to it or consuming
messages from it. You can then create a Producer or Consumer on an Endpoint to exchange
messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression or Predicate to
make a truly powerful DSL which is extensible to the most suitable language depending on your
needs. The following languages are supported

• Bean Language for using Java for expressions
• Constant
• the unified EL from JSP and JSF
• Header
• JXPath
• Mvel
• OGNL
• Ref Language
• Property
• Scripting Languages such as

◦ BeanShell
◦ JavaScript
◦ Groovy
◦ Python
◦ PHP
◦ Ruby

• Simple
◦ File Language

• Spring Expression Language
• SQL

CHAPTER 4 - ARCHITECTURE 17

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/routes.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/component.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/uris.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/constant.html
http://camel.apache.org/el.html
http://camel.apache.org/header.html
http://camel.apache.org/jxpath.html
http://camel.apache.org/mvel.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ref-language.html
http://camel.apache.org/property.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/javascript.html
http://camel.apache.org/groovy.html
http://camel.apache.org/python.html
http://camel.apache.org/php.html
http://camel.apache.org/ruby.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/spel.html
http://camel.apache.org/sql.html

• Tokenizer
• XPath
• XQuery
• VTD-XML

Most of these languages is also supported used as Annotation Based Expression Language.

For a full details of the individual languages see the Language Appendix

URIS

Camel makes extensive use of URIs to allow you to refer to endpoints which are lazily created
by a Component if you refer to them within Routes.

Current Supported URIs

Component / ArtifactId / URI Description

AHC / camel-ahc

ahc:hostname:[port]

To call external HTTP services
using Async Http Client

AMQP / camel-amqp

amqp:[topic:]destinationName

For Messaging with AMQP
protocol

APNS / camel-apns

apns:notify[?options]

For sending notifications to Apple
iOS devices

Atom / camel-atom

atom:uri

Working with Apache Abdera for
atom integration, such as
consuming an atom feed.

Avro / camel-avro

avro:http://hostname[:port][?options]

Working with Apache Avro for
data serialization.

18 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/tokenizer.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/vtd-xml.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/book-languages-appendix.html
http://camel.apache.org/component.html
http://camel.apache.org/routes.html
http://camel.apache.org/ahc.html
http://github.com/sonatype/async-http-client
http://camel.apache.org/amqp.html
http://www.amqp.org/
http://www.amqp.org/
http://camel.apache.org/apns.html
http://camel.apache.org/atom.html
http://incubator.apache.org/abdera/
http://camel.apache.org/avro.html
http://avro.apache.org/

important
Make sure to read How do I configure endpoints to learn more about configuring
endpoints. For example how to refer to beans in the Registry or how to use raw
values for password options, and using property placeholders etc.

AWS-CW / camel-aws

aws-cw://namespace[?options]

For working with Amazon's
CloudWatch (CW).

AWS-DDB / camel-aws

aws-ddb://tableName[?options]

For working with Amazon's
DynamoDB (DDB).

AWS-SDB / camel-aws

aws-sdb://domainName[?options]

For working with Amazon's
SimpleDB (SDB).

AWS-SES / camel-aws

aws-ses://from[?options]

For working with Amazon's
Simple Email Service (SES).

AWS-SNS / camel-aws

aws-sns://topicname[?options]

For Messaging with Amazon's
Simple Notification Service (SNS).

AWS-SQS / camel-aws

aws-sqs://queuename[?options]

For Messaging with Amazon's
Simple Queue Service (SQS).

AWS-S3 / camel-aws

aws-s3://bucketname[?options]

For working with Amazon's
Simple Storage Service (S3).

CHAPTER 4 - ARCHITECTURE 19

http://camel.apache.org/aws-cw.html
http://camel.apache.org/aws.html
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://camel.apache.org/aws-ddb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://camel.apache.org/aws-sdb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://camel.apache.org/aws-ses.html
http://camel.apache.org/aws.html
http://aws.amazon.com/ses/
http://aws.amazon.com/ses/
http://camel.apache.org/aws-sns.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/
http://camel.apache.org/aws-sqs.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://camel.apache.org/aws-s3.html
http://camel.apache.org/aws.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/registry.html
http://camel.apache.org/using-propertyplaceholder.html

Bean / camel-core

bean:beanName[?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

Bean Validation / camel-bean-validator

bean-validator:something

Validates the payload of a message
using the Java Validation API (JSR
303 and JAXP Validation) and its
reference implementation
Hibernate Validator

Browse / camel-core

browse:someName

Provides a simple
BrowsableEndpoint which can be
useful for testing, visualisation
tools or debugging. The exchanges
sent to the endpoint are all
available to be browsed.

Cache / camel-cache

cache://cachename[?options]

The cache component facilitates
creation of caching endpoints and
processors using EHCache as the
cache implementation.

Class / camel-core

class:className[?method=someMethod]

Uses the Bean Binding to bind
message exchanges to beans in the
Registry. Is also used for exposing
and invoking POJO (Plain Old Java
Objects).

CMIS / camel-cmis

cmis://cmisServerUrl[?options]

Uses the Apache Chemistry client
API to interface with CMIS
supporting CMS

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages using
the jetty cometd implementation
of the bayeux protocol

20 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-validation.html
http://jcp.org/en/jsr/detail?id=303
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://camel.apache.org/browse.html
http://camel.apache.org/browsableendpoint.html
http://camel.apache.org/cache.html
http://ehcache.org/
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/cmis.html
http://chemistry.apache.org/java/opencmis.html
http://camel.apache.org/cometd.html
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

Context / camel-context

context:camelContextId:localEndpointName

Used to refer to endpoints within
a separate CamelContext to
provide a simple black box
composition approach so that
routes can be combined into a
CamelContext and then used as a
black box component inside other
routes in other CamelContexts

ControlBus / camel-core

controlbus:command[?options]

ControlBus EIP that allows to
send messages to Endpoints for
managing and monitoring your
Camel applications.

CouchDB / camel-couchdb

couchdb:http://hostname[:port]/database[?options]

To integrate with Apache
CouchDB.

Crypto (Digital Signatures) / camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify exchanges
using the Signature Service of the
Java Cryptographic Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]

Working with Apache CXF for
web services integration

CXF Bean / camel-cxf

cxf:bean name

Proceess the exchange using a
JAX WS or JAX RS annotated
bean from the registry. Requires
less configuration than the above
CXF Component

CXFRS / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF for
REST services integration

CHAPTER 4 - ARCHITECTURE 21

http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/controlbus-component.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/couchdb.html
http://couchdb.apache.org/
http://couchdb.apache.org/
http://camel.apache.org/crypto-digital-signatures.html
http://camel.apache.org/cxf.html
http://apache.org/cxf/
http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/cxfrs.html
http://apache.org/cxf/

DataSet / camel-core

dataset:name

For load & soak testing the
DataSet provides a way to create
huge numbers of messages for
sending to Components or
asserting that they are consumed
correctly

Direct / camel-core

direct:name

Synchronous call to another
endpoint from same
CamelContext.

Direct-VM / camel-core

direct-vm:name

Synchronous call to another
endpoint in another
CamelContext running in the
same JVM.

DNS / camel-dns

dns:operation

To lookup domain information
and run DNS queries using
DNSJava

EJB / camel-ejb

ejb:ejbName[?method=someMethod]

Uses the Bean Binding to bind
message exchanges to EJBs. It
works like the Bean component
but just for accessing EJBs.
Supports EJB 3.0 onwards.

ElasticSearch / camel-elasticsearch

elasticsearch://clusterName

For interfacing with an
ElasticSearch server.

Event / camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

EventAdmin / camel-eventadmin

eventadmin:topic

Receiving OSGi EventAdmin
events

22 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/dataset.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/components.html
http://camel.apache.org/direct.html
http://camel.apache.org/direct-vm.html
http://camel.apache.org/dns.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/ejb.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://camel.apache.org/elasticsearch.html
http://elasticsearch.org
http://camel.apache.org/event.html
http://camel.apache.org/eventadmin.html

Exec / camel-exec

exec://executable[?options]
For executing system commands

File / camel-core

file://nameOfFileOrDirectory

Sending messages to a file or
polling a file or directory.

Flatpack / camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or
delimited files or messages using
the FlatPack library

FOP / camel-fop

fop:outputFormat

Renders the message into
different output formats using
Apache FOP

FreeMarker / camel-freemarker

freemarker:someTemplateResource

Generates a response using a
FreeMarker template

FTP / camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over
FTP.

FTPS / camel-ftp

ftps://host[:port]/fileName

Sending and receiving files over
FTP Secure (TLS and SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement an OAuth consumer.
See also Camel Components for
Google App Engine.

GHttp / camel-gae

ghttp://hostname[:port][/path][?options]
ghttp:///path[?options]

Provides connectivity to the URL
fetch service of Google App
Engine but can also be used to
receive messages from servlets.
See also Camel Components for
Google App Engine.

CHAPTER 4 - ARCHITECTURE 23

http://camel.apache.org/exec.html
http://camel.apache.org/file2.html
http://camel.apache.org/flatpack.html
http://flatpack.sourceforge.net
http://camel.apache.org/fop.html
http://xmlgraphics.apache.org/fop/index.html
http://camel.apache.org/freemarker.html
http://freemarker.org/
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/gauth.html
http://camel.apache.org/gae.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/ghttp.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html

GLogin / camel-gae

glogin://hostname[:port][?options]

Used by Camel applications
outside Google App Engine (GAE)
for programmatic login to GAE
applications. See also Camel
Components for Google App
Engine.

GTask / camel-gae

gtask://queue-name

Supports asynchronous message
processing on Google App Engine
by using the task queueing service
as message queue. See also Camel
Components for Google App
Engine.

GMail / camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails via the
mail service of Google App
Engine. See also Camel
Components for Google App
Engine.

Google Guava EventBus / camel-guava-eventbus

guava-eventbus:busName[?eventClass=className]

The Google Guava EventBus
allows publish-subscribe-style
communication between
components without requiring the
components to explicitly register
with one another (and thus be
aware of each other). This
component provides integration
bridge between Camel and
Google Guava EventBus
infrastructure.

Hazelcast / camel-hazelcast

hazelcast://[type]:cachename[?options]

Hazelcast is a data grid entirely
implemented in Java (single jar).
This component supports map,
multimap, seda, queue, set, atomic
number and simple cluster
support.

HBase / camel-hbase

hbase://table[?options]

For reading/writing from/to an
HBase store (Hadoop database)

24 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/glogin.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gtask.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gmail.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/guava-eventbus.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/hazelcast-component.html
http://www.hazelcast.com
http://camel.apache.org/hbase.html
http://hadoop.apache.org/hbase/

HDFS / camel-hdfs

hdfs://path[?options]

For reading/writing from/to an
HDFS filesystem

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7 MLLP
protocol and the HL7 model using
the HAPI library

HTTP / camel-http

http://hostname[:port]

For calling out to external HTTP
servers using Apache HTTP Client
3.x

HTTP4 / camel-http4

http4://hostname[:port]

For calling out to external HTTP
servers using Apache HTTP Client
4.x

iBATIS / camel-ibatis

ibatis://statementName

Performs a query, poll, insert,
update or delete in a relational
database using Apache iBATIS

IMAP / camel-mail

imap://hostname[:port]
Receiving email using IMAP

IRC / camel-irc

irc:host[:port]/#room
For IRC communication

JavaSpace / camel-javaspace

javaspace:jini://host?spaceName=mySpace?...

Sending and receiving messages
through JavaSpace

JBI / servicemix-camel

jbi:serviceName

For JBI integration such as
working with Apache ServiceMix

CHAPTER 4 - ARCHITECTURE 25

http://camel.apache.org/hdfs.html
http://hadoop.apache.org/hdfs/
http://camel.apache.org/hl7.html
http://hl7api.sourceforge.net
http://camel.apache.org/http.html
http://camel.apache.org/http4.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/mail.html
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://camel.apache.org/irc.html
http://camel.apache.org/javaspace.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://camel.apache.org/jbi.html
http://servicemix.apache.org

jclouds / jclouds

jclouds:[blobstore|computservice]:provider

For interacting with cloud
compute & blobstore service via
jclouds

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
compliant repository like Apache
Jackrabbit

JDBC / camel-jdbc

jdbc:dataSourceName?options

For performing JDBC queries and
operations

Jetty / camel-jetty

jetty:url
For exposing services over HTTP

JMS / camel-jms

jms:[topic:]destinationName
Working with JMS providers

JMX / camel-jmx

jmx://platform?options

For working with JMX notification
listeners

JPA / camel-jpa

jpa://entityName

For using a database as a queue via
the JPA specification for working
with OpenJPA, Hibernate or
TopLink

Jsch / camel-jsch

scp://localhost/destination
Support for the scp protocol

JT/400 / camel-jt400

jt400://user:pwd@system/<path_to_dtaq>

For integrating with data queues
on an AS/400 (aka System i, IBM i,
i5, ...) system

26 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jclouds.html
http://www.jclouds.org
http://camel.apache.org/jcr.html
http://jackrabbit.apache.org
http://jackrabbit.apache.org
http://camel.apache.org/jdbc.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jms.html
http://camel.apache.org/jmx.html
http://camel.apache.org/jpa.html
http://openjpa.apache.org/
http://www.hibernate.org/
http://camel.apache.org/jsch.html
http://camel.apache.org/jt400.html

Kestrel / camel-kestrel

kestrel://[addresslist/]queuename[?options]

For producing to or consuming
from Kestrel queues

Krati / camel-krati

krati://[path to datastore/][?options]

For producing to or consuming to
Krati datastores

Language / camel-core

language://languageName[:script][?options]
Executes Languages scripts

LDAP / camel-ldap

ldap:host[:port]?base=...[&scope=<scope>]

Performing searches on LDAP
servers (<scope> must be one of
object|onelevel|subtree)

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to
log the message exchange to some
underlying logging system like
log4j

Lucene / camel-lucene

lucene:searcherName:insert[?analyzer=<analyzer>]
lucene:searcherName:query[?analyzer=<analyzer>]

Uses Apache Lucene to perform
Java-based indexing and full text
based searches using advanced
analysis/tokenization capabilities

Mail / camel-mail

mail://user-info@host:port
Sending and receiving email

MINA / camel-mina

[tcp|udp|vm]:host[:port]
Working with Apache MINA

Mock / camel-core

mock:name

For testing routes and mediation
rules using mocks

CHAPTER 4 - ARCHITECTURE 27

http://camel.apache.org/kestrel.html
https://github.com/robey/kestrel
http://camel.apache.org/krati.html
http://sna-projects.com/krati/
http://camel.apache.org/language.html
http://camel.apache.org/languages.html
http://camel.apache.org/ldap.html
http://camel.apache.org/log.html
http://camel.apache.org/lucene.html
http://camel.apache.org/mail.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/mock.html

MongoDB / camel-mongodb

mongodb:connection?options

Interacts with MongoDB
databases and collections. Offers
producer endpoints to perform
CRUD-style operations and more
against databases and collections,
as well as consumer endpoints to
listen on collections and dispatch
objects to Camel routes

MQTT / camel-mqtt

mqtt:name

Component for communicating
with MQTT M2M message
brokers

MSV / camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a message
using the MSV Library

MyBatis / camel-mybatis

mybatis://statementName

Performs a query, poll, insert,
update or delete in a relational
database using MyBatis

Nagios / camel-nagios

nagios://host[:port]?options

Sending passive checks to Nagios
using JSendNSCA

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO based
capabilities offered by the JBoss
Netty community project

Pax-Logging / camel-paxlogging

paxlogging:appender

Receiving Pax-Logging events in
OSGi

POP / camel-mail

pop3://user-info@host:port

Receiving email using POP3 and
JavaMail

28 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/mongodb.html
http://www.mongodb.org/
http://camel.apache.org/mqtt.html
http://mqtt.org
http://camel.apache.org/msv.html
https://msv.dev.java.net/
http://camel.apache.org/mybatis.html
http://mybatis.org/
http://camel.apache.org/nagios.html
http://www.nagios.org/
http://code.google.com/p/jsendnsca/
http://camel.apache.org/netty.html
http://www.jboss.org/netty
http://www.jboss.org/netty
http://camel.apache.org/pax-logging.html
http://camel.apache.org/mail.html

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component facilitates
creation of printer endpoints to
local, remote and wireless
printers. The endpoints provide
the ability to print camel directed
payloads when utilized on camel
routes.

Properties / camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in endpoint
uri definitions.

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of
messages using the Quartz
scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the QuickFix
for Java engine which allow to
send/receive FIX messages

Ref / camel-core

ref:name

Component for lookup of existing
endpoints bound in the Registry.

Restlet / camel-restlet

restlet:restletUrl[?options]

Component for consuming and
producing Restful resources using
Restlet

RMI / camel-rmi

rmi://host[:port]
Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG Compact Syntax

CHAPTER 4 - ARCHITECTURE 29

http://camel.apache.org/printer.html
http://camel.apache.org/properties.html
http://camel.apache.org/quartz.html
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://camel.apache.org/quickfix.html
http://www.fixprotocol.org
http://camel.apache.org/ref.html
http://camel.apache.org/registry.html
http://camel.apache.org/restlet.html
http://www.restlet.org
http://camel.apache.org/rmi.html
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html

RNG / camel-jing

rng:/relativeOrAbsoluteUri

Validates the payload of a message
using RelaxNG

Routebox / camel-routebox

routebox:routeboxName[?options]

Facilitates the creation of
specialized endpoints that offer
encapsulation and a strategy/map
based indirection service to a
collection of camel routes hosted
in an automatically created or
user injected camel context

RSS / camel-rss

rss:uri

Working with ROME for RSS
integration, such as consuming an
RSS feed.

SEDA / camel-core

seda:name

Asynchronous call to another
endpoint in the same Camel
Context

SERVLET / camel-servlet

servlet:uri

For exposing services over HTTP
through the servlet which is
deployed into the Web container.

SFTP / camel-ftp

sftp://host[:port]/fileName

Sending and receiving files over
SFTP (FTP over SSH).

Sip / camel-sip

sip://user@host[:port]?[options]
sips://user@host[:port]?[options]

Publish/Subscribe communication
capability using the Telecom SIP
protocol. RFC3903 - Session
Initiation Protocol (SIP) Extension
for Event

SJMS / camel-sjms

sjms:[topic:]destinationName?[options]

A ground up implementation of a
JMS client

30 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jing.html
http://relaxng.org/
http://camel.apache.org/routebox.html
http://camel.apache.org/rss.html
http://rometools.org/
http://camel.apache.org/seda.html
http://camel.apache.org/servlet.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/sip.html
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://camel.apache.org/sjms.html

SMTP / camel-mail

smtp://user-info@host[:port]

Sending email using SMTP and
JavaMail

SMPP / camel-smpp

smpp://user-info@host[:port]?options

To send and receive SMS using
Short Messaging Service Center
using the JSMPP library

SNMP / camel-snmp

snmp://host[:port]?options

Polling OID values and receiving
traps using SNMP via SNMP4J
library

Solr / camel-solr

solr://host[:port]/solr?[options]

Uses the Solrj client API to
interface with an Apache Lucene
Solr server

SpringBatch / camel-spring-batch

spring-batch:job[?options]
To bridge Camel and Spring Batch

SpringIntegration / camel-spring-integration

spring-integration:defaultChannelName

The bridge component of Camel
and Spring Integration

Spring LDAP / camel-spring-ldap

spring-ldap:spring-ldap-template-bean?options
Camel wrapper for Spring LDAP

Spring Redis / camel-spring-redis

spring-redis:restletUrl[?options]

Component for consuming and
producing from Redis key-value
store Redis

Spring Web Services / camel-spring-ws

spring-ws:[mapping-type:]address[?options]

Client-side support for accessing
web services, and server-side
support for creating your own
contract-first web services using
Spring Web Services

CHAPTER 4 - ARCHITECTURE 31

http://camel.apache.org/mail.html
http://camel.apache.org/smpp.html
http://code.google.com/p/jsmpp/
http://camel.apache.org/snmp.html
http://snmp4j.com
http://camel.apache.org/solr.html
http://wiki.apache.org/solr/Solrj
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://camel.apache.org/springbatch.html
http://www.springsource.org/spring-batch
http://camel.apache.org/springintegration.html
http://www.springframework.org/spring-integration
http://camel.apache.org/spring-ldap.html
http://www.springsource.org/ldap
http://camel.apache.org/spring-redis.html
http://redis.io
http://camel.apache.org/spring-web-services.html
http://static.springsource.org/spring-ws/sites/1.5/

SQL / camel-sql

sql:select * from table where id=#

Performing SQL queries using
JDBC

SSH component / camel-ssh

ssh:[username[:password]@]host[:port][?options]

For sending commands to a SSH
server

StAX / camel-stax

stax:contentHandlerClassName

Process messages through a SAX
ContentHandler.

Stream / camel-stream

stream:[in|out|err|file]

Read or write to an input/output/
error/file stream rather like unix
pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource

Generates a response using a
String Template

Stub / camel-core

stub:someOtherCamelUri

Allows you to stub out some
physical middleware endpoint for
easier testing or debugging

TCP / camel-mina

mina:tcp://host:port

Working with TCP protocols
using Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint which
expects to receive all the message
bodies that could be polled from
the given underlying endpoint

Timer / camel-core

timer://name
A timer endpoint

32 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/sql-component.html
http://camel.apache.org/ssh.html
http://camel.apache.org/stax.html
http://download.oracle.com/javase/6/docs/api/org/xml/sax/ContentHandler.html
http://camel.apache.org/stream.html
http://camel.apache.org/stringtemplate.html
http://www.stringtemplate.org/
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/timer.html

Twitter / camel-twitter

twitter://[endpoint]?[options]
A twitter endpoint

UDP / camel-mina

mina:udp://host:port

Working with UDP protocols
using Apache MINA

Validation / camel-core (camel-spring for Camel 2.8 or
older)

validation:someLocalOrRemoteResource

Validates the payload of a message
using XML Schema and JAXP
Validation

Velocity / camel-velocity

velocity:someTemplateResource

Generates a response using an
Apache Velocity template

VM / camel-core

vm:name

Asynchronous call to another
endpoint in the same JVM

Websocket / camel-websocket

websocket://host:port/path

Communicating with Websocket
clients

XMPP / camel-xmpp

xmpp://host:port/room
Working with XMPP and Jabber

XQuery / camel-saxon

xquery:someXQueryResource

Generates a response using an
XQuery template

XSLT / camel-core (camel-spring for Camel 2.8 or
older)

xslt:someTemplateResource

Generates a response using an
XSLT template

CHAPTER 4 - ARCHITECTURE 33

http://camel.apache.org/twitter.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/validation.html
http://www.w3.org/XML/Schema
http://camel.apache.org/velocity.html
http://velocity.apache.org/
http://camel.apache.org/vm.html
http://camel.apache.org/websocket.html
http://wiki.eclipse.org/Jetty/Feature/WebSockets
http://camel.apache.org/xmpp.html
http://camel.apache.org/xquery-endpoint.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://www.w3.org/TR/xslt

Zookeeper / camel-zookeeper

zookeeper://host:port/path

Working with ZooKeeper
cluster(s)

URI's for external components

Other projects and companies have also created Camel components to integrate additional
functionality into Camel. These components may be provided under licenses that are not
compatible with the Apache License, use libraries that are not compatible, etc... These
components are not supported by the Camel team, but we provide links here to help users find
the additional functionality.

Component / ArtifactId / URI License Description

ActiveMQ / activemq-camel

activemq:[topic:]destinationName
Apache

For JMS
Messaging with
Apache
ActiveMQ

ActiveMQ Journal / activemq-core

activemq.journal:directory-on-filesystem
Apache

Uses ActiveMQ's
fast disk
journaling
implementation
to store message
bodies in a
rolling log file

Activiti / activiti-camel

activiti:camelProcess:serviceTask
Apache

For working
with Activiti, a
light-weight
workflow and
Business Process
Management
(BPM) platform
which supports
BPMN 2

Db4o / camel-db4o in camel-extra

db4o://className
GPL

For using a db4o
datastore as a
queue via the
db4o library

34 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/zookeeper.html
http://hadoop.apache.org/zookeeper/
http://camel.apache.org/activemq.html
http://activemq.apache.org/
http://activemq.apache.org/
http://camel.apache.org/activemq-journal.html
http://www.activiti.org/
http://www.activiti.org/
http://camel.apache.org/db4o.html
http://code.google.com/p/camel-extra/
http://www.db4o.com/

Esper / camel-esper in camel-extra

esper:name
GPL

Working with
the Esper Library
for Event Stream
Processing

Hibernate / camel-hibernate in camel-extra

hibernate://entityName
GPL

For using a
database as a
queue via the
Hibernate library

JGroups / camel-jgroups in camel-extra

jgroups://clusterName
LGPL

The jgroups:
component
provides
exchange of
messages
between Camel
infrastructure
and JGroups
clusters.

NMR / servicemix-nmr

nmr://serviceName
Apache

Integration with
the Normalized
Message Router
BUS in
ServiceMix 4.x

Scalate / scalate-camel

scalate:templateName
Apache

Uses the given
Scalate template
to transform the
message

Smooks / camel-smooks in camel-extra.

unmarshal(edi)
GPL

For working
with EDI parsing
using the
Smooks library.
This component
is deprecated
as Smooks now
provides Camel
integration out
of the box

CHAPTER 4 - ARCHITECTURE 35

http://camel.apache.org/esper.html
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://camel.apache.org/hibernate.html
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://camel.apache.org/jgroups.html
http://code.google.com/p/camel-extra/
http://camel.apache.org/nmr.html
http://servicemix.apache.org/SMX4NMR/index.html
http://scalate.fusesource.org/camel.html
http://scalate.fusesource.org/
http://camel.apache.org/smooks.html
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration

Spring Neo4j / camel-spring-neo4j in camel-extra

spring-neo4j:http://hostname[:port]/database[?options]

to bee
clarified

Component for
producing to
Neo4j datastore
using the Spring
Data Neo4j
library

ZeroMQ / camel-zeromq in camel-extra.

zeromq:(tcp|ipc)://hostname:port
LGPL

The ZeroMQ
component
allows you to
consumer or
produce
messages using
ZeroMQ.

For a full details of the individual components see the Component Appendix

36 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/spring-neo4j.html
http://code.google.com/p/camel-extra/
http://www.springsource.org/spring-data/neo4j
http://www.springsource.org/spring-data/neo4j
http://camel.apache.org/zeromq.html
http://code.google.com/p/camel-extra/
http://zeromq.org
http://camel.apache.org/book-component-appendix.html

C H A P T E R 5

° ° ° °

Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book of the
same name by Gregor Hohpe and Bobby Woolf. Its a highly recommended book, particularly
for users of Camel.

PATTERN INDEX

There now follows a list of the Enterprise Integration Patterns from the book along with
examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with another using
messaging?

Message
How can two applications connected by a message channel
exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a message while
maintaining independence and flexibility?

Message
Router

How can you decouple individual processing steps so that
messages can be passed to different filters depending on a set of
conditions?

Message
Translator

How can systems using different data formats communicate with
each other using messaging?

Message
Endpoint

How does an application connect to a messaging channel to send
and receive messages?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 37

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one receiver will receive
the document or perform the call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all interested
receivers?

Dead
Letter
Channel

What will the messaging system do with a message it cannot
deliver?

Guaranteed
Delivery

How can the sender make sure that a message will be delivered,
even if the messaging system fails?

Message
Bus

What is an architecture that enables separate applications to
work together, but in a de-coupled fashion such that applications
can be easily added or removed without affecting the others?

Message Construction

Event Message
How can messaging be used to transmit events from one
application to another?

Request Reply
When an application sends a message, how can it get a
response from the receiver?

Correlation
Identifier

How does a requestor that has received a reply know which
request this is the reply for?

Return
Address

How does a replier know where to send the reply?

Message Routing

Content
Based
Router

How do we handle a situation where the implementation of a
single logical function (e.g., inventory check) is spread across
multiple physical systems?

Message
Filter

How can a component avoid receiving uninteresting messages?

Dynamic
Router

How can you avoid the dependency of the router on all
possible destinations while maintaining its efficiency?

38 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/return-address.html
http://camel.apache.org/return-address.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/dynamic-router.html

Recipient
List

How do we route a message to a list of (static or dynamically)
specified recipients?

Splitter
How can we process a message if it contains multiple
elements, each of which may have to be processed in a
different way?

Aggregator
How do we combine the results of individual, but related
messages so that they can be processed as a whole?

Resequencer
How can we get a stream of related but out-of-sequence
messages back into the correct order?

Composed
Message
Processor

How can you maintain the overall message flow when
processing a message consisting of multiple elements, each of
which may require different processing?

Scatter-
Gather

How do you maintain the overall message flow when a
message needs to be sent to multiple recipients, each of which
may send a reply?

Routing Slip
How do we route a message consecutively through a series of
processing steps when the sequence of steps is not known at
design-time and may vary for each message?

Throttler
How can I throttle messages to ensure that a specific endpoint
does not get overloaded, or we don't exceed an agreed SLA
with some external service?

Sampling
How can I sample one message out of many in a given period
to avoid downstream route does not get overloaded?

Delayer How can I delay the sending of a message?

Load
Balancer

How can I balance load across a number of endpoints?

Multicast
How can I route a message to a number of endpoints at the
same time?

Loop How can I repeat processing a message in a loop?

Message Transformation

Content
Enricher

How do we communicate with another system if the message
originator does not have all the required data items available?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 39

http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/throttler.html
http://camel.apache.org/sampling.html
http://camel.apache.org/delayer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/multicast.html
http://camel.apache.org/loop.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-enricher.html

Content
Filter

How do you simplify dealing with a large message, when you are
interested only in a few data items?

Claim
Check

How can we reduce the data volume of message sent across the
system without sacrificing information content?

Normalizer
How do you process messages that are semantically equivalent,
but arrive in a different format?

Sort How can I sort the body of a message?

Validate How can I validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects and the
messaging infrastructure while keeping the two independent of
each other?

Event Driven
Consumer

How can an application automatically consume messages as they
become available?

Polling
Consumer

How can an application consume a message when the
application is ready?

Competing
Consumers

How can a messaging client process multiple messages
concurrently?

Message
Dispatcher

How can multiple consumers on a single channel coordinate
their message processing?

Selective
Consumer

How can a message consumer select which messages it wishes
to receive?

Durable
Subscriber

How can a subscriber avoid missing messages while it's not
listening for them?

Idempotent
Consumer

How can a message receiver deal with duplicate messages?

Transactional
Client

How can a client control its transactions with the messaging
system?

Messaging
Gateway

How do you encapsulate access to the messaging system from
the rest of the application?

40 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/content-filter.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/normalizer.html
http://camel.apache.org/sort.html
http://camel.apache.org/validate.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/messaging-gateway.html

Service
Activator

How can an application design a service to be invoked both via
various messaging technologies and via non-messaging
techniques?

System Management

ControlBus
How can we effectively administer a messaging system that is
distributed across multiple platforms and a wide geographic area?

Detour
How can you route a message through intermediate steps to
perform validation, testing or debugging functions?

Wire Tap
How do you inspect messages that travel on a point-to-point
channel?

Message
History

How can we effectively analyze and debug the flow of messages
in a loosely coupled system?

Log How can I log processing a message?

For a full breakdown of each pattern see the Book Pattern Appendix

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 41

http://camel.apache.org/service-activator.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/detour.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/message-history.html
http://camel.apache.org/message-history.html
http://camel.apache.org/logeip.html
http://camel.apache.org/book-pattern-appendix.html

CookBook

This document describes various recipes for working with Camel
• Bean Integration describes how to work with beans and Camel in a loosely coupled

way so that your beans do not have to depend on any Camel APIs
◦ Annotation Based Expression Language binds expressions to method

parameters
◦ Bean Binding defines which methods are invoked and how the Message is

converted into the parameters of the method when it is invoked
◦ Bean Injection for injecting Camel related resources into your POJOs
◦ Parameter Binding Annotations for extracting various headers, properties

or payloads from a Message
◦ POJO Consuming for consuming and possibly routing messages from Camel
◦ POJO Producing for producing camel messages from your POJOs
◦ RecipientList Annotation for creating a Recipient List from a POJO method
◦ Using Exchange Pattern Annotations describes how pattern annotations can

be used to change the behaviour of method invocations
• Hiding Middleware describes how to avoid your business logic being coupled to any

particular middleware APIs allowing you to easily switch from in JVM SEDA to JMS,
ActiveMQ, Hibernate, JPA, JDBC, iBATIS or JavaSpace etc.

• Visualisation describes how to visualise your Enterprise Integration Patterns to help
you understand your routing rules

• Business Activity Monitoring (BAM) for monitoring business processes across systems
• Extract Transform Load (ETL) to load data into systems or databases
• Testing for testing distributed and asynchronous systems using a messaging approach

◦ Camel Test for creating test cases using a single Java class for all your
configuration and routing

◦ Spring Testing uses Spring Test together with either XML or Java Config to
dependency inject your test classes

◦ Guice uses Guice to dependency inject your test classes
• Templating is a great way to create service stubs to be able to test your system

without some back end system.
• Database for working with databases
• Parallel Processing and Ordering on how using parallel processing and SEDA or JMS

based load balancing can be achieved.
• Asynchronous Processing in Camel Routes.
• Implementing Virtual Topics on other JMS providers shows how to get the effect of

Virtual Topics and avoid issues with JMS durable topics
• Camel Transport for CXF describes how to put the Camel context into the CXF

transport layer.

42 COOKBOOK

http://camel.apache.org/bean-integration.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/visualisation.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bam.html
http://camel.apache.org/etl.html
http://camel.apache.org/testing.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/templating.html
http://camel.apache.org/database.html
http://camel.apache.org/parallel-processing-and-ordering.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/asynchronous-processing.html
http://camel.apache.org/implementing-virtual-topics-on-other-jms-providers.html
http://camel.apache.org/camel-transport-for-cxf.html

• Fine Grained Control Over a Channel describes how to deliver a sequence of
messages over a single channel and then stopping any more messages being sent over
that channel. Typically used for sending data over a socket and then closing the
socket.

• EventNotifier to log details about all sent Exchanges shows how to let Camels
EventNotifier log all sent to endpoint events and how long time it took.

• Loading routes from XML files into an existing CamelContext.
• Using MDC logging with Camel
• Running Camel standalone and have it keep running shows how to keep Camel

running when you run it standalone.
• Hazelcast Idempotent Repository Tutorial shows how to avoid to consume duplicated

messages in a clustered environment.
• How to use Camel as a HTTP proxy between a client and server shows how to use

Camel as a HTTP adapter/proxy between a client and HTTP service.

BEAN INTEGRATION

Camel supports the integration of beans and POJOs in a number of ways

Annotations

If a bean is defined in Spring XML or scanned using the Spring component scanning mechanism
and a <camelContext> is used or a CamelBeanPostProcessor then we process a
number of Camel annotations to do various things such as injecting resources or producing,
consuming or routing messages.

• POJO Consuming to consume and possibly route messages from Camel
• POJO Producing to make it easy to produce camel messages from your POJOs
• DynamicRouter Annotation for creating a Dynamic Router from a POJO method
• RecipientList Annotation for creating a Recipient List from a POJO method
• RoutingSlip Annotation for creating a Routing Slip for a POJO method
• Bean Injection to inject Camel related resources into your POJOs
• Using Exchange Pattern Annotations describes how the pattern annotations can be

used to change the behaviour of method invocations with Spring Remoting or POJO
Producing

Bean Component

The Bean component allows one to invoke a particular method. Alternately the Bean
component supports the creation of a proxy via ProxyHelper to a Java interface; which the
implementation just sends a message containing a BeanInvocation to some Camel endpoint.

COOKBOOK 43

http://camel.apache.org/fine-grained-control-over-a-channel.html
http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html
http://camel.apache.org/loading-routes-from-xml-files.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/mdc-logging.html
http://camel.apache.org/running-camel-standalone-and-have-it-keep-running.html
http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/spring.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/dynamicrouter-annotation.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routingslip-annotation.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html

Example
See the POJO Messaging Example for how to use the annotations for routing and
messaging.

Spring Remoting

We support a Spring Remoting provider which uses Camel as the underlying transport
mechanism. The nice thing about this approach is we can use any of the Camel transport
Components to communicate between beans. It also means we can use Content Based Router
and the other Enterprise Integration Patterns in between the beans; in particular we can use
Message Translator to be able to convert what the on-the-wire messages look like in addition
to adding various headers and so forth.

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject a Bean expression

@BeanShell Inject a BeanShell expression

@Constant Inject a Constant expression

@EL Inject an EL expression

@Groovy Inject a Groovy expression

@Header Inject a Header expression

@JavaScript Inject a JavaScript expression

@MVEL Inject a Mvel expression

@OGNL Inject an OGNL expression

@PHP Inject a PHP expression

@Python Inject a Python expression

@Ruby Inject a Ruby expression

@Simple Inject an Simple expression

@XPath Inject an XPath expression

@XQuery Inject an XQuery expression

44 COOKBOOK

http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html
http://camel.apache.org/pojo-messaging-example.html

Bean binding
Whenever Camel invokes a bean method via one of the above methods (Bean
component, Spring Remoting or POJO Consuming) then the Bean Binding
mechanism is used to figure out what method to use (if it is not explicit) and how to
bind the Message to the parameters possibly using the Parameter Binding
Annotations or using a method name option.

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

Advanced example using @Bean

And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id myCorrelationIdGenerator where we
can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();

COOKBOOK 45

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/bean-binding.html

String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

BEAN BINDING

Bean Binding in Camel defines both which methods are invoked and also how the Message is
converted into the parameters of the method when it is invoked.

46 COOKBOOK

http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/message.html

Choosing the method to invoke

The binding of a Camel Message to a bean method call can occur in different ways, in the
following order of importance:

• if the message contains the header CamelBeanMethodName then that method
is invoked, converting the body to the type of the method's argument.

◦ From Camel 2.8 onwards you can qualify parameter types to select
exactly which method to use among overloads with the same name (see
below for more details).

◦ From Camel 2.9 onwards you can specify parameter values directly in the
method option (see below for more details).

• you can explicitly specify the method name in the DSL or when using POJO
Consuming or POJO Producing

• if the bean has a method marked with the @Handler annotation, then that method
is selected

• if the bean can be converted to a Processor using the Type Converter mechanism,
then this is used to process the message. The ActiveMQ component uses this
mechanism to allow any JMS MessageListener to be invoked directly by Camel
without having to write any integration glue code. You can use the same mechanism
to integrate Camel into any other messaging/remoting frameworks.

• if the body of the message can be converted to a BeanInvocation (the default payload
used by the ProxyHelper) component - then that is used to invoke the method and
pass its arguments

• otherwise the type of the body is used to find a matching method; an error is thrown
if a single method cannot be chosen unambiguously.

• you can also use Exchange as the parameter itself, but then the return type must be
void.

• if the bean class is private (or package-private), interface methods will be preferred
(from Camel 2.9 onwards) since Camel can't invoke class methods on such beans

In cases where Camel cannot choose a method to invoke, an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding

When a method has been chosen for invokation, Camel will bind to the parameters of the
method.

The following Camel-specific types are automatically bound:
▪ org.apache.camel.Exchange
▪ org.apache.camel.Message
▪ org.apache.camel.CamelContext
▪ org.apache.camel.TypeConverter
▪ org.apache.camel.spi.Registry

COOKBOOK 47

http://camel.apache.org/message.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/activemq.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

▪ java.lang.Exception
So, if you declare any of these types, they will be provided by Camel. Note that Exception
will bind to the caught exception of the Exchange - so it's often usable if you
employ a Pojo to handle, e.g., an onException route.

What is most interesting is that Camel will also try to bind the body of the Exchange to the
first parameter of the method signature (albeit not of any of the types above). So if, for
instance, we declare a parameter as String body, then Camel will bind the IN body to this
type. Camel will also automatically convert to the type declared in the method signature.

Let's review some examples:

Below is a simple method with a body binding. Camel will bind the IN body to the body
parameter and convert it to a String.

public String doSomething(String body)

In the following sample we got one of the automatically-bound types as well - for instance, a
Registry that we can use to lookup beans.

public String doSomething(String body, Registry registry)

We can use Exchange as well:

public String doSomething(String body, Exchange exchange)

You can also have multiple types:

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use a Pojo to handle a given custom exception InvalidOrderException
- we can then bind that as well:

public String badOrder(String body, InvalidOrderException invalid)

Notice that we can bind to it even if we use a sub type of java.lang.Exception as Camel
still knows it's an exception and can bind the cause (if any exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we can use
annotations to help us, or specify the binding in the method name option.
See the following sections for more detail.

Binding Annotations

You can use the Parameter Binding Annotations to customize how parameter values are
created from the Message

48 COOKBOOK

http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html

Examples

For example, a Bean such as:

public class Bar {

public String doSomething(String body) {
// process the in body and return whatever you want
return "Bye World";

}

Or the Exchange example. Notice that the return type must be void when there is only a
single parameter of the type org.apache.camel.Exchange:

public class Bar {

public void doSomething(Exchange exchange) {
// process the exchange
exchange.getIn().setBody("Bye World");

}

@Handler

You can mark a method in your bean with the @Handler annotation to indicate that this
method should be used for Bean Binding.
This has an advantage as you need not specify a method name in the Camel route, and
therefore do not run into problems after renaming the method in an IDE that can't find all its
references.

public class Bar {

@Handler
public String doSomething(String body) {

// process the in body and return whatever you want
return "Bye World";

}

Parameter binding using method option

Available as of Camel 2.9

Camel uses the following rules to determine if it's a parameter value in the method option
▪ The value is either true or false which denotes a boolean value
▪ The value is a numeric value such as 123 or 7
▪ The value is a String enclosed with either single or double quotes
▪ The value is null which denotes a null value

COOKBOOK 49

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html

▪ It can be evaluated using the Simple language, which means you can use, e.g., body,
header.foo and other Simple tokens. Notice the tokens must be enclosed with ${ }.

Any other value is consider to be a type declaration instead - see the next section about
specifying types for overloaded methods.

When invoking a Bean you can instruct Camel to invoke a specific method by providing the
method name:

.bean(OrderService.class, "doSomething")

Here we tell Camel to invoke the doSomething method - Camel handles the parameters'
binding. Now suppose the method has 2 parameters, and the 2nd parameter is a boolean where
we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {
...

}

This is now possible in Camel 2.9 onwards:

.bean(OrderService.class, "doSomething(*, true)")

In the example above, we defined the first parameter using the wild card symbol *, which tells
Camel to bind this parameter to any type, and let Camel figure this out. The 2nd parameter has
a fixed value of true. Instead of the wildcard symbol we can instruct Camel to use the
message body as shown:

.bean(OrderService.class, "doSomething(${body}, true)")

The syntax of the parameters is using the Simple expression language so we have to use ${ }
placeholders in the body to refer to the message body.

If you want to pass in a null value, then you can explicit define this in the method option as
shown below:

.to("bean:orderService?method=doSomething(null, true)")

Specifying null as a parameter value instructs Camel to force passing a null value.

Besides the message body, you can pass in the message headers as a java.util.Map:

.bean(OrderService.class, "doSomethingWithHeaders(${body}, ${headers})")

You can also pass in other fixed values besides booleans. For example, you can pass in a String
and an integer:

50 COOKBOOK

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html
http://camel.apache.org/simple.html

.bean(MyBean.class, "echo('World', 5)")

In the example above, we invoke the echo method with two parameters. The first has the
content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

Having the power of the Simple language allows us to bind to message headers and other
values such as:

.bean(OrderService.class, "doSomething(${body}, ${header.high})")

You can also use the OGNL support of the Simple expression language. Now suppose the
message body is an object which has a method named asXml. To invoke the asXml method
we can do as follows:

.bean(OrderService.class, "doSomething(${body.asXml}, ${header.high})")

Instead of using .bean as shown in the examples above, you may want to use .to instead as
shown:

.to("bean:orderService?method=doSomething(${body.asXml}, ${header.high})")

Using type qualifiers to select among overloaded methods

Available as of Camel 2.8

If you have a Bean with overloaded methods, you can now specify parameter types in the
method name so Camel can match the method you intend to use.
Given the following bean:

Listing 1.Listing 1. MyBeanMyBean

public static final class MyBean {

public String hello(String name) {
return "Hello " + name;

}

public String hello(String name, @Header("country") String country) {
return "Hello " + name + " you are from " + country;

}

public String times(String name, @Header("times") int times) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
}

COOKBOOK 51

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

return sb.toString();
}

public String times(byte[] data, @Header("times") int times) {
String s = new String(data);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(s);
if (i < times - 1) {

sb.append(",");
}

}
return sb.toString();

}

public String times(String name, int times, char separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
if (i < times - 1) {

sb.append(separator);
}

}
return sb.toString();

}

}

Then the MyBean has 2 overloaded methods with the names hello and times. So if we
want to use the method which has 2 parameters we can do as follows in the Camel route:

Listing 1.Listing 1. Invoke 2 parameter methodInvoke 2 parameter method

from("direct:start")
.bean(MyBean.class, "hello(String,String)")
.to("mock:result");

We can also use a * as wildcard so we can just say we want to execute the method with 2
parameters we do

Listing 1.Listing 1. Invoke 2 parameter method using wildcardInvoke 2 parameter method using wildcard

from("direct:start")
.bean(MyBean.class, "hello(*,*)")
.to("mock:result");

By default Camel will match the type name using the simple name, e.g. any leading package name
will be disregarded. However if you want to match using the FQN, then specify the FQN type
and Camel will leverage that. So if you have a com.foo.MyOrder and you want to match
against the FQN, and not the simple name "MyOrder", then follow this example:

52 COOKBOOK

.bean(OrderService.class, "doSomething(com.foo.MyOrder)")

Bean Injection

We support the injection of various resources using @EndpointInject. This can be used to
inject

• Endpoint instances which can be used for testing when used with Mock endpoints; see
the Spring Testing for an example.

• ProducerTemplate instances for POJO Producing
• client side proxies for POJO Producing which is a simple approach to Spring

Remoting

Parameter Binding Annotations

Annotations can be used to define an Expression or to extract various headers, properties or
payloads from a Message when invoking a bean method (see Bean Integration for more detail of
how to invoke bean methods) together with being useful to help disambiguate which method to
invoke.

If no annotations are used then Camel assumes that a single parameter is the body of the
message. Camel will then use the Type Converter mechanism to convert from the expression
value to the actual type of the parameter.

The core annotations are as follows

Annotation Meaning Parameter

@Body To bind to an inbound message body Ê

@ExchangeException To bind to an Exception set on the exchange Ê

@Header To bind to an inbound message header
String name
of the header

@Headers
To bind to the Map of the inbound message
headers

Ê

@OutHeaders
To bind to the Map of the outbound message
headers

Ê

@Property To bind to a named property on the exchange
String name
of the
property

@Properties To bind to the property map on the exchange Ê

COOKBOOK 53

http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/expression.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Headers.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Property.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Properties.html

Camel currently only supports either specifying parameter binding or type per
parameter in the method name option. You cannot specify both at the same time,
such as

doSomething(com.foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

camel-core
The annotations below are all part of camel-core and thus does not require
camel-spring or Spring. These annotations can be used with the Bean
component or when invoking beans in the DSL

@Handler

Not part as a type parameter but stated in this
table anyway to spread the good word that we have
this annotation in Camel now. See more at Bean
Binding.

Ê

The follow annotations @Headers, @OutHeaders and @Properties binds to the backing
java.util.Map so you can alter the content of these maps directly, for instance using the
put method to add a new entry. See the OrderService class at Exception Clause for such an
example. You can use @Header("myHeader") and @Property("myProperty") to
access the backing java.util.Map.

Example

In this example below we have a @Consume consumer (like message driven) that consumes
JMS messages from the activemq queue. We use the @Header and @Body parameter binding
annotations to bind from the JMSMessage to the method parameters.

public class Foo {

@Consume(uri = "activemq:my.queue")
public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body

String body) {
// process the inbound message here

}

}

54 COOKBOOK

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Handler.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean.html
http://camel.apache.org/dsl.html

In the above Camel will extract the value of Message.getJMSCorrelationID(), then using the
Type Converter to adapt the value to the type of the parameter if required - it will inject the
parameter value for the correlationID parameter. Then the payload of the message will be
converted to a String and injected into the body parameter.

You don't necessarily need to use the @Consume annotation if you don't want to as you
could also make use of the Camel DSL to route to the bean's method as well.

Using the DSL to invoke the bean method

Here is another example which does not use POJO Consuming annotations but instead uses
the DSL to route messages to the bean method

public class Foo {
public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body

String body) {
// process the inbound message here

}

}

The routing DSL then looks like this

from("activemq:someQueue").
to("bean:myBean");

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try figure out what
method to call.

If you want to be explicit you can use

from("activemq:someQueue").
to("bean:myBean?methodName=doSomething");

And here we have a nifty example for you to show some great power in Camel. You can mix
and match the annotations with the normal parameters, so we can have this example with
annotations and the Exchange also:

public void doSomething(@Header("user") String user, @Body String body, Exchange
exchange) {

exchange.getIn().setBody(body + "MyBean");
}

COOKBOOK 55

http://camel.apache.org/type-converter.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html

Annotation Based Expression Language

You can also use any of the Languages supported in Camel to bind expressions to method
parameters when using Bean Integration. For example you can use any of these annotations:

Annotation Description

@Bean Inject a Bean expression

@BeanShell Inject a BeanShell expression

@Constant Inject a Constant expression

@EL Inject an EL expression

@Groovy Inject a Groovy expression

@Header Inject a Header expression

@JavaScript Inject a JavaScript expression

@MVEL Inject a Mvel expression

@OGNL Inject an OGNL expression

@PHP Inject a PHP expression

@Python Inject a Python expression

@Ruby Inject a Ruby expression

@Simple Inject an Simple expression

@XPath Inject an XPath expression

@XQuery Inject an XQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

56 COOKBOOK

http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html

Advanced example using @Bean

And an example of using the the @Bean binding annotation, where you can use a Pojo where
you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id myCorrelationIdGenerator where we
can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters. However we
have also annotated this one with the @Header and @Body annotation to help Camel know
what to bind here from the Message from the Exchange being processed.

Of course this could be simplified a lot if you for instance just have a simple id generator.
But we wanted to demonstrate that you can use the Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

COOKBOOK 57

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html

Example using Groovy

In this example we have an Exchange that has a User object stored in the in header. This User
object has methods to get some user information. We want to use Groovy to inject an
expression that extracts and concats the fullname of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $ placeholders that will
be evaluated by Groovy.

@Consume

To consume a message you use the @Consume annotation to mark a particular method of a
bean as being a consumer method. The uri of the annotation defines the Camel Endpoint to
consume from.

e.g. lets invoke the onCheese() method with the String body of the inbound JMS message
from ActiveMQ on the cheese queue; this will use the Type Converter to convert the JMS
ObjectMessage or BytesMessage to a String - or just use a TextMessage from JMS

public class Foo {

@Consume(uri="activemq:cheese")
public void onCheese(String name) {

...
}

}

The Bean Binding is then used to convert the inbound Message to the parameter list used to
invoke the method .

What this does is basically create a route that looks kinda like this

from(uri).bean(theBean, "methodName");

Using context option to apply only a certain CamelContext

See the warning above.

You can use the context option to specify which CamelContext the consumer should
only apply for. For example:

58 COOKBOOK

http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consume.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/activemq.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/camelcontext.html

When using more than one CamelContext
When you use more than 1 CamelContext you might end up with each of them
creating a POJO Consuming; therefore use the option context on @Consume
that allows you to specify which CamelContext id/name you want it to apply for.

@Consume(uri="activemq:cheese", context="camel-1")
public void onCheese(String name) {

The consumer above will only be created for the CamelContext that have the context id =
camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

Using an explicit route

If you want to invoke a bean method from many different endpoints or within different complex
routes in different circumstances you can just use the normal routing DSL or the Spring XML
configuration file.

For example

from(uri).beanRef("myBean", "methodName");

which will then look up in the Registry and find the bean and invoke the given bean name. (You
can omit the method name and have Camel figure out the right method based on the method
annotations and body type).

Use the Bean endpoint

You can always use the bean endpoint

from(uri).to("bean:myBean?method=methodName");

Using a property to define the endpoint

Available as of Camel 2.11

COOKBOOK 59

http://camel.apache.org/camelcontext.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/registry.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/camelcontext.html

The following annotations @Consume, @Produce, @EndpointInject, now offers a
property attribute you can use to define the endpoint as a property on the bean. Then
Camel will use the getter method to access the property.
For example

public class MyService {
private String serviceEndpoint;

public void setServiceEndpoint(String uri) {
this.serviceEndpoint = uri;

}

public String getServiceEndpoint() {
return serviceEndpoint

}

@Consume(property = "serviceEndpoint")
public void onService(String input) {

...
}

}

The bean MyService has a property named serviceEndpoint which has getter/setter for
the property. Now we want to use the bean for POJO Consuming, and hence why we use
@Consume in the onService method. Notice how we use the property =
"serviceEndpoint to configure the property that has the endpoint url.

If you define the bean in Spring XML or Blueprint, then you can configure the property as
follows:

<bean id="myService" class="com.foo.MyService">
<property name="serviceEndpoint" value="activemq:queue:foo"/>

</bean>

This allows you to configure the bean using any standard IoC style.

Camel offers a naming convention which allows you to not have to explicit name the
property.
Camel uses this algorithm to find the getter method. The method must be a getXXX method.

1. Use the property name if explicit given
2. If no property name was configured, then use the method name
3. Try to get the property with name*Endpoint* (eg with Endpoint as postfix)
4. Try to get the property with the name as is (eg no postfix or postfix)
5. If the property name starts with on then omit that, and try step 3 and 4 again.

So in the example above, we could have defined the @Consume annotation as

60 COOKBOOK

http://camel.apache.org/pojo-consuming.html

This applies for them all
The explanation below applies for all the three annotations, eg @Consume,
@Produce, and @EndpointInject

@Consume(property = "service")
public void onService(String input) {

Now the property is named 'service' which then would match step 3 from the algorithm, and
have Camel invoke the getServiceEndpoint method.

We could also have omitted the property attribute, to make it implicit

@Consume
public void onService(String input) {

Now Camel matches step 5, and loses the prefix on in the name, and looks for 'service' as the
property. And because there is a getServiceEndpoint method, Camel will use that.

Which approach to use?

Using the @Consume annotations are simpler when you are creating a simple route with a
single well defined input URI.

However if you require more complex routes or the same bean method needs to be
invoked from many places then please use the routing DSL as shown above.

There are two different ways to send messages to any Camel Endpoint from a POJO

@EndpointInject

To allow sending of messages from POJOs you can use the @EndpointInject annotation. This
will inject a ProducerTemplate so that the bean can participate in message exchanges.

e.g. lets send a message to the foo.bar queue in ActiveMQ at some point

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
if (whatever) {

producer.sendBody("<hello>world!</hello>");
}

COOKBOOK 61

http://camel.apache.org/dsl.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/activemq.html

}
}

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce

We recommend Hiding Middleware APIs from your application code so the next option might
be more suitable.
You can add the @Produce annotation to an injection point (a field or property setter) using a
ProducerTemplate or using some interface you use in your business logic. e.g.

public interface MyListener {
String sayHello(String name);

}

public class MyBean {
@Produce(uri = "activemq:foo")
protected MyListener producer;

public void doSomething() {
// lets send a message
String response = producer.sayHello("James");

}
}

Here Camel will automatically inject a smart client side proxy at the @Produce annotation - an
instance of the MyListener instance. When we invoke methods on this interface the method call
is turned into an object and using the Camel Spring Remoting mechanism it is sent to the
endpoint - in this case the ActiveMQ endpoint to queue foo; then the caller blocks for a
response.

If you want to make asynchronous message sends then use an @InOnly annotation on the
injection point.

@RECIPIENTLIST ANNOTATION

We support the use of @RecipientList on a bean method to easily create a dynamic Recipient
List using a Java method.

62 COOKBOOK

http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/activemq.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html

See POJO Consuming for how to use a property on the bean as endpoint
configuration, eg using the property attribute on @Produce, @EndpointInject.

Simple Example using @Consume and @RecipientList

package com.acme.foo;

public class RouterBean {

@Consume(uri = "activemq:foo")
@RecipientList
public String[] route(String body) {

return new String[]{"activemq:bar", "activemq:whatnot"};
}

}

For example if the above bean is configured in Spring when using a <camelContext>
element as follows

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>

<bean id="myRecipientList" class="com.acme.foo.RouterBean"/>

</beans>

then a route will be created consuming from the foo queue on the ActiveMQ component
which when a message is received the message will be forwarded to the endpoints defined by
the result of this method call - namely the bar and whatnot queues.

How it works

The return value of the @RecipientList method is converted to either a java.util.Collection /
java.util.Iterator or array of objects where each element is converted to an Endpoint or a String,
or if you are only going to route to a single endpoint then just return either an Endpoint object
or an object that can be converted to a String. So the following methods are all valid

COOKBOOK 63

http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/pojo-consuming.html

@RecipientList
public String[] route(String body) { ... }

@RecipientList
public List<String> route(String body) { ... }

@RecipientList
public Endpoint route(String body) { ... }

@RecipientList
public Endpoint[] route(String body) { ... }

@RecipientList
public Collection<Endpoint> route(String body) { ... }

@RecipientList
public URI route(String body) { ... }

@RecipientList
public URI[] route(String body) { ... }

Then for each endpoint or URI the message is forwarded a separate copy to that endpoint.

You can then use whatever Java code you wish to figure out what endpoints to route to; for
example you can use the Bean Binding annotations to inject parts of the message body or
headers or use Expression values on the message.

More Complex Example Using DSL

In this example we will use more complex Bean Binding, plus we will use a separate route to
invoke the Recipient List

public class RouterBean2 {

@RecipientList
public String route(@Header("customerID") String custID String body) {

if (custID == null) return null;
return "activemq:Customers.Orders." + custID;

}
}

public class MyRouteBuilder extends RouteBuilder {
protected void configure() {

from("activemq:Orders.Incoming").recipientList(bean("myRouterBean", "route"));
}

}

Notice how we are injecting some headers or expressions and using them to determine the
recipients using Recipient List EIP.
See the Bean Integration for more details.

64 COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean-integration.html

USING EXCHANGE PATTERN ANNOTATIONS

When working with POJO Producing or Spring Remoting you invoke methods which typically
by default are InOut for Request Reply. That is there is an In message and an Out for the result.
Typically invoking this operation will be synchronous, the caller will block until the server
returns a result.

Camel has flexible Exchange Pattern support - so you can also support the Event Message
pattern to use InOnly for asynchronous or one way operations. These are often called 'fire and
forget' like sending a JMS message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message exchange pattern
on regular Java methods, classes or interfaces.

Specifying InOnly methods

Typically the default InOut is what most folks want but you can customize to use InOnly using
an annotation.

public interface Foo {
Object someInOutMethod(String input);
String anotherInOutMethod(Cheese input);

@InOnly
void someInOnlyMethod(Document input);

}

The above code shows three methods on an interface; the first two use the default InOut
mechanism but the someInOnlyMethod uses the InOnly annotation to specify it as being a
oneway method call.

Class level annotations

You can also use class level annotations to default all methods in an interface to some pattern
such as

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

}

Annotations will also be detected on base classes or interfaces. So for example if you created a
client side proxy for

COOKBOOK 65

http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html

public class MyFoo implements Foo {
...

}

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation

You can overload a class level annotation on specific methods. A common use case for this is if
you have a class or interface with many InOnly methods but you want to just annote one or
two methods as InOut

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod(String input);

}

In the above Foo interface the someInOutMethod will be InOut

Using your own annotations

You might want to create your own annotations to represent a group of different bits of
metadata; such as combining synchrony, concurrency and transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to default the
exchange pattern you wish to use.

For example lets say we want to create our own annotation called @MyAsyncService

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})

// lets add the message exchange pattern to it
@Pattern(ExchangePattern.InOnly)

// lets add some other annotations - maybe transaction behaviour?

public @interface MyAsyncService {
}

Now we can use this annotation and Camel will figure out the correct exchange pattern...

66 COOKBOOK

public interface Foo {
void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@MyAsyncService
String someInOutMethod(String input);

}

When writing software these days, its important to try and decouple as much middleware code
from your business logic as possible.

This provides a number of benefits...
• you can choose the right middleware solution for your deployment and switch at any

time
• you don't have to spend a large amount of time learning the specifics of any particular

technology, whether its JMS or JavaSpace or Hibernate or JPA or iBATIS whatever
For example if you want to implement some kind of message passing, remoting, reliable load
balancing or asynchronous processing in your application we recommend you use Camel
annotations to bind your services and business logic to Camel Components which means you
can then easily switch between things like

• in JVM messaging with SEDA
• using JMS via ActiveMQ or other JMS providers for reliable load balancing, grid or

publish and subscribe
• for low volume, but easier administration since you're probably already using a

database you could use
◦ Hibernate or JPA to use an entity bean / table as a queue
◦ iBATIS to work with SQL
◦ JDBC for raw SQL access

• use JavaSpace

How to decouple from middleware APIs

The best approach when using remoting is to use Spring Remoting which can then use any
messaging or remoting technology under the covers. When using Camel's implementation you
can then use any of the Camel Components along with any of the Enterprise Integration
Patterns.

Another approach is to bind Java beans to Camel endpoints via the Bean Integration. For
example using POJO Consuming and POJO Producing you can avoid using any Camel APIs to
decouple your code both from middleware APIs and Camel APIs!

COOKBOOK 67

http://camel.apache.org/jms.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

VISUALISATION

Camel supports the visualisation of your Enterprise Integration Patterns using the GraphViz
DOT files which can either be rendered directly via a suitable GraphViz tool or turned into
HTML, PNG or SVG files via the Camel Maven Plugin.

Here is a typical example of the kind of thing we can generate

If you click on the actual generated htmlyou will see that you can navigate from an EIP node
to its pattern page, along with getting hover-over tool tips ec.

How to generate

See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users

If you are using OS X then you can open the DOT file using graphviz which will then
automatically re-render if it changes, so you end up with a real time graphical representation of
the topic and queue hierarchies!

Also if you want to edit the layout a little before adding it to a wiki to distribute to your
team, open the DOT file with OmniGraffle then just edit away

BUSINESS ACTIVITY MONITORING

The Camel BAM module provides a Business Activity Monitoring (BAM) framework for
testing business processes across multiple message exchanges on different Endpoint instances.

Consider, for example, a simple system in which you submit Purchase Orders into system A
and then receive Invoices from system B. You might want to test that, for a given Purchase
Order, you receive a matching Invoice from system B within a specific time period.

How Camel BAM Works

Camel BAM uses a Correlation Identifier on an input message to determine the Process Instance
to which it belongs. The process instance is an entity bean which can maintain state for each
Activity (where an activity typically maps to a single endpoint - such as the submission of
Purchase Orders or the receipt of Invoices).

You can then add rules to be triggered when a message is received on any activity - such as
to set time expectations or perform real time reconciliation of values across activities.

68 COOKBOOK

http://camel.apache.org/enterprise-integration-patterns.html
http://graphviz.org
http://camel.apache.org/camel-maven-plugin.html
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html
http://camel.apache.org/camel-dot-maven-goal.html
http://camel.apache.org/camel-maven-plugin.html
http://www.pixelglow.com/graphviz/
http://www.omnigroup.com/applications/omnigraffle/
http://camel.apache.org/endpoint.html
http://camel.apache.org/correlation-identifier.html

Simple Example

The following example shows how to perform some time based rules on a simple business
process of 2 activities - A and B - which correspond with Purchase Orders and Invoices in the
example above. If you would like to experiment with this scenario, you may edit this Test Case,
which defines the activities and rules, and then tests that they work.

return new ProcessBuilder(jpaTemplate, transactionTemplate) {
public void configure() throws Exception {

// let's define some activities, correlating on an XPath on the message bodies
ActivityBuilder a = activity("seda:a").name("a")

.correlate(xpath("/hello/@id"));

ActivityBuilder b = activity("seda:b").name("b")
.correlate(xpath("/hello/@id"));

// now let's add some rules
b.starts().after(a.completes())

.expectWithin(seconds(1))

.errorIfOver(seconds(errorTimeout)).to("mock:overdue");
}

};

As you can see in the above example, we first define two activities, and then rules to specify
when we expect them to complete for a process instance and when an error condition should
be raised.p. The ProcessBuilder is a RouteBuilder and can be added to any CamelContext.

Complete Example

For a complete example please see the BAM Example, which is part of the standard Camel
Examples

Use Cases

In the world of finance, a common requirement is tracking trades. Often a trader will submit a
Front Office Trade which then flows through the Middle Office and Back Office through various
systems to settle the trade so that money is exchanged. You may wish to test that the front and
back office trades match up within a certain time period; if they don't match or a back office
trade does not arrive within a required amount of time, you might signal an alarm.

EXTRACT TRANSFORM LOAD (ETL)

The ETL (Extract, Transform, Load) is a mechanism for loading data into systems or databases
using some kind of Data Format from a variety of sources; often files then using Pipes and
Filters, Message Translator and possible other Enterprise Integration Patterns.

COOKBOOK 69

http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java
http://camel.apache.org/routebuilder.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/bam-example.html
http://camel.apache.org/examples.html
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/enterprise-integration-patterns.html

So you could query data from various Camel Components such as File, HTTP or JPA,
perform multiple patterns such as Splitter or Message Translator then send the messages to
some other Component.

To show how this all fits together, try the ETL Example

MOCK COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is run, which typically fires messages to one or more endpoints, and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:
• The correct number of messages are received on each endpoint,
• The correct payloads are received, in the right order,
• Messages arrive on an endpoint in order, using some Expression to create an order

testing function,
• Messages arrive match some kind of Predicate such as that specific headers have

certain values, or that parts of the messages match some predicate, such as by
evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock
endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its
assertions from some sample messages in a File or database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

reportGroup null A size to use a throughput logger for reporting

70 COOKBOOK

http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jpa.html
http://camel.apache.org/splitter.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/component.html
http://camel.apache.org/etl-example.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/log.html

Mock endpoints keep received Exchanges in memory indefinitely
Remember that Mock is designed for testing. When you add Mock endpoints to a
route, each Exchange sent to the endpoint will be stored (to allow for later
validation) in memory until explicitly reset or the JVM is restarted. If you are
sending high volume and/or large messages, this may cause excessive memory use. If
your goal is to test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new options retainFirst, and retainLast
that can be used to limit the number of messages the Mock endpoints keep in memory.

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the
context. Then we set an expectation, and then, after the test has run, we assert that our
expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations were met
after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is invoked. This
can be configured by setting the setResultWaitTime(millis) method.

Using assertPeriod

Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue from the
assertIsSatisfied method. That means if a new message arrives on the mock endpoint,
just a bit later, that arrival will not affect the outcome of the assertion. Suppose you do want to
test that no new messages arrives after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

COOKBOOK 71

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsNoDuplicates(Expression)
To add an expectation that no duplicate messages are received; using an Expression to calculate a unique identifier for each message. This
could be something like the JMSMessageID if using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages

In addition, you can use the message(int messageIndex) method to add assertions about a
specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-
based indexing like java.util.List), you can use the following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests.

Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

72 COOKBOOK

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

How it works
Important: The endpoints are still in action. What happens differently is that a
Mock endpoint is injected and receives the message first and then delegates the
message to the target endpoint. You can view this as a kind of intercept and
delegate or endpoint listener.

Suppose you have the given route below:

Listing 1.Listing 1. RouteRoute

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

You can then use the adviceWith feature in Camel to mock all the endpoints in a given
route from your unit test, as shown below:

Listing 1.Listing 1. adviceWith mocking all endpointsadviceWith mocking all endpoints

public void testAdvisedMockEndpoints() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock all endpoints
mockEndpoints();

}
});

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));

COOKBOOK 73

http://camel.apache.org/mock.html

assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

Notice that the mock endpoints is given the uri mock:<endpoint>, for example
mock:direct:foo. Camel logs at INFO level the endpoints being mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example to mock all log
endpoints you do as shown:

Listing 1.Listing 1. adviceWith mocking only log endpoints using a patternadviceWith mocking only log endpoints using a pattern

public void testAdvisedMockEndpointsWithPattern() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock only log endpoints
mockEndpoints("log*");

}
});

// now we can refer to log:foo as a mock and set our expectations
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull(context.hasEndpoint("mock:log:foo"));
assertNull(context.hasEndpoint("mock:direct:start"));
assertNull(context.hasEndpoint("mock:direct:foo"));

}

74 COOKBOOK

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off. For example
the endpoint "log:foo?showAll=true" will be mocked to the following endpoint
"mock:log:foo". Notice the parameters have been removed.

The pattern supported can be a wildcard or a regular expression. See more details about this at
Intercept as its the same matching function used by Camel.

Mocking existing endpoints using the camel-test component

Instead of using the adviceWith to instruct Camel to mock endpoints, you can easily enable
this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the
isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

Listing 1.Listing 1. isMockEndpoints using camel-test kitisMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpoints() {

// override this method and return the pattern for which endpoints to mock.
// use * to indicate all
return "*";

}

@Test
public void testMockAllEndpoints() throws Exception {

// notice we have automatic mocked all endpoints and the name of the endpoints
is "mock:uri"

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));

COOKBOOK 75

http://camel.apache.org/intercept.html

Mind that mocking endpoints causes the messages to be copied when they arrive on
the mock.
That means Camel will use more memory. This may not be suitable when you send
in a lot of messages.

assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

}

Mocking existing endpoints with XML DSL

If you do not use the camel-test component for unit testing (as shown above) you can use a
different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then include the intended
XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:

Listing 1.Listing 1. camel-route.xmlcamel-route.xml

<!-- this camel route is in the camel-route.xml file -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<transform>

<constant>Bye World</constant>

76 COOKBOOK

</transform>
</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-route.xml file and
define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which tells
Camel to mock all endpoints:

Listing 1.Listing 1. test-camel-route.xmltest-camel-route.xml

<!-- the Camel route is defined in another XML file -->
<import resource="camel-route.xml"/>

<!-- bean which enables mocking all endpoints -->
<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml) instead of
camel-route.xml.

To only mock all Log endpoints you can define the pattern in the constructor for the bean:

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">

<constructor-arg index="0" value="log*"/>
</bean>

Mocking endpoints and skip sending to original endpoint

Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain endpoints. So the message
is detoured and send to the mock endpoint only. From Camel 2.10 onwards you can now use
the mockEndpointsAndSkip method using AdviceWith or the [Test Kit]. The example
below will skip sending to the two endpoints "direct:foo", and "direct:bar".

Listing 1.Listing 1. adviceWith mock and skip sending to endpointsadviceWith mock and skip sending to endpoints

public void testAdvisedMockEndpointsWithSkip() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock sending to direct:foo and direct:bar and skip send to it

COOKBOOK 77

http://camel.apache.org/log.html
http://camel.apache.org/advicewith.html

mockEndpointsAndSkip("direct:foo", "direct:bar");
}

});

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);
getMockEndpoint("mock:direct:bar").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the seda
endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

The same example using the Test Kit

Listing 1.Listing 1. isMockEndpointsAndSkip using camel-test kitisMockEndpointsAndSkip using camel-test kit

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpointsAndSkip() {

// override this method and return the pattern for which endpoints to mock,
// and skip sending to the original endpoint.
return "direct:foo";

}

@Test
public void testMockEndpointAndSkip() throws Exception {

// notice we have automatic mocked the direct:foo endpoints and the name of
the endpoints is "mock:uri"

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the
seda endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("mock:result");

78 COOKBOOK

http://camel.apache.org/testing.html

from("direct:foo").transform(constant("Bye World")).to("seda:foo");
}

};
}

}

Limiting the number of messages to keep

Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you
test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and
retainLast that can be used to specify to only keep N'th of the first and/or last Exchanges.

For example in the code below, we only want to retain a copy of the first 5 and last 5
Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data");
mock.setRetainFirst(5);
mock.setRetainLast(5);
mock.expectedMessageCount(2000);

...

mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges()
methods on the MockEndpoint will return only the retained copies of the Exchanges. So in
the example above, the list will contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedXXX methods that work on message bodies,
headers, etc. will only operate on the retained messages. In the example above they can test
only the expectations on the 10 retained messages.

Testing with arrival times

Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock. But it also
provides foundation to know the time interval between the previous and next message arrived

COOKBOOK 79

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html

on the mock. You can use this to set expectations using the arrives DSL on the Mock
endpoint.

For example to say that the first message should arrive between 0-2 seconds before the
next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive no later than 0-2
seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it should be
between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the gap between them
should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing
• Testing

TESTING

Testing is a crucial activity in any piece of software development or integration. Typically Camel
Riders use various different technologies wired together in a variety of patterns with different
expression languages together with different forms of Bean Integration and Dependency
Injection so its very easy for things to go wrong! . Testing is the crucial weapon to ensure

that things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit testing framework
you use (JUnit 3.x (deprecated), 4.x, or TestNG). However the Camel project has tried to

80 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html

time units
In the example above we use seconds as the time unit, but Camel offers
milliseconds, and minutes as well.

make the testing of Camel as easy and powerful as possible so we have introduced the following
features.

Testing mechanisms

The following mechanisms are supported

Name Component Description

Camel
Test

camel-
test

Is a standalone Java library letting you easily create Camel test
cases using a single Java class for all your configuration and
routing without using Spring or Guice for Dependency
InjectionÊwhich does not require an in-depth knowledge of
Spring + Spring Test or Guice. ÊSupports JUnit 3.x
(deprecated) and JUnit 4.x based tests.

Spring
Testing

camel-
test-
spring

Supports JUnit 3.x (deprecated) or JUnit 4.x based tests that
bootstrap a test environment using Spring without needing to
be familiar with Spring Test. ÊThe Êplain JUnit 3.x/4.x based
tests work very similar to the test support classes in camel-
test. ÊAlso supports Spring Test based tests that use the
declarative style of test configuration and injection common in
Spring Test. ÊThe Spring Test based tests provide feature
parity with the plain JUnit 3.x/4.x based testing approach.
ÊNotice camel-test-spring is a new component in
Camel 2.10 onwards. For older Camel release use camel-
test which has built-in Spring Testing.

Blueprint
Testing

camel-
test-
blueprint

Camel 2.10: Provides the ability to do unit testing on
blueprint configurations

Guice
camel-
guice

Uses Guice to dependency inject your test classes

COOKBOOK 81

http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/guice.html

Camel
TestNG

camel-testng

Supports plain TestNG based testsÊwith or
withoutÊSpringÊorÊGuiceÊforÊDependency InjectionÊwhich
does not require an in-depth knowledge of Spring + Spring
Test or Guice. ÊAlso from Camel 2.10 onwards, this
component supports Spring TestÊbased tests that use the
declarative style of test configuration and injection common in
Spring Test and described in more detail under Spring Testing.

In all approaches the test classes look pretty much the same in that they all reuse the Camel
binding and injection annotations.

Camel Test Example

Here is the Camel Test example.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

82 COOKBOOK

http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

};
}

}

Notice how it derives from the Camel helper class CamelTestSupport but has no Spring or
Guice dependency injection configuration but instead overrides the createRouteBuilder()
method.

Spring Test with XML Config Example

Here is the Spring Testing example using XML Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

Notice that we use @DirtiesContext on the test methods to force Spring Testing to
automatically reload the CamelContext after each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in
another test method).

COOKBOOK 83

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html

Also notice the use of @ContextConfiguration to indicate that by default we should
look for the FilterTest-context.xml on the classpath to configure the test case which looks like
this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>

</filter>
</route>

</camelContext>

</beans>

Spring Test with Java Config Example

Here is the Spring Testing example using Java Config.

For more information see Spring Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

84 COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://camel.apache.org/spring-java-config.html

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive from
SingleRouteCamelConfiguration which is a helper Spring Java Config class which will
configure the CamelContext for us and then register the RouteBuilder we create.

Since Camel 2.11.0 you can use the CamelSpringJUnit4ClassRunner with
CamelSpringDelegatingTestContextLoader like example using Java Config with
CamelSpringJUnit4ClassRunner.

@RunWith(CamelSpringJUnit4ClassRunner.class)
@ContextConfiguration(

classes = {CamelSpringDelegatingTestContextLoaderTest.TestConfig.class},
// Since Camel 2.11.0
loader = CamelSpringDelegatingTestContextLoader.class

)
@MockEndpoints
public class CamelSpringDelegatingTestContextLoaderTest {

COOKBOOK 85

http://jira.springframework.org/browse/SJC-238
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/test/CamelSpringDelegatingTestContextLoaderTest.java

@EndpointInject(uri = "mock:direct:end")
protected MockEndpoint endEndpoint;

@EndpointInject(uri = "mock:direct:error")
protected MockEndpoint errorEndpoint;

@Produce(uri = "direct:test")
protected ProducerTemplate testProducer;

@Configuration
public static class TestConfig extends SingleRouteCamelConfiguration {

@Bean
@Override
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:test").errorHandler(deadLetterChannel("direct:error")).to("direct:end");

from("direct:error").log("Received message on direct:error
endpoint.");

from("direct:end").log("Received message on direct:end endpoint.");
}

};
}

}

@Test
public void testRoute() throws InterruptedException {

endEndpoint.expectedMessageCount(1);
errorEndpoint.expectedMessageCount(0);

testProducer.sendBody("<name>test</name>");

endEndpoint.assertIsSatisfied();
errorEndpoint.assertIsSatisfied();

}
}

.

Spring Test with XML Config and Declarative Configuration
Example

Here is a Camel test support enhancedÊSpring TestingÊexample using XML Config and pure
Spring Test based configuration of the Camel Context.

86 COOKBOOK

http://camel.apache.org/spring-testing.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/spring/CamelSpringJUnit4ClassRunnerPlainTest.java

@RunWith(CamelSpringJUnit4ClassRunner.class)
@ContextConfiguration
// Put here to prevent Spring context caching across tests and test methods since some
tests inherit
// from this test and therefore use the same Spring context. Also because we want to
reset the
// Camel context and mock endpoints between test methods automatically.
@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)
public class CamelSpringJUnit4ClassRunnerPlainTest {

@Autowired
protected CamelContext camelContext;

@Autowired
protected CamelContext camelContext2;

@EndpointInject(uri = "mock:a", context = "camelContext")
protected MockEndpoint mockA;

@EndpointInject(uri = "mock:b", context = "camelContext")
protected MockEndpoint mockB;

@EndpointInject(uri = "mock:c", context = "camelContext2")
protected MockEndpoint mockC;

@Produce(uri = "direct:start", context = "camelContext")
protected ProducerTemplate start;

@Produce(uri = "direct:start2", context = "camelContext2")
protected ProducerTemplate start2;

@Test
public void testPositive() throws Exception {

assertEquals(ServiceStatus.Started, camelContext.getStatus());
assertEquals(ServiceStatus.Started, camelContext2.getStatus());

mockA.expectedBodiesReceived("David");
mockB.expectedBodiesReceived("Hello David");
mockC.expectedBodiesReceived("David");

start.sendBody("David");
start2.sendBody("David");

MockEndpoint.assertIsSatisfied(camelContext);
}

@Test
public void testJmx() throws Exception {

assertEquals(DefaultManagementStrategy.class,
camelContext.getManagementStrategy().getClass());

}

@Test
public void testShutdownTimeout() throws Exception {

COOKBOOK 87

assertEquals(10, camelContext.getShutdownStrategy().getTimeout());
assertEquals(TimeUnit.SECONDS,

camelContext.getShutdownStrategy().getTimeUnit());
}

@Test
public void testStopwatch() {

StopWatch stopWatch = StopWatchTestExecutionListener.getStopWatch();

assertNotNull(stopWatch);
assertTrue(stopWatch.taken() < 100);

}

@Test
public void testExcludedRoute() {

assertNotNull(camelContext.getRoute("excludedRoute"));
}

@Test
public void testProvidesBreakpoint() {

assertNull(camelContext.getDebugger());
assertNull(camelContext2.getDebugger());

}

@SuppressWarnings("deprecation")
@Test
public void testLazyLoadTypeConverters() {

assertTrue(camelContext.isLazyLoadTypeConverters());
assertTrue(camelContext2.isLazyLoadTypeConverters());

}
}

Notice how a custom test runner is used with theÊ@RunWithÊannotation to support the
features ofÊCamelTestSupportÊthrough annotations on the test class. ÊSeeÊSpring
TestingÊfor a list of annotations you can use in your tests.

Blueprint Test

Here is the Blueprint Testing example using XML Config.

// to use camel-test-blueprint, then extend the CamelBlueprintTestSupport class,
// and add your unit tests methods as shown below.
public class DebugBlueprintTest extends CamelBlueprintTestSupport {

// override this method, and return the location of our Blueprint XML file to be
used for testing

@Override
protected String getBlueprintDescriptor() {

return "org/apache/camel/test/blueprint/camelContext.xml";
}

88 COOKBOOK

http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java

// here we have regular Junit @Test method
@Test
public void testRoute() throws Exception {

// set mock expectations
getMockEndpoint("mock:a").expectedMessageCount(1);

// send a message
template.sendBody("direct:start", "World");

// assert mocks
assertMockEndpointsSatisfied();

}

}

Also notice the use of getBlueprintDescriptors to indicate that by default we should
look for the camelContext.xml in the package to configure the test case which looks like this

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<transform>

<simple>Hello ${body}</simple>
</transform>
<to uri="mock:a"/>

</route>

</camelContext>

</blueprint>

Testing endpoints

Camel provides a number of endpoints which can make testing easier.

Name Description

DataSet
For load & soak testing this endpoint provides a way to create huge numbers of
messages for sending to Components and asserting that they are consumed
correctly

COOKBOOK 89

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml
http://camel.apache.org/dataset.html
http://camel.apache.org/components.html

Mock
For testing routes and mediation rules using mocks and allowing assertions to be
added to an endpoint

Test
Creates a Mock endpoint which expects to receive all the message bodies that
could be polled from the given underlying endpoint

The main endpoint is the Mock endpoint which allows expectations to be added to different
endpoints; you can then run your tests and assert that your expectations are met at the end.

Stubbing out physical transport technologies

If you wish to test out a route but want to avoid actually using a real physical transport (for
example to unit test a transformation route rather than performing a full integration test) then
the following endpoints can be useful.

Name Description

Direct
Direct invocation of the consumer from the producer so that single threaded
(non-SEDA) in VM invocation is performed which can be useful to mock out
physical transports

SEDA
Delivers messages asynchonously to consumers via a
java.util.concurrent.BlockingQueue which is good for testing asynchronous
transports

Stub
Works like SEDA but does not validate the endpoint uri, which makes stubbing
much easier.

Testing existing routes

Camel provides some features to aid during testing of existing routes where you cannot or will
not use Mock etc. For example you may have a production ready route which you want to test
with some 3rd party API which sends messages into this route.

Name Description

NotifyBuilder
Allows you to be notified when a certain condition has occurred. For
example when the route has completed 5 messages. You can build complex
expressions to match your criteria when to be notified.

AdviceWith
Allows you to advice or enhance an existing route using a RouteBuilder
style. For example you can add interceptors to intercept sending outgoing
messages to assert those messages are as expected.

90 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/direct.html
http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/stub.html
http://camel.apache.org/seda.html
http://camel.apache.org/mock.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html
http://camel.apache.org/routebuilder.html

CAMEL TEST

As a simple alternative to using Spring Testing or Guice the camel-test module was
introduced so you can perform powerful Testing of your Enterprise Integration Patterns easily.

Adding to your pom.xml

To get started using Camel Test you will need to add an entry to your pom.xml

JUnit

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

TestNG

Available as of Camel 2.8

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-testng</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

You might also want to add slf4j and log4j to ensure nice logging messages (and maybe adding a
log4j.properties file into your src/test/resources directory).

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<scope>test</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<scope>test</scope>

</dependency>

COOKBOOK 91

http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties

The camel-test JAR is using JUnit. There is an alternative camel-testng JAR
(Camel 2.8 onwards) using the TestNG test framework.

Writing your test

You firstly need to derive from the class
CamelTestSupportÊ(org.apache.camel.test.CamelTestSupport,
org.apache.camel.test.junit4.CamelTestSupport, or org.apache.camel.testng.CamelTestSupport
for JUnit 3.x, JUnit 4.x, and TestNG, respectively)Êand typically you will need to override the
createRouteBuilder() orÊcreateRouteBuilders()Êmethod to create routes to be
tested.

Here is an example.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};

92 COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
http://testng.org/doc/index.html

}
}

Notice how you can use the various Camel binding and injection annotations to inject individual
Endpoint objects - particularly the Mock endpoints which are very useful for Testing. Also you
can inject producer objects such as ProducerTemplate or some application code interface for
sending messages or invoking services.

Features Provided by CamelTestSupport

The various CamelTestSupport classes provide a standard set of behaviors relating to the
CamelContext used to host the route(s) under test. ÊThe classes provide a number of methods
that allow a test to alter the configuration of the CamelContext used. ÊThe following table
describes the available customization methods and the default behavior of tests that are built
from aÊCamelTestSupport class.

Method Name Description Default Behavior

boolean isUseRouteBuilder()
If the route builders from returned fromÊcreateRouteBuilder() or
createRouteBuilders() should be added to the CamelContext used in
the test should be started.

Returns true.
ÊcreateRouteBuilder()ÊorÊcreateRouteBuilders()
are invoked and the CamelContext is started automatically.

boolean isUseAdviceWith()

If the CamelContext use in the test should be automatically started before
test methods are invoked.
Override when using advice withÊand return true. ÊThis helps in knowing the
adviceWith is to be used, and theÊCamelContextÊwill not be started
beforeÊthe advice with takes place. This delay helps by ensuring the advice
with has been property setup before theÊCamelContextÊis started.

Returns false. Êthe CamelContext is started automatically
before test methods are invoked.

boolean isCreateCamelContextPerClass() SeeÊSetup CamelContext once per class, or per every test method.
The CamelContext and routes are recreated for each test
method.

String isMockEndpoints()

Triggers the auto-mocking of endpoints whose URIs match the provided filter.
ÊThe defaultÊfilter is null which disables this feature. ÊReturn "*" Êto match all
endpoints.
ÊSeeÊorg.apache.camel.impl.InterceptSendToMockEndpointStrategyÊforÊmore
details on the registration of the mock endpoints.

Disabled

COOKBOOK 93

http://camel.apache.org/bean-integration.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/testing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/advicewith.html

Its important to start the CamelContext manually from the unit test after you are
done doing all the advice with.

boolean isUseDebugger()

If this method returns true, theÊdebugBefore(Exchange exchange,
Processor processor, ProcessorDefinition<?>
definition,ÊString id, String label)ÊandÊ
debugAfter(Exchange exchange, Processor processor,
ProcessorDefinition<?> definition,ÊString id, String label, long
timeTaken)Êmethods are invoked for each processor in the registered
routes.

Disabled. ÊThe methods are not invoked during the test.

int getShutdownTimeout()
Returns the number of seconds that Camel should wait for graceful
shutdown. ÊUseful for decreasing test times when a message is still in flight at
the end of the test.

Returns 10 seconds.

boolean useJmx() If JMX should be disabled on the CamelContext used in the test. JMX is disabled.

JndiRegistry createRegistry()
Provides a hook for adding objects into the registry. ÊOverride this method
to bind objects to the registry before test methods are invoked.

An empty registry is initialized.

useOverridePropertiesWithPropertiesComponent
Camel 2.10: Allows to add/override properties when Using
PropertyPlaceholder in Camel.

null

ignoreMissingLocationWithPropertiesComponent
Camel 2.10: Allows to control if Camel should ignore missing locations for
properties.

null

JNDI

Camel uses a Registry to allow you to configure Component or Endpoint instances or Beans
used in your routes. If you are not using Spring or [OSGi] then JNDI is used as the default
registry implementation.

So you will also need to create a jndi.properties file in your src/test/resources
directory so that there is a default registry available to initialise the CamelContext.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

Dynamically assigning ports

Available as of Camel 2.7

Tests that use port numbers will fail if that port is already on use.
AvailablePortFinder provides methods for finding unused port numbers at runtime.

94 COOKBOOK

http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/registry.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/spring.html
http://camel.apache.org/jndi.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties

// Get the next available port number starting from the default starting port of 1024
int port1 = AvailablePortFinder.getNextAvailable();
/*
* Get another port. Note that just getting a port number does not reserve it so
* we look starting one past the last port number we got.
*/

int port2 = AvailablePortFinder.getNextAvailable(port1 + 1);

Setup CamelContext once per class, or per every test method

Available as of Camel 2.8

The Camel Test kit will by default setup and shutdown CamelContext per every test
method in your test class. So for example if you have 3 test methods, then CamelContext is
started and shutdown after each test, that is 3 times.
You may want to do this once, to share the CamelContext between test methods, to speedup
unit testing. This requires to use JUnit 4! In your unit test method you have to extend the
org.apache.camel.test.junit4.CamelTestSupport or the
org.apache.camel.test.junit4.CamelSpringTestSupport test class and
override the isCreateCamelContextPerClass method and return true as shown in
the following example:

Listing 1.Listing 1. Setup CamelContext once per classSetup CamelContext once per class

public class FilterCreateCamelContextPerClassTest extends CamelTestSupport {

@Override
public boolean isCreateCamelContextPerClass() {

// we override this method and return true, to tell Camel test-kit that
// it should only create CamelContext once (per class), so we will
// re-use the CamelContext between each test method in this class
return true;

}

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

getMockEndpoint("mock:result").expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader("direct:start", expectedBody, "foo", "bar");

assertMockEndpointsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

getMockEndpoint("mock:result").expectedMessageCount(0);

template.sendBodyAndHeader("direct:start", "<notMatched/>", "foo",

COOKBOOK 95

http://camel.apache.org/camel-test.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html

TestNG
This feature is also supported in camel-testng

Beware
When using this the CamelContext will keep state between tests, so have that in
mind. So if your unit tests start to fail for no apparent reason, it could be due this
fact. So use this feature with a bit of care.

"notMatchedHeaderValue");

assertMockEndpointsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

See Also

• Testing
• Mock
• Test

SPRING TESTING

Testing is a crucial part of any development or integration work. The Spring Framework offers
a number of features that makes it easy to test while using Spring for Inversion of Control
which works with JUnit 3.x, JUnit 4.x, and TestNG.

We can use Spring for IoC and the Camel Mock and Test endpoints to create sophisticated
integration/unit tests that are easy to run and debug inside your IDE. ÊThere are three
supported approaches for testing with Spring in Camel.

96 COOKBOOK

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/testing.html
http://testng.org
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/camelcontext.html

Name
Testing
Frameworks
Supported

Description
Required Camel
Test
Dependencies

CamelSpringTestSupport

• JUnit 3.x
(deprecated)

• JUnit 4.x
• TestNG -

Camel 2.8

Provided by org.apache.camel.test.CamelSpringTestSupport, org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupport. ÊThese base classes provide feature parity withÊthe simple CamelTestSupport classes fromÊCamel
TestÊbut do not support Spring annotations on the test class such as @Autowired,Ê@DirtiesContext, andÊ@ContextConfiguration.

• JUnit 3.x
(deprecated)
- camel-test-
spring

• JUnit 4.xÊ-
camel-test-
spring

• TestNG -
camel-test-
ng

Plain Spring Test
• JUnit 3.x
• JUnit 4.x
• TestNG

Extend the abstract base classes
(org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests,Êorg.springframework.test.context.junit38.AbstractJUnit4SpringContextTests,
etc.)Êprovided in Spring Test or use the Spring Test JUnit4 runner. ÊThese approaches support both the Camel annotations and Spring annotations, but do
not have feature parity withÊorg.apache.camel.test.CamelTestSupport, org.apache.camel.test.junit4.CamelTestSupport, and
org.apache.camel.testng.CamelSpringTestSupport.

• JUnit 3.x
(deprecated)
- None

• JUnit 4.xÊ-
None

• TestNG -
None

Camel Enhanced Spring
Test

• JUnit 4.x -
Camel
2.10

• TestNG -
Camel
2.10

Use the org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunnerÊrunner with theÊ@RunWithÊannotation or extend
org.apache.camel.testng.AbstractCamelTestNGSpringContextTestsÊto enable feature parity with org.apache.camel.test.CamelTestSupport and
org.apache.camel.test.junit4.CamelTestSupport and also support the full suite of Spring Test annotations such asÊ@Autowired,Ê@DirtiesContext,
and @ContextConfiguration.

• JUnit 3.x
(deprecated)
- camel-test-
spring

• JUnit 4.xÊ-
camel-test-
spring

• TestNG -
camel-test-
ng

CamelSpringTestSupport

org.apache.camel.test.CamelSpringTestSupport,
org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupportÊextend their non-Spring aware counterparts
(org.apache.camel.test.CamelTestSupport, org.apache.camel.test.junit4.CamelTestSupport, and
org.apache.camel.testng.CamelTestSupport) and deliver integration with Spring into your test
classes. ÊInstead ofÊinstantiatingÊthe CamelContext and routes programmatically, these classes
rely on a Spring context to wire the needed components together. ÊIf your test extends one of
these classes, you must provide the Spring context by implementing the following method.

COOKBOOK 97

http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport

protected abstract AbstractApplicationContext createApplicationContext();

You are responsible for the instantiation of the Spring context in the method implementation.
ÊAll of the features available in the non-Spring aware counterparts from Camel Test are
available in your test.

Plain Spring Test

In this approach, your test classes directly inherit from the Spring Test abstract test classes or
use the JUnit 4.x test runner provided in Spring Test. ÊThis approach
supportsÊdependencyÊinjection into your test class and the full suite of Spring Test annotations
but does not support the features provided by the CamelSpringTestSupport classes.

Plain Spring Test using JUnit 3.x with XML Config Example

Here is a simple unit test using JUnit 3.x support from Spring Test usingÊXML Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

98 COOKBOOK

http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

Notice that we useÊ@DirtiesContextÊon the test methods to forceÊSpring TestingÊto
automatically reload theÊCamelContextÊafter each test method - this ensures that the tests
don't clash with each other (e.g. one test method sending to an endpoint that is then reused in
another test method).

Also notice the use ofÊ@ContextConfigurationÊto indicate that by default we should
look for theÊFilterTest-context.xml on the classpathÊto configure the test case which looks like
this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>

</filter>
</route>

</camelContext>

</beans>

This test will load a Spring XML configuration file calledFilterTest-context.xmlÊfrom the
classpath in the same package structure as the FilterTest class and initialize it along with any
Camel routes we define inside it, then inject theCamelContextinstance into our test case.

For instance, like this maven folder layout:

src/test/java/org/apache/camel/spring/patterns/FilterTest.java
src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Plain Spring Test using JUnit 4.x with Java Config Example

You can completely avoid using an XML configuration file by using Spring Java Config. ÊHere is a
unit test using JUnit 4.x support from Spring Test usingÊJava Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",

COOKBOOK 99

http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml
http://camel.apache.org/spring-java-config.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

loader = JavaConfigContextLoader.class)
public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML file and instead
the nested ContextConfig class does all of the configuration; so your entire test case is
contained in a single Java class. We currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to address this and
make Spring Test work more cleanly with Spring JavaConfig.

100 COOKBOOK

http://jira.springframework.org/browse/SJC-238

Plain Spring Test using JUnit 4.x Runner with XML Config

You can avoid extending Spring classes by using the SpringJUnit4ClassRunner provided by
Spring Test. ÊThis custom JUnit runner means you are free to choose your own class hierarchy
while retaining all the capabilities of Spring Test.

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class MyCamelTest {

Ê Ê @Autowired
Ê Ê protected CamelContext camelContext;

Ê Ê @EndpointInject(uri = "mock:foo")
Ê Ê protected MockEndpoint foo;

@Test
@DirtiesContext

Ê Ê public void testMocksAreValid() throws Exception {
...Ê Ê Ê Ê

Ê Ê Ê Ê foo.message(0).header("bar").isEqualTo("ABC");

Ê Ê Ê Ê MockEndpoint.assertIsSatisfied(camelContext);
Ê Ê }
}

Camel Enhanced Spring Test

Using org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunnerÊrunner with
theÊ@RunWithÊannotation or extending
org.apache.camel.testng.AbstractCamelTestNGSpringContextTests provides the full feature set
of Spring Test with support for the feature set provided in the CamelTestSupport classes. ÊA
number of Camel specific annotations have been developed in order to provide for declarative
manipulation of the Camel context(s) involved in the test. ÊThese annotations free your test
classes from having to inherit from the CamelSpringTestSupport classes and also reduce the
amount of code required to customize the tests.

Annotation Class
Applies
To

Description
Default
Behavioir If
Not Present

Default
Behavior If
Present

org.apache.camel.test.spring.DisableJmx Class
Indicates if JMX should be globally disabled in the CamelContexts that are
bootstrapped Êduring the test through the use of Spring Test loaded
application contexts.

JMX is disabled JMX is disabled

COOKBOOK 101

org.apache.camel.test.spring.ExcludeRoutes Class

Indicates if certain route builder classes should be excluded from discovery.
ÊInitializes a org.apache.camel.spi.PackageScanClassResolverÊto exclude a set
of given classes from being resolved. Typically this is used at test time to
exclude certain routes,Êwhich might otherwise be just noisy, from being
discovered and initialized.

Not enabled
and no routes
are excluded

No routes are
excluded

org.apache.camel.test.spring.LazyLoadTypeConverters
(Deprecated)

Class
Indicates if theÊCamelContexts that are bootstrapped during the test through
the use of Spring TestÊloaded application contexts should use lazy loading of
type converters.

Type
converters are
not lazy loaded

Type converters
are not lazy
loaded

org.apache.camel.test.spring.MockEndpoints Class

Triggers the auto-mocking of endpoints whose URIs match the provided
filter.Ê The defaultÊfilter is "*" which matches all endpoints.
ÊSeeÊorg.apache.camel.impl.InterceptSendToMockEndpointStrategyÊforÊmore
details on the registration of the mock endpoints.

Not enabled

All endpoints are
sniffed and
recorded in a
mock endpoint.

org.apache.camel.test.spring.MockEndpointsAndSkip Class

Triggers the auto-mocking of endpoints whose URIs match the provided
filter.Ê The defaultÊfilter is "*", which matches all endpoints.
ÊSeeÊorg.apache.camel.impl.InterceptSendToMockEndpointStrategyÊforÊmore
details on the registration of the mock endpoints. ÊThis annotation will also
skip sending the message to matched endpoints as well.

Not enabled

All endpoints are
sniffed and
recorded in a
mock endpoint.
ÊThe original
endpoint is not
invoked.

org.apache.camel.test.spring.ProvidesBreakpoint Method

Indicates that the annotated method returns
anÊorg.apache.camel.spi.BreakpointÊfor use in the test.Ê Useful for
interceptingÊtraffic to all endpoints or simply for setting a break point in an
IDE for debugging.Ê The method mustÊbe public, static, take no arguments,
and return org.apache.camel.spi.Breakpoint.

N/A

The returned
Breakpoint is
registered in the
CamelContext(s)

org.apache.camel.test.spring.ShutdownTimeout Class

Indicates to set the shutdown timeout of all CamelContexts instantiated
through theÊuse of Spring Test loaded application contexts.Ê If no annotation
is used, the timeout isÊautomatically reduced to 10 seconds by the test
framework.

10 seconds 10 seconds

org.apache.camel.test.spring.UseAdviceWith Class

Indicates the use of adviceWith() within the test class.Ê If a class is annotated
withÊthis annotation and UseAdviceWith#value()Êreturns true,
anyÊCamelContexts bootstrapped during the test through the use of Spring
Test loadedÊapplication contexts will not be started automatically.Ê The test
author is responsible forÊinjecting the Camel contexts into the test and
executing CamelContext#start()Êon themÊat the appropriate time after any
advice has been applied to the routes in the CamelContext(s).

CamelContexts
do not
automatically
start.

CamelContexts
do not
automatically
start.

The following example illustrates the use of the @MockEndpointsÊannotation in order to
setup mock endpoints as interceptors on all endpoints using the Camel Log component and the
@DisableJmx annotation to enable JMX which is disabled during tests by default. ÊNote that
we still use the @DirtiesContext annotation to ensure that the CamelContext, routes, and
mock endpoints are reinitialized between test methods.

102 COOKBOOK

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/main/java/org/apache/camel/impl/InterceptSendToMockEndpointStrategy.java?view=markup

@RunWith(CamelSpringJUnit4ClassRunner.class)
@ContextConfiguration
@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)
@MockEndpoints("log:*")
@DisableJmx(false)
public class CamelSpringJUnit4ClassRunnerPlainTest {

@Autowired
protected CamelContext camelContext2;

protected MockEndpoint mockB;

@EndpointInject(uri = "mock:c", context = "camelContext2")
protected MockEndpoint mockC;

@Produce(uri = "direct:start2", context = "camelContext2")
protected ProducerTemplate start2;

@EndpointInject(uri = "mock:log:org.apache.camel.test.junit4.spring", context =
"camelContext2")

protected MockEndpoint mockLog;

@Test
public void testPositive() throws Exception {

mockC.expectedBodiesReceived("David");
mockLog.expectedBodiesReceived("Hello David");

start2.sendBody("David");

MockEndpoint.assertIsSatisfied(camelContext);
}

Adding more Mock expectations

If you wish to programmatically add any new assertions to your test you can easily do so with
the following. Notice how we use @EndpointInject to inject a Camel endpoint into our code
then the Mock API to add an expectation on a specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations
foo.message(0).header("bar").isEqualTo("ABC");

COOKBOOK 103

http://camel.apache.org/mock.html

MockEndpoint.assertIsSatisfied(camelContext);
}

}

Further processing the received messages

Sometimes once a Mock endpoint has received some messages you want to then process them
further to add further assertions that your test case worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations...

MockEndpoint.assertIsSatisfied(camelContext);

// now lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges();
for (Exchange exchange : list) {

Message in = exchange.getIn();
...

}
}

}

Sending and receiving messages

It might be that the Enterprise Integration Patterns you have defined in either Spring XML or
using the Java DSL do all of the sending and receiving and you might just work with the Mock
endpoints as described above. However sometimes in a test case its useful to explicitly send or
receive messages directly.

To send or receive messages you should use the Bean Integration mechanism. For example
to send messages inject a ProducerTemplate using the @EndpointInject annotation then call the
various send methods on this object to send a message to an endpoint. To consume messages
use the @MessageDriven annotation on a method to have the method invoked when a message
is received.

104 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html
http://camel.apache.org/dsl.html
http://camel.apache.org/mock.html
http://camel.apache.org/bean-integration.html

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
// lets send a message!
producer.sendBody("<hello>world!</hello>");

}

// lets consume messages from the 'cheese' queue
@MessageDriven(uri="activemq:cheese")
public void onCheese(String name) {

...
}

}

See Also

• A real example test case using Mock and Spring along with its Spring XML
• Bean Integration
• Mock endpoint
• Test endpoint

CAMEL GUICE

We have support for Google Guice as a dependency injection framework.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-guice</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Dependency Injecting Camel with Guice

The GuiceCamelContext is designed to work nicely inside Guice. You then need to bind it
using some Guice Module.

The camel-guice library comes with a number of reusable Guice Modules you can use if you
wish - or you can bind the GuiceCamelContext yourself in your own module.

• CamelModule is the base module which binds the GuiceCamelContext but leaves it
up you to bind the RouteBuilder instances

COOKBOOK 105

https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://code.google.com/p/google-guice/
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html

• CamelModuleWithRouteTypes extends CamelModule so that in the constructor of
the module you specify the RouteBuilder classes or instances to use

• CamelModuleWithMatchingRoutes extends CamelModule so that all bound
RouteBuilder instances will be injected into the CamelContext or you can supply an
optional Matcher to find RouteBuilder instances matching some kind of predicate.

So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector(new
CamelModuleWithRouteTypes(MyRouteBuilder.class, AnotherRouteBuilder.class));
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

Or inject them all

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes());
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any other dependent
objects.

Bootstrapping with JNDI

A common pattern used in J2EE is to bootstrap your application or root objects by looking
them up in JNDI. This has long been the approach when working with JMS for example -
looking up the JMS ConnectionFactory in JNDI for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI Provider which lets
you bootstrap Guice from a jndi.properties file which can include the Guice Modules to
create along with environment specific properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify the jndi
properties file name in the Guice Main with option -j or -jndiProperties with the properties file
location to let Guice Main to load right jndi properties file.

Configuring Component, Endpoint or RouteBuilder instances

You can use Guice to dependency inject whatever objects you need to create, be it an
Endpoint, Component, RouteBuilder or arbitrary bean used within a route.

The easiest way to do this is to create your own Guice Module class which extends one of
the above module classes and add a provider method for each object you wish to create. A
provider method is annotated with @Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

106 COOKBOOK

hhttp://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
http://camel.apache.org/routebuilder.html
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
http://camel.apache.org/guice.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/bean-integration.html

@Provides
@JndiBind("jms")
JmsComponent jms(@Named("activemq.brokerURL") String brokerUrl) {

return JmsComponent.jmsComponent(new ActiveMQConnectionFactory(brokerUrl));
}

}

You can optionally annotate the method with @JndiBind to bind the object to JNDI at some
name if the object is a component, endpoint or bean you wish to refer to by name in your
routes.

You can inject any environment specific properties (such as URLs, machine names,
usernames/passwords and so forth) from the jndi.properties file easily using the @Named
annotation as shown above. This allows most of your configuration to be in Java code which is
typesafe and easily refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development, testing, production etc.

Creating multiple RouteBuilder instances per type

It is sometimes useful to create multiple instances of a particular RouteBuilder with different
configurations.

To do this just create multiple provider methods for each configuration; or create a single
provider method that returns a collection of RouteBuilder instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JndiBind("foo")
Collection<RouteBuilder> foo(@Named("fooUrl") String fooUrl) {

return Lists.newArrayList(new MyRouteBuilder(fooUrl), new
MyRouteBuilder("activemq:CheeseQueue"));

}
}

See Also

• there are a number of Examples you can look at to see Guice and Camel being used
such as Guice JMS Example

• Guice Maven Plugin for running your Guice based routes via Maven

COOKBOOK 107

http://camel.apache.org/routebuilder.html
http://camel.apache.org/examples.html
http://camel.apache.org/guice-jms-example.html
http://camel.apache.org/guice-maven-plugin.html

TEMPLATING

When you are testing distributed systems its a very common requirement to have to stub out
certain external systems with some stub so that you can test other parts of the system until a
specific system is available or written etc.

A great way to do this is using some kind of Template system to generate responses to
requests generating a dynamic message using a mostly-static body.

There are a number of templating components included in the Camel distribution you could
use

• FreeMarker
• StringTemplate
• Velocity
• XQuery
• XSLT

or the following external Camel components
• Scalate

Example

Here's a simple example showing how we can respond to InOut requests on the My.Queue
queue on ActiveMQ with a template generated response. The reply would be sent back to the
JMSReplyTo Destination.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

If you want to use InOnly and consume the message and send it to another destination you
could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

See Also

• Mock for details of mock endpoint testing (as opposed to template based stubs).

DATABASE

Camel can work with databases in a number of different ways. This document tries to outline
the most common approaches.

108 COOKBOOK

http://camel.apache.org/freemarker.html
http://camel.apache.org/stringtemplate.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://scalate.fusesource.org/camel.html
http://camel.apache.org/activemq.html
http://camel.apache.org/mock.html

Database endpoints

Camel provides a number of different endpoints for working with databases
• JPA for working with hibernate, openjpa or toplink. When consuming from the

endpoints entity beans are read (and deleted/updated to mark as processed) then
when producing to the endpoints they are written to the database (via insert/update).

• iBATIS similar to the above but using Apache iBATIS
• JDBC similar though using explicit SQL

Database pattern implementations

Various patterns can work with databases as follows
• Idempotent Consumer
• Aggregator
• BAM for business activity monitoring

PARALLEL PROCESSING AND ORDERING

It is a common requirement to want to use parallel processing of messages for throughput and
load balancing, while at the same time process certain kinds of messages in order.

How to achieve parallel processing

You can send messages to a number of Camel Components to achieve parallel processing and
load balancing such as

• SEDA for in-JVM load balancing across a thread pool
• ActiveMQ or JMS for distributed load balancing and parallel processing
• JPA for using the database as a poor mans message broker

When processing messages concurrently, you should consider ordering and concurrency issues.
These are described below

Concurrency issues

Note that there is no concurrency or locking issue when using ActiveMQ, JMS or SEDA by
design; they are designed for highly concurrent use. However there are possible concurrency
issues in the Processor of the messages i.e. what the processor does with the message?

For example if a processor of a message transfers money from one account to another
account; you probably want to use a database with pessimistic locking to ensure that operation
takes place atomically.

COOKBOOK 109

http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/jdbc.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/bam.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/seda.html
http://camel.apache.org/processor.html

Ordering issues

As soon as you send multiple messages to different threads or processes you will end up with
an unknown ordering across the entire message stream as each thread is going to process
messages concurrently.

For many use cases the order of messages is not too important. However for some
applications this can be crucial. e.g. if a customer submits a purchase order version 1, then
amends it and sends version 2; you don't want to process the first version last (so that you
loose the update). Your Processor might be clever enough to ignore old messages. If not you
need to preserve order.

Recommendations

This topic is large and diverse with lots of different requirements; but from a high level here are
our recommendations on parallel processing, ordering and concurrency

• for distributed locking, use a database by default, they are very good at it

• to preserve ordering across a JMS queue consider using Exclusive Consumers in the
ActiveMQ component

• even better are Message Groups which allows you to preserve ordering across
messages while still offering parallelisation via the JMSXGroupID header to
determine what can be parallelized

• if you receive messages out of order you could use the Resequencer to put them
back together again

A good rule of thumb to help reduce ordering problems is to make sure each single can be
processed as an atomic unit in parallel (either without concurrency issues or using say, database
locking); or if it can't, use a Message Group to relate the messages together which need to be
processed in order by a single thread.

Using Message Groups with Camel

To use a Message Group with Camel you just need to add a header to the output JMS message
based on some kind of Correlation Identifier to correlate messages which should be processed
in order by a single thread - so that things which don't correlate together can be processed
concurrently.

For example the following code shows how to create a message group using an XPath
expression taking an invoice's product code as the Correlation Identifier

from("activemq:a").setHeader("JMSXGroupID", xpath("/invoice/
productCode")).to("activemq:b");

You can of course use the Xml Configuration if you prefer

110 COOKBOOK

http://camel.apache.org/processor.html
http://activemq.apache.org/exclusive-consumer.html
http://camel.apache.org/activemq.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/resequencer.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/xml-configuration.html

ASYNCHRONOUS PROCESSING

Overview

Camel supports a more complex asynchronous processing model. The asynchronous
processors implement the AsyncProcessor interface which is derived from the more
synchronous Processor interface. There are advantages and disadvantages when using
asynchronous processing when compared to using the standard synchronous processing model.

Advantages:
• Processing routes that are composed fully of asynchronous processors do not use up

threads waiting for processors to complete on blocking calls. This can increase the
scalability of your system by reducing the number of threads needed to process the
same workload.

• Processing routes can be broken up into SEDA processing stages where different
thread pools can process the different stages. This means that your routes can be
processed concurrently.

Disadvantages:
• Implementing asynchronous processors is more complex than implementing the

synchronous versions.

When to Use

We recommend that processors and components be implemented the more simple
synchronous APIs unless you identify a performance of scalability requirement that dictates
otherwise. A Processor whose process() method blocks for a long time would be good
candidates for being converted into an asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
boolean process(Exchange exchange, AsyncCallback callback);

}

The AsyncProcessor defines a single process() method which is very similar to it's
synchronous Processor.process() brethren. Here are the differences:

• A non-null AsyncCallback MUST be supplied which will be notified when the
exchange processing is completed.

• It MUST not throw any exceptions that occurred while processing the exchange.
Any such exceptions must be stored on the exchange's Exception property.

• It MUST know if it will complete the processing synchronously or asynchronously.
The method will return true if it does complete synchronously, otherwise it returns
false.

COOKBOOK 111

http://camel.apache.org/seda.html

Supported versions
The information on this page applies for Camel 2.4 onwards. Before Camel 2.4 the
asynchronous processing is only implemented for JBI where as in Camel 2.4
onwards we have implemented it in many other areas. See more at Asynchronous
Routing Engine.

• When the processor has completed processing the exchange, it must call the
callback.done(boolean sync) method. The sync parameter MUST match
the value returned by the process() method.

Implementing Processors that Use the AsyncProcessor API

All processors, even synchronous processors that do not implement the AsyncProcessor
interface, can be coerced to implement the AsyncProcessor interface. This is usually done when
you are implementing a Camel component consumer that supports asynchronous completion of
the exchanges that it is pushing through the Camel routes. Consumers are provided a
Processor object when created. All Processor object can be coerced to a AsyncProcessor using
the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread usage, it must start
with the consumer implementation making use of the asynchronous processing API. If it called
the synchronous process() method instead, the consumer's thread would be forced to be
blocked and in use for the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous API, it does not
mean that the processing will take place asynchronously. It only allows the possibility that it can
be done without tying up the caller's thread. If the processing happens asynchronously is
dependent on the configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback class instance which
can reference the exchange object that was declared final. This allows it to finish up any post
processing that is needed when the called processor is done processing the exchange. See
below for an example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {

public void done(boolean sync) {

if (exchange.isFailed()) {

112 COOKBOOK

http://camel.apache.org/jbi.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html

... // do failure processing.. perhaps rollback etc.
} else {

... // processing completed successfully, finish up
// perhaps commit etc.

}
}

});

Asynchronous Route Sequence Scenarios

Now that we have understood the interface contract of the AsyncProcessor, and have seen
how to make use of it when calling processors, lets looks a what the thread model/sequence
scenarios will look like for some sample routes.

The Jetty component's consumers support async processing by using continuations. Suffice
to say it can take a http request and pass it to a camel route for async processing. If the
processing is indeed async, it uses Jetty continuation so that the http request is 'parked' and the
thread is released. Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park' the request. Jetty un-parks the request, the http
response returned using the result of the exchange processing.

Notice that the jetty continuations feature is only used "If the processing is indeed async".
This is why AsyncProcessor.process() implementations MUST accurately report if request is
completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and implement the
AsyncProcessor interface. A route that uses both the jetty asynchronous consumer and the jhc
asynchronous producer will be a fully asynchronous route and has some nice attributes that can
be seen if we take a look at a sequence diagram of the processing route. For the route:

from("jetty:http://localhost:8080/service").to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

The diagram simplifies things by making it looks like processors implement the
AsyncCallback interface when in reality the AsyncCallback interfaces are inline inner classes, but
it illustrates the processing flow and shows how 2 separate threads are used to complete the
processing of the original http request. The first thread is synchronous up until processing hits
the jhc producer which issues the http request. It then reports that the exchange processing
will complete async since it will use a NIO to complete getting the response back. Once the jhc
component has received a full response it uses AsyncCallback.done() method to notify
the caller. These callback notifications continue up until it reaches the original jetty consumer
which then un-parks the http request and completes it by providing the response.

COOKBOOK 113

Mixing Synchronous and Asynchronous Processors

It is totally possible and reasonable to mix the use of synchronous and asynchronous
processors/components. The pipeline processor is the backbone of a Camel processing route. It
glues all the processing steps together. It is implemented as an AsyncProcessor and supports
interleaving synchronous and asynchronous processors as the processing steps in the pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation, both of which
are synchronous processors. Lets say we want to load file from the data/in directory validate
them with the MyValidator() processor, Transform them into JPA java objects using
MyTransformation and then insert them into the database using the JPA component. Lets say
that the transformation process takes quite a bit of time and we want to allocate 20 threads to
do parallel transformations of the input files. The solution is to make use of the thread
processor. The thread is AsyncProcessor that forces subsequent processing in asynchronous
thread from a thread pool.

The route might look like:

from("file:data/in").process(new MyValidator()).threads(20).process(new
MyTransformation()).to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the 2nd part of the thread sequence.

Staying synchronous in an AsyncProcessor

Generally speaking you get better throughput processing when you process things
synchronously. This is due to the fact that starting up an asynchronous thread and doing a
context switch to it adds a little bit of of overhead. So it is generally encouraged that
AsyncProcessors do as much work as they can synchronously. When they get to a step that
would block for a long time, at that point they should return from the process call and let the
caller know that it will be completing the call asynchronously.

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS

ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck (see this page
for more detail) mostly since they don't support Competing Consumers.

Most folks want Queue semantics when consuming messages; so that you can support
Competing Consumers for load balancing along with things like Message Groups and Exclusive
Consumers to preserve ordering or partition the queue across consumers.

However if you are using another JMS provider you can implement Virtual Topics by
switching to ActiveMQ or you can use the following Camel pattern.

114 COOKBOOK

http://camel.apache.org/jpa.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html

First here's the ActiveMQ approach.
• send to activemq:topic:VirtualTopic.Orders
• for consumer A consume from activemq:Consumer.A.VirtualTopic.Orders

When using another message broker use the following pattern
• send to jms:Orders
• add this route with a to() for each logical durable topic subscriber

from("jms:Orders").to("jms:Consumer.A", "jms:Consumer.B", ...);

• for consumer A consume from jms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF

In CXF you offer or consume a webservice by defining it«s address. The first part of the
address specifies the protocol to use. For example address="http://localhost:9000" in an
endpoint configuration means your service will be offered using the http protocol on port 9000
of localhost. When you integrate Camel Tranport into CXF you get a new transport "camel".
So you can specify address="camel://direct:MyEndpointName" to bind the CXF service address
to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which implements the CXF
transport API with the Camel core library. This allows you to use camel«s routing engine and
integration patterns support smoothly together with your CXF services.

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER

To include the Camel Tranport into your CXF bus you use the CamelTransportFactory. You
can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring

You can use the following snippet in your applicationcontext if you want to configure anything
special. If you only want to activate the camel transport you do not have to do anything in your
application context. As soon as you include the camel-cxf-transport jar (or camel-cxf.jar if your
camel version is less than 2.7.x) in your app cxf will scan the jar and load a
CamelTransportFactory for you.

<!-- you don't need to specify the CamelTransportFactory configuration as it is auto
load by CXF bus -->
<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">

<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<!-- checkException new added in Camel 2.1 and Camel 1.6.2 -->

COOKBOOK 115

http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports
http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

<!-- If checkException is true , CamelDestination will check the outMessage's
exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->

<property name="checkException" value="true" />
<property name="transportIds">

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

Integrating the Camel Transport in a programmatic way

Camel transport provides a setContext method that you could use to set the Camel context
into the transport factory. If you want this factory take effect, you need to register the factory
into the CXF bus. Here is a full example for you.

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;
...

BusFactory bf = BusFactory.newInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
// set up the CamelContext which will be use by the CamelTransportFactory
camelTransportFactory.setCamelContext(context)
// if you are using CXF higher then 2.4.x the
camelTransportFactory.setBus(bus);

// if you are lower CXF, you need to register the ConduitInitiatorManager and
DestinationFactoryManager like below
// register the conduit initiator
ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// register the destination factory
DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// set or bus as the default bus for cxf
BusFactory.setDefaultBus(bus);

116 COOKBOOK

CONFIGURE THE DESTINATION AND CONDUIT WITH
SPRING

Namespace

The elements used to configure an Camel transport endpoint are defined in the namespace
http://cxf.apache.org/transports/camel. It is commonly referred to using the
prefix camel. In order to use the Camel transport configuration elements you will need to add
the lines shown below to the beans element of your endpoint's configuration file. In addition,
you will need to add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Listing 1.Listing 1. Adding the Configuration NamespaceAdding the Configuration Namespace

<beans ...
xmlns:camel="http://cxf.apache.org/transports/camel
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/camel
http://cxf.apache.org/transports/camel.xsd

...>

The destination element

You configure an Camel transport server endpoint using the camel:destination element
and its children. The camel:destination element takes a single attribute, name, the
specifies the WSDL port element that corresponds to the endpoint. The value for the name
attribute takes the form portQName.camel-destination. The example below shows the
camel:destination element that would be used to add configuration for an endpoint that
was specified by the WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net.

Listing 1.Listing 1. camel:destination Elementcamel:destination Element

...
<camel:destination name="{http://widgets/

widgetvendor.net}widgetSOAPPort.http-destination>
<camelContext id="context" xmlns="http://activemq.apache.org/camel/schema/spring">

<route>
<from uri="direct:EndpointC" />
<to uri="direct:EndpointD" />

</route>
</camelContext>

</camel:destination>

COOKBOOK 117

http://cxf.apache.org/transports/camel
http://widgets.widgetvendor.net

<!-- new added feature since Camel 2.11.x
<camel:destination name="{http://widgets/

widgetvendor.net}widgetSOAPPort.camel-destination" camelContextId="context" />

...

The camel:destination element for Spring has a number of child elements that specify
configuration information. They are described below.

Element Description

camel-
spring:camelContext

You can specify the camel context in the camel destination

camel:camelContextRef
The camel context id which you want inject into the camel
destination

The conduit element

You configure an Camel transport client using the camel:conduit element and its children.
The camel:conduit element takes a single attribute, name, that specifies the WSDL port
element that corresponds to the endpoint. The value for the name attribute takes the form
portQName.camel-conduit. For example, the code below shows the camel:conduit
element that would be used to add configuration for an endpoint that was specified by the
WSDL fragment <port binding="widgetSOAPBinding"
name="widgetSOAPPort> if the endpoint's target namespace was
http://widgets.widgetvendor.net.

Listing 1.Listing 1. http-conf:conduit Elementhttp-conf:conduit Element

...
<camelContext id="conduit_context" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>

<from uri="direct:EndpointA" />
<to uri="direct:EndpointB" />

</route>
</camelContext>

<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
<camel:camelContextRef>conduit_context</camel:camelContextRef>

</camel:conduit>

<!-- new added feature since Camel 2.11.x
<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit"

camelContextId="conduit_context" />

<camel:conduit name="*.camel-conduit">

118 COOKBOOK

http://widgets.widgetvendor.net

<!-- you can also using the wild card to specify the camel-conduit that you want to
configure -->

...
</camel:conduit>

...

The camel:conduit element has a number of child elements that specify configuration
information. They are described below.

Element Description

camel-
spring:camelContext

You can specify the camel context in the camel conduit

camel:camelContextRef
The camel context id which you want inject into the
camel conduit

CONFIGURE THE DESTINATION AND CONDUIT WITH
BLUEPRINT

From Camel 2.11.x, Camel Transport supports to be configured with Blueprint

If you are using blueprint, you should use the the namespace
http://cxf.apache.org/transports/camel/blueprint and import the schema
like the blow.

Listing 1.Listing 1. Adding the Configuration Namespace for blueprintAdding the Configuration Namespace for blueprint

<beans ...
xmlns:camel="http://cxf.apache.org/transports/camel/blueprint"
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/camel/blueprint
http://cxf.apache.org/schmemas/blueprint/camel.xsd

...>

In blueprint camel:conduit camel:destination only has one camelContextId
attribute, they doesn't support to specify the camel context in the camel destination.

<camel:conduit id="*.camel-conduit" camelContextId="camel1" />
<camel:destination id="*.camel-destination" camelContextId="camel1" />

COOKBOOK 119

http://cxf.apache.org/transports/camel/blueprint

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF

This example show how to use the camel load balance feature in CXF, and you need load the
configuration file in CXF and publish the endpoints on the address "camel://direct:EndpointA"
and "camel://direct:EndpointB"

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://cxf.apache.org/transports/camel"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/

camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<!-- Enable bridge between Camel Property Placeholder and Spring Property
placeholder so we can use system properties

to dynamically set the port number for unit testing the example. -->
<bean id="bridgePropertyPlaceholder"

class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer"/>

<bean id = "roundRobinRef"
class="org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id="dest_context" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="jetty:http://localhost:{{port}}/GreeterContext/GreeterPort"/>
<loadBalance ref="roundRobinRef">

<to uri="direct:EndpointA"/>
<to uri="direct:EndpointB"/>

</loadBalance>
</route>

</camelContext>

<!-- Inject the camel context to the Camel transport's destination -->
<camel:destination name="{http://apache.org/

hello_world_soap_http}CamelPort.camel-destination">
<camel:camelContextRef>dest_context</camel:camelContextRef>

</camel:destination>

</beans>

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF

Better JMS Transport for CXF Webservice using Apache CamelÊ

120 COOKBOOK

http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html

INTRODUCTION

When sending an Exchange to an Endpoint you can either use a Route or a ProducerTemplate.
This works fine in many scenarios. However you may need to guarantee that an exchange is
delivered to the same endpoint that you delivered a previous exchange on. For example in the
case of delivering a batch of exchanges to a MINA socket you may need to ensure that they are
all delivered through the same socket connection. Furthermore once the batch of exchanges
have been delivered the protocol requirements may be such that you are responsible for
closing the socket.

USING A PRODUCER

To achieve fine grained control over sending exchanges you will need to program directly to a
Producer. Your code will look similar to:

CamelContext camelContext = ...

// Obtain an endpoint and create the producer we will be using.
Endpoint endpoint = camelContext.getEndpoint("someuri:etc");
Producer producer = endpoint.createProducer();
producer.start();

try {
// For each message to send...
Object requestMessage = ...
Exchange exchangeToSend = producer.createExchange();
exchangeToSend().setBody(requestMessage);
producer.process(exchangeToSend);
...

} finally {
// Tidy the producer up.
producer.stop();

}

In the case of using Apache MINA the producer.stop() invocation will cause the socket to be
closed.

COOKBOOK 121

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/routes.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/mina.html

Tutorials

There now follows the documentation on camel tutorials

We have a number of tutorials as listed below. The tutorials often comes with source code
which is either available in the Camel Download or attached to the wiki page.

• OAuth Tutorial
This tutorial demonstrates how to implement OAuth for a web application with
Camel's gauth component. The sample application of this tutorial is also online at
http://gauthcloud.appspot.com/

• Tutorial for Camel on Google App Engine
This tutorial demonstrates the usage of the Camel Components for Google App
Engine. The sample application of this tutorial is also online at
http://camelcloud.appspot.com/

• Tutorial on Spring Remoting with JMS
This tutorial is focused on different techniques with Camel for Client-Server
communication.

• Report Incident - This tutorial introduces Camel steadily and is based on a real life
integration problem
This is a very long tutorial beginning from the start; its for entry level to Camel. Its
based on a real life integration, showing how Camel can be introduced in an existing
solution. We do this in baby steps. The tutorial is currently work in progress, so
check it out from time to time. The tutorial explains some of the inner building blocks
Camel uses under the covers. This is good knowledge to have when you start using
Camel on a higher abstract level where it can do wonders in a few lines of routing
DSL.

• Using Camel with ServiceMix a tutorial on using Camel inside Apache ServiceMix.
• Better JMS Transport for CXF Webservice using Apache Camel Describes how to

use the Camel Transport for CXF to attach a CXF Webservice to a JMS Queue
• Tutorial how to use good old Axis 1.4 with Camel

This tutorial shows that Camel does work with the good old frameworks such as
AXIS that is/was widely used for WebService.

• Tutorial on using Camel in a Web Application
This tutorial gives an overview of how to use Camel inside Tomcat, Jetty or any other
servlet engine

• Tutorial on Camel 1.4 for Integration
Another real-life scenario. The company sells widgets, with a somewhat unique
business process (their customers periodically report what they've purchased in order
to get billed). However every customer uses a different data format and protocol.
This tutorial goes through the process of integrating (and testing!) several customers

122 TUTORIALS

http://camel.apache.org/download.html
http://camel.apache.org/tutorial-oauth.html
http://camel.apache.org/gauth.html
http://gauthcloud.appspot.com/
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camelcloud.appspot.com/
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/tutorial-axis-camel.html
http://camel.apache.org/tutorial-on-using-camel-in-a-web-application.html
http://camel.apache.org/tutorial-business-partners.html

Notice
These tutorials listed below, is hosted at Apache. We offer the Articles page where
we have a link collection for 3rd party Camel material, such as tutorials, blog posts,
published articles, videos, pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a link to it. You can
contact the Camel Team, for example using the Mailing Lists, (or post a tweet with the word
Apache Camel).

and their electronic reporting of the widgets they've bought, along with the company's
response.

• Tutorial how to build a Service Oriented Architecture using Camel with OSGI -
Updated 20/11/2009
The tutorial has been designed in two parts. The first part introduces basic concept to
create a simple SOA solution using Camel and OSGI and deploy it in a OSGI Server
like Apache Felix Karaf and Spring DM Server while the second extends the
ReportIncident tutorial part 4 to show How we can separate the different layers
(domain, service, ...) of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI bundles.

• Several of the vendors on the Commercial Camel Offerings page also offer various
tutorials, webinars, examples, etc.... that may be useful.

• Examples
While not actual tutorials you might find working through the source of the various
Examples useful.

TUTORIAL ON SPRING REMOTING WITH JMS

Ê

PREFACE

This tutorial aims to guide the reader through the stages of creating a project which uses Camel
to facilitate the routing of messages from a JMS queue to a Spring service. The route works in a
synchronous fashion returning a response to the client.

• Tutorial on Spring Remoting with JMS
• Preface
• Prerequisites
• Distribution
• About
• Create the Camel Project
• Update the POM with Dependencies

TUTORIALS 123

http://camel.apache.org/tutorial-osgi-camel-part1.html
http://camel.apache.org/tutorial-osgi-camel-part2.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/commercial-camel-offerings.html
http://camel.apache.org/examples.html
http://camel.apache.org/examples.html
http://www.springramework.org
http://camel.apache.org/articles.html
http://camel.apache.org/team.html
http://camel.apache.org/mailing-lists.html

Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

• Writing the Server
• Create the Spring Service
• Define the Camel Routes
• Configure Spring
• Run the Server
• Writing The Clients
• Client Using The ProducerTemplate
• Client Using Spring Remoting
• Client Using Message Endpoint EIP Pattern
• Run the Clients
• Using the Camel Maven Plugin
• Using Camel JMX
• See Also

PREREQUISITES

This tutorial uses Maven to setup the Camel project and for dependencies for artifacts.

DISTRIBUTION

This sample is distributed with the Camel distribution as examples/camel-example-
spring-jms.

ABOUT

This tutorial is a simple example that demonstrates more the fact how well Camel is seamless
integrated with Spring to leverage the best of both worlds. This sample is client server solution
using JMS messaging as the transport. The sample has two flavors of servers and also for clients
demonstrating different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a business service that
does computations on the received message and returns a response.
The EIP patterns used in this sample are:

Pattern Description

Message
Channel

We need a channel so the Clients can communicate with the server.

124 TUTORIALS

http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html

Message The information is exchanged using the Camel Message interface.

Message
Translator

This is where Camel shines as the message exchange between the Server and
the Clients are text based strings with numbers. However our business service
uses int for numbers. So Camel can do the message translation automatically.

Message
Endpoint

It should be easy to send messages to the Server from the the clients. This is
archived with Camels powerful Endpoint pattern that even can be more
powerful combined with Spring remoting. The tutorial have clients using each
kind of technique for this.

Point to
Point
Channel

We using JMS queues so there are only one receive of the message exchange

Event
Driven
Consumer

Yes the JMS broker is of course event driven and only reacts when the client
sends a message to the server.

We use the following Camel components:

Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server side

Bean
We use the bean binding to easily route the messages to our business
service. This is a very powerful component in Camel.

File In the AOP enabled Server we store audit trails as files.

JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies

First we need to have dependencies for the core Camel jars, its spring, jms components and
finally ActiveMQ as the message broker.

<!-- required by both client and server -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>

</dependency>

TUTORIALS 125

http://camel.apache.org/message.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/activemq.html
http://camel.apache.org/bean.html
http://camel.apache.org/file2.html
http://camel.apache.org/jms.html

For the purposes of the tutorial a single Maven project will be used for both the
client and server. Ideally you would break your application down into the
appropriate components.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>

</dependency>
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>

</dependency>
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-pool</artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this dependency:

<!-- xbean is required for ActiveMQ broker configuration in the spring xml file -->
<dependency>

<groupId>org.apache.xbean</groupId>
<artifactId>xbean-spring</artifactId>

</dependency>

WRITING THE SERVER

Create the Spring Service

For this example the Spring service (= our business service) on the server will be a simple
multiplier which trebles in the received value.

public interface Multiplier {

/**
* Multiplies the given number by a pre-defined constant.
*
* @param originalNumber The number to be multiplied
* @return The result of the multiplication

126 TUTORIALS

*/
int multiply(int originalNumber);

}

And the implementation of this service is:

@Service(value = "multiplier")
public class Treble implements Multiplier {

public int multiply(final int originalNumber) {
return originalNumber * 3;

}

}

Notice that this class has been annotated with the @Service spring annotation. This ensures
that this class is registered as a bean in the registry with the given name multiplier.

Define the Camel Routes

public class ServerRoutes extends RouteBuilder {

@Override
public void configure() throws Exception {

// route from the numbers queue to our business that is a spring bean
registered with the id=multiplier

// Camel will introspect the multiplier bean and find the best candidate of
the method to invoke.

// You can add annotations etc to help Camel find the method to invoke.
// As our multiplier bean only have one method its easy for Camel to find the

method to use.
from("jms:queue:numbers").to("multiplier");

// Camel has several ways to configure the same routing, we have defined some
of them here below

// as above but with the bean: prefix
//from("jms:queue:numbers").to("bean:multiplier");

// beanRef is using explicit bean bindings to lookup the multiplier bean and
invoke the multiply method

//from("jms:queue:numbers").beanRef("multiplier", "multiply");

// the same as above but expressed as a URI configuration
//from("jms:queue:numbers").to("bean:multiplier?methodName=multiply");

}

}

TUTORIALS 127

This defines a Camel route from the JMS queue named numbers to the Spring bean named
multiplier. Camel will create a consumer to the JMS queue which forwards all received
messages onto the the Spring bean, using the method named multiply.

Configure Spring

The Spring config file is placed under META-INF/spring as this is the default location used
by the Camel Maven Plugin, which we will later use to run our server.
First we need to do the standard scheme declarations in the top. In the camel-server.xml we
are using spring beans as the default bean: namespace and springs context:. For configuring
ActiveMQ we use broker: and for Camel we of course have camel:. Notice that we don't
use version numbers for the camel-spring schema. At runtime the schema is resolved in the
Camel bundle. If we use a specific version number such as 1.4 then its IDE friendly as it would
be able to import it and provide smart completion etc. See Xml Reference for further details.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:broker="http://activemq.apache.org/schema/core"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/
activemq-core.xsd">

We use Spring annotations for doing IoC dependencies and its component-scan features comes
to the rescue as it scans for spring annotations in the given package name:

<!-- let Spring do its IoC stuff in this package -->
<context:component-scan base-package="org.apache.camel.example.server"/>

Camel will of course not be less than Spring in this regard so it supports a similar feature for
scanning of Routes. This is configured as shown below.
Notice that we also have enabled the JMXAgent so we will be able to introspect the Camel
Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->

<camel:camelContext id="camel-server">
<camel:package>org.apache.camel.example.server</camel:package>
<!-- enable JMX connector so we can connect to the server and browse mbeans -->
<!-- Camel will log at INFO level the service URI to use for connecting with

128 TUTORIALS

http://camel.apache.org/bean.html
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/xml-reference.html
http://camel.apache.org/camel-jmx.html

jconsole -->
<camel:jmxAgent id="agent" createConnector="true"/>

</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to listen on TCP port
61610.

<!-- lets configure the ActiveMQ JMS broker server -->
<broker:broker useJmx="true" persistent="false" brokerName="myBroker">

<broker:transportConnectors>
<!-- expose a VM transport for in-JVM transport between AMQ and Camel on the

server side -->
<broker:transportConnector name="vm" uri="vm://myBroker"/>
<!-- expose a TCP transport for clients to use -->
<broker:transportConnector name="tcp" uri="tcp://localhost:${tcp.port}"/>

</broker:transportConnectors>
</broker:broker>

As this examples uses JMS then Camel needs a JMS component that is connected with the
ActiveMQ broker. This is configured as shown below:

<!-- lets configure the Camel ActiveMQ to use the embedded ActiveMQ broker declared
above -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="vm://myBroker"/>
</bean>

Notice: The JMS component is configured in standard Spring beans, but the gem is that the
bean id can be referenced from Camel routes - meaning we can do routing using the JMS
Component by just using jms: prefix in the route URI. What happens is that Camel will find in
the Spring Registry for a bean with the id="jms". Since the bean id can have arbitrary name you
could have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded in this
application.

component-
scan

Defines the package to be scanned for Spring stereotype annotations, in this
case, to load the "multiplier" bean

camel-
context

Defines the package to be scanned for Camel routes. Will find the
ServerRoutes class and create the routes contained within it

jms bean Creates the Camel JMS component

TUTORIALS 129

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Run the Server

The Server is started using the org.apache.camel.spring.Main class that can start
camel-spring application out-of-the-box. The Server can be started in several flavors:

▪ as a standard java main application - just start the
org.apache.camel.spring.Main class

▪ using maven jave:exec
▪ using camel:run

In this sample as there are two servers (with and without AOP) we have prepared some
profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

WRITING THE CLIENTS

This sample has three clients demonstrating different Camel techniques for communication
▪ CamelClient using the ProducerTemplate for Spring template style coding
▪ CamelRemoting using Spring Remoting
▪ CamelEndpoint using the Message Endpoint EIP pattern using a neutral Camel API

Client Using The ProducerTemplate

We will initially create a client by directly using ProducerTemplate. We will later create a
client which uses Spring remoting to hide the fact that messaging is being used.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id="camel-client">
<camel:template id="camelTemplate"/>

</camel:camelContext>

<!-- Camel JMSProducer to be able to send messages to a remote Active MQ server -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

130 TUTORIALS

http://camel.apache.org/camel-run-maven-goal.html
http://camel.apache.org/producertemplate.html

<property name="brokerURL" value="tcp://localhost:${tcp.port}"/>
</bean>

The client will not use the Camel Maven Plugin so the Spring XML has been placed in src/main/
resources to not conflict with the server configs.

camelContext The Camel context is defined but does not contain any routes

template The ProducerTemplate is used to place messages onto the JMS queue

jms bean
This initialises the Camel JMS component, allowing us to place messages
onto the queue

And the CamelClient source code:

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

// get the camel template for Spring template style sending of messages (=
producer)

ProducerTemplate camelTemplate = context.getBean("camelTemplate",
ProducerTemplate.class);

System.out.println("Invoking the multiply with 22");
// as opposed to the CamelClientRemoting example we need to define the service URI

in this java code
int response = (Integer)camelTemplate.sendBody("jms:queue:numbers",

ExchangePattern.InOut, 22);
System.out.println("... the result is: " + response);

System.exit(0);
}

The ProducerTemplate is retrieved from a Spring ApplicationContext and used to
manually place a message on the "numbers" JMS queue. The requestBody method will use
the exchange pattern InOut, which states that the call should be synchronous, and that the
caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the CamelServer
are running.

Client Using Spring Remoting

Spring Remoting "eases the development of remote-enabled services". It does this by allowing
you to invoke remote services through your regular Java interface, masking that a remote
service is being called.

TUTORIALS 131

http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/spring-remoting.html

<!-- Camel proxy for a given service, in this case the JMS queue -->
<camel:proxy

id="multiplierProxy"
serviceInterface="org.apache.camel.example.server.Multiplier"
serviceUrl="jms:queue:numbers"/>

The snippet above only illustrates the different and how Camel easily can setup and use Spring
Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the remote invocations.
The serviceInterface property details which Java interface is to be implemented by the
proxy. serviceUrl defines where messages sent to this proxy bean will be directed. Here we
define the JMS endpoint with the "numbers" queue we used when working with Camel template
directly. The value of the id property is the name that will be the given to the bean when it is
exposed through the Spring ApplicationContext. We will use this name to retrieve the
service in our client. I have named the bean multiplierProxy simply to highlight that it is not the
same multiplier bean as is being used by CamelServer. They are in completely independent
contexts and have no knowledge of each other. As you are trying to mask the fact that
remoting is being used in a real application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String[] args) {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client-remoting.xml");

// just get the proxy to the service and we as the client can use the "proxy" as
it was

// a local object we are invoking. Camel will under the covers do the remote
communication

// to the remote ActiveMQ server and fetch the response.
Multiplier multiplier = context.getBean("multiplierProxy", Multiplier.class);

System.out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System.out.println("... the result is: " + response);

System.exit(0);
}

Again, the client is similar to the original client, but with some important differences.
1. The Spring context is created with the new camel-client-remoting.xml
2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-trivial

example you would have the bean injected as in the standard Spring manner.
3. The multiply method is then called directly. In the client we are now working to an

interface. There is no mention of Camel or JMS inside our Java code.

132 TUTORIALS

Client Using Message Endpoint EIP Pattern

This client uses the Message Endpoint EIP pattern to hide the complexity to communicate to
the Server. The Client uses the same simple API to get hold of the endpoint, create an
exchange that holds the message, set the payload and create a producer that does the send and
receive. All done using the same neutral Camel API for all the components in Camel. So if the
communication was socket TCP based you just get hold of a different endpoint and all the java
code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

CamelContext camel = context.getBean("camel-client", CamelContext.class);

// get the endpoint from the camel context
Endpoint endpoint = camel.getEndpoint("jms:queue:numbers");

// create the exchange used for the communication
// we use the in out pattern for a synchronized exchange where we expect a response
Exchange exchange = endpoint.createExchange(ExchangePattern.InOut);
// set the input on the in body
// must be correct type to match the expected type of an Integer object
exchange.getIn().setBody(11);

// to send the exchange we need an producer to do it for us
Producer producer = endpoint.createProducer();
// start the producer so it can operate
producer.start();

// let the producer process the exchange where it does all the work in this
oneline of code

System.out.println("Invoking the multiply with 11");
producer.process(exchange);

// get the response from the out body and cast it to an integer
int response = exchange.getOut().getBody(Integer.class);
System.out.println("... the result is: " + response);

// stop and exit the client
producer.stop();
System.exit(0);

}

Switching to a different component is just a matter of using the correct endpoint. So if we had
defined a TCP endpoint as: "mina:tcp://localhost:61610" then its just a matter of
getting hold of this endpoint instead of the JMS and all the rest of the java code is exactly the
same.

TUTORIALS 133

Run the Clients

The Clients is started using their main class respectively.
▪ as a standard java main application - just start their main class
▪ using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom.xml file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN

The Camel Maven Plugin allows you to run your Camel routes directly from Maven. This
negates the need to create a host application, as we did with Camel server, simply to start up
the container. This can be very useful during development to get Camel routes running quickly.

Listing 1.Listing 1. pom.xmlpom.xml

<build>
<plugins>

<plugin>
<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

All that is required is a new plugin definition in your Maven POM. As we have already placed
our Camel config in the default location (camel-server.xml has been placed in META-INF/
spring/) we do not need to tell the plugin where the route definitions are located. Simply run
mvn camel:run.

USING CAMEL JMX

Camel has extensive support for JMX and allows us to inspect the Camel Server at runtime. As
we have enabled the JMXAgent in our tutorial we can fire up the jconsole and connect to the
following service URI: service:jmx:rmi:///jndi/rmi://localhost:1099/
jmxrmi/camel. Notice that Camel will log at INFO level the JMX Connector URI:

...
DefaultInstrumentationAgent INFO JMX connector thread started on
service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel
...

134 TUTORIALS

http://camel.apache.org/camel-maven-plugin.html

In the screenshot below we can see the route and its performance metrics:

SEE ALSO

• Spring Remoting with JMS Example on Amin Abbaspour's Weblog

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION

Creating this tutorial was inspired by a real life use-case I discussed over the phone with a
colleague. He was working at a client whom uses a heavy-weight integration platform from a
very large vendor. He was in talks with developer shops to implement a new integration on this
platform. His trouble was the shop tripled the price when they realized the platform of choice.
So I was wondering how we could do this integration with Camel. Can it be done, without
tripling the cost .

This tutorial is written during the development of the integration. I have decided to start off
with a sample that isn't Camel's but standard Java and then plugin Camel as we goes. Just as
when people needed to learn Spring you could consume it piece by piece, the same goes with
Camel.

The target reader is person whom hasn't experience or just started using Camel.

MOTIVATION FOR THIS TUTORIAL

I wrote this tutorial motivated as Camel lacked an example application that was based on the
web application deployment model. The entire world hasn't moved to pure OSGi deployments
yet.

THE USE-CASE

The goal is to allow staff to report incidents into a central administration. For that they use
client software where they report the incident and submit it to the central administration. As
this is an integration in a transition phase the administration should get these incidents by email
whereas they are manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term will transform the
report into an email and send it to the central administrator for manual processing.

The figure below illustrates this process. The end users reports the incidents using the client
applications. The incident is sent to the central integration platform as webservice. The

TUTORIALS 135

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

The full source code for this tutorial as complete is part of the Apache Camel
distribution in the examples/camel-example-reportincident directory

integration platform will process the incident and send an OK acknowledgment back to the
client. Then the integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the emails and take it
from there.

In EIP patterns

We distill the use case as EIP patterns:

PARTS

This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel

Part 1 - This first part explain how to setup the project and get a webservice exposed using
Apache CXF. In fact we don't touch Camel yet.

Part 2 - Now we are ready to introduce Camel piece by piece (without using Spring or any
XML configuration file) and create the full feature integration. This part will introduce different
Camel's concepts and How we can build our solution using them like :

▪ CamelContext
▪ Endpoint, Exchange & Producer
▪ Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the solution with the
event driven consumer and how to send the email through the Mail component.

Section B: The Camel Solution

Part 4 - We now turn into the path of Camel where it excels - the routing.
Part 5 - Is about how embed Camel with Spring and using CXF endpoints directly in Camel
Part 6 - Showing a alternative solution primarily using XML instead of Java code

LINKS

▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3

136 TUTORIALS

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
http://camel.apache.org/cxf.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html

Using Axis 2
See this blog entry by Sagara demonstrating how to use Apache Axis 2 instead of
Apache CXF as the web service framework.

▪ Part 4
▪ Part 5
▪ Part 6

PART 1

PREREQUISITES

This tutorial uses the following frameworks:
• Maven 3.0.4
• Apache Camel 2.10.0
• Apache CXF 2.6.1
• Spring 3.0.7

Note: The sample project can be downloaded, see the resources section.

INITIAL PROJECT SETUP

We want the integration to be a standard .war application that can be deployed in any web
container such as Tomcat, Jetty or even heavy weight application servers such as WebLogic or
WebSphere. There fore we start off with the standard Maven webapp project that is created
with the following long archetype command:

mvn archetype:create -DgroupId=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupId etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But I have used these package names as the example is an official
part of the Camel distribution.

Then we have the basic maven folder layout. We start out with the webservice part where
we want to use Apache CXF for the webservice stuff. So we add this to the pom.xml

<properties>
<cxf-version>2.6.1</cxf-version>

</properties>

TUTORIALS 137

http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://ws.apache.org/axis2/
http://cxf.apache.org/

<dependency>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-core</artifactId>
<version>${cxf-version}</version>

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>${cxf-version}</version>

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http</artifactId>
<version>${cxf-version}</version>

</dependency>

DEVELOPING THE WEBSERVICE

As we want to develop webservice with the contract first approach we create our .wsdl file. As
this is a example we have simplified the model of the incident to only include 8 fields. In real life
the model would be a bit more complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and name the
file report_incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>
<xs:element type="xs:string"

name="incidentDate"/>
<xs:element type="xs:string"

name="givenName"/>
<xs:element type="xs:string"

name="familyName"/>
<xs:element type="xs:string"

name="summary"/>
<xs:element type="xs:string"

138 TUTORIALS

name="details"/>
<xs:element type="xs:string"

name="email"/>
<xs:element type="xs:string"

name="phone"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>
<wsdl:output>

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->

TUTORIALS 139

<wsdl:service name="ReportIncidentService">
<wsdl:port name="ReportIncidentPort"

binding="tns:ReportIncidentBinding">
<soap:address

location="http://reportincident.example.camel.apache.org"/>
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

CXF wsdl2java

Then we integration the CXF wsdl2java generator in the pom.xml so we have CXF generate
the needed POJO classes for our webservice contract.
However at first we must configure maven to live in the modern world of Java 1.6 so we must
add this to the pom.xml

<!-- to compile with 1.6 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.6</source>
<target>1.6</target>

</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into the compile goal so
its automatic run all the time:

<!-- CXF wsdl2java generator, will plugin to the compile goal
-->

<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf-version}</version>
<executions>

<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>

<sourceRoot>${basedir}/target/
generated/src/main/java</sourceRoot>

<wsdlOptions>
<wsdlOption>

<wsdl>${basedir}/src/main/webapp/WEB-INF/wsdl/report_incident.wsdl</wsdl>
</wsdlOption>

</wsdlOptions>

140 TUTORIALS

</configuration>
<goals>

<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

You are now setup and should be able to compile the project. So running the mvn compile
should run the CXF wsdl2java and generate the source code in the folder
&{basedir}/target/generated/src/main/java that we specified in the pom.xml
above. Since its in the target/generated/src/main/java maven will pick it up and
include it in the build process.

Configuration of the web.xml

Next up is to configure the web.xml to be ready to use CXF so we can expose the webservice.
As Spring is the center of the universe, or at least is a very important framework in today's Java
land we start with the listener that kick-starts Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -->
<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

And then we have the CXF part where we define the CXF servlet and its URI mappings to
which we have chosen that all our webservices should be in the path /webservices/

<!-- CXF servlet -->
<servlet>

<servlet-name>CXFServlet</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- all our webservices are mapped under this URI pattern -->
<servlet-mapping>

<servlet-name>CXFServlet</servlet-name>
<url-pattern>/webservices/*</url-pattern>

</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring XML that we link
to fron the web.xml by the standard Spring contextConfigLocation property in the
web.xml

TUTORIALS 141

<!-- location of spring xml files -->
<context-param>

<param-name>contextConfigLocation</param-name>
<param-value>classpath:cxf-config.xml</param-value>

</context-param>

We have named our CXF configuration file cxf-config.xml and its located in the root of
the classpath. In Maven land that is we can have the cxf-config.xml file in the src/
main/resources folder. We could also have the file located in the WEB-INF folder for
instance <param-value>/WEB-INF/cxf-config.xml</param-value>.

Getting rid of the old jsp world

The maven archetype that created the basic folder structure also created a sample .jsp file
index.jsp. This file src/main/webapp/index.jsp should be deleted.

Configuration of CXF

The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<!-- implementation of the webservice -->
<bean id="reportIncidentEndpoint"

class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl"/>

<!-- export the webservice using jaxws -->
<jaxws:endpoint id="reportIncident"

implementor="#reportIncidentEndpoint"
address="/incident"
wsdlLocation="/WEB-INF/wsdl/report_incident.wsdl"
endpointName="s:ReportIncidentPort"
serviceName="s:ReportIncidentService"
xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

The configuration is standard CXF and is documented at the Apache CXF website.

The 3 import elements is needed by CXF and they must be in the file.

142 TUTORIALS

http://camel.apache.org/cxf.html
http://cxf.apache.org/

Noticed that we have a spring bean reportIncidentEndpoint that is the implementation
of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use the # mark to
identify its a reference to a spring bean. We could have stated the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint"
but then we lose the ability to let the ReportIncidentEndpoint be configured by spring.
The address attribute defines the relative part of the URL of the exposed webservice.
wsdlLocation is an optional parameter but for persons like me that likes contract-first we
want to expose our own .wsdl contracts and not the auto generated by the frameworks, so
with this attribute we can link to the real .wsdl file. The last stuff is needed by CXF as you could
have several services so it needs to know which this one is. Configuring these is quite easy as all
the information is in the wsdl already.

Implementing the ReportIncidentEndpoint

Phew after all these meta files its time for some java code so we should code the implementor
of the webservice. So we fire up mvn compile to let CXF generate the POJO classes for our
webservice and we are ready to fire up a Java editor.

You can use mvn idea:idea or mvn eclipse:eclipse to create project files for
these editors so you can load the project. However IDEA has been smarter lately and can load
a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and dirty as it can get.
At first beware that since its jaxws and Java 1.5 we get annotations for the money, but they
reside on the interface so we can remove them from our implementations so its a nice plain
POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

We just output the person that invokes this webservice and returns a OK response. This class
should be in the maven source root folder src/main/java under the package name

TUTORIALS 143

org.apache.camel.example.reportincident. Beware that the maven archetype
tool didn't create the src/main/java folder, so you should create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice

Now that the code compiles we would like to run it inside a web container, for this purpose
we make use of Jetty which we will bootstrap using it's plugin
org.mortbay.jetty:maven-jetty-plugin:

<build>
<plugins>

...
<!-- so we can run mvn jetty:run -->
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>${jetty-version}</version>

</plugin>

Notice: We make use of the Jetty version being defined inside the Camel's Parent POM.

So to see if everything is in order we fire up jetty with mvn jetty:run and if everything
is okay you should be able to access http://localhost:8080.
Jetty is smart that it will list the correct URI on the page to our web application, so just click on
the link. This is smart as you don't have to remember the exact web context URI for your
application - just fire up the default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the web.xml to instruct
the CXF servlet to accept the pattern /webservices/* we should hit this URL to get the
attention of CXF: http://localhost:8080/camel-example-reportincident/
webservices.

Ê

Hitting the webservice

Now we have the webservice running in a standard .war application in a standard web container
such as Jetty we would like to invoke the webservice and see if we get our code executed.
Unfortunately this isn't the easiest task in the world - its not so easy as a REST URL, so we
need tools for this. So we fire up our trusty webservice tool SoapUI and let it be the one to fire
the webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the expected OK response
and the console outputs the System.out so we are ready to code.

Ê

144 TUTORIALS

https://svn.apache.org/repos/asf/camel/trunk/parent/pom.xml
http://localhost:8080
http://localhost:8080/camel-example-reportincident/webservices
http://localhost:8080/camel-example-reportincident/webservices
http://www.soapui.org/

Remote Debugging

Okay a little sidestep but wouldn't it be cool to be able to debug your code when its fired up
under Jetty? As Jetty is started from maven, we need to instruct maven to use debug mode.
Se we set the MAVEN_OPTS environment to start in debug mode and listen on port 5005.

MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Then you need to restart Jetty so its stopped with ctrl + c. Remember to start a new shell to
pickup the new environment settings. And start jetty again.

Then we can from our IDE attach a remote debugger and debug as we want.
First we configure IDEA to attach to a remote debugger on port 5005:

Ê

Then we set a breakpoint in our code ReportIncidentEndpoint and hit the SoapUI
once again and we are breaked at the breakpoint where we can inspect the parameters:

Ê

Adding a unit test

Oh so much hard work just to hit a webservice, why can't we just use an unit test to invoke
our webservice? Yes of course we can do this, and that's the next step.
First we create the folder structure src/test/java and src/test/resources. We
then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;

import junit.framework.TestCase;

/**
* Plain JUnit test of our webservice.
*/

public class ReportIncidentEndpointTest extends TestCase {

}

Here we have a plain old JUnit class. As we want to test webservices we need to start and
expose our webservice in the unit test before we can test it. And JAXWS has pretty decent
methods to help us here, the code is simple as:

import javax.xml.ws.Endpoint;
...

TUTORIALS 145

private static String ADDRESS = "http://localhost:9090/unittest";

protected void startServer() throws Exception {
// We need to start a server that exposes or webservice during the unit testing
// We use jaxws to do this pretty simple
ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl();
Endpoint.publish(ADDRESS, server);

}

The Endpoint class is the javax.xml.ws.Endpoint that under the covers looks for a
provider and in our case its CXF - so its CXF that does the heavy lifting of exposing out
webservice on the given URL address. Since our class ReportIncidentEndpointImpl implements
the interface ReportIncidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF wsdl2java generated
interface:

/*
*
*/

package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**
* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008
* Generated source version: 2.1.1
*
*/

/*
*
*/

@WebService(targetNamespace = "http://reportincident.example.camel.apache.org", name =
"ReportIncidentEndpoint")
@XmlSeeAlso({ObjectFactory.class})
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*

146 TUTORIALS

*
*/

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "outputReportIncident", targetNamespace =

"http://reportincident.example.camel.apache.org", partName = "parameters")
@WebMethod(operationName = "ReportIncident", action =

"http://reportincident.example.camel.apache.org/ReportIncident")
public OutputReportIncident reportIncident(

@WebParam(partName = "parameters", name = "inputReportIncident",
targetNamespace = "http://reportincident.example.camel.apache.org")

InputReportIncident parameters
);

}

Next up is to create a webservice client so we can invoke our webservice. For this we actually
use the CXF framework directly as its a bit more easier to create a client using this framework
than using the JAXWS style. We could have done the same for the server part, and you should
do this if you need more power and access more advanced features.

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
...

protected ReportIncidentEndpoint createCXFClient() {
// we use CXF to create a client for us as its easier than JAXWS and works
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
factory.setServiceClass(ReportIncidentEndpoint.class);
factory.setAddress(ADDRESS);
return (ReportIncidentEndpoint) factory.create();

}

So now we are ready for creating a unit test. We have the server and the client. So we just
create a plain simple unit test method as the usual junit style:

public void testRendportIncident() throws Exception {
startServer();

ReportIncidentEndpoint client = createCXFClient();

InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");

OutputReportIncident out = client.reportIncident(input);

TUTORIALS 147

assertEquals("Response code is wrong", "OK", out.getCode());
}

Now we are nearly there. But if you run the unit test with mvn test then it will fail. Why!!!
Well its because that CXF needs is missing some dependencies during unit testing. In fact it
needs the web container, so we need to add this to our pom.xml.

<!-- cxf web container for unit testing -->
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>${cxf-version}</version>
<scope>test</scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how agile, embedable
and popular Jetty is.

So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART 1

Thanks for being patient and reading all this more or less standard Maven, Spring, JAXWS and
Apache CXF stuff. Its stuff that is well covered on the net, but I wanted a full fledged tutorial on
a maven project setup that is web service ready with Apache CXF. We will use this as a base
for the next part where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the Spring framework
that we take for granted today.

RESOURCES

• Apache CXF user guide

LINKS

▪ Introduction
▪ Part 1

148 TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html

▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 2

ADDING CAMEL

In this part we will introduce Camel so we start by adding Camel to our pom.xml:

<properties>
...
<camel-version>1.4.0</camel-version>

</properties>

<!-- camel -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>

That's it, only one dependency for now.
Now we turn towards our webservice endpoint implementation where we want to let Camel
have a go at the input we receive. As Camel is very non invasive its basically a .jar file then we
can just grap Camel but creating a new instance of DefaultCamelContext that is the
hearth of Camel its context.

CamelContext camel = new DefaultCamelContext();

In fact we create a constructor in our webservice and add this code:

private CamelContext camel;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// add the log component
camel.addComponent("log", new LogComponent());

// start Camel

TUTORIALS 149

http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

Synchronize IDE
If you continue from part 1, remember to update your editor project settings since
we have introduce new .jar files. For instance IDEA has a feature to synchronize
with Maven projects.

camel.start();
}

LOGGING THE "HELLO WORLD"

Here at first we want Camel to log the givenName and familyName parameters we
receive, so we add the LogComponent with the key log. And we must start Camel before
its ready to act.
Then we change the code in the method that is invoked by Apache CXF when a webservice
request arrives. We get the name and let Camel have a go at it in the new method we create
sendToCamel:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
String name = parameters.getGivenName() + " " + parameters.getFamilyName();

// let Camel do something with the name
sendToCamelLog(name);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Next is the Camel code. At first it looks like there are many code lines to do a simple task of
logging the name - yes it is. But later you will in fact realize this is one of Camels true power. Its
concise API. Hint: The same code can be used for any component in Camel.

private void sendToCamelLog(String name) {
try {

// get the log component
Component component = camel.getComponent("log");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to configure
// endpoints based on URI.
// com.mycompany.part2 = the log category used. Will log at INFO level as

default
Endpoint endpoint = component.createEndpoint("log:com.mycompany.part2");

150 TUTORIALS

Component Documentation
The Log and File components is documented as well, just click on the links. Just
return to this documentation later when you must use these components for real.

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the log component, that

will process
// the exchange and yes log the payload
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

Okay there are code comments in the code block above that should explain what is happening.
We run the code by invoking our unit test with maven mvn test, and we should get this log
line:

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE

Okay that isn't to impressive, Camel can log Well I promised that the above code style can

be used for any component, so let's store the payload in a file. We do this by adding the file
component to the Camel context

TUTORIALS 151

http://camel.apache.org/log.html
http://camel.apache.org/file2.html

// add the file component
camel.addComponent("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by creating a new
method sendToCamelFile. We want to store the payload in filename with the incident id so
we need this parameter also:

// let Camel do something with the name
sendToCamelLog(name);
sendToCamelFile(parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI configuration when we create
the endpoint as we pass in configuration parameters to the file component.
And then we need to set the output filename and this is done by adding a special header to the
exchange. That's the only difference:

private void sendToCamelFile(String incidentId, String name) {
try {

// get the file component
Component component = camel.getComponent("file");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to configure
// endpoints based on URI.
// file://target instructs the base folder to output the files. We put in

the target folder
// then its actumatically cleaned by mvn clean
Endpoint endpoint = component.createEndpoint("file://target");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now a special header is set to instruct the file component what the
output filename

// should be
exchange.getIn().setHeader(FileComponent.HEADER_FILE_NAME, "incident-" +

incidentId + ".txt");

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the file component, that

will process
// the exchange and yes write the payload to the given filename
producer.process(exchange);

152 TUTORIALS

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

After running our unit test again with mvn test we have a output file in the target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS

In the file example above the configuration was URI based. What if you want 100% java setter
based style, well this is of course also possible. We just need to cast to the component specific
endpoint and then we have all the setters available:

// create the file endpoint, we cast to FileEndpoint because then we can do
// 100% java settter based configuration instead of the URI sting based
// must pass in an empty string, or part of the URI configuration if

wanted
FileEndpoint endpoint = (FileEndpoint)component.createEndpoint("");
endpoint.setFile(new File("target/subfolder"));
endpoint.setAutoCreate(true);

That's it. Now we have used the setters to configure the FileEndpoint that it should store
the file in the folder target/subfolder. Of course Camel now stores the file in the subfolder.

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

LESSONS LEARNED

Okay I wanted to demonstrate how you can be in 100% control of the configuration and usage
of Camel based on plain Java code with no hidden magic or special XML or other configuration
files. Just add the camel-core.jar and you are ready to go.

You must have noticed that the code for sending a message to a given endpoint is the same
for both the log and file, in fact any Camel endpoint. You as the client shouldn't bother with
component specific code such as file stuff for file components, jms stuff for JMS messaging etc.

TUTORIALS 153

This is what the Message Endpoint EIP pattern is all about and Camel solves this very very nice -
a key pattern in Camel.

REDUCING CODE LINES

Now that you have been introduced to Camel and one of its masterpiece patterns solved
elegantly with the Message Endpoint its time to give productive and show a solution in fewer
code lines, in fact we can get it down to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based producer.
Meaning that it has methods to send messages to any Camel endpoints. First of all we need to
get hold of such a template and this is done from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
...

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

Now we can use template for sending payloads to any endpoint in Camel. So all the logging
gabble can be reduced to:

template.sendBody("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct what the output
filename should be:

String filename = "easy-incident-" + incidentId + ".txt";
template.sendBodyAndHeader("file://target/subfolder", name,

FileComponent.HEADER_FILE_NAME, filename);

REDUCING EVEN MORE CODE LINES

Well we got the Camel code down to 1-2 lines for sending the message to the component that
does all the heavy work of wring the message to a file etc. But we still got 5 lines to initialize
Camel.

154 TUTORIALS

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

camel = new DefaultCamelContext();
camel.addComponent("log", new LogComponent());
camel.addComponent("file", new FileComponent());
template = camel.createProducerTemplate();
camel.start();

This can also be reduced. All the standard components in Camel is auto discovered on-the-fly
so we can remove these code lines and we are down to 3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext();
template = camel.createProducerTemplate();
camel.start();

Later will we see how we can reduce this to ... in fact 0 java code lines. But the 3 lines will do
for now.

MESSAGE TRANSLATION

Okay lets head back to the over goal of the integration. Looking at the EIP diagrams at the
introduction page we need to be able to translate the incoming webservice to an email. Doing
so we need to create the email body. When doing the message translation we could put up our
sleeves and do it manually in pure java with a StringBuilder such as:

private String createMailBody(InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();
sb.append("Incident ").append(parameters.getIncidentId());
sb.append(" has been reported on the ").append(parameters.getIncidentDate());
sb.append(" by ").append(parameters.getGivenName());
sb.append(" ").append(parameters.getFamilyName());

// and the rest of the mail body with more appends to the string builder

return sb.toString();
}

But as always it is a hardcoded template for the mail body and the code gets kinda ugly if the
mail message has to be a bit more advanced. But of course it just works out-of-the-box with
just classes already in the JDK.

Lets use a template language instead such as Apache Velocity. As Camel have a component
for Velocity integration we will use this component. Looking at the Component List overview
we can see that camel-velocity component uses the artifactId camel-velocity so therefore
we need to add this to the pom.xml

TUTORIALS 155

http://velocity.apache.org/
http://camel.apache.org/velocity.html
http://camel.apache.org/component.html

Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't seen before it will
try to look for it in the classpath. It will do so by looking for special Camel
component marker files that reside in the folder META-INF/services/org/
apache/camel/component. If there are files in this folder it will read them as
the filename is the scheme part of the URL. For instance the log component is
defined in this file META-INF/services/org/apache/component/log
and its content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same technique and have
them been auto discovered on-the-fly.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>${camel-version}</version>

</dependency>

And now we have a Spring conflict as Apache CXF is dependent on Spring 2.0.8 and camel-
velocity is dependent on Spring 2.5.5. To remedy this we could wrestle with the pom.xml
with excludes settings in the dependencies or just bring in another dependency camel-
spring:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>

</dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it in nearly all
situations - we will look into how well Camel is seamless integration with Spring in part 3. For
now its just another dependency.

We create the mail body with the Velocity template and create the file src/main/
resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
$body.givenName $body.familyName.

156 TUTORIALS

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the following 3 code
lines:

private void generateEmailBodyAndStoreAsFile(InputReportIncident parameters) {
// generate the mail body using velocity template
// notice that we just pass in our POJO (= InputReportIncident) that we
// got from Apache CXF to Velocity.
Object response = template.sendBody("velocity:MailBody.vm", parameters);
// Note: the response is a String and can be cast to String if needed

// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", response,

FileComponent.HEADER_FILE_NAME, filename);
}

What is impressive is that we can just pass in our POJO object we got from Apache CXF to
Velocity and it will be able to generate the mail body with this object in its context. Thus we
don't need to prepare anything before we let Velocity loose and generate our mail body.
Notice that the template method returns a object with out response. This object contains
the mail body as a String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has produced the file
and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

TUTORIALS 157

FIRST PART OF THE SOLUTION

What we have seen here is actually what it takes to build the first part of the integration flow.
Receiving a request from a webservice, transform it to a mail body and store it to a file, and
return an OK response to the webservice. All possible within 10 lines of code. So lets wrap it
up here is what it takes:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Okay I missed by one, its in fact only 9 lines of java code and 2 fields.

END OF PART 2

I know this is a bit different introduction to Camel to how you can start using it in your
projects just as a plain java .jar framework that isn't invasive at all. I took you through the

158 TUTORIALS

coding parts that requires 6 - 10 lines to send a message to an endpoint, buts it's important to
show the Message Endpoint EIP pattern in action and how its implemented in Camel. Yes of
course Camel also has to one liners that you can use, and will use in your projects for sending
messages to endpoints. This part has been about good old plain java, nothing fancy with Spring,
XML files, auto discovery, OGSi or other new technologies. I wanted to demonstrate the basic
building blocks in Camel and how its setup in pure god old fashioned Java. There are plenty of
eye catcher examples with one liners that does more than you can imagine - we will come
there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets interesting since
we have to wrestle with the event driven consumer.
Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us some fun with the
Camel. See you in part 3.

LINKS

▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 3

RECAP

Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

TUTORIALS 159

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

// start Camel
camel.start();

}

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

This completes the first part of the solution: receiving the message using webservice, transform
it to a mail body and store it as a text file.
What is missing is the last part that polls the text files and send them as emails. Here is where
some fun starts, as this requires usage of the Event Driven Consumer EIP pattern to react when
new files arrives. So lets see how we can do this in Camel. There is a saying: Many roads lead to
Rome, and that is also true for Camel - there are many ways to do it in Camel.

ADDING THE EVENT DRIVEN CONSUMER

We want to add the consumer to our integration that listen for new files, we do this by
creating a private method where the consumer code lives. We must register our consumer in
Camel before its started so we need to add, and there fore we call the method
addMailSenderConsumer in the constructor below:

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process

160 TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html

them
addMailSendConsumer();

// start Camel
camel.start();

}

The consumer needs to be consuming from an endpoint so we grab the endpoint from Camel
we want to consume. It's file://target/subfolder. Don't be fooled this endpoint
doesn't have to 100% identical to the producer, i.e. the endpoint we used in the previous part
to create and store the files. We could change the URL to include some options, and to make it
more clear that it's possible we setup a delay value to 10 seconds, and the first poll starts after
2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.
When we have the endpoint we can create the consumer (just as in part 1 where we created a
producer}. Creating the consumer requires a Processor where we implement the java code
what should happen when a message arrives. To get the mail body as a String object we can use
the getBody method where we can provide the type we want in return.
Sending the email is still left to be implemented, we will do this later. And finally we must
remember to start the consumer otherwise its not active and won't listen for new files.

private void addMailSendConsumer() throws Exception {
// Grab the endpoint where we should consume. Option - the first poll starts

after 2 seconds
Endpoint endpint = camel.getEndpoint("file://target/

subfolder?consumer.initialDelay=2000");

// create the event driven consumer
// the Processor is the code what should happen when there is an event
// (think it as the onMessage method)
Consumer consumer = endpint.createConsumer(new Processor() {

public void process(Exchange exchange) throws Exception {
// get the mail body as a String
String mailBody = exchange.getIn().getBody(String.class);

// okay now we are read to send it as an email
System.out.println("Sending email..." + mailBody);

}
});

// star the consumer, it will listen for files
consumer.start();

}

Before we test it we need to be aware that our unit test is only catering for the first part of the
solution, receiving the message with webservice, transforming it using Velocity and then storing
it as a file - it doesn't test the Event Driven Consumer we just added. As we are eager to see it

TUTORIALS 161

/target/subfolder
http://camel.apache.org/processor.html
http://camel.apache.org/event-driven-consumer.html

URL Configuration
The URL configuration in Camel endpoints is just like regular URL we know from
the Internet. You use ? and & to set the options.

Camel Type Converter
Why don't we just cast it as we always do in Java? Well the biggest advantage when
you provide the type as a parameter you tell Camel what type you want and Camel
can automatically convert it for you, using its flexible Type Converter mechanism.
This is a great advantage, and you should try to use this instead of regular type
casting.

in action, we just do a common trick adding some sleep in our unit test, that gives our Event
Driven Consumer time to react and print to System.out. We will later refine the test:

public void testRendportIncident() throws Exception {
...

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong", "OK", out.getCode());

// give the event driven consumer time to react
Thread.sleep(10 * 1000);

}

We run the test with mvn clean test and have eyes fixed on the console output.
During all the output in the console, we see that our consumer has been triggered, as we want.

2008-07-19 12:09:24,140 [mponent@1f12c4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt ...
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1f12c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

162 TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/type-converter.html

SENDING THE EMAIL

Sending the email requires access to a SMTP mail server, but the implementation code is very
simple:

private void sendEmail(String body) {
// send the email to your mail server
String url =

"smtp://someone@localhost?password=secret&to=incident@mycompany.com";
template.sendBodyAndHeader(url, body, "subject", "New incident reported");

}

And just invoke the method from our consumer:

// okay now we are read to send it as an email
System.out.println("Sending email...");
sendEmail(mailBody);
System.out.println("Email sent");

UNIT TESTING MAIL

For unit testing the consumer part we will use a mock mail framework, so we add this to our
pom.xml:

<!-- unit testing mail using mock -->
<dependency>

<groupId>org.jvnet.mock-javamail</groupId>
<artifactId>mock-javamail</artifactId>
<version>1.7</version>
<scope>test</scope>

</dependency>

Then we prepare our integration to run with or without the consumer enabled. We do this to
separate the route into the two parts:

▪ receive the webservice, transform and save mail file and return OK as repose
▪ the consumer that listen for mail files and send them as emails

So we change the constructor code a bit:

public ReportIncidentEndpointImpl() throws Exception {
init(true);

}

public ReportIncidentEndpointImpl(boolean enableConsumer) throws Exception {
init(enableConsumer);

}

TUTORIALS 163

private void init(boolean enableConsumer) throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

if (enableConsumer) {
addMailSendConsumer();

}

// start Camel
camel.start();

}

Then remember to change the ReportIncidentEndpointTest to pass in false in the
ReportIncidentEndpointImpl constructor.
And as always run mvn clean test to be sure that the latest code changes works.

ADDING NEW UNIT TEST

We are now ready to add a new unit test that tests the consumer part so we create a new test
class that has the following code structure:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

}

}

As we want to test the consumer that it can listen for files, read the file content and send it as
an email to our mailbox we will test it by asserting that we receive 1 mail in our mailbox and
that the mail is the one we expect. To do so we need to grab the mailbox with the mockmail
API. This is done as simple as:

164 TUTORIALS

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen for. So we could
use plain java.io.File API to create the file, but wait isn't there an smarter solution? ... yes Camel
of course. Camel can do amazing stuff in one liner codes with its ProducerTemplate, so we
need to get a hold of this baby. We expose this template in our ReportIncidentEndpointImpl
but adding this getter:

protected ProducerTemplate getTemplate() {
return template;

}

Then we can use the template to create the file in one code line:

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

Then we just need to wait a little for the consumer to kick in and do its work and then we
should assert that we got the new mail. Easy as just:

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

The final class for the unit test is:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

TUTORIALS 165

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

}

END OF PART 3

Okay we have reached the end of part 3. For now we have only scratched the surface of what
Camel is and what it can do. We have introduced Camel into our integration piece by piece and
slowly added more and more along the way. And the most important is: you as the
developer never lost control. We hit a sweet spot in the webservice implementation
where we could write our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was time to translate
the input to a mail body, we decided when the content should be written to a file. This is very
important to not lose control, that the bigger and heavier frameworks tend to do. No names
mentioned, but boy do developers from time to time dislike these elephants. And Camel is no
elephant.

I suggest you download the samples from part 1 to 3 and try them out. It is great basic
knowledge to have in mind when we look at some of the features where Camel really excel -
the routing domain language.

From part 1 to 3 we touched concepts such as::
▪ Endpoint
▪ URI configuration

166 TUTORIALS

http://camel.apache.org/endpoint.html
http://camel.apache.org/configuring-camel.html

▪ Consumer
▪ Producer
▪ Event Driven Consumer
▪ Component
▪ CamelContext
▪ ProducerTemplate
▪ Processor
▪ Type Converter

LINKS

▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 4

INTRODUCTION

This section is about regular Camel. The examples presented here in this section is much more
in common of all the examples we have in the Camel documentation.

ROUTING

Camel is particular strong as a light-weight and agile routing and mediation framework. In
this part we will introduce the routing concept and how we can introduce this into our
solution.
Looking back at the figure from the Introduction page we want to implement this routing.
Camel has support for expressing this routing logic using Java as a DSL (Domain Specific
Language). In fact Camel also has DSL for XML and Scala. In this part we use the Java DSL as its
the most powerful and all developers know Java. Later we will introduce the XML version that
is very well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about Developers not
loosing control. In my humble experience one of the key fears of developers is that they are
forced into a tool/framework where they loose control and/or power, and the possible is now
impossible. So in this part we stay clear with this vision and our starting point is as follows:

TUTORIALS 167

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/routes.html

If you have been reading the previous 3 parts then, this quote applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again!

▪ We have generated the webservice source code using the CXF wsdl2java generator
and we have our ReportIncidentEndpointImpl.java file where we as a Developer feels
home and have the power.

So the starting point is:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// WE ARE HERE !!!
return null;

}

}

Yes we have a simple plain Java class where we have the implementation of the webservice. The
cursor is blinking at the WE ARE HERE block and this is where we feel home. More or less any
Java Developers have implemented webservices using a stack such as: Apache AXIS, Apache
CXF or some other quite popular framework. They all allow the developer to be in control and
implement the code logic as plain Java code. Camel of course doesn't enforce this to be any
different. Okay the boss told us to implement the solution from the figure in the Introduction
page and we are now ready to code.

RouteBuilder

RouteBuilder is the hearth in Camel of the Java DSL routing. This class does all the heavy
lifting of supporting EIP verbs for end-users to express the routing. It does take a little while to
get settled and used to, but when you have worked with it for a while you will enjoy its power
and realize it is in fact a little language inside Java itself. Camel is the only integration
framework we are aware of that has Java DSL, all the others are usually only XML based.

As an end-user you usually use the RouteBuilder as of follows:
▪ create your own Route class that extends RouteBuilder

168 TUTORIALS

▪ implement your routing DSL in the configure method
So we create a new class ReportIncidentRoutes and implement the first part of the routing:

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// direct:start is a internal queue to kick-start the routing in our example
// we use this as the starting point where you can send messages to

direct:start
from("direct:start")

// to is the destination we send the message to our velocity endpoint
// where we transform the mail body
.to("velocity:MailBody.vm");

}

}

What to notice here is the configure method. Here is where all the action is. Here we have
the Java DSL langauge, that is expressed using the fluent builder syntax that is also known
from Hibernate when you build the dynamic queries etc. What you do is that you can stack
methods separating with the dot.

In the example above we have a very common routing, that can be distilled from pseudo
verbs to actual code with:

▪ from A to B
▪ From Endpoint A To Endpoint B
▪ from("endpointA").to("endpointB")
▪ from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It will wait for
messages to arrive on the direct queue and then dispatch the message.
to("velocity:MailBody.vm") is the producer that will receive a message and let Velocity
generate the mail body response.

So what we have implemented so far with our ReportIncidentRoutes RouteBuilder is this
part of the picture:

Adding the RouteBuilder

Now we have our RouteBuilder we need to add/connect it to our CamelContext that is the
hearth of Camel. So turning back to our webservice implementation class
ReportIncidentEndpointImpl we add this constructor to the code, to create the CamelContext
and add the routes from our route builder and finally to start it.

TUTORIALS 169

http://camel.apache.org/direct.html

private CamelContext context;

public ReportIncidentEndpointImpl() throws Exception {
// create the context
context = new DefaultCamelContext();

// append the routes to the context
context.addRoutes(new ReportIncidentRoutes());

// at the end start the camel context
context.start();

}

Okay how do you use the routes then? Well its just as before we use a ProducerTemplate to
send messages to Endpoints, so we just send to the direct:start endpoint and it will take it
from there.
So we implement the logic in our webservice operation:

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate().sendBody("direct:start",

parameters);
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Notice that we get the producer template using the createProducerTemplate method on
the CamelContext. Then we send the input parameters to the direct:start endpoint and it
will route it to the velocity endpoint that will generate the mail body. Since we use direct as
the consumer endpoint (=from) and its a synchronous exchange we will get the response
back from the route. And the response is of course the output from the velocity endpoint.
We have now completed this part of the picture:

UNIT TESTING

Now is the time we would like to unit test what we got now. So we call for camel and its great
test kit. For this to work we need to add it to the pom.xml

170 TUTORIALS

About creating ProducerTemplate
In the example above we create a new ProducerTemplate when the
reportIncident method is invoked. However in reality you should only create
the template once and re-use it. See this FAQ entry.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.4.0</version>
<scope>test</scope>
<type>test-jar</type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it pickups the new jar.
Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class ContextTestSupport

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/

public class ReportIncidentRoutesTest extends ContextTestSupport {

}

ContextTestSupport is a supporting unit test class for much easier unit testing with
Apache Camel. The class is extending JUnit TestCase itself so you get all its glory. What we
need to do now is to somehow tell this unit test class that it should use our route builder as
this is the one we gonna test. So we do this by implementing the createRouteBuilder
method.

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new ReportIncidentRoutes();
}

That is easy just return an instance of our route builder and this unit test will use our routes.
We then code our unit test method that sends a message to the route and assert that its
transformed to the mail body using the Velocity template.

TUTORIALS 171

http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html

It is quite common in Camel itself to unit test using routes defined as an anonymous
inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// TODO: Add your routes here, such as:
from("jms:queue:inbox").to("file://target/out");

}
};

}

The same technique is of course also possible for end-users of Camel to create parts of your
routes and test them separately in many test classes.
However in this tutorial we test the real route that is to be used for production, so we just
return an instance of the real one.

public void testTransformMailBody() throws Exception {
// create a dummy input with some input data
InputReportIncident parameters = createInput();

// send the message (using the sendBody method that takes a parameters as the
input body)

// to "direct:start" that kick-starts the route
// the response is returned as the out object, and its also the body of the

response
Object out = context.createProducerTemplate().sendBody("direct:start",

parameters);

// convert the response to a string using camel converters. However we could
also have casted it to

// a string directly but using the type converters ensure that Camel can
convert it if it wasn't a string

// in the first place. The type converters in Camel is really powerful and you
will later learn to

// appreciate them and wonder why its not build in Java out-of-the-box
String body = context.getTypeConverter().convertTo(String.class, out);

// do some simple assertions of the mail body
assertTrue(body.startsWith("Incident 123 has been reported on the 2008-07-16

by Claus Ibsen."));
}

/**
* Creates a dummy request to be used for input
*/

protected InputReportIncident createInput() {
InputReportIncident input = new InputReportIncident();

172 TUTORIALS

input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");
return input;

}

ADDING THE FILE BACKUP

The next piece of puzzle that is missing is to store the mail body as a backup file. So we turn
back to our route and the EIP patterns. We use the Pipes and Filters pattern here to chain the
routing as:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// using pipes-and-filters we send the output from the previous to the next
.to("file://target/subfolder");

}

Notice that we just add a 2nd .to on the newline. Camel will default use the Pipes and Filters
pattern here when there are multi endpoints chained liked this. We could have used the
pipeline verb to let out stand out that its the Pipes and Filters pattern such as:

from("direct:start")
// using pipes-and-filters we send the output from the previous to the next
.pipeline("velocity:MailBody.vm", "file://target/subfolder");

But most people are using the multi .to style instead.

We re-run out unit test and verifies that it still passes:

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also be created as the
backup file. If we look in the target/subfolder we can see that something happened.
On my humble laptop it created this folder: target\subfolder\ID-claus-acer. So the file
producer create a sub folder named ID-claus-acer what is this? Well Camel auto
generates an unique filename based on the unique message id if not given instructions to use a
fixed filename. In fact it creates another sub folder and name the file as: target\subfolder\ID-

TUTORIALS 173

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html

claus-acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What we want is
to use our own filename instead of this auto generated filename. This is archived by adding a
header to the message with the filename to use. So we need to add this to our route and
compute the filename based on the message content.

Setting the filename

For starters we show the simple solution and build from there. We start by setting a constant
filename, just to verify that we are on the right path, to instruct the file producer what filename
to use. The file producer uses a special header FileComponent.HEADER_FILE_NAME to
set the filename.

What we do is to send the header when we "kick-start" the routing as the header will be
propagated from the direct queue to the file producer. What we need to do is to use the
ProducerTemplate.sendBodyAndHeader method that takes both a body and a
header. So we change out webservice code to include the filename also:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate();
// send the body and the filename defined with the special header key
Object mailBody = producer.sendBodyAndHeader("direct:start", parameters,

FileComponent.HEADER_FILE_NAME, "incident.txt");
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

However we could also have used the route builder itself to configure the constant filename as
shown below:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// set the filename to a constant before the file producer receives the

message
.setHeader(FileComponent.HEADER_FILE_NAME, constant("incident.txt"))
.to("file://target/subfolder");

}

But Camel can be smarter and we want to dynamic set the filename based on some of the input
parameters, how can we do this?
Well the obvious solution is to compute and set the filename from the webservice
implementation, but then the webservice implementation has such logic and we want this
decoupled, so we could create our own POJO bean that has a method to compute the

174 TUTORIALS

filename. We could then instruct the routing to invoke this method to get the computed
filename. This is a string feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename

First we create our plain java class that computes the filename, and it has 100% no
dependencies to Camel what so ever.

/**
* Plain java class to be used for filename generation based on the reported incident
*/

public class FilenameGenerator {

public String generateFilename(InputReportIncident input) {
// compute the filename
return "incident-" + input.getIncidentId() + ".txt";

}

}

The class is very simple and we could easily create unit tests for it to verify that it works as
expected. So what we want now is to let Camel invoke this class and its generateFilename with
the input parameters and use the output as the filename. Pheeeww is this really possible out-of-
the-box in Camel? Yes it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception {
from("direct:start")

// set the filename using the bean language and call the FilenameGenerator
class.

// the 2nd null parameter is optional methodname, to be used to avoid
ambiguity.

// if not provided Camel will try to figure out the best method to invoke,
as we

// only have one method this is very simple
.setHeader(FileComponent.HEADER_FILE_NAME,

BeanLanguage.bean(FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file://target/subfolder");

}

Notice that we use the bean language where we supply the class with our bean to invoke.
Camel will instantiate an instance of the class and invoke the suited method. For completeness
and ease of code readability we add the method name as the 2nd parameter

.setHeader(FileComponent.HEADER_FILE_NAME,
BeanLanguage.bean(FilenameGenerator.class, "generateFilename"))

TUTORIALS 175

http://camel.apache.org/bean.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/bean-language.html

Then other developers can understand what the parameter is, instead of null.

Now we have a nice solution, but as a sidetrack I want to demonstrate the Camel has other
languages out-of-the-box, and that scripting language is a first class citizen in Camel where it etc.
can be used in content based routing. However we want it to be used for the filename
generation.
Whatever worked for you we have now implemented the backup of the data files:

SENDING THE EMAIL

What we need to do before the solution is completed is to actually send the email with the mail
body we generated and stored as a file. In the previous part we did this with a File consumer,
that we manually added to the CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// first part from the webservice -> file backup
from("direct:start")

.setHeader(FileComponent.HEADER_FILE_NAME, bean(FilenameGenerator.class,
"generateFilename"))

.to("velocity:MailBody.vm")

.to("file://target/subfolder");

// second part from the file backup -> send email
from("file://target/subfolder")

// set the subject of the email
.setHeader("subject", constant("new incident reported"))
// send the email
.to("smtp://someone@localhost?password=secret&to=incident@mycompany.com");

}

}

The last 3 lines of code does all this. It adds a file consumer from("file://target/
subfolder"), sets the mail subject, and finally send it as an email.

The DSL is really powerful where you can express your routing integration logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

176 TUTORIALS

http://camel.apache.org/file2.html

Using a script language to set the filename

We could do as in the previous parts where we send the computed filename as a message
header when we "kick-start" the route. But we want to learn new stuff so we look for a
different solution using some of Camels many Languages. As OGNL is a favorite language of
mine (used by WebWork) so we pick this baby for a Camel ride. For starters we must add it
to our pom.xml:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>${camel-version}</version>

</dependency>

And remember to refresh your editor so you got the new .jars.
We want to construct the filename based on this syntax: mail-incident-#ID#.txt
where #ID# is the incident id from the input parameters. As OGNL is a language that can
invoke methods on bean we can invoke the getIncidentId() on the message body and
then concat it with the fixed pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:

▪ request is the IN message. See the OGNL for other predefined objects
available

▪ body is the body of the in message
▪ incidentId will invoke the getIncidentId() method on the body.

The rest is just more or less regular plain code where we can concat
strings.

Now we got the expression to dynamic compute the filename on the fly we need to set it on
our route so we turn back to our route, where we can add the OGNL expression:

public void configure() throws Exception {
from("direct:start")

// we need to set the filename and uses OGNL for this
.setHeader(FileComponent.HEADER_FILE_NAME,

OgnlExpression.ognl("'mail-incident-' + request.body.incidentId + '.txt'"))

TUTORIALS 177

http://camel.apache.org/languages.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html

// using pipes-and-filters we send the output from the previous
to the next

.pipeline("velocity:MailBody.vm", "file://target/subfolder");
}

And since we are on Java 1.5 we can use the static import of ognl so we have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;
...

.setHeader(FileComponent.HEADER_FILE_NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the Bean Language
we used previously.

CONCLUSION

We have just briefly touched the routing in Camel and shown how to implement them using
the fluent builder syntax in Java. There is much more to the routing in Camel than shown
here, but we are learning step by step. We continue in part 5. See you there.

LINKS

▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL

Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really easy or nice. This
article shows how to use Apache Camel to provide a better JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using Camel for JMS is
still a good idea if you want to use the rich feature of Camel for routing and other Integration
Scenarios that CXF does not support.

178 TUTORIALS

http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://camel.apache.org/bean-language.html

You can find the original announcement for this Tutorial and some additional info on
Christian Schneider«s Blog

So how to connect Apache Camel and CXF

The best way to connect Camel and CXF is using the Camel transport for CXF. This is a camel
module that registers with cxf as a new transport. It is quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<property name="transportIds">

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

This bean registers with CXF and provides a new transport prefix camel:// that can be used in
CXF address configurations. The bean references a bean cxf which will be already present in
your config. The other refrenceis a camel context. We will later define this bean to provide the
routing config.

How is JMS configured in Camel

In camel you need two things to configure JMS. A ConnectionFactory and a JMSComponent. As
ConnectionFactory you can simply set up the normal Factory your JMS provider offers or bind
a JNDI ConnectionFactory. In this example we use the ConnectionFactory provided by
ActiveMQ.

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel that we simply
call jms. If we need several JMSComponents we can differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="useMessageIDAsCorrelationID" value="true" />

</bean>

You can find more details about the JMSComponent at the Camel Wiki. For example you find
the complete configuration options and a JNDI sample there.

TUTORIALS 179

http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://activemq.apache.org/camel/jms.html

Setting up the CXF client

We will configure a simple CXF webservice client. It will use stub code generated from a wsdl.
The webservice client will be configured to use JMS directly. You can also use a direct: Endpoint
and do the routing to JMS in the Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws"
xmlns:customer="http://customerservice.example.com/"

serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="camel:jms:queue:CustomerService"
serviceClass="com.example.customerservice.CustomerService">

</client>

We explicitly configure serviceName and endpointName so they are not read from the wsdl.
The names we use are arbitrary and have no further function but we set them to look nice. The
serviceclass points to the service interface that was generated from the wsdl. Now the
important thing is address. Here we tell cxf to use the camel transport, use the JmsComponent
who registered the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext

As we do not need additional routing an empty CamelContext bean will suffice.

<camelContext id="camelContext" xmlns="http://activemq.apache.org/camel/schema/spring">
</camelContext>

Running the Example

• Download the example project here
• Follow the readme.txt

Conclusion

As you have seen in this example you can use Camel to connect services to JMS easily while
being able to also use the rich integration features of Apache Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL

• Tutorial using Axis 1.4 with Apache Camel
• Prerequisites
• Distribution
• Introduction
• Setting up the project to run Axis

180 TUTORIALS

http://activemq.apache.org/camel/spring.html
http://camel.apache.org/book-in-one-page.data/cxfcamelexample.zip?version=2&modificationDate=1219861188000

Removed from distribution
This example has been removed from Camel 2.9 onwards. Apache Axis 1.4 is a
very old and unsupported framework. We encourage users to use CXF instead of
Axis.

• Maven 2
• wsdl
• Configuring Axis
• Running the Example
• Integrating Spring
• Using Spring
• Integrating Camel
• CamelContext
• Store a file backup
• Running the example
• Unit Testing
• Smarter Unit Testing with Spring
• Unit Test calling WebService
• Annotations
• The End
• See Also

Prerequisites

This tutorial uses Maven 2 to setup the Camel project and for dependencies for artifacts.

Distribution

This sample is distributed with the Camel 1.5 distribution as examples/camel-example-
axis.

Introduction

Apache Axis is/was widely used as a webservice framework. So in line with some of the other
tutorials to demonstrate how Camel is not an invasive framework but is flexible and integrates
well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4 deployed as web
applications. This is a common solution. We use contract first so we have Axis generated
source code from an existing wsdl file. Then we show how we introduce Spring and Camel to
integrate with Axis.

This tutorial uses the following frameworks:

TUTORIALS 181

http://ws.apache.org/axis/
http://camel.apache.org/cxf.html

• Maven 2.0.9
• Apache Camel 1.5.0
• Apache Axis 1.4
• Spring 2.5.5

Setting up the project to run Axis

This first part is about getting the project up to speed with Axis. We are not touching Camel or
Spring at this time.

Maven 2

Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-jaxrpc</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-saaj</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>axis</groupId>
<artifactId>axis-wsdl4j</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupId>commons-discovery</groupId>
<artifactId>commons-discovery</artifactId>
<version>0.4</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>

182 TUTORIALS

Then we need to configure maven to use Java 1.5 and the Axis maven plugin that generates the
source code based on the wsdl file:

<!-- to compile with 1.5 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>axistools-maven-plugin</artifactId>
<configuration>

<sourceDirectory>src/main/resources/</sourceDirectory>
<packageSpace>com.mycompany.myschema</packageSpace>
<testCases>false</testCases>
<serverSide>true</serverSide>
<subPackageByFileName>false</subPackageByFileName>

</configuration>
<executions>

<execution>
<goals>

<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

wsdl

We use the same .wsdl file as the Tutorial-Example-ReportIncident and copy it to src/main/
webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

TUTORIALS 183

http://camel.apache.org/tutorial-example-reportincident.html

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>
<xs:element type="xs:string"

name="incidentDate"/>
<xs:element type="xs:string"

name="givenName"/>
<xs:element type="xs:string"

name="familyName"/>
<xs:element type="xs:string"

name="summary"/>
<xs:element type="xs:string"

name="details"/>
<xs:element type="xs:string"

name="email"/>
<xs:element type="xs:string"

name="phone"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

184 TUTORIALS

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>
<wsdl:output>

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">

<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">

<soap:address
location="http://reportincident.example.camel.apache.org"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis

Okay we are now setup for the contract first development and can generate the source file. For
now we are still only using standard Axis and not Spring nor Camel. We still need to setup Axis
as a web application so we configure the web.xml in src/main/webapp/WEB-INF/
web.xml as:

<servlet>
<servlet-name>axis</servlet-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>axis</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web requests to its servlet
mapping. We still need to configure Axis itself and this is done using its special configuration file
server-config.wsdd. We nearly get this file for free if we let Axis generate the source
code so we run the maven goal:

mvn axistools:wsdl2java

TUTORIALS 185

The tool will generate the source code based on the wsdl and save the files to the following
folder:

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To implement our
webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where we can
implement our code logic what happens when the webservice is invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService implements ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

System.out.println("Hello AxisReportIncidentService is called from " +
parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Now we need to configure Axis itself and this is done using its server-config.wsdd file.
We nearly get this for for free from the auto generated code, we copy the stuff from
deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/" xmlns:java="http://xml.apache.org/

186 TUTORIALS

axis/wsdd/providers/java">
<!-- global configuration -->

<globalConfiguration>
<parameter name="sendXsiTypes" value="true"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendXMLDeclaration" value="true"/>
<parameter name="axis.sendMinimizedElements" value="true"/>

</globalConfiguration>
<handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>

<!-- this service is from deploy.wsdd -->
<service name="ReportIncidentPort" provider="java:RPC" style="document"

use="literal">
<parameter name="wsdlTargetNamespace"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServiceElement" value="ReportIncidentService"/>
<parameter name="schemaUnqualified"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServicePort" value="ReportIncidentPort"/>
<parameter name="className"

value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
<parameter name="wsdlPortType" value="ReportIncidentService"/>
<parameter name="typeMappingVersion" value="1.2"/>
<operation name="reportIncident" qname="ReportIncident"

returnQName="retNS:outputReportIncident"
xmlns:retNS="http://reportincident.example.camel.apache.org"

returnType="rtns:>outputReportIncident"
xmlns:rtns="http://reportincident.example.camel.apache.org"

soapAction="http://reportincident.example.camel.apache.org/
ReportIncident" >

<parameter qname="pns:inputReportIncident"
xmlns:pns="http://reportincident.example.camel.apache.org"

type="tns:>inputReportIncident"
xmlns:tns="http://reportincident.example.camel.apache.org"/>

</operation>
<parameter name="allowedMethods" value="reportIncident"/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>outputReportIncident"
type="java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
<typeMapping

xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>inputReportIncident"
type="java:org.apache.camel.example.reportincident.InputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
</service>

TUTORIALS 187

<!-- part of Axis configuration -->
<transport name="http">

<requestFlow>
<handler type="URLMapper"/>
<handler

type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
</requestFlow>

</transport>
</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so you gotta write
that yourself. The service is a 100% copy from deploy.wsdd. Axis has more configuration to it
than shown here, but then you should check the Axis documentation.

What we need to do now is important, as we need to modify the above configuration to use
our webservice class than the default one, so we change the classname parameter to our class
AxisReportIncidentService:

<parameter name="className"
value="org.apache.camel.example.axis.AxisReportIncidentService"/>

Running the Example

Now we are ready to run our example for the first time, so we use Jetty as the quick web
container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL: http://localhost:8080/
camel-example-axis/services and you should see the famous Axis start page with the
text And now... Some Services.

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto generated one and not
our original .wsdl file. So we need to fix this ASAP and this is done by configuring Axis in the
server-config.wsdd file:

<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">

<wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>
...

We do this by adding the wsdlFile tag in the service element where we can point to the real
.wsdl file.

188 TUTORIALS

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services

Integrating Spring

First we need to add its dependencies to the pom.xml.

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.5</version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml and a context
parameter to be able to configure precisely what spring xml files to use:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

classpath:axis-example-context.xml
</param-value>

</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Next is to add a plain spring XML file named axis-example-context.xml in the src/main/
resources folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with mvn jetty:run just to make
sure Spring was setup correctly.

Using Spring

We would like to be able to get hold of the Spring ApplicationContext from our webservice so
we can get access to the glory spring, but how do we do this? And our webservice class
AxisReportIncidentService is created and managed by Axis we want to let Spring do this. So we
have two problems.

TUTORIALS 189

We solve these problems by creating a delegate class that Axis creates, and this delegate
class gets hold on Spring and then gets our real webservice as a spring bean and invoke the
service.

First we create a new class that is 100% independent from Axis and just a plain POJO. This is
our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

So now we need to get from AxisReportIncidentService to this one ReportIncidentService using
Spring. Well first of all we add our real service to spring XML configuration file so Spring can
handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportIncidentService to use Spring to lookup the spring bean
id="incidentservice" and delegate the call. We do this by extending the spring class
org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

190 TUTORIALS

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// get hold of the spring bean from the application context
ReportIncidentService service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");

// delegate to the real service
return service.reportIncident(parameters);

}

}

To see if everything is okay we run mvn jetty:run.

In the code above we get hold of our service at each request by looking up in the application
context. However Spring also supports an init method where we can do this once. So we
change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

private ReportIncidentService service;

@Override
protected void onInit() throws ServiceException {

// get hold of the spring bean from the application context
service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");
}

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// delegate to the real service
return service.reportIncident(parameters);

}

}

TUTORIALS 191

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel

Again the first step is to add the dependencies to the maven pom.xml file:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.5.0</version>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>1.5.0</version>

</dependency>

Now that we have integrated with Spring then we easily integrate with Camel as Camel works
well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel namespace and the
schema location:

xmlns:camel="http://activemq.apache.org/camel/schema/spring"
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/schema/
spring/camel-spring.xsd"

CamelContext

CamelContext is the heart of Camel its where all the routes, endpoints, components, etc. is
registered. So we setup a CamelContext and the spring XML files looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://activemq.apache.org/camel/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/
camel/schema/spring/camel-spring.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camel">
<!-- TODO: Here we can add Camel stuff -->

192 TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/components.html
http://camel.apache.org/camelcontext.html

Camel does not require Spring
Camel does not require Spring, we could easily have used Camel without Spring,
but most users prefer to use Spring also.

</camel:camelContext>

</beans>

Store a file backup

We want to store the web service request as a file before we return a response. To do this we
want to send the file content as a message to an endpoint that produces the file. So we need to
do two steps:

▪ configure the file backup endpoint
▪ send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id="camelContext">
<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and configured it use
the URL notation that we know from the internet. Its a file scheme that accepts a context
and some options. The contest is target and its the folder to store the file. The option is just
as the internet with ? and & for subsequent options. We configure it to not append, meaning
than any existing file will be overwritten. See the File component for options and how to use
the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way is to use a
ProducerTemplate. A ProducerTemplate is inspired by Spring template pattern with for
instance JmsTemplate or JdbcTemplate in mind. The template that all the grunt work and
exposes a simple interface to the end-user where he/she can set the payload to send. Then the
template will do proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well the CamelContext is able to provide one. This is done by
configuring the template on the camel context in the spring XML as:

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

TUTORIALS 193

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a setter in the Java
code as:

public class ReportIncidentService {

private ProducerTemplate template;

public void setTemplate(ProducerTemplate template) {
this.template = template;

}

And then let Spring handle the dependency inject as below:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService">

<!-- set the producer template to use from the camel context below -->
<property name="template" ref="camelTemplate"/>

</bean>

Now we are ready to use the producer template in our service to send the payload to the
endpoint. The template has many sendXXX methods for this purpose. But before we send
the payload to the file endpoint we must also specify what filename to store the file as. This is
done by sending meta data with the payload. In Camel metadata is sent as headers. Headers is
just a plain Map<String, Object>. So if we needed to send several metadata then we
could construct an ordinary HashMap and put the values in there. But as we just need to send
one header with the filename Camel has a convenient send method sendBodyAndHeader so
we choose this one.

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

String data = parameters.getDetails();

// store the data as a file
String filename = parameters.getIncidentId() + ".txt";
// send the data to the endpoint and the header contains what filename it

should be stored as
template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",

filename);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");

194 TUTORIALS

return out;
}

The template in the code above uses 4 parameters:
▪ the endpoint name, in this case the id referring to the endpoint defined in Spring XML

in the camelContext element.
▪ the payload, can be any kind of object
▪ the key for the header, in this case a Camel keyword to set the filename
▪ and the value for the header

Running the example

We start our integration with maven using mvn jetty:run. Then we open a browser and
hit http://localhost:8080. Jetty is so smart that it display a frontpage with links to the
deployed application so just hit the link and you get our application. Now we hit append
/services to the URL to access the Axis frontpage. The URL should be
http://localhost:8080/camel-example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing

We would like to be able to unit test our ReportIncidentService class. So we add junit to
the maven dependency:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.2</version>
<scope>test</scope>

</dependency>

And then we create a plain junit testcase for our service class.

TUTORIALS 195

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Unit test of service
*/

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

}

Then we can run the test with maven using: mvn test. But we will get a failure:

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:
testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template) to send a message
to the file endpoint so the message will be stored in a file. What we need is to get hold of such
a producer and inject it on our service, by calling the setter.

196 TUTORIALS

Since Camel is very light weight and embedable we are able to create a CamelContext and
add the endpoint in our unit test code directly. We do this to show how this is possible:

private CamelContext context;

@Override
protected void setUp() throws Exception {

super.setUp();
// CamelContext is just created like this
context = new DefaultCamelContext();

// then we can create our endpoint and set the options
FileEndpoint endpoint = new FileEndpoint();
// the endpoint must have the camel context set also
endpoint.setCamelContext(context);
// our output folder
endpoint.setFile(new File("target"));
// and the option not to append
endpoint.setAppend(false);

// then we add the endpoint just in java code just as the spring XML, we
register it with the "backup" id.

context.addSingletonEndpoint("backup", endpoint);

// finally we need to start the context so Camel is ready to rock
context.start();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
// and we are nice boys so we stop it to allow resources to clean up
context.stop();

}

So now we are ready to set the ProducerTemplate on our service, and we get a hold of that
baby from the CamelContext as:

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

// get a producer template from the camel context
ProducerTemplate template = context.createProducerTemplate();
// inject it on our service using the setter
service.setTemplate(template);

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

And this time when we run the unit test its a success:

TUTORIALS 197

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test method:

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

Smarter Unit Testing with Spring

The unit test above requires us to assemble the Camel pieces manually in java code. What if we
would like our unit test to use our spring configuration file axis-example-context.xml
where we already have setup the endpoint. And of course we would like to test using this
configuration file as this is the real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path for unit testing.
First we add the spring-test jar to our maven dependency:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<scope>test</scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What we need to do is to
extend AbstractJUnit38SpringContextTests instead of TestCase in our unit test.
Since Spring 2.5 embraces annotations we will use one as well to instruct what our xml
configuration file is located:

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is located in src/
main/resources. If we omit the prefix then Spring will by default try to locate the xml file
in the current package and that is org.apache.camel.example.axis. If the xml file is located
outside the classpath you can use file: prefix instead. So with these two modifications we can
get rid of all the setup and teardown code we had before and now we will test our real
configuration.

The last change is to get hold of the producer template and now we can just refer to the
bean id it has in the spring xml file:

198 TUTORIALS

<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as all spring users is
used to do:

// get a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)

applicationContext.getBean("camelTemplate");
// inject it on our service using the setter
service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits nicely with Spring
and you can use standard Spring'ish unit test to test your Camel applications as well.

Unit Test calling WebService

What if you would like to execute a unit test where you send a webservice request to the
AxisReportIncidentService how do we unit test this one? Well first of all the code is
merely just a delegate to our real service that we have just tested, but nevertheless its a good
question and we would like to know how. Well the answer is that we can exploit that fact that
Jetty is also a slim web container that can be embedded anywhere just as Camel can. So we add
this to our pom.xml:

<dependency>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
<version>${jetty-version}</version>
<scope>test</scope>

</dependency>

Then we can create a new class AxisReportIncidentServiceTest to unit test with Jetty.
The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {

private Server server;

private void startJetty() throws Exception {
// create an embedded Jetty server
server = new Server();

// add a listener on port 8080 on localhost (127.0.0.1)
Connector connector = new SelectChannelConnector();
connector.setPort(8080);
connector.setHost("127.0.0.1");

TUTORIALS 199

server.addConnector(connector);

// add our web context path
WebAppContext wac = new WebAppContext();
wac.setContextPath("/unittest");
// set the location of the exploded webapp where WEB-INF is located
// this is a nice feature of Jetty where we can point to src/main/webapp
wac.setWar("./src/main/webapp");
server.setHandler(wac);

// then start Jetty
server.setStopAtShutdown(true);
server.start();

}

@Override
protected void setUp() throws Exception {

super.setUp();
startJetty();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
server.stop();

}

}

Now we just need to send the incident as a webservice request using Axis. So we add the
following code:

public void testReportIncidentWithAxis() throws Exception {
// the url to the axis webservice exposed by jetty
URL url = new URL("http://localhost:8080/unittest/services/

ReportIncidentPort");

// Axis stuff to get the port where we can send the webservice request
ReportIncidentService_ServiceLocator locator = new

ReportIncidentService_ServiceLocator();
ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

// create input to send
InputReportIncident input = createDummyIncident();
// send the webservice and get the response
OutputReportIncident output = port.reportIncident(input);
assertEquals("OK", output.getCode());

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

}

200 TUTORIALS

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

And now we have an unittest that sends a webservice request using good old Axis.

Annotations

Both Camel and Spring has annotations that can be used to configure and wire trivial settings
more elegantly. Camel has the endpoint annotation @EndpointInjected that is just what
we need. With this annotation we can inject the endpoint into our service. The annotation
takes either a name or uri parameter. The name is the bean id in the Registry. The uri is the
URI configuration for the endpoint. Using this you can actually inject an endpoint that you have
not defined in the camel context. As we have defined our endpoint with the id backup we use
the name parameter.

@EndpointInject(name = "backup")
private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object types. We like
the ProducerTemplate so we just keep it as it is.
Since we use annotations on the field directly we do not need to set the property in the spring
xml file so we change our service bean:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.

And since we use the @EndpointInjected that refers to the endpoint with the id
backup directly we can loose the template tag in the xml, so its shorter:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camelContext">

TUTORIALS 201

http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

And the final touch we can do is that since the endpoint is injected with concrete endpoint to
use we can remove the "backup" name parameter when we send the message. So we change
from:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",
filename);

To without the name:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader(data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name then we don't forget
to change it in the code also.

The End

This tutorial hasn't really touched the one of the key concept of Camel as a powerful routing
and mediation framework. But we wanted to demonstrate its flexibility and that it integrates
well with even older frameworks such as Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.

Note that the code shown here also applies to Camel 1.4 so actually you can get started
right away with the released version of Camel. As this time of writing Camel 1.5 is work in
progress.

See Also

▪ Tutorials
▪ Examples

202 TUTORIALS

http://camel.apache.org/tutorials.html
http://camel.apache.org/examples.html

TUTORIAL ON USING CAMEL IN A WEB APPLICATION

Camel has been designed to work great with the Spring framework; so if you are already a
Spring user you can think of Camel as just a framework for adding to your Spring XML files.

So you can follow the usual Spring approach to working with web applications; namely to
add the standard Spring hook to load a /WEB-INF/applicationContext.xml file. In that
file you can include your usual Camel XML configuration.

Step1: Edit your web.xml

To enable spring add a context loader listener to your /WEB-INF/web.xml file

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/

ns/javaee/web-app_2_5.xsd"
version="2.5">

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

</web-app>

This will cause Spring to boot up and look for the /WEB-INF/applicationContext.xml
file.

Step 2: Create a /WEB-INF/applicationContext.xml file

Now you just need to create your Spring XML file and add your camel routes or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

TUTORIALS 203

http://camel.apache.org/spring.html

<from uri="seda:foo"/>
<to uri="mock:results"/>

</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips

If you use Maven to build your application your directory tree will look like this...

src/main/webapp/WEB-INF
web.xml
applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming like this...

<project>
...
<packaging>war</packaging>
...
<build>

<finalName>[desired WAR file name]</finalName>
...

</build>

To enable more rapid development we highly recommend the jetty:run maven plugin.

Please refer to the help for more information on using jetty:run - but briefly if you add the
following to your pom.xml

<build>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>

<webAppConfig>
<contextPath>/</contextPath>

</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>

</configuration>
</plugin>

</plugins>
</build>

Then you can run your web application as follows

204 TUTORIALS

http://maven.apache.org/
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/webapp directory
so that if you modify your spring XML, your web.xml or your java code the web application will
be restarted, re-creating your Camel routes.

If your unit tests take a while to run, you could miss them out when running your web
application via

mvn -Dtest=false jetty:run

TUTORIAL BUSINESS PARTNERS

BACKGROUND AND INTRODUCTION

Business Background

So there's a company, which we'll call Acme. Acme sells widgets, in a fairly unusual way. Their
customers are responsible for telling Acme what they purchased. The customer enters into
their own systems (ERP or whatever) which widgets they bought from Acme. Then at some
point, their systems emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so there needs to be
integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell all their prospects,
"you can send us the data in whatever format, using whatever protocols, whatever. You just
can't change once it's up and running."

The result is pretty much what you'd expect. Taking a random sample of 3 customers:
• Customer 1: XML over FTP
• Customer 2: CSV over HTTP
• Customer 3: Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format and submitted
to the Acme accounting system via JMS. Then the Acme accounting system does its stuff and
sends an XML reply via JMS, with a summary of what it processed (e.g. 3 line items accepted,
line item #2 in error, total invoice $123.45). Finally, that data needs to be formatted into an e-
mail, and sent to a contact at the customer in question ("Dear Joyce, we received an invoice on
1/2/08. We accepted 3 line items totaling $123.45, though there was an error with line items
#2 [invalid quantity ordered]. Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
• Listen for HTTP, e-mail, and FTP files
• Grab attachments from the e-mail messages

TUTORIALS 205

Under Construction
This tutorial is a work in progress.

• Convert XML, XLS, and CSV files to a canonical XML format
• read and write JMS messages
• route based on company ID
• format e-mails using Velocity templates
• send outgoing e-mail messages

Tutorial Background

This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:
• Camel concepts including the CamelContext, Routes, Components and Endpoints,

and Enterprise Integration Patterns
• Configuring Camel with the XML or Java DSL

You'll learn:
• How to set up a Maven build for a Camel project
• How to transform XML, CSV, and Excel data into a standard XML format with Camel

◦ How to write POJOs (Plain Old Java Objects), Velocity templates, and XSLT
stylesheets that are invoked by Camel routes for message transformation

• How to configure simple and complex Routes in Camel, using either the XML or the
Java DSL format

• How to set up unit tests that load a Camel configuration and test Camel routes
• How to use Camel's Data Formats to automatically convert data between Java objects

and XML, CSV files, etc.
• How to send and receive e-mail from Camel
• How to send and receive JMS messages from Camel
• How to use Enterprise Integration Patterns including Message Router and Pipes and

Filters
◦ How to use various languages to express content-based routing rules in

Camel
• How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through building the code and
configuration files yourself. Each of the sections gives detailed descriptions of the steps that
need to be taken to get the components and routes working in Camel, and takes you through
tests to make sure they are working as expected.

But each section also links to working copies of the source and configuration files, so if you
don't want the hands-on approach, you can simply review and/or download the finished files.

206 TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/dsl.html

High-Level Diagram

Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

And then, the output from Acme to the customers:

Tutorial Tasks

To get through this scenario, we're going to break it down into smaller pieces, implement and
test those, and then try to assemble the big scenario and test that.

Here's what we'll try to accomplish:
1. Create a Maven build for the project
2. Get sample files for the customer Excel, CSV, and XML input
3. Get a sample file for the canonical XML format that Acme's accounting system uses
4. Create an XSD for the canonical XML format
5. Create JAXB POJOs corresponding to the canonical XSD
6. Create an XSLT stylesheet to convert the Customer 1 (XML over FTP) messages to

the canonical format
7. Create a unit test to ensure that a simple Camel route invoking the XSLT stylesheet

works
8. Create a POJO that converts a List<List<String>> to the above JAXB POJOs

◦ Note that Camel can automatically convert CSV input to a List of Lists of
Strings representing the rows and columns of the CSV, so we'll use this
POJO to handle Customer 2 (CSV over HTTP)

9. Create a unit test to ensure that a simple Camel route invoking the CSV processing
works

10. Create a POJO that converts a Customer 3 Excel file to the above JAXB POJOs
(using POI to read Excel)

11. Create a unit test to ensure that a simple Camel route invoking the Excel processing
works

12. Create a POJO that reads an input message, takes an attachment off the message, and
replaces the body of the message with the attachment

◦ This is assuming for Customer 3 (Excel over e-mail) that the e-mail contains
a single Excel file as an attachment, and the actual e-mail body is throwaway

13. Build a set of Camel routes to handle the entire input (Customer -> Acme) side of
the scenario.

14. Build unit tests for the Camel input.
15. TODO: Tasks for the output (Acme -> Customer) side of the scenario

TUTORIALS 207

LET'S GET STARTED!

Step 1: Initial Maven build

We'll use Maven for this project as there will eventually be quite a few dependencies and it's
nice to have Maven handle them for us. You should have a current version of Maven (e.g. 2.0.9)
installed.

You can start with a pretty empty project directory and a Maven POM file, or use a simple
JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel-core, and set the compile
version to 1.5 (so we can use annotations):

Listing 1.Listing 1. pom.xmlpom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">

<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.camel.tutorial</groupId>
<artifactId>business-partners</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial</name>
<dependencies>

<dependency>
<artifactId>camel-core</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Step 2: Get Sample Files

You can make up your own if you like, but here are the "off the shelf" ones. You can save
yourself some time by downloading these to src/test/resources in your Maven project.

• Customer 1 (XML): input-customer1.xml
• Customer 2 (CSV): input-customer2.csv
• Customer 3 (Excel): input-customer3.xls

208 TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/input-customer2.csv?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/input-customer3.xls?version=1&modificationDate=1221319297000

• Canonical Acme XML Request: canonical-acme-request.xml
• Canonical Acme XML Response: TODO

If you look at these files, you'll see that the different input formats use different field names and/
or ordering, because of course the sales guys were totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format

Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">

<partner-id>2</partner-id>
<date-received>9/12/2008</date-received>
<line-item>

<product-id>134</product-id>
<description>A widget</description>
<quantity>3</quantity>
<item-price>10.45</item-price>
<order-date>6/5/2008</order-date>

</line-item>
<!-- // more line-item elements here -->
<order-total>218.82</order-total>

</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that look like this, and
save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/main/xsd.

Generating JAXB Beans

Down the road we'll want to deal with the XML as Java POJOs. We'll take a moment now to
set up those XML binding POJOs. So we'll update the Maven POM to generate JAXB beans
from the XSD file.

We need a dependency:

<dependency>
<artifactId>camel-jaxb</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

And a plugin configured:

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jaxb2-maven-plugin</artifactId>

TUTORIALS 209

http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xsd?version=1&modificationDate=1221569994000

<executions>
<execution>

<goals>
<goal>xjc</goal>

</goals>
</execution>

</executions>
</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to generate
beans for). Run mvn install and it should emit the beans into target/generated-
sources/jaxb. Your IDE should see them there, though you may need to update the
project to reflect the new settings in the Maven POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)

To get a start on Customer 1, we'll create an XSLT template to convert the Customer 1
sample file into the canonical XML format, write a small Camel route to test it, and build that
into a unit test. If we get through this, we can be pretty sure that the XSLT template is valid and
can be run safely in Camel.

Create an XSLT template

Start with the Customer 1 sample input. You want to create an XSLT template to generate
XML like the canonical XML sample above Ð an invoice element with line-item
elements (one per item in the original XML document). If you're especially clever, you can
populate the current date and order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going if you don't
want to write one of your own.

Create a unit test

Here's where we get to some meaty Camel work. We need to:
• Set up a unit test
• That loads a Camel configuration
• That has a route invoking our XSLT
• Where the test sends a message to the route
• And ensures that some XML comes out the end of the route

The easiest way to do this is to set up a Spring context that defines the Camel stuff, and then
use a base unit test class from Spring that knows how to load a Spring context to run tests
against. So, the procedure is:

210 TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/XMLConverter.xsl?version=1&modificationDate=1221329900000

Set Up a Skeletal Camel/Spring Unit Test

1. Add dependencies on Camel-Spring, and the Spring test JAR (which will automatically
bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId>camel-spring</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>
<dependency>

<artifactId>spring-test</artifactId>
<groupId>org.springframework</groupId>
<version>2.5.5</version>
<scope>test</scope>

</dependency>

2. Create a new unit test class in src/test/java/your-package-here, perhaps
called XMLInputTest.java

3. Make the test extend Spring's AbstractJUnit38SpringContextTests class, so it can load
a Spring context for the test

4. Create a Spring context configuration file in src/test/resources, perhaps
called XMLInputTest-context.xml

5. In the unit test class, use the class-level @ContextConfiguration annotation to
indicate that a Spring context should be loaded

◦ By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory corresponding to the
package of the test class. For instance, if your test class was
org.apache.camel.tutorial.XMLInputTest, it would look for
org/apache/camel/tutorial/XMLInputTest-context.xml

◦ To override this default, use the locations attribute on the
@ContextConfiguration annotation to provide specific context file
locations (starting each path with a / if you don't want it to be relative to
the package directory). My solution does this so I can put the context file
directly in src/test/resources instead of in a package directory
under there.

6. Add a CamelContext instance variable to the test class, with the @Autowired
annotation. That way Spring will automatically pull the CamelContext out of the
Spring context and inject it into our test class.

7. Add a ProducerTemplate instance variable and a setUp method that instantiates it
from the CamelContext. We'll use the ProducerTemplate later to send messages to
the route.

protected ProducerTemplate<Exchange> template;

TUTORIALS 211

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

8. Put in an empty test method just for the moment (so when we run this we can see
that "1 test succeeded")

9. Add the Spring <beans> element (including the Camel Namespace) with an empty
<camelContext> element to the Spring context, like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/

camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

</camelContext>
</beans>

Test it by running mvn install and make sure there are no build errors. So far it doesn't test
much; just that your project and test and source files are all organized correctly, and the one
empty test method completes successfully.

Solution: Your test class might look something like this:
• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test

So now we're going to write a Camel route that applies the XSLT to the sample Customer 1
input file, and makes sure that some XML output comes out:

1. Save the input-customer1.xml file to src/test/resources
2. Save your XSLT file (created in the previous step) to src/main/resources
3. Write a Camel Route, either right in the Spring XML, or using the Java DSL (in

another class under src/test/java somewhere). This route should use the Pipes
and Filters integration pattern to:

1. Start from the endpoint direct:start (which lets the test conveniently pass
messages into the route)

2. Call the endpoint xslt:YourXSLTFile.xsl (to transform the message with the
specified XSLT template)

212 TUTORIALS

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/book-in-one-page.data/empty-XMLInputTest.java?version=3&modificationDate=1221648819000
http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/xslt.html

3. Send the result to the endpoint mock:finish (which lets the test verify the
route output)

4. Add a test method to the unit test class that:
1. Get a reference to the Mock endpoint mock:finish using code like this:

MockEndpoint finish = MockEndpoint.resolve(camelContext,
"mock:finish");

2. Set the expectedMessageCount on that endpoint to 1
3. Get a reference to the Customer 1 input file, using code like this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
assertNotNull(in);

4. Send that InputStream as a message to the direct:start endpoint,
using code like this:

template.sendBody("direct:start", in);

Note that we can send the sample file body in several formats (File,
InputStream, String, etc.) but in this case an InputStream is pretty
convenient.

5. Ensure that the message made it through the route to the final endpoint, by
testing all configured Mock endpoints like this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code like
finish.getExchanges().get(0).getIn().getBody().

▪ If you do this, you'll need to know what format that body is Ð
String, byte array, InputStream, etc.

5. Run your test with mvn install and make sure the build completes successfully.
Solution: Your finished test might look something like this:

• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• For XML Configuration:

◦ src/test/resources/XMLInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/XMLInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/routes/XMLInputTestRoute.java

TUTORIALS 213

http://camel.apache.org/mock.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/book-in-one-page.data/XMLInputTest.java?version=3&modificationDate=1221651730000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-context.xml?version=1&modificationDate=1221574632000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221641531000
http://camel.apache.org/book-in-one-page.data/XMLInputTestRoute.java?version=1&modificationDate=1221641531000

Test Base Class
Once your test class is working, you might want to extract things like the
@Autowired CamelContext, the ProducerTemplate, and the setUp method to a
custom base class that you extend with your other tests.

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)

To get a start on Customer 2, we'll create a POJO to convert the Customer 2 sample CSV data
into the JAXB POJOs representing the canonical XML format, write a small Camel route to test
it, and build that into a unit test. If we get through this, we can be pretty sure that the CSV
conversion and JAXB handling is valid and can be run safely in Camel.

Create a CSV-handling POJO

To begin with, CSV is a known data format in Camel. Camel can convert a CSV file to a List
(representing rows in the CSV) of Lists (representing cells in the row) of Strings (the data for
each cell). That means our POJO can just assume the data coming in is of type
List<List<String>>, and we can declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/jaxb, it looks like an
Invoice object represents the whole document, with a nested list of LineItemType objects
for the line items. Therefore our POJO method will return an Invoice (a document in the
canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:
1. Create a new class under src/main/java, perhaps called CSVConverterBean.
2. Add a method, with one argument of type List<List<String>> and the return

type Invoice
◦ You may annotate the argument with @Body to specifically designate it as

the body of the incoming message
3. In the method, the logic should look roughly like this:

1. Create a new Invoice, using the method on the generated
ObjectFactory class

2. Loop through all the rows in the incoming CSV (the outer List)
3. Skip the first row, which contains headers (column names)
4. For the other rows:

1. Create a new LineItemType (using the ObjectFactory
again)

2. Pick out all the cell values (the Strings in the inner List) and put
them into the correct fields of the LineItemType

▪ Not all of the values will actually go into the line item in
this example

214 TUTORIALS

http://camel.apache.org/csv.html
http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html

▪ You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line

▪ Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML Ð which probably means
using a SimpleDateFormat to parse the date and
setting that date on a GregorianCalendar

3. Add the line item to the invoice
5. Populate the partner ID, date of receipt, and order total on the Invoice
6. Throw any exceptions out of the method, so Camel knows something went

wrong
7. Return the finished Invoice

Solution: Here's an example of what the CSVConverterBean might look like.

Create a unit test

Start with a simple test class and test Spring context like last time, perhaps based on the name
CSVInputTest:

Listing 1.Listing 1. CSVInputTest.javaCSVInputTest.java

/**
* A test class the ensure we can convert Partner 2 CSV input files to the
* canonical XML output format, using JAXB POJOs.
*/

@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;
protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

public void testCSVConversion() {
// TODO

}
}

Listing 1.Listing 1. CSVInputTest-context.xmlCSVInputTest-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

TUTORIALS 215

http://camel.apache.org/book-in-one-page.data/CSVConverterBean.java?version=1&modificationDate=1221648421000

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/

spring-beans-2.5.xsd
http://activemq.apache.org/camel/schema/spring

http://activemq.apache.org/camel/schema/spring/
camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<!-- TODO -->

</camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.
1. Update the Maven POM to include CSV Data Format support:

<dependency>
<artifactId>camel-csv</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

2. Write the routes (right in the Spring XML context, or using the Java DSL) for the
CSV conversion process, again using the Pipes and Filters pattern:

1. Start from the endpoint direct:CSVstart (which lets the test conveniently
pass messages into the route). We'll name this differently than the starting
point for the previous test, in case you use the Java DSL and put all your
routes in the same package (which would mean that each test would load
the DSL routes for several tests.)

2. This time, there's a little preparation to be done. Camel doesn't know that
the initial input is a CSV, so it won't be able to convert it to the expected
List<List<String>> without a little hint. For that, we need an
unmarshal transformation in the route. The unmarshal method (in the
DSL) or element (in the XML) takes a child indicating the format to
unmarshal; in this case that should be csv.

3. Next invoke the POJO to transform the message with a
bean:CSVConverter endpoint

4. As before, send the result to the endpoint mock:finish (which lets the test
verify the route output)

5. Finally, we need a Spring <bean> element in the Spring context XML file
(but outside the <camelContext> element) to define the Spring bean
that our route invokes. This Spring bean should have a name attribute that
matches the name used in the bean endpoint (CSVConverter in the
example above), and a class attribute that points to the CSV-to-JAXB
POJO class you wrote above (such as,
org.apache.camel.tutorial.CSVConverterBean). When

216 TUTORIALS

http://camel.apache.org/csv.html
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/data-format.html#DataFormat-Unmarshalling
http://camel.apache.org/bean.html
http://camel.apache.org/mock.html

Spring is in the picture, any bean endpoints look up Spring beans with the
specified name.

3. Write a test method in the test class, which should look very similar to the previous
test class:

1. Get the MockEndpoint for the final endpoint, and tell it to expect one
message

2. Load the Partner 2 sample CSV file from the ClassPath, and send it as the
body of a message to the starting endpoint

3. Verify that the final MockEndpoint is satisfied (that is, it received one
message) and examine the message body if you like

▪ Note that we didn't marshal the JAXB POJOs to XML in this test,
so the final message should contain an Invoice as the body. You
could write a simple line of code to get the Exchange (and
Message) from the MockEndpoint to confirm that.

4. Run this new test with mvn install and make sure it passes and the build completes
successfully.

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/CSVInputTest.java
• For XML Configuration:

◦ src/test/resources/CSVInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/CSVInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)

To get a start on Customer 3, we'll create a POJO to convert the Customer 3 sample Excel
data into the JAXB POJOs representing the canonical XML format, write a small Camel route
to test it, and build that into a unit test. If we get through this, we can be pretty sure that the
Excel conversion and JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO

Camel does not have a data format handler for Excel by default. We have two options Ð create
an Excel DataFormat (so Camel can convert Excel spreadsheets to something like the CSV
List<List<String>> automatically), or create a POJO that can translate Excel data
manually. For now, the second approach is easier (if we go the DataFormat route, we need
code to both read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like an InputStream or
byte[] as an argument, and returns in Invoice as before. The process should look
something like this:

1. Update the Maven POM to include POI support:

TUTORIALS 217

http://camel.apache.org/data-format.html#DataFormat-Marshalling
http://camel.apache.org/book-in-one-page.data/CSVInputTest.java?version=2&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTest-context.xml?version=2&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTestRoute.java?version=2&modificationDate=1221693442000
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://poi.apache.org/

<dependency>
<artifactId>poi</artifactId>
<groupId>org.apache.poi</groupId>
<version>3.1-FINAL</version>

</dependency>

2. Create a new class under src/main/java, perhaps called
ExcelConverterBean.

3. Add a method, with one argument of type InputStream and the return type
Invoice

◦ You may annotate the argument with @Body to specifically designate it as
the body of the incoming message

4. In the method, the logic should look roughly like this:
1. Create a new Invoice, using the method on the generated

ObjectFactory class
2. Create a new HSSFWorkbook from the InputStream, and get the first

sheet from it
3. Loop through all the rows in the sheet
4. Skip the first row, which contains headers (column names)
5. For the other rows:

1. Create a new LineItemType (using the ObjectFactory
again)

2. Pick out all the cell values and put them into the correct fields of
the LineItemType (you'll need some data type conversion
logic)

▪ Not all of the values will actually go into the line item in
this example

▪ You may hardcode the column ordering based on the
sample data file, or else try to read it dynamically from
the headers in the first line

▪ Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB uses for
the date fields in the XML Ð which probably means
setting the date from a date cell on a
GregorianCalendar

3. Add the line item to the invoice
6. Populate the partner ID, date of receipt, and order total on the Invoice
7. Throw any exceptions out of the method, so Camel knows something went

wrong
8. Return the finished Invoice

Solution: Here's an example of what the ExcelConverterBean might look like.

218 TUTORIALS

http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
http://camel.apache.org/book-in-one-page.data/ExcelConverterBean.java?version=1&modificationDate=1221716652000

Create a unit test

The unit tests should be pretty familiar now. The test class and context for the Excel bean
should be quite similar to the CSV bean.

1. Create the basic test class and corresponding Spring Context XML configuration file
2. The XML config should look a lot like the CSV test, except:

◦ Remember to use a different start endpoint name if you're using the Java
DSL and not use separate packages per test

◦ You don't need the unmarshal step since the Excel POJO takes the raw
InputStream from the source endpoint

◦ You'll declare a <bean> and endpoint for the Excel bean prepared above
instead of the CSV bean

3. The test class should look a lot like the CSV test, except use the right input file name
and start endpoint name.

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/ExcelInputTest.java
• For XML Configuration:

◦ src/test/resources/ExcelInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/ExcelInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/routes/ExcelInputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer Input

With all the data type conversions working, the next step is to write the real routes that listen
for HTTP, FTP, or e-mail input, and write the final XML output to an ActiveMQ queue. Along
the way these routes will use the data conversions we've developed above.

So we'll create 3 routes to start with, as shown in the diagram back at the beginning:
1. Accept XML orders over FTP from Customer 1 (we'll assume the FTP server dumps

files in a local directory on the Camel machine)
2. Accept CSV orders over HTTP from Customer 2
3. Accept Excel orders via e-mail from Customer 3 (we'll assume the messages are sent

to an account we can access via IMAP)
...

Step 8: Create a unit test for the Customer Input Routes

TUTORIALS 219

http://camel.apache.org/book-in-one-page.data/ExcelInputTest.java?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-context.xml?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221746832000
http://camel.apache.org/book-in-one-page.data/ExcelInputTestRoute.java?version=1&modificationDate=1221746832000

Logging
You may notice that your tests emit a lot less output all of a sudden. The
dependency on POI brought in Log4J and configured commons-logging to use it, so
now we need a log4j.properties file to configure log output. You can use the
attached one (snarfed from ActiveMQ) or write your own; either way save it to
src/main/resources to ensure you continue to see log output.

220 TUTORIALS

http://camel.apache.org/book-in-one-page.data/log4j.properties?version=1&modificationDate=1221746968000

Languages Supported Appendix

To support flexible and powerful Enterprise Integration Patterns Camel supports various
Languages to create an Expression or Predicate within either the Routing Domain Specific
Language or the Xml Configuration. The following languages are supported

BEAN LANGUAGE

The purpose of the Bean Language is to be able to implement an Expression or Predicate using
a simple method on a bean.

So the idea is you specify a bean name which will then be resolved in the Registry such as
the Spring ApplicationContext then a method is invoked to evaluate the Expression or
Predicate.

If no method name is provided then one is attempted to be chosen using the rules for Bean
Binding; using the type of the message body and using any annotations on the bean methods.

The Bean Binding rules are used to bind the Message Exchange to the method parameters;
so you can annotate the bean to extract headers or other expressions such as XPath or
XQuery from the message.

Using Bean Expressions from the Java DSL

from("activemq:topic:OrdersTopic").
filter().method("myBean", "isGoldCustomer").

to("activemq:BigSpendersQueue");

Using Bean Expressions from XML

<route>
<from uri="activemq:topic:OrdersTopic"/>
<filter>

<method bean="myBean" method="isGoldCustomer"/>
<to uri="activemq:BigSpendersQueue"/>

</filter>
</route>

LANGUAGES SUPPORTED APPENDIX 221

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html

Writing the expression bean

The bean in the above examples is just any old Java Bean with a method called
isGoldCustomer() that returns some object that is easily converted to a boolean value in this
case, as its used as a predicate.

So we could implement it like this...

public class MyBean {
public boolean isGoldCustomer(Exchange exchange) {

...
}

}

We can also use the Bean Integration annotations. For example you could do...

public boolean isGoldCustomer(String body) {...}

or

public boolean isGoldCustomer(@Header(name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, the Message or individual headers,
properties, the body or other expressions.

Non registry beans

The Bean Language also supports invoking beans that isn't registered in the Registry. This is
usable for quickly to invoke a bean from Java DSL where you don't need to register the bean in
the Registry such as the Spring ApplicationContext.

Camel can instantiate the bean and invoke the method if given a class or invoke an already
existing instance. This is illustrated from the example below:

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage(MyBean.class, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

The 2nd parameter isGoldCustomer is an optional parameter to explicit set the method
name to invoke. If not provided Camel will try to invoke the best suited method. If case of
ambiguity Camel will thrown an Exception. In these situations the 2nd parameter can solve this
problem. Also the code is more readable if the method name is provided. The 1st parameter
can also be an existing instance of a Bean such as:

private MyBean my;

222 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage.bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

In Camel 2.2 onwards you can avoid the BeanLanguage and have it just as:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().expression(bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

Which also can be done in a bit shorter and nice way:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().method(my, "isGoldCustomer").
to("activemq:BigSpendersQueue");

Other examples

We have some test cases you can look at if it'll help
• MethodFilterTest is a JUnit test case showing the Java DSL use of the bean expression

being used in a filter
• aggregator.xml is a Spring XML test case for the Aggregator which uses a bean

method call to test for the completion of the aggregation.

Dependencies

The Bean language is part of camel-core.

CONSTANT EXPRESSION LANGUAGE

The Constant Expression Language is really just a way to specify constant strings as a type of
expression.

Example usage

The setHeader element of the Spring DSL can utilize a constant expression like:

<route>
<from uri="seda:a"/>

LANGUAGES SUPPORTED APPENDIX 223

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MethodFilterTest.java
http://camel.apache.org/dsl.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/aggregator.xml
http://camel.apache.org/aggregator.html

<setHeader headerName="theHeader">
<constant>the value</constant>

</setHeader>
<to uri="mock:b"/>

</route>

in this case, the Message coming from the seda:a Endpoint will have 'theHeader' header set to
the constant value 'the value'.

And the same example using Java DSL:

from("seda:a").setHeader("theHeader", constant("the value")).to("mock:b");

Dependencies

The Constant language is part of camel-core.

EL

Camel supports the unified JSP and JSF Expression Language via the JUEL to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

For example you could use EL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<el>${in.headers.foo == 'bar'}</el>
<to uri="seda:bar"/>

</filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a valid identifier:

<route>
<from uri="seda:foo"/>
<filter>

<el>${in.headers['My Header'] == 'bar'}</el>
<to uri="seda:bar"/>

</filter>
</route>

You could use EL to create an Predicate in a Message Filter or as an Expression for a Recipient
List

224 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://juel.sourceforge.net/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

Samples

You can use EL dot notation to invoke operations. If you for instance have a body that contains
a POJO that has a getFamiliyName method then you can construct the syntax as follows:

"$in.body.familyName"

Dependencies

To use EL in your camel routes you need to add the a dependency on camel-juel which
implements the EL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-juel</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise you'll also need to include JUEL.

HEADER EXPRESSION LANGUAGE

The Header Expression Language allows you to extract values of named headers.

Example usage

The recipientList element of the Spring DSL can utilize a header expression like:

<route>
<from uri="direct:a" />
<!-- use comma as a delimiter for String based values -->
<recipientList delimiter=",">

LANGUAGES SUPPORTED APPENDIX 225

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/de/odysseus/juel/juel/2.1.3/juel-2.1.3.jar

<header>myHeader</header>
</recipientList>

</route>

In this case, the list of recipients are contained in the header 'myHeader'.

And the same example in Java DSL:

from("direct:a").recipientList(header("myHeader"));

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that header is not a parameter but a stacked
method call)

from("direct:a").recipientList().header("myHeader");

Dependencies

The Header language is part of camel-core.

JXPATH

Camel supports JXPath to allow XPath expressions to be used on beans in an Expression or
Predicate to be used in the DSL or Xml Configuration. For example you could use JXPath to
create an Predicate in a Message Filter or as an Expression for a Recipient List.

You can use XPath expressions directly using smart completion in your IDE as follows

from("queue:foo").filter().
jxpath("/in/body/foo").
to("queue:bar")

Variables

Variable Type Description

this Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

226 LANGUAGES SUPPORTED APPENDIX

http://commons.apache.org/jxpath/
http://camel.apache.org/xpath.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Options

Option Type Description

lenient boolean

Camel 2.11/2.10.5: Allows to turn lenient on the JXPathContext.
When turned on this allows the JXPath expression to evaluate against
expressions and message bodies which may be invalid / missing data.
See more details at the JXPath Documentation This option is by
default false.

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use JXPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<filter>

<jxpath>in/body/name = 'James'</xpath>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Examples

Here is a simple example using a JXPath expression as a predicate in a Message Filter

from("direct:start").
filter().jxpath("in/body/name='James'").
to("mock:result");

JXPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
JXPath to extract a value from the message and bind it to a method parameter.

LANGUAGES SUPPORTED APPENDIX 227

http://commons.apache.org/proper/commons-jxpath//users-guide.html#Lenient_Mode
http://camel.apache.org/spring.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
http://camel.apache.org/message-filter.html
http://camel.apache.org/bean-integration.html

For example

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@JXPath("in/body/foo") String correlationID, @Body String

body) {
// process the inbound message here

}
}

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").jxpath("resource:classpath:myjxpath.txt")

Dependencies

To use JXpath in your camel routes you need to add the a dependency on camel-jxpath
which implements the JXpath language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jxpath</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need Commons JXPath.

MVEL

Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use Mvel to create an Predicate in a Message Filter or as an Expression for a
Recipient List

228 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/commons-jxpath/commons-jxpath/1.3/commons-jxpath-1.3.jar
http://mvel.codehaus.org/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

You can use Mvel dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as
follows:

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

Variables

Variable Type Description

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)

exchangeId String the exchange id

fault Message the Fault message (if any)

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

property(name) Object the property by the given name

property(name, type) Type the property by the given name as the given type

Samples

For example you could use Mvel inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<mvel>request.headers.foo == 'bar'</mvel>
<to uri="seda:bar"/>

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().mvel("request.headers.foo == 'bar'").to("seda:bar");

LANGUAGES SUPPORTED APPENDIX 229

http://camel.apache.org/message-filter.html

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").mvel("resource:classpath:script.mvel")

Dependencies

To use Mvel in your camel routes you need to add the a dependency on camel-mvel which
implements the Mvel language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mvel</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need MVEL

OGNL

Camel allows OGNL to be used as an Expression or Predicate the DSL or Xml Configuration.

You could use OGNL to create an Predicate in a Message Filter or as an Expression for a
Recipient List

You can use OGNL dot notation to invoke operations. If you for instance have a body that
contains a POJO that has a getFamiliyName method then you can construct the syntax as
follows:

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

Variables

Variable Type Description

230 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/mvel/mvel2/2.0.18/mvel2-2.0.18.jar
http://www.opensymphony.com/ognl/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

this Exchange the Exchange is the root object

exchange Exchange the Exchange object

exception Throwable the Exchange exception (if any)

exchangeId String the exchange id

fault Message the Fault message (if any)

request Message the exchange.in message

response Message the exchange.out message (if any)

properties Map the exchange properties

property(name) Object the property by the given name

property(name, type) Type the property by the given name as the given type

Samples

For example you could use OGNL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<ognl>request.headers.foo == 'bar'</ognl>
<to uri="seda:bar"/>

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().ognl("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").ognl("resource:classpath:myognl.txt")

LANGUAGES SUPPORTED APPENDIX 231

http://camel.apache.org/message-filter.html

Dependencies

To use OGNL in your camel routes you need to add the a dependency on camel-ognl which
implements the OGNL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need OGNL

PROPERTY EXPRESSION LANGUAGE

The Property Expression Language allows you to extract values of named exchange properties.

Example usage

The recipientList element of the Spring DSL can utilize a property expression like:

<route>
<from uri="direct:a" />
<recipientList>

<property>myProperty</property>
</recipientList>

</route>

In this case, the list of recipients are contained in the property 'myProperty'.

And the same example in Java DSL:

from("direct:a").recipientList(property("myProperty"));

And with a slightly different syntax where you use the builder to the fullest (i.e. avoid using
parameters but using stacked operations, notice that property is not a parameter but a stacked
method call)

from("direct:a").recipientList().property("myProperty");

Dependencies

The Property language is part of camel-core.

232 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.ognl/2.7.3_4/org.apache.servicemix.bundles.ognl-2.7.3_4.jar

SCRIPTING LANGUAGES

Camel supports a number of scripting languages which can be used to create an Expression or
Predicate via the standard JSR 223 which is a standard part of Java 6.

The following scripting languages are integrated into the DSL:

Language DSL keyword

EL el

Groovy groovy

JavaScript javaScript

JoSQL sql

JXPath jxpath

MVEL mvel

OGNL ognl

PHP php

Python python

Ruby ruby

XPath xpath

XQuery xquery

However any JSR 223 scripting language can be used using the generic DSL methods.

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

LANGUAGES SUPPORTED APPENDIX 233

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

234 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

LANGUAGES SUPPORTED APPENDIX 235

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

236 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

SEE ALSO

• Languages
• DSL
• Xml Configuration

BEANSHELL

Camel supports BeanShell among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a BeanShell expression use the following Java code:

...choice()
.when(script("beanshell", "request.getHeaders().get(\"foo\").equals(\"bar\")"))

.to("...")

Or the something like this in your Spring XML:

<filter>
<language language="beanshell">request.getHeaders().get("Foo") == null</language>
...

You could follow the examples above to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

LANGUAGES SUPPORTED APPENDIX 237

http://camel.apache.org/languages.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://www.beanshell.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

BeanShell Issues
You must use BeanShell 2.0b5 or greater. Note that as of 2.0b5 BeanShell cannot
compile scripts, which causes Camel releases before 2.6 to fail when configured
with BeanShell expressions.

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

238 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");

LANGUAGES SUPPORTED APPENDIX 239

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

240 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

JAVASCRIPT

Camel supports JavaScript/ECMAScript among other Scripting Languages to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

To use a JavaScript expression use the following Java code

... javaScript("someJavaScriptExpression") ...

For example you could use the javaScript function to create an Predicate in a Message Filter
or as an Expression for a Recipient List

Example

In the sample below we use JavaScript to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().javaScript("request.headers.get('user') ==
'admin'").to("seda:adminQueue")

.otherwise()
.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>

<when>
<javaScript>request.headers.get('user') == 'admin'</javaScript>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

LANGUAGES SUPPORTED APPENDIX 241

http://en.wikipedia.org/wiki/JavaScript
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

242 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

LANGUAGES SUPPORTED APPENDIX 243

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

244 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

GROOVY

Camel supports Groovy among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Groovy expression use the following Java code

... groovy("someGroovyExpression") ...

For example you could use the groovy function to create an Predicate in a Message Filter or
as an Expression for a Recipient List

Example

// lets route if a line item is over $100
from("queue:foo").filter(groovy("request.lineItems.any { i -> i.value > 100
}")).to("queue:bar")

And the Spring DSL:

<route>
<from uri="queue:foo"/>
<filter>

<groovy>request.lineItems.any { i -> i.value > 100 }</groovy>
<to uri="queue:bar"/>

</filter>
</route>

LANGUAGES SUPPORTED APPENDIX 245

http://camel.apache.org/download.html
http://groovy.codehaus.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

246 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

LANGUAGES SUPPORTED APPENDIX 247

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

248 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

PYTHON

Camel supports Python among other Scripting Languages to allow an Expression or Predicate
to be used in the DSL or Xml Configuration.

To use a Python expression use the following Java code

... python("somePythonExpression") ...

For example you could use the python function to create an Predicate in a Message Filter or
as an Expression for a Recipient List

Example

In the sample below we use Python to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().python("request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>

LANGUAGES SUPPORTED APPENDIX 249

http://camel.apache.org/download.html
http://www.python.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

<choice>
<when>

<python>request.headers['user'] == 'admin'</python>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

250 LANGUAGES SUPPORTED APPENDIX

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 251

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

252 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 253

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

PHP

Camel supports PHP among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a PHP expression use the following Java code

... php("somePHPExpression") ...

For example you could use the php function to create an Predicate in a Message Filter or as an
Expression for a Recipient List

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

254 LANGUAGES SUPPORTED APPENDIX

http://www.php.net/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 255

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

256 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 257

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

RUBY

Camel supports Ruby among other Scripting Languages to allow an Expression or Predicate to
be used in the DSL or Xml Configuration.

To use a Ruby expression use the following Java code

... ruby("someRubyExpression") ...

For example you could use the ruby function to create an Predicate in a Message Filter or as
an Expression for a Recipient List

Example

In the sample below we use Ruby to create a Predicate use in the route path, to route
exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().ruby("$request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>

<when>
<ruby>$request.headers['user'] == 'admin'</ruby>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

ScriptContext

The JSR-223 scripting languages ScriptContext is pre configured with the following attributes all
set at ENGINE_SCOPE:

Attribute Type Value

context org.apache.camel.CamelContext
The Camel
Context

258 LANGUAGES SUPPORTED APPENDIX

http://www.ruby-lang.org/en/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message
The IN
message

response org.apache.camel.Message
The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts. See
further
below for
example.

Attributes

You can add your own attributes with the attribute(name, value) DSL method, such
as:

In the sample below we add an attribute user that is an object we already have instantiated
as myUser. This object has a getFirstName() method that we want to set as header on the
message. We use the groovy language to concat the first and last name into a single string that
is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language

Camel can run any JSR-223 scripting languages using the script DSL method such as:

LANGUAGES SUPPORTED APPENDIX 259

http://camel.apache.org/properties.html

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression element that
doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.

Some languages without specific DSL support but known to work with these generic
methods include:

Language Implementation language="..." value

BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine

Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a header on the
Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");

260 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function

Available as of Camel 2.9

If you need to use the Properties component from a script to lookup property placeholders,
then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property placeholder, which
key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the same example is
simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies

To use scripting languages in your camel routes you need to add the a dependency on camel-
script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX 261

http://camel.apache.org/properties.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

SIMPLE EXPRESSION LANGUAGE

The Simple Expression Language was a really simple language you can use, but has since grown
more powerful. Its primarily intended for being a really small and simple language for evaluating
Expression and Predicate without requiring any new dependencies or knowledge of XPath; so
its ideal for testing in camel-core. Its ideal to cover 95% of the common use cases when you
need a little bit of expression based script in your Camel routes.

However for much more complex use cases you are generally recommended to choose a
more expressive and powerful language such as:

• SpEL
• Mvel
• Groovy
• JavaScript
• EL
• OGNL
• one of the supported Scripting Languages

The simple language uses ${body} placeholders for complex expressions where the
expression contains constant literals. The ${ } placeholders can be omitted if the expression is
only the token itself.
To get the body of the in message: "body", or "in.body" or "${body}".

A complex expression must use ${ } placeholders, such as: "Hello
${in.header.name} how are you?".

You can have multiple functions in the same expression: "Hello ${in.header.name}
this is ${in.header.me} speaking".
However you can not nest functions in Camel 2.8.x or older (i.e. having another ${ }
placeholder in an existing, is not allowed).
From Camel 2.9 onwards you can nest functions.

Variables

Variable Type Description

camelId String Camel 2.10: the CamelContext name

camelContext.OGNL Object Camel 2.11: the CamelContext invoked using a Camel OGNL expression.

exchangeId String Camel 2.3: the exchange id

id String the input message id

body Object the input body

262 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/spel.html
http://camel.apache.org/mvel.html
http://camel.apache.org/groovy.html
http://camel.apache.org/javascript.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/camelcontext.html

Alternative syntax
From Camel 2.5 onwards you can also use the alternative syntax which uses
$simple{ } as placeholders.
This can be used in situations to avoid clashes when using for example Spring
property placeholder together with Camel.

Configuring result type
From Camel 2.8 onwards you can configure the result type of the Simple
expression. For example to set the type as a java.lang.Boolean or a
java.lang.Integer etc.

File language is now merged with Simple language
From Camel 2.2 onwards, the File Language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

Simple Language Changes in Camel 2.9 onwards
The Simple language have been improved from Camel 2.9 onwards to use a better
syntax parser, which can do index precise error messages, so you know exactly
what is wrong and where the problem is. For example if you have made a typo in
one of the operators, then previously the parser would not be able to detect this,
and cause the evaluation to be true. There is a few changes in the syntax which are
no longer backwards compatible. When using Simple language as a Predicate then
the literal text must be enclosed in either single or double quotes. For example:
"${body} == 'Camel'". Notice how we have single quotes around the literal.
The old style of using "body" and "header.foo" to refer to the message body
and header is @deprecated, and its encouraged to always use ${ } tokens for the
built-in functions.
The range operator now requires the range to be in single quote as well as shown:
"${header.zip} between '30000..39999'".

in.body Object the input body

body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

in.body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

bodyAs(type) Type Camel 2.3: Converts the body to the given type determined by its classname. The converted body can be null.

mandatoryBodyAs(type) Type Camel 2.5: Converts the body to the given type determined by its classname, and expects the body to be not null.

LANGUAGES SUPPORTED APPENDIX 263

http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/predicate.html

out.body Object the output body

header.foo Object refer to the input foo header

header[foo] Object Camel 2.9.2: refer to the input foo header

headers.foo Object refer to the input foo header

headers[foo] Object Camel 2.9.2: refer to the input foo header

in.header.foo Object refer to the input foo header

in.header[foo] Object Camel 2.9.2: refer to the input foo header

in.headers.foo Object refer to the input foo header

in.headers[foo] Object Camel 2.9.2: refer to the input foo header

header.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

in.header.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

in.headers.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.headers.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

out.header.foo Object refer to the out header foo

out.header[foo] Object Camel 2.9.2: refer to the out header foo

out.headers.foo Object refer to the out header foo

out.headers[foo] Object Camel 2.9.2: refer to the out header foo

headerAs(key,type) Type Camel 2.5: Converts the header to the given type determined by its classname

headers Map Camel 2.9: refer to the input headers

in.headers Map Camel 2.9: refer to the input headers

property.foo Object refer to the foo property on the exchange

property[foo] Object Camel 2.9.2: refer to the foo property on the exchange

property.foo.OGNL Object Camel 2.8: refer to the foo property on the exchange and invoke its value using a Camel OGNL expression.

sys.foo String refer to the system property

sysenv.foo String Camel 2.3: refer to the system environment

exception Object
Camel 2.4: Refer to the exception object on the exchange, is null if no exception set on exchange. Will fallback and grab caught
exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.OGNL Object Camel 2.4: Refer to the exchange exception invoked using a Camel OGNL expression object

exception.message String
Refer to the exception.message on the exchange, is null if no exception set on exchange. Will fallback and grab caught exceptions
(Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.stacktrace String
Camel 2.6. Refer to the exception.stracktrace on the exchange, is null if no exception set on exchange. Will fallback and grab
caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

date:command:pattern String
Date formatting using the java.text.SimpleDataFormat patterns. Supported commands are: now for current timestamp,
in.header.xxx or header.xxx to use the Date object in the IN header with the key xxx. out.header.xxx to use the Date
object in the OUT header with the key xxx.

bean:bean expression Object
Invoking a bean expression using the Bean language. Specifying a method name you must use dot as separator. We also support the
?method=methodname syntax that is used by the Bean component.

properties:locations:key String Camel 2.3: Lookup a property with the given key. The locations option is optional. See more at Using PropertyPlaceholder.

routeId String Camel 2.11: Returns the id of the current route the Exchange is being routed.

threadName String Camel 2.3: Returns the name of the current thread. Can be used for logging purpose.

ref:xxx Object Camel 2.6: To lookup a bean from the Registry with the given id.

type:name.field Object
Camel 2.11: To refer to a type or field by its FQN name. To refer to a field you can append .FIELD_NAME. For example you can
refer to the constant field from Exchange as: org.apache.camel.Exchange.FILE_NAME

.

OGNL expression support

Available as of Camel 2.3

The Simple and Bean language now supports a Camel OGNL notation for invoking beans in
a chain like fashion.
Suppose the Message IN body contains a POJO which has a getAddress() method.

264 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

Then you can use Camel OGNL notation to access the address object:

simple("${body.address}")
simple("${body.address.street}")
simple("${body.address.zip}")

Camel understands the shorthand names for getters, but you can invoke any method or use the
real name such as:

simple("${body.address}")
simple("${body.getAddress.getStreet}")
simple("${body.address.getZip}")
simple("${body.doSomething}")

You can also use the null safe operator (?.) to avoid NPE if for example the body does NOT
have an address

simple("${body?.address?.street}")

Its also possible to index in Map or List types, so you can do:

simple("${body[foo].name}")

To assume the body is Map based and lookup the value with foo as key, and invoke the
getName method on that value.
You can access the Map or List objects directly using their key name (with or without dots) :

simple("${body[foo]}")
simple("${body[this.is.foo]}")

Suppose there was no value with the key foo then you can use the null safe operator to avoid
the NPE as shown:

simple("${body[foo]?.name}")

You can also access List types, for example to get lines from the address you can do:

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

There is a special last keyword which can be used to get the last value from a list.

LANGUAGES SUPPORTED APPENDIX 265

If the key has space, then you must enclose the key with quotes, for example 'foo
bar':

simple("${body['foo bar'].name}")

simple("${body.address.lines[last]}")

And to get the 2nd last you can subtract a number, so we can use last-1 to indicate this:

simple("${body.address.lines[last-1]}")

And the 3rd last is of course:

simple("${body.address.lines[last-2]}")

And yes you can combine this with the operator support as shown below:

simple("${body.address.zip} > 1000")

Operator support

The parser is limited to only support a single operator.

To enable it the left value must be enclosed in ${ }. The syntax is:

${leftValue} OP rightValue

Where the rightValue can be a String literal enclosed in ' ', null, a constant value or
another expression enclosed in ${ }.
Camel will automatically type convert the rightValue type to the leftValue type, so its able to eg.
convert a string into a numeric so you can use > comparison for numeric values.

The following operators are supported:

Operator Description

== equals

> greater than

>= greater than or equals

266 LANGUAGES SUPPORTED APPENDIX

Important
There must be spaces around the operator.

< less than

<= less than or equals

!= not equals

contains For testing if contains in a string based value

not
contains

For testing if not contains in a string based value

regex
For matching against a given regular expression pattern defined as a String
value

not regex
For not matching against a given regular expression pattern defined as a String
value

in For matching if in a set of values, each element must be separated by comma.

not in
For matching if not in a set of values, each element must be separated by
comma.

is For matching if the left hand side type is an instanceof the value.

not is For matching if the left hand side type is not an instanceof the value.

range
For matching if the left hand side is within a range of values defined as
numbers: from..to. From Camel 2.9 onwards the range values must be
enclosed in single quotes.

not range
For matching if the left hand side is not within a range of values defined as
numbers: from..to. From Camel 2.9 onwards the range values must be
enclosed in single quotes.

And the following unary operators can be used:

Operator Description

++
Camel 2.9: To increment a number by one. The left hand side must be a
function, otherwise parsed as literal.

--
Camel 2.9: To decrement a number by one. The left hand side must be a
function, otherwise parsed as literal.

LANGUAGES SUPPORTED APPENDIX 267

\

Camel 2.9.3 to 2.10.x To escape a value, eg \$, to indicate a $ sign.
Special: Use \n for new line, \t for tab, and \r for carriage return. Notice:
Escaping is not supported using the File Language. Notice: From Camel 2.11
onwards the escape character is no longer support, but replaced with the
following three special escaping.

\n Camel 2.11: To use newline character.

\t Camel 2.11: To use tab character.

\r Camel 2.11: To use carriage return character.

And the following logical operators can be used to group expressions:

Operator Description

and
deprecated use && instead. The logical and operator is used to group two
expressions.

or
deprecated use || instead. The logical or operator is used to group two
expressions.

&& Camel 2.9: The logical and operator is used to group two expressions.

|| Camel 2.9: The logical or operator is used to group two expressions.

The syntax for AND is:

${leftValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

simple("${in.header.foo} == 'foo'")

// here Camel will type convert '100' into the type of in.header.bar and if its an
Integer '100' will also be converter to an Integer
simple("${in.header.bar} == '100'")

simple("${in.header.bar} == 100")

// 100 will be converter to the type of in.header.bar so we can do > comparison
simple("${in.header.bar} > 100")

// testing for null
simple("${in.header.baz} == null")

268 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/file-language.html

Using and,or operators
In Camel 2.4 or older the and or or can only be used once in a simple
language expression. From Camel 2.5 onwards you can use these operators
multiple times.

Comparing with different types
When you compare with different types such as String and int, then you have to
take a bit care. Camel will use the type from the left hand side as 1st priority. And
fallback to the right hand side type if both values couldn't be compared based on
that type.
This means you can flip the values to enforce a specific type. Suppose the bar value
above is a String. Then you can flip the equation:

simple("100 < ${in.header.bar}")

which then ensures the int type is used as 1st priority.

This may change in the future if the Camel team improves the binary comparison
operations to prefer numeric types over String based. It's most often the String type which
causes problem when comparing with numbers.

// testing for not null
simple("${in.header.baz} != null")

And a bit more advanced example where the right value is another expression

simple("${in.header.date} == ${date:now:yyyyMMdd}")

simple("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel

simple("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a 4 digit value:

simple("${in.header.number} regex '\\d{4}'")

LANGUAGES SUPPORTED APPENDIX 269

And finally an example if the header equals any of the values in the list. Each element must be
separated by comma, and no space around.
This also works for numbers etc, as Camel will convert each element into the type of the left
hand side.

simple("${in.header.type} in 'gold,silver'")

And for all the last 3 we also support the negate test using not:

simple("${in.header.type} not in 'gold,silver'")

And you can test if the type is a certain instance, eg for instance a String

simple("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all java.lang types so you can write it as:

simple("${in.header.type} is 'String'")

Ranges are also supported. The range interval requires numbers and both from and end are
inclusive. For instance to test whether a value is between 100 and 199:

simple("${in.header.number} range 100..199")

Notice we use .. in the range without spaces. Its based on the same syntax as Groovy.

From Camel 2.9 onwards the range value must be in single quotes

simple("${in.header.number} range '100..199'")

Using and / or

If you have two expressions you can combine them with the and or or operator.
For instance:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the or is also supported. The sample would be:

simple("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

270 LANGUAGES SUPPORTED APPENDIX

Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with all its various
builder methods, you have to resort to use some other languages
for testing with simple operators. Now you can do this with the simple language. In
the sample below we want to test if the header is a widget order:

<from uri="seda:orders">
<filter>

<simple>${in.header.type} == 'widget'</simple>
<to uri="bean:orderService?method=handleWidget"/>

</filter>
</from>

Camel 2.9 onwards
Use && or || from Camel 2.9 onwards.

Notice: Currently and or or can only be used once in a simple language expression. This
might change in the future.
So you cannot do:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and
${in.header.number} range 100..200")

Samples

In the Spring XML sample below we filter based on a header value:

<from uri="seda:orders">
<filter>

<simple>${in.header.foo}</simple>
<to uri="mock:fooOrders"/>

</filter>
</from>

The Simple language can be used for the predicate test above in the Message Filter pattern,
where we test if the in message has a foo header (a header with the key foo exists). If the
expression evaluates to true then the message is routed to the mock:fooOrders endpoint,
otherwise its lost in the deep blue sea .

The same example in Java DSL:

LANGUAGES SUPPORTED APPENDIX 271

http://camel.apache.org/message-filter.html

from("seda:orders")
.filter().simple("${in.header.foo}").to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

from("direct:hello").transform().simple("Hello ${in.header.user} how are
you?").to("mock:reply");

Notice that we must use ${ } placeholders in the expression now to allow Camel to parse it
correctly.

And this sample uses the date command to output current date.

from("direct:hello").transform().simple("The today is ${date:now:yyyyMMdd} and its
a great day.").to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on a bean to be
included in the returned string:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator}").to("mock:reply");

Where orderIdGenerator is the id of the bean registered in the Registry. If using Spring
then its the Spring bean id.

If we want to declare which method to invoke on the order id generator bean we must
prepend .method name such as below where we invoke the generateId method.

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator.generateId}").to("mock:reply");

We can use the ?method=methodname option that we are familiar with the Bean
component itself:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator?method=generateId}").to("mock:reply");

And from Camel 2.3 onwards you can also convert the body to a given type, for example to
ensure its a String you can do:

<transform>
<simple>Hello ${bodyAs(String)} how are you?</simple>

</transform>

272 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/bean.html

There are a few types which have a shorthand notation, so we can use String instead of
java.lang.String. These are: byte[], String, Integer, Long. All other types
must use their FQN name, e.g. org.w3c.dom.Document.

Its also possible to lookup a value from a header Map in Camel 2.3 onwards:

<transform>
<simple>The gold value is ${header.type[gold]}</simple>

</transform>

In the code above we lookup the header with name type and regard it as a java.util.Map
and we then lookup with the key gold and return the value.
If the header is not convertible to Map an exception is thrown. If the header with name type
does not exist null is returned.

From Camel 2.9 onwards you can nest functions, such as shown below:

<setHeader headerName="myHeader">
<simple>${properties:${header.someKey}}</simple>

</setHeader>

Referring to constants or enums

Available as of Camel 2.11

Suppose you have an enum for customers

public enum Customer {

GOLD, SILVER, BRONZE
}

And in a Content Based Router we can use the Simple language to refer to this enum, to check
the message which enum it matches.

from("direct:start")
.choice()

.when().simple("${header.customer} ==
${type:org.apache.camel.processor.Customer.GOLD}")

.to("mock:gold")
.when().simple("${header.customer} ==

${type:org.apache.camel.processor.Customer.SILVER}")
.to("mock:silver")

.otherwise()
.to("mock:other");

LANGUAGES SUPPORTED APPENDIX 273

http://camel.apache.org/content-based-router.html
http://camel.apache.org/simple.html

Using new lines or tabs in XML DSLs

Available as of Camel 2.9.3

From Camel 2.9.3 onwards its easier to specify new lines or tabs in XML DSLs as you can
escape the value now

<transform>
<simple>The following text\nis on a new line</simple>

</transform>

Setting result type

Available as of Camel 2.8

You can now provide a result type to the Simple expression, which means the result of the
evaluation will be converted to the desired type. This is most useable to define types such as
booleans, integers, etc.

For example to set a header as a boolean type you can do:

.setHeader("cool", simple("true", Boolean.class))

And in XML DSL

<setHeader headerName="cool">
<!-- use resultType to indicate that the type should be a java.lang.Boolean -->
<simple resultType="java.lang.Boolean">true</simple>

</setHeader>

Changing function start and end tokens

Available as of Camel 2.9.1

You can configure the function start and end tokens - ${ } using the setters
changeFunctionStartToken and changeFunctionEndToken on
SimpleLanguage, using Java code. From Spring XML you can define a <bean> tag with the
new changed tokens in the properties as shown below:

<!-- configure Simple to use custom prefix/suffix tokens -->
<bean id="simple" class="org.apache.camel.language.simple.SimpleLanguage">

<property name="functionStartToken" value="["/>
<property name="functionEndToken" value="]"/>

</bean>

In the example above we use [] as the changed tokens.

274 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/simple.html

Notice by changing the start/end token you change those in all the Camel applications which
share the same camel-core on their classpath.
For example in an OSGi server this may affect many applications, where as a Web Application
as a WAR file it only affects the Web Application.

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").simple("resource:classpath:mysimple.txt")

Dependencies

The Simple language is part of camel-core.

FILE EXPRESSION LANGUAGE

The File Expression Language is an extension to the Simple language, adding file related
capabilities. These capabilities are related to common use cases working with file path and
names. The goal is to allow expressions to be used with the File and FTP components for
setting dynamic file patterns for both consumer and producer.

Syntax

This language is an extension to the Simple language so the Simple syntax applies also. So the
table below only lists the additional.
As opposed to Simple language File Language also supports Constant expressions so you can
enter a fixed filename.

All the file tokens use the same expression name as the method on the java.io.File
object, for instance file:absolute refers to the java.io.File.getAbsolute()
method. Notice that not all expressions are supported by the current Exchange. For instance
the FTP component supports some of the options, where as the File component supports all of
them.

Expression Type
File
Consumer

File
Producer

FTP
Consumer

FTP
Producer

Description

file:name String yes no yes no
refers to the file name (is relative to the
starting directory, see note below)

LANGUAGES SUPPORTED APPENDIX 275

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/constant.html
absolute
http://camel.apache.org/ftp.html
http://camel.apache.org/file2.html
name

File language is now merged with Simple language
From Camel 2.2 onwards, the file language is now merged with Simple language
which means you can use all the file syntax directly within the simple language.

file:name.ext String yes no yes no
Camel 2.3: refers to the file extension
only

file:name.noext String yes no yes no
refers to the file name with no extension
(is relative to the starting directory, see
note below)

file:onlyname String yes no yes no
refers to the file name only with no leading
paths.

file:onlyname.noext String yes no yes no
refers to the file name only with no
extension and with no leading paths.

file:ext String yes no yes no refers to the file extension only

file:parent String yes no yes no refers to the file parent

file:path String yes no yes no refers to the file path

file:absolute Boolean yes no no no
refers to whether the file is regarded as
absolute or relative

file:absolute.path String yes no no no refers to the absolute file path

file:length Long yes no yes no
refers to the file length returned as a Long
type

file:size Long yes no yes no
Camel 2.5: refers to the file length
returned as a Long type

file:modified Date yes no yes no
efers to the file last modified returned as a
Date type

date:command:pattern String yes yes yes yes

for date formatting using the
java.text.SimepleDataFormat
patterns. Is an extension to the Simple
language. Additional command is: file
(consumers only) for the last modified
timestamp of the file. Notice: all the
commands from the Simple language can
also be used.

File token example

Relative paths

We have a java.io.File handle for the file hello.txt in the following relative
directory: .\filelanguage\test. And we configure our endpoint to use this starting
directory .\filelanguage. The file tokens will return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

276 LANGUAGES SUPPORTED APPENDIX

name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
length
size
modified
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
name
name.ext
name.noext
onlyname
http://camel.apache.org/simple.html

file:onlyname.noext hello

file:ext txt

file:parent filelanguage\test

file:path filelanguage\test\hello.txt

file:absolute false

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

Absolute paths

We have a java.io.File handle for the file hello.txt in the following absolute
directory: \workspace\camel\camel-core\target\filelanguage\test. And
we configure out endpoint to use the absolute starting directory \workspace\camel\
camel-core\target\filelanguage. The file tokens will return as:

Expression Returns

file:name test\hello.txt

file:name.ext txt

file:name.noext test\hello

file:onlyname hello.txt

file:onlyname.noext hello

file:ext txt

file:parent \workspace\camel\camel-core\target\filelanguage\test

file:path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

file:absolute true

file:absolute.path \workspace\camel\camel-core\target\filelanguage\test\hello.txt

Samples

You can enter a fixed Constant expression such as myfile.txt:

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the read files to backup
folder with the current date as a sub folder. This can be archieved using an expression like:

LANGUAGES SUPPORTED APPENDIX 277

onlyname.noext
ext
parent
path
absolute
absolute.path
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
http://camel.apache.org/constant.html

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names are also supported so suppose the backup folder should be a sibling folder
then you can append .. as:

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the Simple language we have access to all the goodies from this
language also, so in this use case we want to use the in.header.type as a parameter in the
dynamic expression:

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/backup-of-${file:name.noext}.bak"

If you have a custom Date you want to use in the expression then Camel supports retrieving
dates from the message header.

fileName="orders/
order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

And finally we can also use a bean expression to invoke a POJO class that generates some
String output (or convertible to String) to be used:

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use the File Language,
Simple and the Bean language in one combined expression. This is pretty powerful for those
common file path patterns.

Using Spring PropertyPlaceholderConfigurer together with the File
component

In Camel you can use the File Language directly from the Simple language which makes a
Content Based Router easier to do in Spring XML, where we can route based on file
extensions as shown below:

<from uri="file://input/orders"/>
<choice>

<when>
<simple>${file:ext} == 'txt'</simple>
<to uri="bean:orderService?method=handleTextFiles"/>

</when>
<when>

<simple>${file:ext} == 'xml'</simple>

278 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html
http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/content-based-router.html

<to uri="bean:orderService?method=handleXmlFiles"/>
</when>
<otherwise>

<to uri="bean:orderService?method=handleOtherFiles"/>
</otherwise>

</choice>

If you use the fileName option on the File endpoint to set a dynamic filename using the File
Language then make sure you
use the alternative syntax (available from Camel 2.5 onwards) to avoid clashing with Springs
PropertyPlaceholderConfigurer.

Listing 1.Listing 1. bundle-context.xmlbundle-context.xml

<bean id="propertyPlaceholder"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="location" value="classpath:bundle-context.cfg" />
</bean>

<bean id="sampleRoute" class="SampleRoute">
<property name="fromEndpoint" value="${fromEndpoint}" />
<property name="toEndpoint" value="${toEndpoint}" />

</bean>

Listing 1.Listing 1. bundle-context.cfgbundle-context.cfg

fromEndpoint=activemq:queue:test
toEndpoint=file://fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

Notice how we use the $simple{ } syntax in the toEndpoint above.
If you don't do this, there is a clash and Spring will throw an exception like

org.springframework.beans.factory.BeanDefinitionStoreException:
Invalid bean definition with name 'sampleRoute' defined in class path resource
[bundle-context.xml]:
Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies

The File language is part of camel-core.

SQL LANGUAGE

The SQL support is added by JoSQL and is primarily used for performing SQL queries on in-
memory objects. If you prefer to perform actual database queries then check out the JPA
component.

LANGUAGES SUPPORTED APPENDIX 279

http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://josql.sourceforge.net/
http://camel.apache.org/jpa.html

Looking for the SQL component
Camel has both a SQL language and a SQL Component. This page is about the SQL
language. Click on SQL Component if you are looking for the component instead.

To use SQL in your camel routes you need to add the a dependency on camel-josql which
implements the SQL language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-josql</artifactId>
<version>2.5.0</version>

</dependency>

Camel supports SQL to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use SQL to create an Predicate in a Message Filter or as
an Expression for a Recipient List.

from("queue:foo").setBody().sql("select * from MyType").to("queue:bar")

And the spring DSL:

<from uri="queue:foo"/>
<setBody>

<sql>select * from MyType</sql>
</setBody>
<to uri="queue:bar"/>

Variables

Variable Type Description

exchange Exchange the Exchange object

in Message the exchange.in message

out Message the exchange.out message

the property
key

Object the Exchange properties

the header key Object the exchange.in headers

280 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://en.wikipedia.org/wiki/SQL
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/sql.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/sql-component.html

the variable key Object
if any additional variables is added using setVariables
method

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").sql("resource:classpath:mysql.sql")

XPATH

Camel supports XPath to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XPath to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

from("queue:foo").
filter().xpath("//foo")).
to("queue:bar")

from("queue:foo").
choice().xpath("//foo")).to("queue:bar").
otherwise().to("queue:others");

Namespaces

You can easily use namespaces with XPath expressions using the Namespaces helper class.

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start").filter().
xpath("/c:person[@name='James']", ns).
to("mock:result");

LANGUAGES SUPPORTED APPENDIX 281

http://www.w3.org/TR/xpath
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Variables

Variables in XPath is defined in different namespaces. The default namespace is
http://camel.apache.org/schema/spring.

Namespace URI
Local
part

Type Description

http://camel.apache.org/xml/in/ in Message
the exchange.in
message

http://camel.apache.org/xml/out/ out Message
the exchange.out
message

http://camel.apache.org/xml/function/ functions Object
Camel 2.5: Additional
functions

http://camel.apache.org/xml/variables/
environment-variables

env Object
OS environment
variables

http://camel.apache.org/xml/variables/
system-properties

system Object Java System properties

http://camel.apache.org/xml/variables/
exchange-property

Ê Object the exchange property

Camel will resolve variables according to either:
▪ namespace given
▪ no namespace given

Namespace given

If the namespace is given then Camel is instructed exactly what to return. However when
resolving either in or out Camel will try to resolve a header with the given local part first, and
return it. If the local part has the value body then the body is returned instead.

No namespace given

If there is no namespace given then Camel resolves only based on the local part. Camel will try
to resolve a variable in the following steps:

▪ from variables that has been set using the variable(name, value) fluent
builder

▪ from message.in.header if there is a header with the given key
▪ from exchange.properties if there is a property with the given key

282 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/
http://camel.apache.org/xml/out/
http://camel.apache.org/xml/function/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
http://camel.apache.org/xml/variables/exchange-property

Functions

Camel adds the following XPath functions that can be used to access the exchange:

Function Argument Type Description

in:body none Object Will return the in message body.

in:header
the header
name

Object Will return the in message header.

out:body none Object Will return the out message body.

out:header
the header
name

Object Will return the out message header.

function:properties
key for
property

String
Camel 2.5: To lookup a property using the
Properties component (property
placeholders).

function:simple
simple
expression

Object
Camel 2.5: To evaluate a Simple
expression.

Notice: function:properties and function:simple is not supported when the
return type is a NodeSet, such as when using with a Splitter EIP.

Here's an example showing some of these functions in use.

from("direct:start").choice()
.when().xpath("in:header('foo') = 'bar'").to("mock:x")
.when().xpath("in:body() = '<two/>'").to("mock:y")
.otherwise().to("mock:z");

And the new functions introduced in Camel 2.5:

// setup properties component
PropertiesComponent properties = new PropertiesComponent();
properties.setLocation("classpath:org/apache/camel/builder/xml/myprop.properties");
context.addComponent("properties", properties);

// myprop.properties contains the following properties
// foo=Camel
// bar=Kong

from("direct:in").choice()
// $type is a variable for the header with key type
// here we use the properties function to lookup foo from the properties files
// which at runtime will be evaluted to 'Camel'
.when().xpath("$type = function:properties('foo')")

.to("mock:camel")
// here we use the simple language to evaluate the expression
// which at runtime will be evaluated to 'Donkey Kong'
.when().xpath("//name = function:simple('Donkey ${properties:bar}')")

LANGUAGES SUPPORTED APPENDIX 283

http://camel.apache.org/properties.html
http://camel.apache.org/simple.html
http://camel.apache.org/splitter.html

.to("mock:donkey")
.otherwise()

.to("mock:other")
.end();

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"
xmlns:foo="http://example.com/person">

<route>
<from uri="activemq:MyQueue"/>
<filter>

<xpath>/foo:person[@name='James']</xpath>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XPath expressions!

See also this discussion on the mailinglist about using your own namespaces with xpath

Setting result type

The XPath expression will return a result type using native XML objects such as
org.w3c.dom.NodeList. But many times you want a result type to be a String. To do this
you have to instruct the XPath which result type to use.

In Java DSL:

xpath("/foo:person/@id", String.class)

In Spring DSL you use the resultType attribute to provide a fully qualified classname:

284 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/spring.html
http://camel.465427.n5.nabble.com/fail-filter-XPATH-camel-td476424.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xpath.html

<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In @XPath:
Available as of Camel 2.1

@XPath(value = "concat('foo-',//order/name/)", resultType = String.class) String name)

Where we use the xpath function concat to prefix the order name with foo-. In this case we
have to specify that we want a String as result type so the concat function works.

Using XPath on Headers

Available as of Camel 2.11

Some users may have XML stored in a header. To apply an XPath to a header's value you
can do this by defining the 'headerName' attribute.

In XML DSL:

<camelContext id="xpathHeaderNameTest" xmlns="http://camel.apache.org/schema/
blueprint">

<route>
<from uri="direct:in"/>
<choice>

<when>
<!-- use headerName attribute to refer to a header -->
<xpath headerName="invoiceDetails">/invoice/@orderType = 'premium'</xpath>
<to uri="mock:premium"/>

</when>
<when>

<!-- use headerName attribute to refer to a header -->
<xpath headerName="invoiceDetails">/invoice/@orderType = 'standard'</xpath>
<to uri="mock:standard"/>

</when>
<otherwise>

<to uri="mock:unknown"/>
</otherwise>

</choice>
</route>

</camelContext>

Examples

Here is a simple example using an XPath expression as a predicate in a Message Filter

LANGUAGES SUPPORTED APPENDIX 285

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/message-filter.html

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

If you have a standard set of namespaces you wish to work with and wish to share them across
many different XPath expressions you can use the NamespaceBuilder as shown in this example

// lets define the namespaces we'll need in our filters
Namespaces ns = new Namespaces("c", "http://acme.com/cheese")

.add("xsd", "http://www.w3.org/2001/XMLSchema");

// now lets create an xpath based Message Filter
from("direct:start").

filter(ns.xpath("/c:person[@name='James']")).
to("mock:result");

In this sample we have a choice construct. The first choice evaulates if the message has a header
key type that has the value Camel.
The 2nd choice evaluates if the message body has a name tag <name> which values is Kong.
If neither is true the message is routed in the otherwise block:

from("direct:in").choice()
// using $headerName is special notation in Camel to get the header key
.when().xpath("$type = 'Camel'")

.to("mock:camel")
// here we test for the body name tag
.when().xpath("//name = 'Kong'")

.to("mock:donkey")
.otherwise()

.to("mock:other")
.end();

And the spring XML equivalent of the route:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:in"/>
<choice>

<when>
<xpath>$type = 'Camel'</xpath>
<to uri="mock:camel"/>

</when>
<when>

<xpath>//name = 'Kong'</xpath>
<to uri="mock:donkey"/>

</when>
<otherwise>

<to uri="mock:other"/>
</otherwise>

286 LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java

</choice>
</route>

</camelContext>

XPATH INJECTION

You can use Bean Integration to invoke a method on a bean and use various languages such as
XPath to extract a value from the message and bind it to a method parameter.

The default XPath annotation has SOAP and XML namespaces available. If you want to use
your own namespace URIs in an XPath expression you can use your own copy of the XPath
annotation to create whatever namespace prefixes you want to use.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.w3c.dom.NodeList;

import org.apache.camel.component.bean.XPathAnnotationExpressionFactory;
import org.apache.camel.language.LanguageAnnotation;
import org.apache.camel.language.NamespacePrefix;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER})
@LanguageAnnotation(language = "xpath", factory =
XPathAnnotationExpressionFactory.class)
public @interface MyXPath {

String value();

// You can add the namespaces as the default value of the annotation
NamespacePrefix[] namespaces() default {
@NamespacePrefix(prefix = "n1", uri = "http://example.org/ns1"),
@NamespacePrefix(prefix = "n2", uri = "http://example.org/ns2")};

Class<?> resultType() default NodeList.class;
}

i.e. cut and paste upper code to your own project in a different package and/or annotation
name then add whatever namespace prefix/uris you want in scope when you use your
annotation on a method parameter. Then when you use your annotation on a method
parameter all the namespaces you want will be available for use in your XPath expression.

For example

public class Foo {

LANGUAGES SUPPORTED APPENDIX 287

http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@MyXPath("/ns1:foo/ns2:bar/text()") String correlationID,

@Body String body) {
// process the inbound message here

}
}

Using XPathBuilder without an Exchange

Available as of Camel 2.3

You can now use the org.apache.camel.builder.XPathBuilder without the
need for an Exchange. This comes handy if you want to use it as a helper to do custom xpath
evaluations.

It requires that you pass in a CamelContext since a lot of the moving parts inside the
XPathBuilder requires access to the Camel Type Converter and hence why CamelContext is
needed.

For example you can do something like this:

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar
xyz='cheese'/></foo>"));

This will match the given predicate.

You can also evaluate for example as shown in the following three examples:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>", String.class);

Integer number = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>123</bar></foo>", Integer.class);

Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder

Available as of Camel 2.3

You need to add camel-saxon as dependency to your project.

288 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/camelcontext.html

Its now easier to use Saxon with the XPathBuilder which can be done in several ways as
shown below.
Where as the latter ones are the easiest ones.

Using a factory

// create a Saxon factory
XPathFactory fac = new net.sf.saxon.xpath.XPathFactoryImpl();

// create a builder to evaluate the xpath using the saxon factory
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").factory(fac);

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Using ObjectModel

// create a builder to evaluate the xpath using saxon based on its object model uri
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar,
'_')[2]").objectModel("http://saxon.sf.net/jaxp/xpath/om");

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

The easy one

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").saxon();

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Setting a custom XPathFactory using System Property

Available as of Camel 2.3

Camel now supports reading the JVM system property
javax.xml.xpath.XPathFactory that can be used to set a custom XPathFactory to
use.

This unit test shows how this can be done to use Saxon instead:

// set system property with the XPath factory to use which is Saxon
System.setProperty(XPathFactory.DEFAULT_PROPERTY_NAME + ":" + "http://saxon.sf.net/
jaxp/xpath/om", "net.sf.saxon.xpath.XPathFactoryImpl");

LANGUAGES SUPPORTED APPENDIX 289

http://saxon.sourceforge.net/
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]");

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Camel will log at INFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value:

net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

To use Apache Xerces you can configure the system property

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

Enabling Saxon from Spring DSL

Available as of Camel 2.10

Similarly to Java DSL, to enable Saxon from Spring DSL you have three options:

Specifying the factory

<xpath factoryRef="saxonFactory"
resultType="java.lang.String">current-dateTime()</xpath>

Specifying the object model

<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om"
resultType="java.lang.String">current-dateTime()</xpath>

Shortcut

<xpath saxon="true" resultType="java.lang.String">current-dateTime()</xpath>

Namespace auditing to aid debugging

Available as of Camel 2.10

A large number of XPath-related issues that users frequently face are linked to the usage of
namespaces. You may have some misalignment between the namespaces present in your
message and those that your XPath expression is aware of or referencing. XPath predicates or
expressions that are unable to locate the XML elements and attributes due to namespaces

290 LANGUAGES SUPPORTED APPENDIX

issues may simply look like "they are not working", when in reality all there is to it is a lack of
namespace definition.

Namespaces in XML are completely necessary, and while we would love to simplify their
usage by implementing some magic or voodoo to wire namespaces automatically, truth is that
any action down this path would disagree with the standards and would greatly hinder
interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by adding two new
features to the XPath Expression Language and are thus accesible from both predicates and
expressions.

Logging the Namespace Context of your XPath expression/
predicate

Every time a new XPath expression is created in the internal pool, Camel will log the
namespace context of the expression under the
org.apache.camel.builder.xml.XPathBuilder logger. Since Camel represents
Namespace Contexts in a hierarchical fashion (parent-child relationships), the entire tree is
output in a recursive manner with the following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix ->
namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:
1. Enable TRACE logging on the

org.apache.camel.builder.xml.XPathBuilder logger, or some parent
logger such as org.apache.camel or the root logger

2. Enable the logNamespaces option as indicated in Auditing Namespaces, in which
case the logging will occur on the INFO level

Auditing namespaces

Camel is able to discover and dump all namespaces present on every incoming message before
evaluating an XPath expression, providing all the richness of information you need to help you
analyse and pinpoint possible namespace issues.

To achieve this, it in turn internally uses another specially tailored XPath expression to
extract all namespace mappings that appear in the message, displaying the prefix and the full
namespace URI(s) for each individual mapping.

Some points to take into account:
• The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/1998/namespace")

is suppressed from the output because it adds no value
• Default namespaces are listed under the DEFAULT keyword in the output

LANGUAGES SUPPORTED APPENDIX 291

• Keep in mind that namespaces can be remapped under different scopes. Think of a
top-level 'a' prefix which in inner elements can be assigned a different namespace, or
the default namespace changing in inner scopes. For each discovered prefix, all
associated URIs are listed.

You can enable this option in Java DSL and Spring DSL.

Java DSL:

XPathBuilder.xpath("/foo:person/@id", String.class).logNamespaces()

Spring DSL:

<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

The result of the auditing will be appear at the INFO level under the
org.apache.camel.builder.xml.XPathBuilder logger and will look like the
following:

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered
in message:
{xmlns:a=[http://apache.org/camel], DEFAULT=[http://apache.org/default],
xmlns:b=[http://apache.org/camelA, http://apache.org/camelB]}

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").xpath("resource:classpath:myxpath.txt", String.class)

Dependencies

The XPath language is part of camel-core.

XQUERY

Camel supports XQuery to allow an Expression or Predicate to be used in the DSL or Xml
Configuration. For example you could use XQuery to create an Predicate in a Message Filter or
as an Expression for a Recipient List.

292 LANGUAGES SUPPORTED APPENDIX

http://www.w3.org/TR/xquery/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Options

Name Default Value Description

allowStAX false Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

Examples

from("queue:foo").filter().
xquery("//foo").
to("queue:bar")

You can also use functions inside your query, in which case you need an explicit type
conversion (or you will get a org.w3c.dom.DOMException: HIERARCHY_REQUEST_ERR) by
passing the Class as a second argument to the xquery() method.

from("direct:start").
recipientList().xquery("concat('mock:foo.', /person/@city)", String.class);

Variables

The IN message body will be set as the contextItem. Besides this these Variables is also
added as parameters:

Variable Type Description

exchange Exchange The current Exchange

in.body Object The In message's body

out.body Object The OUT message's body (if any)

in.headers.* Object
You can access the value of exchange.in.headers with key foo
by using the variable which name is in.headers.foo

out.headers.* Object
You can access the value of exchange.out.headers with key foo
by using the variable which name is out.headers.foo variable

key name Object

Any exchange.properties and exchange.in.headers and any
additional parameters set using setParameters(Map).
These parameters is added with they own key name, for
instance if there is an IN header with the key name foo then its
added as foo.

LANGUAGES SUPPORTED APPENDIX 293

Using XML configuration

If you prefer to configure your routes in your Spring XML file then you can use XPath
expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:foo="http://example.com/person"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<filter>

<xquery>/foo:person[@name='James']</xquery>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the XPath expression for
easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit type conversion
which is done in the xml configuration via the @type attribute:

<xquery type="java.lang.String">concat('mock:foo.', /person/@city)</xquery>

Using XQuery as an endpoint

Sometimes an XQuery expression can be quite large; it can essentally be used for Templating.
So you may want to use an XQuery Endpoint so you can route using XQuery templates.

The following example shows how to take a message of an ActiveMQ queue (MyQueue) and
transform it using XQuery and send it to MQSeries.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<to uri="xquery:com/acme/someTransform.xquery"/>
<to uri="mqseries:SomeOtherQueue"/>

</route>
</camelContext>

294 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/spring.html
http://camel.apache.org/templating.html
http://camel.apache.org/xquery-endpoint.html

Examples

Here is a simple example using an XQuery expression as a predicate in a Message Filter

from("direct:start").filter().xquery("/person[@name='James']").to("mock:result");

This example uses XQuery with namespaces as a predicate in a Message Filter

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start").
filter().xquery("/c:person[@name='James']", ns).
to("mock:result");

Learning XQuery

XQuery is a very powerful language for querying, searching, sorting and returning XML. For
help learning XQuery try these tutorials

• Mike Kay's XQuery Primer
• the W3Schools XQuery Tutorial

You might also find the XQuery function reference useful

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as
"classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to refer to a
file on the classpath you can do:

.setHeader("myHeader").xquery("resource:classpath:myxquery.txt", String.class)

Dependencies

To use XQuery in your camel routes you need to add the a dependency on camel-saxon
which implements the XQuery language.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>

LANGUAGES SUPPORTED APPENDIX 295

http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java
http://camel.apache.org/message-filter.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java
http://camel.apache.org/message-filter.html
http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xpath-functions/
http://camel.apache.org/download.html

<version>x.x.x</version>
</dependency>

296 LANGUAGES SUPPORTED APPENDIX

Data Format Appendix

DATA FORMAT

Camel supports a pluggable DataFormat to allow messages to be marshalled to and from binary
or text formats to support a kind of Message Translator.

The following data formats are currently supported:
• Standard JVM object marshalling

◦ Serialization
◦ String

• Object marshalling
◦ Avro
◦ JSON
◦ Protobuf

• Object/XML marshalling
◦ Castor
◦ JAXB
◦ XmlBeans
◦ XStream
◦ JiBX

• Object/XML/Webservice marshalling
◦ SOAP

• Direct JSON / XML marshalling
◦ XmlJson

• Flat data structure marshalling
◦ BeanIO
◦ Bindy
◦ CSV
◦ EDI
◦ Flatpack DataFormat

• Domain specific marshalling
◦ HL7 DataFormat

• Compression
◦ GZip data format
◦ Zip DataFormat
◦ Zip File DataFormat

• Security
◦ Crypto
◦ PGP
◦ XMLSecurity DataFormat

DATA FORMAT APPENDIX 297

http://camel.apache.org/message-translator.html
http://camel.apache.org/serialization.html
http://camel.apache.org/string.html
http://camel.apache.org/avro.html
http://camel.apache.org/json.html
http://camel.apache.org/protobuf.html
http://camel.apache.org/castor.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/xmlbeans.html
http://camel.apache.org/xstream.html
http://camel.apache.org/jibx.html
http://camel.apache.org/soap.html
http://camel.apache.org/xmljson.html
http://camel.apache.org/beanio.html
http://camel.apache.org/bindy.html
http://camel.apache.org/csv.html
http://camel.apache.org/edi.html
http://camel.apache.org/flatpack-dataformat.html
http://camel.apache.org/hl7-dataformat.html
http://camel.apache.org/gzip-data-format.html
http://camel.apache.org/zip-dataformat.html
http://camel.apache.org/zip-file-dataformat.html
http://camel.apache.org/crypto.html
http://camel.apache.org/crypto.html
http://camel.apache.org/xmlsecurity-dataformat.html

• Misc.
◦ Base64
◦ Custom DataFormat - to use your own custom implementation
◦ RSS
◦ TidyMarkup
◦ Syslog

And related is the following Type Converters:
▪ Dozer Type Conversion

Unmarshalling

If you receive a message from one of the Camel Components such as File, HTTP or JMS you
often want to unmarshal the payload into some bean so that you can process it using some
Bean Integration or perform Predicate evaluation and so forth. To do this use the unmarshal
word in the DSL in Java or the Xml Configuration.

For example

DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
unmarshal(jaxb).
to("mqseries:Another.Queue");

The above uses a named DataFormat of jaxb which is configured with a number of Java package
names. You can if you prefer use a named reference to a data format which can then be defined
in your Registry such as via your Spring XML file.

You can also use the DSL itself to define the data format as you use it. For example the
following uses Java serialization to unmarshal a binary file then send it as an ObjectMessage to
ActiveMQ

from("file://foo/bar").
unmarshal().serialization().
to("activemq:Some.Queue");

Marshalling

Marshalling is the opposite of unmarshalling, where a bean is marshalled into some binary or
textual format for transmission over some transport via a Camel Component. Marshalling is
used in the same way as unmarshalling above; in the DSL you can use a DataFormat instance,
you can configure the DataFormat dynamically using the DSL or you can refer to a named
instance of the format in the Registry.

The following example unmarshals via serialization then marshals using a named JAXB data
format to perform a kind of Message Translator

298 DATA FORMAT APPENDIX

http://camel.apache.org/base64.html
http://camel.apache.org/custom-dataformat.html
http://camel.apache.org/rss.html
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/syslog.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/dozer-type-conversion.html
http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jms.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/component.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html
http://camel.apache.org/message-translator.html

from("file://foo/bar").
unmarshal().serialization().
marshal("jaxb").
to("activemq:Some.Queue");

Using Spring XML

This example shows how to configure the data type just once and reuse it on multiple routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>

</route>

</camelContext>

You can also define reusable data formats as Spring beans

<bean id="myJaxb" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>

</bean>

SERIALIZATION

Serialization is a Data Format which uses the standard Java Serialization mechanism to
unmarshal a binary payload into Java objects or to marshal Java objects into a binary blob.
For example the following uses Java serialization to unmarshal a binary file then send it as an
ObjectMessage to ActiveMQ

from("file://foo/bar").
unmarshal().serialization().
to("activemq:Some.Queue");

DATA FORMAT APPENDIX 299

http://camel.apache.org/data-format.html
http://camel.apache.org/activemq.html

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

JAXB

JAXB is a Data Format which uses the JAXB2 XML marshalling standard which is included in
Java 6 to unmarshal an XML payload into Java objects or to marshal Java objects into an XML
payload.

Using the Java DSL

For example the following uses a named DataFormat of jaxb which is configured with a number
of Java package names to initialize the JAXBContext.

DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
unmarshal(jaxb).
to("mqseries:Another.Queue");

You can if you prefer use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemq:My.Queue").
unmarshal("myJaxbDataType").
to("mqseries:Another.Queue");

Using Spring XML

The following example shows how to use JAXB to unmarshal using Spring configuring the jaxb
data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<jaxb prettyPrint="true" contextPath="org.apache.camel.example"/>
</unmarshal>
<to uri="mock:result"/>

</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.

300 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/spring.html

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>

</route>

</camelContext>

Partial marshalling/unmarshalling

This feature is new to Camel 2.2.0.
JAXB 2 supports marshalling and unmarshalling XML tree fragments. By default JAXB looks for
@XmlRootElement annotation on given class to operate on whole XML tree. This is useful
but not always - sometimes generated code does not have @XmlRootElement annotation,
sometimes you need unmarshall only part of tree.
In that case you can use partial unmarshalling. To enable this behaviours you need set property
partClass. Camel will pass this class to JAXB's unmarshaler.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:marshal"/>
<marshal>

<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.PurchaseOrder"
fragment="true"
partNamespace="{http://example.camel.org/apache}po" />

</marshal>
<to uri="mock:marshal"/>

</route>
<route>

<from uri="direct:unmarshal"/>
<unmarshal>

<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.Partial" />

</unmarshal>
<to uri="mock:unmarshal"/>

</route>
</camelContext>

DATA FORMAT APPENDIX 301

Multiple context paths
It is possible to use this data format with more than one context path. You can
specify context path using : as separator, for example
com.mycompany:com.mycompany2. Note that this is handled by JAXB
implementation and might change if you use different vendor than RI.

For marshalling you have to add partNamespace attribute with QName of destination
namespace. Example of Spring DSL you can find above.

Fragment

This feature is new to Camel 2.8.0.
JaxbDataFormat has new property fragment which can set the the
Marshaller.JAXB_FRAGMENT encoding property on the JAXB Marshaller. If you don't
want the JAXB Marshaller to generate the XML declaration, you can set this option to be true.
The default value of this property is fales.

Ignoring the NonXML Character

This feature is new to Camel 2.2.0.
JaxbDataFromat supports to ignore the NonXML Character, you just need to set the
filterNonXmlChars property to be true, JaxbDataFormat will replace the NonXML character
with " " when it is marshaling or unmarshaling the message. You can also do it by setting the
Exchange property Exchange.FILTER_NON_XML_CHARS.

Ê JDK 1.5 JDK 1.6+

Filtering in use StAX API and implementation No

Filtering not in use StAX API only No

This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX implementation.

Working with the ObjectFactory

If you use XJC to create the java class from the schema, you will get an ObjectFactory for you
JAXB context. Since the ObjectFactory uses JAXBElement to hold the reference of the schema
and element instance value, jaxbDataformat will ignore the JAXBElement by default and you will
get the element instance value instead of the JAXBElement object form the unmarshaled
message body.
If you want to get the JAXBElement object form the unmarshaled message body, you need to
set the JaxbDataFormat object's ignoreJAXBElement property to be false.

302 DATA FORMAT APPENDIX

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char
http://camel.apache.org/exchange.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html

Setting encoding

You can set the encoding option to use when marshalling. Its the
Marshaller.JAXB_ENCODING encoding property on the JAXB Marshaller.
You can setup which encoding to use when you declare the JAXB data format. You can also
provide the encoding in the Exchange property Exchange.CHARSET_NAME. This property
will overrule the encoding set on the JAXB data format.

In this Spring DSL we have defined to use iso-8859-1 as the encoding:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<marshal>

<jaxb prettyPrint="false" encoding="iso-8859-1"
contextPath="org.apache.camel.example"/>

</marshal>
<to uri="mock:result"/>

</route>
</camelContext>

Controlling namespace prefix mapping

Available as of Camel 2.11

When marshalling using JAXB or SOAP then the JAXB implementation will automatic assign
namespace prefixes, such as ns2, ns3, ns4 etc. To control this mapping, Camel allows you to
refer to a map which contains the desired mapping.

Notice this requires having JAXB-RI 2.1 or better (from SUN) on the classpath, as the
mapping functionality is dependent on the implementation of JAXB, whether its supported.

For example in Spring XML we can define a Map with the mapping. In the mapping file below,
we map SOAP to use soap as prefix. While our custom namespace
"http://www.mycompany.com/foo/2" is not using any prefix.

<util:map id="myMap">
<entry key="http://www.w3.org/2003/05/soap-envelope" value="soap"/>
<!-- we dont want any prefix for our namespace -->
<entry key="http://www.mycompany.com/foo/2" value=""/>

</util:map>

To use this in JAXB or SOAP you refer to this map, using the namespacePrefixRef
attribute as shown below. Then Camel will lookup in the Registry a java.util.Map with the
id "myMap", which was what we defined above.

<marshal>
<soapjaxb version="1.2" contextPath="com.mycompany.foo"

DATA FORMAT APPENDIX 303

http://camel.apache.org/exchange.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/registry.html

namespacePrefixRef="myMap"/>
</marshal>

Schema validation

Available as of Camel 2.11

The JAXB Data Format supports validation by marshalling and unmarshalling from/to XML.
Your can use the prefix classpath:, file:* or *http: to specify how the resource should by
resolved. You can separate multiple schema files by using the ',' character.

Using the Java DSL, you can configure it in the following way:

JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Person.class.getPackage().getName());
jaxbDataFormat.setSchema("classpath:person.xsd,classpath:address.xsd");

You can do the same using the XML DSL:

<marshal>
<jaxb id="jaxb" schema="classpath:person.xsd,classpath:address.xsd"/>

</marshal>

Dependencies

To use JAXB in your camel routes you need to add the a dependency on camel-jaxb which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jaxb</artifactId>
<version>x.x.x</version>

</dependency>

XMLBEANS

XmlBeans is a Data Format which uses the XmlBeans library to unmarshal an XML payload into
Java objects or to marshal Java objects into an XML payload.

304 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
*
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://xmlbeans.apache.org/

from("activemq:My.Queue").
unmarshal().xmlBeans().
to("mqseries:Another.Queue");

Dependencies

To use XmlBeans in your camel routes you need to add the dependency on camel-
xmlbeans which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmlbeans</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

XSTREAM

XStream is a Data Format which uses the XStream library to marshal and unmarshal Java
objects to and from XML.

// lets turn Object messages into XML then send to MQSeries
from("activemq:My.Queue").

marshal().xstream().
to("mqseries:Another.Queue");

XMLInputFactory and XMLOutputFactory

The XStream library uses the javax.xml.stream.XMLInputFactory and
javax.xml.stream.XMLOutputFactory, you can control which implementation of this
factory should be used.

The Factory is discovered using this algorithm:
1. Use the javax.xml.stream.XMLInputFactory ,
javax.xml.stream.XMLOutputFactory system property.
2. Use the lib/xml.stream.properties file in the JRE_HOME directory.
3. Use the Services API, if available, to determine the classname by looking in the META-INF/
services/javax.xml.stream.XMLInputFactory, META-INF/services/
javax.xml.stream.XMLOutputFactory files in jars available to the JRE.
4. Use the platform default XMLInputFactory,XMLOutputFactory instance.

DATA FORMAT APPENDIX 305

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://xstream.codehaus.org/
http://xstream.codehaus.org/

How to set the XML encoding in Xstream DataFormat?

From Camel 2.2.0, you can set the encoding of XML in Xstream DataFormat by setting the
Exchange's property with the key Exchange.CHARSET_NAME, or setting the encoding
property on Xstream from DSL or Spring config.

from("activemq:My.Queue").
marshal().xstream("UTF-8").
to("mqseries:Another.Queue");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<!-- we define the json xstream data formats to be used (xstream is default) -->
<dataFormats>

<xstream id="xstream-utf8" encoding="UTF-8"/>
<xstream id="xstream-default"/>

</dataFormats>

<route>
<from uri="direct:in"/>
<marshal ref="xstream-default"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:in-UTF-8"/>
<marshal ref="xstream-utf8"/>
<to uri="mock:result"/>

</route>

</camelContext>

Dependencies

To use XStream in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>x.x.x</version>

</dependency>

306 DATA FORMAT APPENDIX

http://camel.apache.org/download.html

CSV

The CSV Data Format uses Apache Commons CSV to handle CSV payloads (Comma Separated
Values) such as those exported/imported by Excel.

Options

Option Type Description

config CSVConfig Can be used to set a custom CSVConfig object.

strategy CSVStrategy
Can be used to set a custom CSVStrategy; the default
is CSVStrategy.DEFAULT_STRATEGY.

autogenColumns boolean

Whether or not columns are auto-generated in the
resulting CSV. The default value is true; subsequent
messages use the previously created columns with new
fields being added at the end of the line.

delimiter String
Camel 2.4: The column delimiter to use; the default
value is ",".

skipFirstLine boolean
Camel 2.10: Whether or not to skip the first line of
CSV input when unmarshalling (e.g. if the content has
headers on the first line); the default value is false.

Marshalling a Map to CSV

The component allows you to marshal a Java Map (or any other message type that can be
converted in a Map) into a CSV payload.

An example: if you send a message with this map...

Map<String, Object> body = new HashMap<String, Object>();
body.put("foo", "abc");
body.put("bar", 123);

... through this route ...

from("direct:start").
marshal().csv().
to("mock:result");

... you will end up with a String containing this CSV message

abc,123

DATA FORMAT APPENDIX 307

http://camel.apache.org/data-format.html
http://commons.apache.org/proper/commons-csv/
http://camel.apache.org/type-converter.html

Sending the Map below through this route will result in a CSV message that looks like
foo,bar

Unmarshalling a CSV message into a Java List

Unmarshalling will transform a CSV messsage into a Java List with CSV file lines (containing
another List with all the field values).

An example: we have a CSV file with names of persons, their IQ and their current activity.

Jack Dalton, 115, mad at Averell
Joe Dalton, 105, calming Joe
William Dalton, 105, keeping Joe from killing Averell
Averell Dalton, 80, playing with Rantanplan
Lucky Luke, 120, capturing the Daltons

We can now use the CSV component to unmarshal this file:

from("file:src/test/resources/?fileName=daltons.csv&noop=true").
unmarshal().csv().
to("mock:daltons");

The resulting message will contain a List<List<String>> like...

List<List<String>> data = (List<List<String>>) exchange.getIn().getBody();
for (List<String> line : data) {

LOG.debug(String.format("%s has an IQ of %s and is currently %s",
line.get(0), line.get(1), line.get(2)));

}

Marshalling a List<Map> to CSV

Available as of Camel 2.1

If you have multiple rows of data you want to be marshalled into CSV format you can now
store the message payload as a List<Map<String, Object>> object where the list
contains a Map for each row.

File Poller of CSV, then unmarshaling

Given a bean which can handle the incoming data...

Listing 1.Listing 1. MyCsvHandler.javaMyCsvHandler.java

// Some comments here
public void doHandleCsvData(List<List<String>> csvData)
{

308 DATA FORMAT APPENDIX

// do magic here
}

... your route then looks as follows

<route>
<!-- poll every 10 seconds -->
<from uri="file:///some/path/to/pickup/

csvfiles?delete=true&consumer.delay=10000" />
<unmarshal><csv /></unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsvData" />

</route>

Marshaling with a pipe as delimiter

Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<marshal>

<csv delimiter="|" />
</marshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSVConfig config = new CSVConfig();
config.setDelimiter('|');
csv.setConfig(config);

from("direct:start")
.marshal(csv)
.convertBodyTo(String.class)

.to("bean:myCsvHandler?method=doHandleCsv");

CsvDataFormat csv = new CsvDataFormat();
csv.setDelimiter("|");

from("direct:start")
.marshal(csv)
.convertBodyTo(String.class)

.to("bean:myCsvHandler?method=doHandleCsv");

DATA FORMAT APPENDIX 309

Using autogenColumns, configRef and strategyRef attributes inside XML
DSL

Available as of Camel 2.9.2 / 2.10

You can customize the CSV Data Format to make use of your own CSVConfig and/or
CSVStrategy. Also note that the default value of the autogenColumns option is true.
The following example should illustrate this customization.

<route>
<from uri="direct:start" />
<marshal>

<!-- make use of a strategy other than the default one which is
'org.apache.commons.csv.CSVStrategy.DEFAULT_STRATEGY' -->

<csv autogenColumns="false" delimiter="|" configRef="csvConfig"
strategyRef="excelStrategy" />

</marshal>
<convertBodyTo type="java.lang.String" />
<to uri="mock:result" />

</route>

<bean id="csvConfig" class="org.apache.commons.csv.writer.CSVConfig">
<property name="fields">

<list>
<bean class="org.apache.commons.csv.writer.CSVField">

<property name="name" value="orderId" />
</bean>
<bean class="org.apache.commons.csv.writer.CSVField">

<property name="name" value="amount" />
</bean>

</list>
</property>

</bean>

<bean id="excelStrategy"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">

<property name="staticField"
value="org.apache.commons.csv.CSVStrategy.EXCEL_STRATEGY" />
</bean>

Using skipFirstLine option while unmarshaling

Available as of Camel 2.10

You can instruct the CSV Data Format to skip the first line which contains the CSV headers.
Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>

<csv skipFirstLine="true" />

310 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/data-format.html

</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
csv.setSkipFirstLine(true);

from("direct:start")
.unmarshal(csv)

.to("bean:myCsvHandler?method=doHandleCsv");

Unmarshaling with a pipe as delimiter

Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>

<csv delimiter="|" />
</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSVStrategy strategy = CSVStrategy.DEFAULT_STRATEGY;
strategy.setDelimiter('|');
csv.setStrategy(strategy);

from("direct:start")
.unmarshal(csv)
.to("bean:myCsvHandler?method=doHandleCsv");

CsvDataFormat csv = new CsvDataFormat();
csv.setDelimiter("|");

from("direct:start")
.unmarshal(csv)
.to("bean:myCsvHandler?method=doHandleCsv");

CsvDataFormat csv = new CsvDataFormat();
CSVConfig csvConfig = new CSVConfig();

DATA FORMAT APPENDIX 311

csvConfig.setDelimiter(";");
csv.setConfig(csvConfig);

from("direct:start")
.unmarshal(csv)
.to("bean:myCsvHandler?method=doHandleCsv");

Dependencies

To use CSV in your Camel routes you need to add a dependency on camel-csv, which
implements this data format.

If you use Maven you can just add the following to your pom.xml, substituting the version
number for the latest and greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-csv</artifactId>
<version>x.x.x</version>

</dependency>

The String Data Format is a textual based format that supports encoding.

Options

Option Default Description

charset null
To use a specific charset for encoding. If not provided Camel will use
the JVM default charset.

Marshal

In this example we marshal the file content to String object in UTF-8 encoding.

from("file://data.csv").marshal().string("UTF-8").to("jms://myqueue");

Unmarshal

In this example we unmarshal the payload from the JMS queue to a String object using UTF-8
encoding, before its processed by the newOrder processor.

from("jms://queue/order").unmarshal().string("UTF-8").processRef("newOrder");

312 DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

Issue in CSVConfig
It looks like that

CSVConfig csvConfig = new CSVConfig();
csvConfig.setDelimiter(';');

doesn't work. You have to set the delimiter as a String!

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

HL7 DataFormat

The HL7 component ships with a HL7 data format that can be used to format between
String and HL7 model objects.

▪ marshal = from Message to byte stream (can be used when returning as response
using the HL7 MLLP codec)

▪ unmarshal = from byte stream to Message (can be used when receiving streamed
data from the HL7 MLLP

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
...
from("direct:hl7in").marshal(hl7).to("jms:queue:hl7out");

In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and
put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat();
...
from("jms:queue:hl7out").unmarshal(hl7).to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient
lookup service.
Notice there is a shorthand syntax in Camel for well-known data formats that is commonly
used.
Then you don't need to create an instance of the HL7DataFormat object:

DATA FORMAT APPENDIX 313

http://camel.apache.org/hl7.html

Segment separators
As of Camel 2.11, unmarshal does not automatically fix segment separators
anymore by converting \n to \r. If you
need this conversion,
org.apache.camel.component.hl7.HL7#convertLFToCR provides a
handy Expression for this purpose.

from("direct:hl7in").marshal().hl7().to("jms:queue:hl7out");
from("jms:queue:hl7out").unmarshal().hl7().to("patientLookupService");

EDI DATAFORMAT

We encourage end users to look at the Smooks which supports EDI and Camel natively.

FLATPACK DATAFORMAT

The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.

▪ marshal = from List<Map<String, Object>> to OutputStream (can be
converted to String)

▪ unmarshal = from java.io.InputStream (such as a File or String) to a
java.util.List as an
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to process each row
one by one you can split the exchange, using Splitter.

Notice: The Flatpack library does currently not support header and trailers for the marshal
operation.

Options

The data format has the following options:

Option Default Description

definition null
The flatpack pzmap configuration file. Can be
omitted in simpler situations, but its preferred to
use the pzmap.

fixed false Delimited or fixed.

314 DATA FORMAT APPENDIX

http://milyn.codehaus.org/Home
http://camel.apache.org/flatpack.html
http://camel.apache.org/splitter.html

Serializable messages
As of HAPI 2.0 (used by Camel 2.11), the HL7v2 model classes are fully
serializable. So you can put HL7v2 messages directly into a JMS queue (i.e. without
calling marshal() and read them again directly from the queue (i.e. without
calling unmarshal().

ignoreFirstRecord true
Whether the first line is ignored for delimited files
(for the column headers).

textQualifier " If the text is qualified with a char such as ".

delimiter , The delimiter char (could be ; , or similar)

parserFactory null Uses the default Flatpack parser factory.

allowShortLines false
Camel 2.9.7 and 2.10.5 onwards: Allows for
lines to be shorter than expected and ignores the
extra characters.

ignoreExtraColumns false
Camel 2.9.7 and 2.10.5 onwards: Allows for
lines to be longer than expected and ignores the
extra characters.

Usage

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
...
from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the input using the
Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the
structure of the files. The result is a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

DATA FORMAT APPENDIX 315

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the corresponding
value. This structure can be created in Java code from e.g. a processor. We marshal the data
according to the Flatpack format and convert the result as a String object and store it on a
JMS queue.

Dependencies

To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>

</dependency>

JSON

JSON is a Data Format to marshal and unmarshal Java objects to and from JSON.

For JSON to object marshalling, Camel provides integration with three popular JSON
libraries:

▪ The XStream library and Jettsion
▪ The Jackson library
▪ Camel 2.10: The GSon library

By default Camel uses the XStream library.

Using JSON data format with the XStream library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

marshal().json().
to("mqseries:Another.Queue");

Using JSON data format with the Jackson library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

316 DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://www.json.org/
http://xstream.codehaus.org/
http://jettison.codehaus.org/
http://xircles.codehaus.org/projects/jackson
http://code.google.com/p/google-gson/

Direct, bi-directional JSON <=> XML conversions
As of Camel 2.10, Camel supports direct, bi-directional JSON <=> XML
conversions via the camel-xmljson data format, which is documented separately.

marshal().json(JsonLibrary.Jackson).
to("mqseries:Another.Queue");

Using JSON data format with the GSON library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

marshal().json(JsonLibrary.Gson).
to("mqseries:Another.Queue");

Using JSON in Spring DSL

When using Data Format in Spring DSL you need to declare the data formats first. This is done
in the DataFormats XML tag.

<dataFormats>
<!-- here we define a Json data format with the id jack and that it should

use the TestPojo as the class type when
doing unmarshal. The unmarshalTypeName is optional, if not provided

Camel will use a Map as the type -->
<json id="jack" library="Jackson"

unmarshalTypeName="org.apache.camel.component.jackson.TestPojo"/>
</dataFormats>

And then you can refer to this id in the route:

<route>
<from uri="direct:back"/>
<unmarshal ref="jack"/>
<to uri="mock:reverse"/>

</route>

Excluding POJO fields from marshalling

As of Camel 2.10
When marshalling a POJO to JSON you might want to exclude certain fields from the JSON

DATA FORMAT APPENDIX 317

http://camel.apache.org/data-format.html
http://camel.apache.org/xmljson.html

output. With Jackson you can use JSON views to accomplish this. First create one or more
marker classes.

public class Views {

static class Weight { }
static class Age { }

}

Use the marker classes with the @JsonView annotation to include/exclude certain fields. The
annotation also works on getters.

@JsonView(Views.Age.class)
private int age = 30;

private int height = 190;

@JsonView(Views.Weight.class)
private int weight = 70;

Finally use the Camel JacksonDataFormat to marshall the above POJO to JSON.

JacksonDataFormat ageViewFormat = new JacksonDataFormat(TestPojoView.class,
Views.Age.class);
from("direct:inPojoAgeView").marshal(ageViewFormat);

Note that the weight field is missing in the resulting JSON:

{"age":30, "height":190}

The GSON library supports a similar feature through the notion of ExclusionStrategies:

/**
* Strategy to exclude {@link ExcludeAge} annotated fields
*/

protected static class AgeExclusionStrategy implements ExclusionStrategy {

@Override
public boolean shouldSkipField(FieldAttributes f) {

return f.getAnnotation(ExcludeAge.class) != null;
}

@Override
public boolean shouldSkipClass(Class<?> clazz) {

return false;
}

}

318 DATA FORMAT APPENDIX

http://wiki.fasterxml.com/JacksonJsonViews
http://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/ExclusionStrategy.html

The GsonDataFormat accepts an ExclusionStrategy in its constructor:

GsonDataFormat ageExclusionFormat = new GsonDataFormat(TestPojoExclusion.class, new
AgeExclusionStrategy());
from("direct:inPojoExcludeAge").marshal(ageExclusionFormat);

The line above will exclude fields annotated with @ExcludeAge when marshalling to JSON.

Configuring field naming policy

Available as of Camel 2.11

The GSON library supports specifying policies and strategies for mapping from json to
POJO fields. A common naming convention is to map json fields using lower case with
underscores.

We may have this JSON string

{
"id" : 123,
"first_name" : "Donald"
"last_name" : "Duck"

}

Which we want to map to a POJO that has getter/setters as

public class PersonPojo {

private int id;
private String firstName;
private String lastName;

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

DATA FORMAT APPENDIX 319

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

Then we can configure the org.apache.camel.component.gson.GsonDataFormat
in a Spring XML files as shown below. Notice we use fieldNamingPolicy property to set
the field mapping. This property is an enum from GSon
com.google.gson.FieldNamingPolicy which has a number of pre defined mappings.
If you need full control you can use the property FieldNamingStrategy and implement a
custom com.google.gson.FieldNamingStrategy where you can control the
mapping.

<!-- define the gson data format, where we configure the data format using the
properties -->

<bean id="gson" class="org.apache.camel.component.gson.GsonDataFormat">
<!-- we want to unmarshal to person pojo -->
<property name="unmarshalType"

value="org.apache.camel.component.gson.PersonPojo"/>
<!-- we want to map fields to use lower case and underscores -->
<property name="fieldNamingPolicy" value="LOWER_CASE_WITH_UNDERSCORES"/>

</bean>

And use it in Camel routes by referring to its bean id as shown:

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:inPojo"/>
<marshal ref="gson"/>

</route>

<route>
<from uri="direct:backPojo"/>
<unmarshal ref="gson"/>

</route>

</camelContext>

Dependencies for XStream

To use JSON in your camel routes you need to add the a dependency on camel-xstream
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

320 DATA FORMAT APPENDIX

http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for Jackson

To use JSON in your camel routes you need to add the a dependency on camel-jackson
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jackson</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for GSON

To use JSON in your camel routes you need to add the a dependency on camel-gson which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gson</artifactId>
<version>2.10.0</version>

</dependency>

The Zip Data Format is a message compression and de-compression format. Messages
marshalled using Zip compression can be unmarshalled using Zip decompression just prior to
being consumed at the endpoint. The compression capability is quite useful when you deal with
large XML and Text based payloads. It facilitates more optimal use of network bandwidth while
incurring a small cost in order to compress and decompress payloads at the endpoint.

Options

Option Default Description

DATA FORMAT APPENDIX 321

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

About using with Files
The Zip data format, does not (yet) have special support for files. Which means that
when using big files, the entire file content is loaded into memory.
This is subject to change in the future, to allow a streaming based solution to have a
low memory footprint.

compressionLevel null

To specify a specific compression Level use
java.util.zip.Deflater settings. The possible
settings areÊ
ÊÊÊÊÊÊÊÊÊ - Deflater.BEST_SPEED
ÊÊÊÊÊÊÊÊÊ - Deflater.BEST_COMPRESSION
ÊÊÊÊÊÊÊÊÊ - Deflater.DEFAULT_COMPRESSION

If compressionLevel is not explicitly specified the
compressionLevel employed is
Deflater.DEFAULT_COMPRESSION

Marshal

In this example we marshal a regular text/XML payload to a compressed payload employing zip
compression Deflater.BEST_COMPRESSION and send it an ActiveMQ queue called
MY_QUEUE.

from("direct:start").marshal().zip(Deflater.BEST_COMPRESSION).to("activemq:queue:MY_QUEUE");

Alternatively if you would like to use the default setting you could send it as

from("direct:start").marshal().zip().to("activemq:queue:MY_QUEUE");

Unmarshal

In this example we unmarshalÊa zippedÊpayload from an ActiveMQ queue called
MY_QUEUEÊto its original format,Êand forward it forÊprocessingÊto the
UnZippedMessageProcessor. Note that the compression Level employed during the marshalling
should be identical to the one employed during unmarshalling to avoid errors.

from("activemq:queue:MY_QUEUE").unmarshal().zip().process(new
UnZippedMessageProcessor());Ê

322 DATA FORMAT APPENDIX

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

TIDYMARKUP

TidyMarkup is a Data Format that uses the TagSoup to tidy up HTML. It can be used to parse
ugly HTML and return it as pretty wellformed HTML.
TidyMarkup only supports the unmarshal operation as we really don't want to turn well
formed HTML into ugly HTML

Java DSL Example

An example where the consumer provides some HTML

from("file://site/inbox").unmarshal().tidyMarkup().to("file://site/blogs");

Spring XML Example

The following example shows how to use TidyMarkup to unmarshal using Spring

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://site/inbox"/>
<unmarshal>

<tidyMarkup/>
</unmarshal>
<to uri="file://site/blogs"/>

</route>
</camelContext>

Dependencies

To use TidyMarkup in your camel routes you need to add the a dependency on camel-
tagsoup which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-tagsoup</artifactId>
<version>x.x.x</version>

</dependency>

DATA FORMAT APPENDIX 323

http://camel.apache.org/data-format.html
http://www.ccil.org/~cowan/XML/tagsoup/
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/download.html

Camel eats our own dog food soap
We had some issues in our pdf Manual where we had some strange symbols. So
Jonathan used this data format to tidy up the wiki html pages that are used as base
for rendering the pdf manuals. And then the mysterious symbols vanished.

BINDY

The goal of this component is to allow the parsing/binding of non-structured data (or to be
more precise non-XML data)
to/from Java Beans that have binding mappings defined with annotations. Using Bindy, you can
bind data from sources such as :

▪ CSV records,
▪ Fixed-length records,
▪ FIX messages,
▪ or almost any other non-structured data

to one or many Plain Old Java Object (POJO). Bindy converts the data according to the type of
the java property. POJOs can be linked together with one-to-many relationships available in
some cases. Moreover, for data type like Date, Double, Float, Integer, Short, Long and
BigDecimal, you can provide the pattern to apply during the formatting of the property.

For the BigDecimal numbers, you can also define the precision and the decimal or grouping
separators.

Type
Format
Type

Pattern
example

Link

Date DateFormat "dd-MM-yyyy"
http://java.sun.com/j2se/1.5.0/docs/api/java/
text/SimpleDateFormat.html

Decimal* Decimalformat "##.###.###"
http://java.sun.com/j2se/1.5.0/docs/api/java/
text/DecimalFormat.html

Decimal* = Double, Integer, Float, Short, Long
To work with camel-bindy, you must first define your model in a package (e.g.
com.acme.model) and for each model class (e.g. Order, Client, Instrument, ...) add the required
annotations (described hereafter) to the Class or field.

ANNOTATIONS

The annotations created allow to map different concept of your model to the POJO like :
▪ Type of record (csv, key value pair (e.g. FIX message), fixed length ...),
▪ Link (to link object in another object),
▪ DataField and their properties (int, type, ...),
▪ KeyValuePairField (for key = value format like we have in FIX financial messages),

324 DATA FORMAT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://camel.apache.org/manual.html
http://janstey.blogspot.com/

Format supported
This first release only support comma separated values fields and key value pair
fields (e.g. : FIX messages).

▪ Section (to identify header, body and footer section),
▪ OneToMany

This section will describe them :

1. CsvRecord

The CsvRecord annotation is used to identified the root class of the model. It represents a
record = a line of a CSV file and can be linked to several children model classes.

Annotation name Record type Level

CsvRecord csv Class

Parameter name type Info

separator string

mandatory - can be ',' or ';' or 'anything'. This value is
interpreted as a regular expression. If you want to use
a sign which has a special meaning in regular
expressions, e.g. the '|' sign, than you have to mask it,
like '
|'

skipFirstLine boolean
optional - default value = false - allow to skip the first
line of the CSV file

crlf string

optional - possible values = WINDOWS,UNIX,MAC,
or custom; default value = WINDOWS - allow to
define the carriage return character to use. If you
specify a value other than the three listed before, the
value you enter (custom) will be used as the CRLF
character(s)

generateHeaderColumns boolean
optional - default value = false - uses to generate the
header columns of the CSV generates

isOrdered boolean
optional - default value = false - allow to change the
order of the fields when CSV is generated

quote String
Camel 2.8.3/2.9: option - allow to specify a quote
character of the fields when CSV is generated

DATA FORMAT APPENDIX 325

Ê Ê
This annotation is associated to the root class of the
model and must be declared one time.

case 1 : separator = ','

The separator used to segregate the fields in the CSV record is ',' :

10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

@CsvRecord(separator = ",")
public Class Order {
...
}

case 2 : separator = ';'

Compare to the previous case, the separator here is ';' instead of ',' :

10; J; Pauline; M; XD12345678; Fortis Dynamic 15/15; 2500; USD; 08-01-2009

@CsvRecord(separator = ";")
public Class Order {
...
}

case 3 : separator = '|'

Compare to the previous case, the separator here is '|' instead of ';' :

10| J| Pauline| M| XD12345678| Fortis Dynamic 15/15| 2500| USD| 08-01-2009

@CsvRecord(separator = "\\|")
public Class Order {
...
}

case 4 : separator = '\",\"'
Applies for Camel 2.8.2 or older

When the field to be parsed of the CSV record contains ',' or ';' which is also used as
separator, we whould find another strategy
to tell camel bindy how to handle this case. To define the field containing the data with a
comma, you will use simple or double quotes
as delimiter (e.g : '10', 'Street 10, NY', 'USA' or "10", "Street 10, NY", "USA").
Remark : In this case, the first and last character of the line which are a simple or double quotes
will removed by bindy

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15" 2500","USD","08-01-2009"

@CsvRecord(separator = "\",\"")
public Class Order {

326 DATA FORMAT APPENDIX

...
}

From Camel 2.8.3/2.9 or never bindy will automatic detect if the record is enclosed with
either single or double quotes and automatic remove those quotes when unmarshalling from
CSV to Object. Therefore do not include the quotes in the separator, but simple do as below:

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15" 2500","USD","08-01-2009"

@CsvRecord(separator = ",")
public Class Order {
...
}

Notice that if you want to marshal from Object to CSV and use quotes, then you need to
specify which quote character to use, using the quote attribute on the @CsvRecord as shown
below:

@CsvRecord(separator = ",", quote = "\"")
public Class Order {
...
}

case 5 : separator & skipfirstline

The feature is interesting when the client wants to have in the first line of the file, the name
of the data fields :

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date

To inform bindy that this first line must be skipped during the parsing process, then we use
the attribute :

@CsvRecord(separator = ",", skipFirstLine = true)
public Class Order {
...
}

case 6 : generateHeaderColumns

To add at the first line of the CSV generated, the attribute generateHeaderColumns must be
set to true in the annotation like this :

@CsvRecord(generateHeaderColumns = true)
public Class Order {
...
}

As a result, Bindy during the unmarshaling process will generate CSV like this :

DATA FORMAT APPENDIX 327

order id, client id, first name, last name, isin code, instrument name, quantity, currency, date
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

case 7 : carriage return

If the platform where camel-bindy will run is not Windows but Macintosh or Unix, than you
can change the crlf property like this. Three values are available : WINDOWS, UNIX or MAC

@CsvRecord(separator = ",", crlf="MAC")
public Class Order {
...
}

Additionally, if for some reason you need to add a different line ending character, you can opt
to specify it using the crlf parameter. In the following example, we can end the line with a
comma followed by the newline character:

@CsvRecord(separator = ",", crlf=",\n")
public Class Order {
...
}

case 8 : isOrdered

Sometimes, the order to follow during the creation of the CSV record from the model is
different from the order used during the parsing. Then, in this case, we can use the attribute
isOrdered = true to indicate this in combination with attribute 'position' of the DataField
annotation.

@CsvRecord(isOrdered = true)
public Class Order {

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

...
}

Remark : pos is used to parse the file, stream while positions is used to generate the CSV

2. Link

The link annotation will allow to link objects together.

Annotation name Record type Level

Link all Class & Property

328 DATA FORMAT APPENDIX

Parameter
name

type Info

linkType LinkType
optional - by default the value is LinkType.oneToOne - so you
are not obliged to mention it

Ê Ê Only one-to-one relation is allowed.

e.g : If the model Class Client is linked to the Order class, then use annotation Link in the
Order class like this :

Listing 1.Listing 1. Property LinkProperty Link

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@Link
private Client client;

...

AND for the class Client :

Listing 1.Listing 1. Class LinkClass Link

@Link
public class Client {
...
}

3. DataField

The DataField annotation defines the property of the field. Each datafield is identified by its
position in the record, a type (string, int, date, ...) and optionally of a pattern

Annotation name Record type Level

DataField all Property

Parameter name type Info

pos int mandatory - digit number starting from 1 to ...

pattern string
optional - default value = "" - will be used to format
Decimal, Date, ...

length int
optional - represents the length of the field for fixed
length format

DATA FORMAT APPENDIX 329

precision int
optional - represents the precision to be used when
the Decimal number will be formatted/parsed

pattern string
optional - default value = "" - is used by the Java
Formater (SimpleDateFormat by example) to format/
validate data

position int
optional - must be used when the position of the field
in the CSV generated must be different compare to
pos

required boolean optional - default value = "false"

trim boolean optional - default value = "false"

defaultValue string
optional - default value = "" - defines the field's default
value when the respective CSV field is empty/not
available

impliedDecimalSeparator boolean
Camel 2.11: optional - default value = "false" -
Indicates if there is a decimal point implied at a
specified location

lengthPos int
Camel 2.11: optional - can be used to identifyÊa
data field in a fixed-length record that defines the
fixed length for this field

delimiter string
Camel 2.11: optional - can be used to demarcate
the end of a variable-length field within a fixed-length
record

case 1 : pos

This parameter/attribute represents the position of the field in the csv record

Listing 1.Listing 1. PositionPosition

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

...
}

As you can see in this example the position starts at '1' but continues at '5' in the class Order.
The numbers from '2' to '4' are defined in the class Client (see here after).

Listing 1.Listing 1. Position continues in another model classPosition continues in another model class

330 DATA FORMAT APPENDIX

public class Client {

@DataField(pos = 2)
private String clientNr;

@DataField(pos = 3)
private String firstName;

@DataField(pos = 4)
private String lastName;

...
}

case 2 : pattern

The pattern allows to enrich or validates the format of your data

Listing 1.Listing 1. PatternPattern

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2)
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy") -- pattern used during parsing or when
the date is created

private Date orderDate;
...
}

case 3 : precision

The precision is helpful when you want to define the decimal part of your number

Listing 1.Listing 1. PrecisionPrecision

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

DATA FORMAT APPENDIX 331

@Link
private Client client;

@DataField(pos = 5)
private String isinCode;

@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2) -- precision
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy")
private Date orderDate;

...
}

case 4 : Position is different in output

The position attribute will inform bindy how to place the field in the CSV record generated.
By default, the position used corresponds to the position defined with the attribute 'pos'. If the
position is different (that means that we have an asymetric processus comparing marshaling
from unmarshaling) than we can use 'position' to indicate this.

Here is an example

Listing 1.Listing 1. Position is different in outputPosition is different in output

@CsvRecord(separator = ",")
public class Order {
@CsvRecord(separator = ",", isOrdered = true)
public class Order {

// Positions of the fields start from 1 and not from 0

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

@DataField(pos = 3, position = 9)
private String firstName;

@DataField(pos = 4, position = 8)
private String lastName;

@DataField(pos = 5, position = 7)
private String instrumentCode;

332 DATA FORMAT APPENDIX

@DataField(pos = 6, position = 6)
private String instrumentNumber;

...
}

case 5 : required

If a field is mandatory, simply use the attribute 'required' setted to true

Listing 1.Listing 1. RequiredRequired

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2, required = true)
private String clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, required = true)
private String lastName;

...
}

If this field is not present in the record, than an error will be raised by the parser with the
following information :

Some fields are missing (optional or mandatory), line :

case 6 : trim

If a field has leading and/or trailing spaces which should be removed before they are
processed, simply use the attribute 'trim' setted to true

Listing 1.Listing 1. TrimTrim

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1, trim = true)
private int orderNr;

@DataField(pos = 2, trim = true)
private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4)
private String lastName;

DATA FORMAT APPENDIX 333

This attribute of the annotation @DataField must be used in combination with
attribute isOrdered = true of the annotation @CsvRecord

...
}

case 7 : defaultValue

If a field is not defined then uses the value indicated by the defaultValue attribute

Listing 1.Listing 1. Default valueDefault value

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2)
private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, defaultValue = "Barin")
private String lastName;

...
}

4. FixedLengthRecord

The FixedLengthRecord annotation is used to identified the root class of the model. It
represents a record = a line of a file/message containing data fixed length formatted and can be
linked to several children model classes. This format is a bit particular beause data of a field can
be aligned to the right or to the left.
When the size of the data does not fill completely the length of the field, we can then add 'padd'
characters.

Annotation name Record type Level

FixedLengthRecord fixed Class

Parameter
name

type Info

334 DATA FORMAT APPENDIX

This attribute is only applicable to optional fields.

crlf string

optional - possible values = WINDOWS,UNIX,MAC, or custom;
default value = WINDOWS - allow to define the carriage return
character to use. If you specify a value other than the three listed
before, the value you enter (custom) will be used as the CRLF
character(s)

paddingChar char mandatory - default value = ' '

length int mandatory = size of the fixed length record

hasHeader boolean
Camel 2.11 - optional - Indicates that the record(s) of this type
may be preceded by a single header record at the beginning of
the file / stream

hasFooter boolean
Camel 2.11 - optional - Indicates that the record(s) of this type
may be followed by a single footer record at the end of the file /
stream

skipHeader boolean
Camel 2.11 - optional - Configures the data format to skip
marshalling / unmarshalling of the header record. Configure this
parameter on the primary record (e.g., not the header or footer).

skipFooter boolean

Camel 2.11 - optional - Configures the data format to skip
marshalling / unmarshalling of the footer record Configure this
parameter on the primary record (e.g., not the header or
footer)..

isHeader boolean
Camel 2.11 - optional - Identifies this FixedLengthRecord as a
header record

isFooter boolean
Camel 2.11 - optional - Identifies this FixedLengthRecords as a
footer record

Ê Ê
This annotation is associated to the root class of the model and
must be declared one time.

case 1 : Simple fixed length record

This simple example shows how to design the model to parse/format a fixed message

10A9PaulineMISINXD12345678BUYShare2500.45USD01-08-2009

Listing 1.Listing 1. Fixed-simpleFixed-simple

@FixedLengthRecord(length=54, paddingChar=' ')
public static class Order {

DATA FORMAT APPENDIX 335

The hasHeader/hasFooter parameters are mutually exclusive with isHeader/
isFooter. A record may not be both a header/footer and a primary fixed-length
record.

@DataField(pos = 1, length=2)
private int orderNr;

@DataField(pos = 3, length=2)
private String clientNr;

@DataField(pos = 5, length=7)
private String firstName;

@DataField(pos = 12, length=1, align="L")
private String lastName;

@DataField(pos = 13, length=4)
private String instrumentCode;

@DataField(pos = 17, length=10)
private String instrumentNumber;

@DataField(pos = 27, length=3)
private String orderType;

@DataField(pos = 30, length=5)
private String instrumentType;

@DataField(pos = 35, precision = 2, length=7)
private BigDecimal amount;

@DataField(pos = 42, length=3)
private String currency;

@DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 2 : Fixed length record with alignment and padding

This more elaborated example show how to define the alignment for a field and how to
assign a padding character which is ' ' here''

10A9 PaulineM ISINXD12345678BUYShare2500.45USD01-08-2009

Listing 1.Listing 1. Fixed-padding-alignFixed-padding-align

@FixedLengthRecord(length=60, paddingChar=' ')
public static class Order {

336 DATA FORMAT APPENDIX

@DataField(pos = 1, length=2)
private int orderNr;

@DataField(pos = 3, length=2)
private String clientNr;

@DataField(pos = 5, length=9)
private String firstName;

@DataField(pos = 14, length=5, align="L") // align text to the LEFT zone of
the block

private String lastName;

@DataField(pos = 19, length=4)
private String instrumentCode;

@DataField(pos = 23, length=10)
private String instrumentNumber;

@DataField(pos = 33, length=3)
private String orderType;

@DataField(pos = 36, length=5)
private String instrumentType;

@DataField(pos = 41, precision = 2, length=7)
private BigDecimal amount;

@DataField(pos = 48, length=3)
private String currency;

@DataField(pos = 51, length=10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 3 : Field padding

Sometimes, the default padding defined for record cannnot be applied to the field as we have
a number format where we would like to padd with '0' instead of ' '. In this case, you can use in
the model the attribute paddingField to set this value.

10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009

Listing 1.Listing 1. Fixed-padding-fieldFixed-padding-field

@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 3, length = 2)
private String clientNr;

DATA FORMAT APPENDIX 337

@DataField(pos = 5, length = 9)
private String firstName;

@DataField(pos = 14, length = 5, align = "L")
private String lastName;

@DataField(pos = 19, length = 4)
private String instrumentCode;

@DataField(pos = 23, length = 10)
private String instrumentNumber;

@DataField(pos = 33, length = 3)
private String orderType;

@DataField(pos = 36, length = 5)
private String instrumentType;

@DataField(pos = 41, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 53, length = 3)
private String currency;

@DataField(pos = 56, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 4: Fixed length record with delimiter

Fixed-length records sometimes have delimited content within the record. The firstName
and lastName fields are delimited with the '^' character in the following example:

10A9Pauline^M^ISINXD12345678BUYShare000002500.45USD01-08-2009

Listing 1.Listing 1. Fixed-delimitedFixed-delimited

@FixedLengthRecord()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, delimiter = "^")
private String firstName;

@DataField(pos = 4, delimiter = "^")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

338 DATA FORMAT APPENDIX

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 5 : Fixed length record with record-defined field length

Occasionally a fixed-length record may contain a field that define the expected length of
another field within the same record. In the following example the length of the
instrumentNumber field value is defined by the value of instrumentNumberLen field in the
record.

10A9Pauline^M^ISIN10XD12345678BUYShare000002500.45USD01-08-2009

Listing 1.Listing 1. Fixed-delimitedFixed-delimited

@FixedLengthRecord()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, delimiter = "^")
private String firstName;

@DataField(pos = 4, delimiter = "^")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

@DataField(pos = 6, length = 2, align = "R", paddingChar = '0')
private int instrumentNumberLen;

@DataField(pos = 7, lengthPos=6)
private String instrumentNumber;

DATA FORMAT APPENDIX 339

As of Camel 2.11 the 'pos' value(s) in a fixed-length record may optionally be
defined using ordinal, sequential values instead of precise column numbers.

@DataField(pos = 8, length = 3)
private String orderType;

@DataField(pos = 9, length = 5)
private String instrumentType;

@DataField(pos = 10, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 11, length = 3)
private String currency;

@DataField(pos = 12, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 6 : Fixed length record with header and footer

Bindy will discover fixed-length header and footer records that are configured as part of the
model Ð provided that the annotated classes exist either in the same package as the primary
@FixedLengthRecord class, or within one of the configured scan packages. The following text
illustrates two fixed-length records that are bracketed by a header record and footer record.

101-08-2009
10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009
10A9 RichN ISINXD12345678BUYShare000002700.45USD01-08-2009
9000000002

Listing 1.Listing 1. Fixed-header-and-footer-main-classFixed-header-and-footer-main-class

@FixedLengthRecord(hasHeader = true, hasFooter = true)
public class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, length = 9)
private String firstName;

@DataField(pos = 4, length = 5, align = "L")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

340 DATA FORMAT APPENDIX

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

...
}

@FixedLengthRecord(isHeader = true)
public class OrderHeader {

@DataField(pos = 1, length = 1)
private int recordType = 1;

@DataField(pos = 2, length = 10, pattern = "dd-MM-yyyy")
private Date recordDate;

...
}

@FixedLengthRecord(isFooter = true)
public class OrderFooter {

@DataField(pos = 1, length = 1)
private int recordType = 9;

@DataField(pos = 2, length = 9, align = "R", paddingChar = '0')
private int numberOfRecordsInTheFile;

...
}

5. Message

The Message annotation is used to identified the class of your model who will contain key value
pairs fields. This kind of format is used mainly in Financial Exchange Protocol Messages (FIX).
Nevertheless, this annotation can be used for any other format where data are identified by

DATA FORMAT APPENDIX 341

keys. The key pair values are separated each other by a separator which can be a special
character like a tab delimitor (unicode representation : \u0009) or a start of heading (unicode
representation : \u0001)

Annotation name Record type Level

Message key value pair Class

Parameter
name

type Info

pairSeparator string mandatory - can be '=' or ';' or 'anything'

keyValuePairSeparair string mandatory - can be '\u0001', '\u0009', '#' or 'anything'

crlf string

optional - possible values = WINDOWS,UNIX,MAC, or
custom; default value = WINDOWS - allow to define the
carriage return character to use. If you specify a value
other than the three listed before, the value you enter
(custom) will be used as the CRLF character(s)

type string optional - define the type of message (e.g. FIX, EMX, ...)

version string optional - version of the message (e.g. 4.1)

isOrdered boolean
optional - default value = false - allow to change the order
of the fields when FIX message is generated

Ê Ê
This annotation is associated to the message class of the
model and must be declared one time.

case 1 : separator = 'u0001'

The separator used to segregate the key value pair fields in a FIX message is the ASCII '01'
character or in unicode format '\u0001'. This character must be escaped a second time to avoid
a java runtime error. Here is an example :

8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR 1=BE.CHM.001 11=CHM0001-01 22=4
...

and how to use the annotation

Listing 1.Listing 1. FIX - messageFIX - message

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1")
public class Order {
...
}

342 DATA FORMAT APPENDIX

"FIX information"
More information about FIX can be found on this web site :
http://www.fixprotocol.org/. To work with FIX messages, the model must contain a
Header and Trailer classes linked to the root message class which could be a Order
class. This is not mandatory but will be very helpful when you will use camel-bindy
in combination with camel-fix which is a Fix gateway based on quickFix project
http://www.quickfixj.org/.

Look at test cases
The ASCII character like tab, ... cannot be displayed in WIKI page. So, have a look to
the test case of camel-bindy to see exactly how the FIX message looks like (src\test\
data\fix\fix.txt) and the Order, Trailer, Header classes (src\test\java\org\apache\
camel\dataformat\bindy\model\fix\simple\Order.java)

6. KeyValuePairField

The KeyValuePairField annotation defines the property of a key value pair field. Each
KeyValuePairField is identified by a tag (= key) and its value associated, a type (string, int, date,
...), optionaly a pattern and if the field is required

Annotation name Record type Level

KeyValuePairField Key Value Pair - FIX Property

Parameter name type Info

tag int
mandatory - digit number identifying the field in the
message - must be unique

pattern string
optional - default value = "" - will be used to format
Decimal, Date, ...

precision int
optional - digit number - represents the precision to
be used when the Decimal number will be formatted/
parsed

position int
optional - must be used when the position of the key/
tag in the FIX message must be different

required boolean optional - default value = "false"

impliedDecimalSeparator boolean
Camel 2.11: optional - default value = "false" -
Indicates if there is a decimal point implied at a
specified location

DATA FORMAT APPENDIX 343

http://www.fixprotocol.org/
http://www.quickfixj.org/

case 1 : tag

This parameter represents the key of the field in the message

Listing 1.Listing 1. FIX message - TagFIX message - Tag

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1")
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1) // Client reference
private String Account;

@KeyValuePairField(tag = 11) // Order reference
private String ClOrdId;

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String IDSource;

@KeyValuePairField(tag = 48) // Fund code
private String SecurityId;

@KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
private String Side;

@KeyValuePairField(tag = 58) // Free text
private String Text;

...
}

case 2 : Different position in output

If the tags/keys that we will put in the FIX message must be sorted according to a predefine
order, then use the attribute 'position' of the annotation @KeyValuePairField

Listing 1.Listing 1. FIX message - Tag - sortFIX message - Tag - sort

@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version
= "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) // Client reference
private String account;

@KeyValuePairField(tag = 11, position = 3) // Order reference
private String clOrdId;

344 DATA FORMAT APPENDIX

...
}

7. Section

In FIX message of fixed length records, it is common to have different sections in the
representation of the information : header, body and section. The purpose of the annotation
@Section is to inform bindy about which class of the model represents the header (= section
1), body (= section 2) and footer (= section 3)

Only one attribute/parameter exists for this annotation.

Annotation name Record type Level

Section FIX Class

Parameter name type Info

number int digit number identifying the section position

case 1 : Section

A. Definition of the header section

Listing 1.Listing 1. FIX message - Section - HeaderFIX message - Section - Header

@Section(number = 1)
public class Header {

@KeyValuePairField(tag = 8, position = 1) // Message Header
private String beginString;

@KeyValuePairField(tag = 9, position = 2) // Checksum
private int bodyLength;

...
}

B. Definition of the body section

Listing 1.Listing 1. FIX message - Section - BodyFIX message - Section - Body

@Section(number = 2)
@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX", version
= "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) // Client reference
private String account;

DATA FORMAT APPENDIX 345

@KeyValuePairField(tag = 11, position = 3) // Order reference
private String clOrdId;

C. Definition of the footer section

Listing 1.Listing 1. FIX message - Section - FooterFIX message - Section - Footer

@Section(number = 3)
public class Trailer {

@KeyValuePairField(tag = 10, position = 1)
// CheckSum
private int checkSum;

public int getCheckSum() {
return checkSum;

}

8. OneToMany

The purpose of the annotation @OneToMany is to allow to work with a List<?> field defined a
POJO class or from a record containing repetitive groups.
The relation OneToMany ONLY WORKS in the following cases :

▪ Reading a FIX message containing repetitive groups (= group of tags/keys)
▪ Generating a CSV with repetitive data

Annotation name Record type Level

OneToMany all property

Parameter
name

type Info

mappedTo string
optional - string - class name associated to the type of the
List<Type of the Class>

case 1 : Generating CSV with repetitive data

Here is the CSV output that we want :

Claus,Ibsen,Camel in Action 1,2010,35
Claus,Ibsen,Camel in Action 2,2012,35
Claus,Ibsen,Camel in Action 3,2013,35
Claus,Ibsen,Camel in Action 4,2014,35

Remark : the repetitive data concern the title of the book and its publication date while first,
last name and age are common

and the classes used to modeling this. The Author class contains a List of Book.

Listing 1.Listing 1. Generate CSV with repetitive dataGenerate CSV with repetitive data

346 DATA FORMAT APPENDIX

Restrictions OneToMany
Be careful, the one to many of bindy does not allow to handle repetitions defined
on several levels of the hierarchy

@CsvRecord(separator=",")
public class Author {

@DataField(pos = 1)
private String firstName;

@DataField(pos = 2)
private String lastName;

@OneToMany
private List<Book> books;

@DataField(pos = 5)
private String Age;

...

public class Book {

@DataField(pos = 3)
private String title;

@DataField(pos = 4)
private String year;

Very simple isn't it !!!

case 2 : Reading FIX message containing group of tags/keys

Here is the message that we would like to process in our model :

"8=FIX 4.19=2034=135=049=INVMGR56=BRKR"
"1=BE.CHM.00111=CHM0001-0158=this is a camel - bindy test"
"22=448=BE000124567854=1"
"22=548=BE000987654354=2"
"22=648=BE000999999954=3"
"10=220"

tags 22, 48 and 54 are repeated

and the code

Listing 1.Listing 1. Reading FIX message containing group of tags/keysReading FIX message containing group of tags/keys

public class Order {

@Link Header header;

DATA FORMAT APPENDIX 347

@Link Trailer trailer;

@KeyValuePairField(tag = 1) // Client reference
private String account;

@KeyValuePairField(tag = 11) // Order reference
private String clOrdId;

@KeyValuePairField(tag = 58) // Free text
private String text;

@OneToMany(mappedTo =
"org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")

List<Security> securities;
...

public class Security {

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String idSource;

@KeyValuePairField(tag = 48) // Fund code
private String securityCode;

@KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
private String side;

Using the Java DSL

The next step consists in instantiating the DataFormat bindy class associated with this record
type and providing Java package name(s) as parameter.

For example the following uses the class BindyCsvDataFormat (who correspond to the
class associated with the CSV record type) which is configured with "com.acme.model"
package name to initialize the model objects configured in this package.

DataFormat bindy = new BindyCsvDataFormat("com.acme.model");

Unmarshaling

from("file://inbox")
.unmarshal(bindy)
.to("direct:handleOrders");

348 DATA FORMAT APPENDIX

Alternatively, you can use a named reference to a data format which can then be defined in
your Registry e.g. your Spring XML file:

from("file://inbox")
.unmarshal("myBindyDataFormat")
.to("direct:handleOrders");

The Camel route will pick-up files in the inbox directory, unmarshall CSV records into a
collection of model objects and send the collection
to the route referenced by 'handleOrders'.

The collection returned is a List of Map objects. Each Map within the list contains the
model objects that were marshalled out of each line of the CSV. The reason behind this is that
each line can correspond to more than one object. This can be confusing when you simply expect
one object to be returned per line.

Each object can be retrieve using its class name.

List<Map<String, Object>> unmarshaledModels = (List<Map<String, Object>>)
exchange.getIn().getBody();

int modelCount = 0;
for (Map<String, Object> model : unmarshaledModels) {

for (String className : model.keySet()) {
Object obj = model.get(className);
LOG.info("Count : " + modelCount + ", " + obj.toString());

}
modelCount++;

}

LOG.info("Total CSV records received by the csv bean : " + modelCount);

Assuming that you want to extract a single Order object from this map for processing in a
route, you could use a combination of a Splitter and a Processor as per the following:

from("file://inbox")
.unmarshal(bindy)
.split(body())

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

Message in = exchange.getIn();
Map<String, Object> modelMap = (Map<String, Object>) in.getBody();
in.setBody(modelMap.get(Order.class.getCanonicalName()));

}
})
.to("direct:handleSingleOrder")

.end();

DATA FORMAT APPENDIX 349

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/splitter.html
http://camel.apache.org/processor.html

Marshaling

To generate CSV records from a collection of model objects, you create the following route :

from("direct:handleOrders")
.marshal(bindy)
.to("file://outbox")

Unit test

Here is two examples showing how to marshall or unmarshall a CSV file with Camel

Listing 1.Listing 1. MarshallMarshall

package org.apache.camel.dataformat.bindy.csv;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Client;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Order;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;
import org.junit.Test;
import org.springframework.config.java.annotation.Bean;
import org.springframework.config.java.annotation.Configuration;
import org.springframework.config.java.test.JavaConfigContextLoader;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvMarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class BindyComplexCsvMarshallTest extends AbstractJUnit4SpringContextTests {

private List<Map<String, Object>> models = new ArrayList<Map<String, Object>>();
private String result = "10,A1,Julia,Roberts,BE123456789,Belgium Ventage 10/

12,150,USD,14-01-2009";

@Produce(uri = "direct:start")
private ProducerTemplate template;

@EndpointInject(uri = "mock:result")

350 DATA FORMAT APPENDIX

private MockEndpoint resultEndpoint;

@Test
public void testMarshallMessage() throws Exception {

resultEndpoint.expectedBodiesReceived(result);

template.sendBody(generateModel());

resultEndpoint.assertIsSatisfied();
}

private List<Map<String, Object>> generateModel() {
Map<String, Object> model = new HashMap<String, Object>();

Order order = new Order();
order.setOrderNr(10);
order.setAmount(new BigDecimal("150"));
order.setIsinCode("BE123456789");
order.setInstrumentName("Belgium Ventage 10/12");
order.setCurrency("USD");

Calendar calendar = new GregorianCalendar();
calendar.set(2009, 0, 14);
order.setOrderDate(calendar.getTime());

Client client = new Client();
client.setClientNr("A1");
client.setFirstName("Julia");
client.setLastName("Roberts");

order.setClient(client);

model.put(order.getClass().getName(), order);
model.put(client.getClass().getName(), client);

models.add(0, model);

return models;
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

BindyCsvDataFormat camelDataFormat = new
BindyCsvDataFormat("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink");

@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("direct:start").marshal(camelDataFormat).to("mock:result");
}

};

DATA FORMAT APPENDIX 351

}
}

}

Listing 1.Listing 1. UnmarshallUnmarshall

package org.apache.camel.dataformat.bindy.csv;

import org.apache.camel.EndpointInject;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;
import org.junit.Test;
import org.springframework.config.java.annotation.Bean;
import org.springframework.config.java.annotation.Configuration;
import org.springframework.config.java.test.JavaConfigContextLoader;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvUnmarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class BindyComplexCsvUnmarshallTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
private MockEndpoint resultEndpoint;

@Test
public void testUnMarshallMessage() throws Exception {

resultEndpoint.expectedMessageCount(1);
resultEndpoint.assertIsSatisfied();

}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

BindyCsvDataFormat csvBindyDataFormat = new
BindyCsvDataFormat("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink");

@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("file://src/test/
data?noop=true").unmarshal(csvBindyDataFormat).to("mock:result");

}
};

}
}

}

352 DATA FORMAT APPENDIX

In this example, BindyCsvDataFormat class has been instantiated in a traditional way but it is
also possible to provide information directly to the function (un)marshal like this where
BindyType corresponds to the Bindy DataFormat class to instantiate and the parameter
contains the list of package names.

public static class ContextConfig extends SingleRouteCamelConfiguration {
@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("direct:start")
.marshal().bindy(BindyType.Csv,

"org.apache.camel.dataformat.bindy.model.simple.oneclass")
.to("mock:result");

}
};

}
}

Using Spring XML

This is really easy to use Spring as your favorite DSL language to declare the routes to be used
for camel-bindy. The following example shows two routes where the first will pick-up records
from files, unmarshal the content and bind it to their model. The result is then send to a pojo
(doing nothing special) and place them into a queue.

The second route will extract the pojos from the queue and marshal the content to
generate a file containing the csv record

Listing 1.Listing 1. spring dslspring dsl

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<bean id="bindyDataformat"
class="org.apache.camel.dataformat.bindy.csv.BindyCsvDataFormat">

<constructor-arg value="org.apache.camel.bindy.model" />
</bean>

<bean id="csv" class="org.apache.camel.bindy.csv.HandleOrderBean" />

DATA FORMAT APPENDIX 353

<!-- Queuing engine - ActiveMq - work locally in mode virtual memory -->
<bean id="activemq"

class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="vm://localhost:61616"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="false" />

<route>
<from uri="file://src/data/csv/?noop=true" />
<unmarshal ref="bindyDataformat" />
<to uri="bean:csv" />
<to uri="activemq:queue:in" />

</route>

<route>
<from uri="activemq:queue:in" />
<marshal ref="bindyDataformat" />
<to uri="file://src/data/csv/out/" />

</route>
</camelContext>

</beans>

Dependencies

To use Bindy in your camel routes you need to add the a dependency on camel-bindy which
implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-bindy</artifactId>
<version>x.x.x</version>

</dependency>

XMLSECURITY DATA FORMAT

The XMLSecurity Data Format facilitates encryption and decryption of XML payloads at the
Document, Element, and Element Content levels (including simultaneous multi-node encryption/
decryption using XPath).

The encryption capability is based on formats supported using the Apache XML Security
(Santaurio) project. Symmetric encryption/decryption is currently supported using Triple-DES
and AES (128, 192, and 256) encryption formats. Additional formats can be easily added later as

354 DATA FORMAT APPENDIX

http://camel.apache.org/download.html

Be careful
Please verify that your model classes implements serializable otherwise the queue
manager will raise an error

needed. This capability allows Camel users to encrypt/decrypt payloads while being dispatched
or received along a route.

Available as of Camel 2.9
The XMLSecurity Data Format supports asymmetric key encryption. In this encryption model a
symmetric key is generated and used to perform XML content encryption or decryption. This
"content encryption key" is then itself encrypted using an asymmetric encryption algorithm that
leverages the recipient's public key as the "key encryption key". Use of an asymmetric key
encryption algorithm ensures that only the holder of the recipient's private key can access the
generated symmetric encryption key. Thus, only the private key holder can decode the
message. The XMLSecurity Data Format handles all of the logic required to encrypt and decrypt
the message content and encryption key(s) using asymmetric key encryption.

The XMLSecurity Data Format also has improved support for namespaces when processing
the XPath queries that select content for encryption. A namespace definition mapping can be
included as part of the data format configuration. This enables true namespace matching, even if
the prefix values in the XPath query and the target xml document are not equivalent strings.

Basic Options

Option Default Description

secureTag null

The XPath reference to the XML Element
selected for encryption/decryption. If no tag is
specified, the entire payload is encrypted/
decrypted.

secureTagContents false

A boolean value to specify whether the XML
Element is to be encrypted or the contents of
the XML Element

• false = Element Level
• true = Element Content Level

DATA FORMAT APPENDIX 355

passPhrase null

A String used as passPhrase to encrypt/decrypt
content. The passPhrase has to be provided. If
no passPhrase is specified, a default passPhrase
is used. The passPhrase needs to be put
together in conjunction with the appropriate
encryption algorithm. For example using
TRIPLEDES the passPhase can be a "Only
another 24 Byte key"

xmlCipherAlgorithm TRIPLEDES

The cipher algorithm to be used for
encryption/decryption of the XML message
content. The available choices are:

• XMLCipher.TRIPLEDES
• XMLCipher.AES_128
• XMLCipher.AES_192
• XMLCipher.AES_256

namespaces null
A map of namespace values indexed by prefix.
The index values must match the prefixes used
in the secureTag XPath query.

Asymmetric Encryption Options

These options can be applied in addition to relevant the Basic options to use asymmetric key
encryption.

Option Default Description

recipientKeyAlias null

The key alias to be used when retrieving
the recipient's public or private key from
a KeyStore when performing asymmetric
key encryption or decryption.

keyCipherAlgorithm null

The cipher algorithm to be used for
encryption/decryption of the asymmetric
key. The available choices are:

• XMLCipher.RSA_v1dot5
• XMLCipher.RSA_OAEP

keyOrTrustStoreParameters null

Configuration options for creating and
loading a KeyStore instance that
represents the sender's trustStore or
recipient's keyStore.

356 DATA FORMAT APPENDIX

keyPassword null

Camel 2.10.2 / 2.11: The password
to be used for retrieving the private key
from the KeyStore. This key is used for
asymmetric decryption.

Marshal

In order to encrypt the payload, the marshal processor needs to be applied on the route
followed by the secureXML() tag.

Unmarshal

In order to decrypt the payload, the unmarshal processor needs to be applied on the route
followed by the secureXML() tag.

Examples

Given below are several examples of how marshalling could be performed at the Document,
Element, and Content levels.

Full Payload encryption/decryption

from("direct:start")
.marshal().secureXML()
.unmarshal().secureXML()
.to("direct:end");

Partial Payload Content Only encryption/decryption

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
...
from("direct:start")

.marshal().secureXML(tagXPATH, secureTagContent)

.unmarshal().secureXML(tagXPATH, secureTagContent)

.to("direct:end");

DATA FORMAT APPENDIX 357

Partial Multi Node Payload Content Only encryption/
decryption

String tagXPATH = "//cheesesites/*/cheese";
boolean secureTagContent = true;
...
from("direct:start")

.marshal().secureXML(tagXPATH, secureTagContent)

.unmarshal().secureXML(tagXPATH, secureTagContent)

.to("direct:end");

Partial Payload Content Only encryption/decryption with
choice of passPhrase(password)

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
...
String passPhrase = "Just another 24 Byte key";
from("direct:start")

.marshal().secureXML(tagXPATH, secureTagContent, passPhrase)

.unmarshal().secureXML(tagXPATH, secureTagContent, passPhrase)

.to("direct:end");

Partial Payload Content Only encryption/decryption with
passPhrase(password) and Algorithm

import org.apache.xml.security.encryption.XMLCipher;
....
String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
String passPhrase = "Just another 24 Byte key";
String algorithm= XMLCipher.TRIPLEDES;
from("direct:start")

.marshal().secureXML(tagXPATH, secureTagContent, passPhrase, algorithm)

.unmarshal().secureXML(tagXPATH, secureTagContent, passPhrase, algorithm)

.to("direct:end");

358 DATA FORMAT APPENDIX

Partial Paryload Content with Namespace support

Java DSL

final Map<String, String> namespaces = new HashMap<String, String>();
namespaces.put("cust", "http://cheese.xmlsecurity.camel.apache.org/");

final KeyStoreParameters tsParameters = new KeyStoreParameters();
tsParameters.setPassword("password");
tsParameters.setResource("sender.ts");

context.addRoutes(new RouteBuilder() {
public void configure() {

from("direct:start")
.marshal().secureXML("//cust:cheesesites/italy", namespaces, true,

"recipient",
testCypherAlgorithm, XMLCipher.RSA_v1dot5,

tsParameters)
.to("mock:encrypted");

}
}

Spring XML

A namespace prefix that is defined as part of the camelContext definition can be re-used in
context within the data format secureTag attribute of the secureXML element.

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://start"/>

<marshal>
<secureXML secureTag="//cheese:cheesesites/italy"

secureTagContents="true"/>
</marshal>
...

Asymmetric Key Encryption

Spring XML Sender

<!-- trust store configuration -->
<camel:keyStoreParameters id="trustStoreParams" resource="./sender.ts"

DATA FORMAT APPENDIX 359

password="password"/>

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://start"/>

<marshal>
<secureXML secureTag="//cheese:cheesesites/italy"

secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.org/2001/04/

xmlenc#aes128-cbc"
keyCipherAlgorithm="http://www.w3.org/2001/04/

xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="trustStoreParams"/>

</marshal>
...

Spring XML Recipient

<!-- key store configuration -->
<camel:keyStoreParameters id="keyStoreParams" resource="./recipient.ks"
password="password" />

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://encrypted"/>

<unmarshal>
<secureXML secureTag="//cheese:cheesesites/italy"

secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.org/2001/04/

xmlenc#aes128-cbc"
keyCipherAlgorithm="http://www.w3.org/2001/04/

xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="keyStoreParams"
keyPassword="privateKeyPassword" />

</unmarshal>
...

Dependencies

This data format is provided within the camel-xmlsecurity component.

The GZip Data Format is a message compression and de-compression format. It uses the
same deflate algorithm that is used in Zip DataFormat, although some additional headers are

360 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/zip-dataformat.html

provided. This format is produced by popular gzip/gunzip tool. Messages marshalled using
GZip compression can be unmarshalled using GZip decompression just prior to being
consumed at the endpoint. The compression capability is quite useful when you deal with large
XML and Text based payloads or when you read messages previously comressed using gzip
tool.

Options

There are no options provided for this data format.

Marshal

In this example we marshal a regular text/XML payload to a compressed payload employing gzip
compression format and send it an ActiveMQ queue called MY_QUEUE.

from("direct:start").marshal().gzip().to("activemq:queue:MY_QUEUE");

Unmarshal

In this example we unmarshalÊa gzippedÊpayload from an ActiveMQ queue called
MY_QUEUEÊto its original format,Êand forward it forÊprocessingÊto the
UnGZippedMessageProcessor.

from("activemq:queue:MY_QUEUE").unmarshal().gzip().process(new
UnGZippedMessageProcessor());

Dependencies

This data format is provided in camel-core so no additional dependencies is needed.

CASTOR

Available as of Camel 2.1

Castor is a Data Format which uses the Castor XML library to unmarshal an XML payload
into Java objects or to marshal Java objects into an XML payload.

As usually you can use either Java DSL or Spring XML to work with Castor Data Format.

DATA FORMAT APPENDIX 361

http://camel.apache.org/data-format.html
http://www.castor.org/

Using the Java DSL

from("direct:order").
marshal().castor().
to("activemq:queue:order");

For example the following uses a named DataFormat of Castor which uses default Castor data
binding features.

CastorDataFormat castor = new CastorDataFormat ();

from("activemq:My.Queue").
unmarshal(castor).
to("mqseries:Another.Queue");

If you prefer to use a named reference to a data format which can then be defined in your
Registry such as via your Spring XML file. e.g.

from("activemq:My.Queue").
unmarshal("mycastorType").
to("mqseries:Another.Queue");

If you want to override default mapping schema by providing a mapping file you can set it as
follows.

CastorDataFormat castor = new CastorDataFormat ();
castor.setMappingFile("mapping.xml");

Also if you want to have more control on Castor Marshaller and Unmarshaller you can access
them as below.

castor.getMarshaller();
castor.getUnmarshaller();

Using Spring XML

The following example shows how to use Castor to unmarshal using Spring configuring the
castor data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<castor validation="true" />
</unmarshal>

362 DATA FORMAT APPENDIX

<to uri="mock:result"/>
</route>

</camelContext>

This example shows how to configure the data type just once and reuse it on multiple routes.
You have to set the <castor> element directly in <camelContext>.

<camelContext>
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<castor id="myCastor"/>

</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myCastor"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myCastor"/>
<to uri="mock:result"/>

</route>

</camelContext>

Options

Castor supports the following options

Option Type Default Description

encoding String UTF-8 Encoding to use when marshalling an Object to XML

validation Boolean false Whether validation is turned on or off.

mappingFile String null
Path to a Castor mapping file to load from the
classpath.

packages String[] null Add additional packages to Castor XmlContext

classNames String[] null Add additional class names to Castor XmlContext

Dependencies

To use Castor in your camel routes you need to add the a dependency on camel-castor
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

DATA FORMAT APPENDIX 363

http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-castor</artifactId>
<version>x.x.x</version>

</dependency>Protobuf - Protocol Buffers

"Protocol Buffers - Google's data interchange format"
Camel provides a Data Format to serialse between Java and the Protocol Buffer protocol. The
project's site details why you may wish to choose this format over xml. Protocol Buffer is
language-neutral and platform-neutral, so messages produced by your Camel routes may be
consumed by other language implementations.

API Site
Protobuf Implementation
Protobuf Java Tutorial

PROTOBUF OVERVIEW

This quick overview of how to use Protobuf. For more detail see the complete tutorial

Defining the proto format

The first step is to define the format for the body of your exchange. This is defined in a .proto
file as so:

Listing 1.Listing 1. addressbook.protoaddressbook.proto

package org.apache.camel.component.protobuf;

option java_package = "org.apache.camel.component.protobuf";
option java_outer_classname = "AddressBookProtos";

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

364 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/
http://code.google.com/p/protobuf/
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html

Available from Camel 2.2

}

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;
}

message AddressBook {
repeated Person person = 1;

}

Generating Java classes

The Protobuf SDK provides a compiler which will generate the Java classes for the format we
defined in our .proto file. You can run the compiler for any additional supported languages you
require.

protoc --java_out=. ./addressbook.proto

This will generate a single Java class named AddressBookProtos which contains inner classes
for Person and AddressBook. Builders are also implemented for you. The generated classes
implement com.google.protobuf.Message which is required by the serialisation mechanism. For
this reason it important that only these classes are used in the body of your exchanges. Camel
will throw an exception on route creation if you attempt to tell the Data Format to use a class
that does not implement com.google.protobuf.Message. Use the generated builders to translate
the data from any of your existing domain classes.

JAVA DSL

You can use create the ProtobufDataFormat instance and pass it to Camel DataFormat marshal
and unmarsha API like this.

ProtobufDataFormat format = new ProtobufDataFormat(Person.getDefaultInstance());

from("direct:in").marshal(format);
from("direct:back").unmarshal(format).to("mock:reverse");

PROTOBUF - PROTOCOL BUFFERS 365

http://camel.apache.org/data-format.html

Or use the DSL protobuf() passing the unmarshal default instance or default instance class name
like this.

// You don't need to specify the default instance for protobuf
marshaling

from("direct:marshal").marshal().protobuf();
from("direct:unmarshalA").unmarshal().

protobuf("org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person").
to ("mock:reverse");

from("direct:unmarshalB").unmarshal().protobuf(Person.getDefaultInstance()).to("mock:reverse");

SPRING DSL

The following example shows how to use Castor to unmarshal using Spring configuring the
protobuf data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<protobuf
instanceClass="org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person"
/>

</unmarshal>
<to uri="mock:result"/>

</route>
</camelContext>

Dependencies

To use Protobuf in your camel routes you need to add the a dependency on camel-
protobuf which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-protobuf</artifactId>
<version>2.2.0</version>

</dependency>

366 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/download.html

SOAP DATAFORMAT

Available as of Camel 2.3

SOAP is a Data Format which uses JAXB2 and JAX-WS annotations to marshal and
unmarshal SOAP payloads. It provides the basic features of Apache CXF without need for the
CXF Stack.

ElementNameStrategy

An element name strategy is used for two purposes. The first is to find a xml element name for
a given object and soap action when marshaling the object into a SOAP message. The second is
to find an Exception class for a given soap fault name.

Strategy Usage

QNameStrategy
Uses a fixed qName that is configured on instantiation. Exception
lookup is not supported

TypeNameStrategy
Uses the name and namespace from the @XMLType annotation
of the given type. If no namespace is set then package-info is used.
Exception lookup is not supported

ServiceInterfaceStrategy
Uses information from a webservice interface to determine the
type name and to find the exception class for a SOAP fault

If you have generated the web service stub code with cxf-codegen or a similar tool then you
probably will want to use the ServiceInterfaceStrategy. In the case you have no annotated
service interface you should use QNameStrategy or TypeNameStrategy.

Using the Java DSL

The following example uses a named DataFormat of soap which is configured with the package
com.example.customerservice to initialize the JAXBContext. The second parameter is the
ElementNameStrategy. The route is able to marshal normal objects as well as exceptions. (Note
the below just sends a SOAP Envelope to a queue. A web service provider would actually need
to be listening to the queue for a SOAP call to actually occur, in which case it would be a one
way SOAP request. If you need request reply then you should look at the next example.)

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:start")

.marshal(soap)

.to("jms:myQueue");

PROTOBUF - PROTOCOL BUFFERS 367

http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

Supported SOAP versions
SOAP 1.1 is supported by default. SOAP 1.2 is supported from Camel 2.11
onwards.

Namespace prefix mapping
See JAXB for details how you can control namespace prefix mappings when
marshalling using SOAP data format.

See also
As the SOAP dataformat inherits from the JAXB dataformat most settings apply
here as well

Using SOAP 1.2

Available as of Camel 2.11

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
soap.setVersion("1.2");
from("direct:start")

.marshal(soap)

.to("jms:myQueue");

When using XML DSL there is a version attribute you can set on the <soap> element.

<!-- Defining a ServiceInterfaceStrategy for retrieving the element name when
marshalling -->

<bean id="myNameStrategy"
class="org.apache.camel.dataformat.soap.name.ServiceInterfaceStrategy">

<constructor-arg value="com.example.customerservice.CustomerService"/>
<constructor-arg value="true"/>

</bean>

And in the Camel route

<route>
<from uri="direct:start"/>
<marshal>

<soap contentPath="com.example.customerservice" version="1.2"

368 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/jaxb.html

elementNameStrategyRef="myNameStrategy"/>
</marshal>
<to uri="jms:myQueue"/>

</route>

Multi-part Messages

Available as of Camel 2.8.1

Multi-part SOAP messages are supported by the ServiceInterfaceStrategy. The
ServiceInterfaceStrategy must be initialized with a service interface definition that is annotated
in accordance with JAX-WS 2.2 and meets the requirements of the Document Bare style. The
target method must meet the following criteria, as per the JAX-WS specification: 1) it must
have at most one in or in/out non-header parameter, 2) if it has a return type other than
void it must have no in/out or out non-header parameters, 3) if it it has a return type of
void it must have at most one in/out or out non-header parameter.

The ServiceInterfaceStrategy should be initialized with a boolean parameter that indicates
whether the mapping strategy applies to the request parameters or response parameters.

ServiceInterfaceStrategy strat = new
ServiceInterfaceStrategy(com.example.customerservice.multipart.MultiPartCustomerService.class,
true);
SoapJaxbDataFormat soapDataFormat = new
SoapJaxbDataFormat("com.example.customerservice.multipart", strat);

Multi-part Request

The payload parameters for a multi-part request are initiazlied using a BeanInvocation
object that reflects the signature of the target operation. The camel-soap DataFormat maps the
content in the BeanInvocation to fields in the SOAP header and body in accordance with
the JAX-WS mapping when the marshal() processor is invoked.

BeanInvocation beanInvocation = new BeanInvocation();

// Identify the target method
beanInvocation.setMethod(MultiPartCustomerService.class.getMethod("getCustomersByName",

GetCustomersByName.class, com.example.customerservice.multipart.Product.class));

// Populate the method arguments
GetCustomersByName getCustomersByName = new GetCustomersByName();
getCustomersByName.setName("Dr. Multipart");

Product product = new Product();
product.setName("Multiuse Product");

PROTOBUF - PROTOCOL BUFFERS 369

product.setDescription("Useful for lots of things.");

Object[] args = new Object[] {getCustomersByName, product};

// Add the arguments to the bean invocation
beanInvocation.setArgs(args);

// Set the bean invocation object as the message body
exchange.getIn().setBody(beanInvocation);

Multi-part Response

A multi-part soap response may include an element in the soap body and will have one or more
elements in the soap header. The camel-soap DataFormat will unmarshall the element in the
soap body (if it exists) and place it onto the body of the out message in the exchange. Header
elements will not be marshaled into their JAXB mapped object types. Instead, these elements
are placed into the camel out message header
org.apache.camel.dataformat.soap.UNMARSHALLED_HEADER_LIST. The
elements will appear either as element instance values, or as JAXBElement values, depending
upon the setting for the ignoreJAXBElement property. This property is inherited from
camel-jaxb.

You can also have the camel-soap DataFormate ignore header content all-together by
setting the ignoreUnmarshalledHeaders value to true.

Holder Object mapping

JAX-WS specifies the use of a type-parameterized javax.xml.ws.Holder object for In/
Out and Out parameters. A Holder object may be used when building the
BeanInvocation, or you may use an instance of the parameterized-type directly. The
camel-soap DataFormat marshals Holder values in accordance with the JAXB mapping for the
class of the Holder's value. No mapping is provided for Holder objects in an unmarshalled
response.

Examples

Webservice client

The following route supports marshalling the request and unmarshalling a response or fault.

370 PROTOBUF - PROTOCOL BUFFERS

String WS_URI = "cxf://http://myserver/
customerservice?serviceClass=com.example.customerservice&dataFormat=MESSAGE";
SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:customerServiceClient")

.onException(Exception.class)
.handled(true)
.unmarshal(soapDF)

.end()

.marshal(soapDF)

.to(WS_URI)

.unmarshal(soapDF);

The below snippet creates a proxy for the service interface and makes a SOAP call to the
above route.

import org.apache.camel.Endpoint;
import org.apache.camel.component.bean.ProxyHelper;
...

Endpoint startEndpoint = context.getEndpoint("direct:customerServiceClient");
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
// CustomerService below is the service endpoint interface, *not* the
javax.xml.ws.Service subclass
CustomerService proxy = ProxyHelper.createProxy(startEndpoint, classLoader,
CustomerService.class);
GetCustomersByNameResponse response = proxy.getCustomersByName(new
GetCustomersByName());

Webservice Server

Using the following route sets up a webservice server that listens on jms queue
customerServiceQueue and processes requests using the class CustomerServiceImpl. The
customerServiceImpl of course should implement the interface CustomerService. Instead of
directly instantiating the server class it could be defined in a spring context as a regular bean.

SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
CustomerService serverBean = new CustomerServiceImpl();
from("jms://queue:customerServiceQueue")

.onException(Exception.class)
.handled(true)
.marshal(soapDF)

.end()

.unmarshal(soapDF)

.bean(serverBean)

.marshal(soapDF);

PROTOBUF - PROTOCOL BUFFERS 371

Dependencies

To use the SOAP dataformat in your camel routes you need to add the following dependency
to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-soap</artifactId>
<version>2.3.0</version>

</dependency>

CRYPTO

Available as of Camel 2.3
PGP Available as of Camel 2.9

The Crypto Data Format integrates the Java Cryptographic Extension into Camel, allowing
simple and flexible encryption and decryption of messages using Camel's familiar marshall and
unmarshal formatting mechanism. It assumes marshalling to mean encryption to cyphertext and
unmarshalling to mean decryption back to the original plaintext.

Options

Name Type Default Description

algorithm String
DES/CBC/
PKCS5Padding

The JCE algoorithm name indicating the cryptographic algorithm that will be used.

algorithmParamterSpec AlgorithmParameterSpec null A JCE AlgorithmParameterSpec used to initialize the Cipher.

bufferSize Integer 2048 the size of the buffer used in the signature process.

cryptoProvider String null The name of the JCE Security Provider that should be used.

initializationVector byte[] null
A byte array containing the Initialization Vector that will be used to initialize the
Cipher.

inline boolean false
Flag indicating that the configured IV should be inlined into the encrypted data
stream.

macAlgorithm String null The JCE algorithm name indicating the Message Authentication algorithm.

shouldAppendHMAC boolean null
Flag indicating that a Message Authentication Code should be calculated and
appended to the encrypted data.

Basic Usage

At its most basic all that is required to encrypt/decrypt an exchange is a shared secret key. If
one or more instances of the Crypto data format are configured with this key the format can
be used to encrypt the payload in one route (or part of one) and decrypted in another. For
example, using the Java DSL as follows:

KeyGenerator generator = KeyGenerator.getInstance("DES");

372 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());

from("direct:basic-encryption")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

In Spring the dataformat is configured first and then used in routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<crypto id="basic" algorithm="DES" keyRef="desKey" />
</dataFormats>

...
<route>

<from uri="direct:basic-encryption" />
<marshal ref="basic" />
<to uri="mock:encrypted" />
<unmarshal ref="basic" />
<to uri="mock:unencrypted" />

</route>
</camelContext>

Specifying the Encryption Algorithm

Changing the algorithm is a matter of supplying the JCE algorithm name. If you change the
algorithm you will need to use a compatible key.

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

Specifying an Initialization Vector

Some crypto algorhithms, particularly block algorithms, require configuration with an initial
block of data known as an Initialization Vector. In the JCE this is passed as an
AlgorithmParameterSpec when the Cipher is initialized. To use such a vector with the
CryptoDataFormat you can configure it with a byte[] contianing the required data e.g.

PROTOBUF - PROTOCOL BUFFERS 373

KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding",
generator.generateKey());
cryptoFormat.setInitializationVector(initializationVector);

from("direct:init-vector")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

or with spring, suppling a reference to a byte[]

<crypto id="initvector" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector" />

The same vector is required in both the encryption and decryption phases. As it is not
necessary to keep the IV a secret, the DataFormat allows for it to be inlined into the encrypted
data and subsequently read out in the decryption phase to initialize the Cipher. To inline the IV
set the /oinline flag.

KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};
SecretKey key = generator.generateKey();

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
cryptoFormat.setInitializationVector(initializationVector);
cryptoFormat.setShouldInlineInitializationVector(true);
CryptoDataFormat decryptFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
decryptFormat.setShouldInlineInitializationVector(true);

from("direct:inline")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(decryptFormat)
.to("mock:unencrypted");

or with spring.

<crypto id="inline" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector"

inline="true" />
<crypto id="inline-decrypt" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
inline="true" />

374 PROTOBUF - PROTOCOL BUFFERS

For more information of the use of Initialization Vectors, consult
• http://en.wikipedia.org/wiki/Initialization_vector
• http://www.herongyang.com/Cryptography/
• http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Hashed Message Authentication Codes (HMAC)

To avoid attacks against the encrypted data while it is in transit the CryptoDataFormat can also
calculate a Message Authentication Code forthe encrypted exchange contents based on a
configurable MAC algorithm. The calculated HMAC is appended to the stream after encryption.
It is separated from the stream in the decryption phase. The MAC is recalculated and verified
against the transmitted version to insure nothing was tampered with in transit.For more
information on Message Authentication Codes see http://en.wikipedia.org/wiki/HMAC

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);

from("direct:hmac")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

or with spring.

<crypto id="hmac" algorithm="DES" keyRef="desKey" shouldAppendHMAC="true" />

By default the HMAC is calculated using the HmacSHA1 mac algorithm though this can be easily
changed by supplying a different algorithm name. See [here] for how to check what algorithms
are available through the configured security providers

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

or with spring.

PROTOBUF - PROTOCOL BUFFERS 375

http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/HMAC

<crypto id="hmac-algorithm" algorithm="DES" keyRef="desKey" macAlgorithm="HmacMD5"
shouldAppendHMAC="true" />

Supplying Keys Dynamically

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically.
Using the same key across all recipients may neither be feasible or desirable. It would be useful
to be able to specify keys dynamically on a per exchange basis. The exchange could then be
dynamically enriched with the key of its target recipient before being processed by the data
format. To facilitate this the DataFormat allow for keys to be supplied dynamically via the
message headers below

• CryptoDataFormat.KEY "CamelCryptoKey"

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", null);
/**
* Note: the header containing the key should be cleared after
* marshalling to stop it from leaking by accident and
* potentially being compromised. The processor version below is
* arguably better as the key is left in the header when you use
* the DSL leaks the fact that camel encryption was used.
*/

from("direct:key-in-header-encrypt")
.marshal(cryptoFormat)
.removeHeader(CryptoDataFormat.KEY)
.to("mock:encrypted");

from("direct:key-in-header-decrypt").unmarshal(cryptoFormat).process(new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().getHeaders().remove(CryptoDataFormat.KEY);
exchange.getOut().copyFrom(exchange.getIn());

}
}).to("mock:unencrypted");

or with spring.

<crypto id="nokey" algorithm="DES" />

PGPDataFormat Options

Name Type Default Description

keyUserid String null The userid of the key in the PGP keyring.

password String null Password used when opening the private key (not used for encryption).

keyFileName String null
Filename of the keyring; must be accessible as a classpath resource (but you can specify a location in the file
system by using the "file:" prefix).

signatureKeyUserid String null
Since Camel 2.11.0 Optional userid of the key in the PGP keyring to use for signing (during encryption) or
signature verification (during decryption) .

376 PROTOBUF - PROTOCOL BUFFERS

signaturePassword String null
Since Camel 2.11.0 Optional password used when opening the private key used for signing (during
encryption).

signatureKeyFileName String null
Since Camel 2.11.0 Optional filename of the keyring to use for signing (during encryption) or for signature
verification (during decryption); must be accessible as a classpath resource (but you can specify a location in the
file system by using the "file:" prefix).

armored boolean false This option will cause PGP to base64 encode the encrypted text, making it available for copy/paste, etc.

integrity boolean true Adds an integrity check/sign into the encryption file.

PGPDataFormat Message Headers

You can override the PGPDataFormat options by applying below headers into message
dynamically.

Name Type Description

CamelPGPDataFormatKeyFileName String

Since Camel
2.11.0 Filename of
the keyring; will
override existing
setting directly on the
PGPDataFormat.

CamelPGPDataFormatKeyUserid String

Since Camel
2.11.0 The userid of
the key in the PGP
keyring; will override
existing setting
directly on the
PGPDataFormat.

CamelPGPDataFormatKeyPassword String

Since Camel
2.11.0 Password
used when opening
the private key; will
override existing
setting directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyFileName String

Since Camel
2.11.0 Filename of
the signature keyring;
will override existing
setting directly on the
PGPDataFormat.

PROTOBUF - PROTOCOL BUFFERS 377

CamelPGPDataFormatSignatureKeyUserid String

Since Camel
2.11.0 The userid of
the signature key in
the PGP keyring; will
override existing
setting directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyPassword String

Since Camel
2.11.0 Password
used when opening
the signature private
key; will override
existing setting
directly on the
PGPDataFormat.

Encrypting with PGPDataFormat

The following sample uses the popular PGP format for encrypting/decrypting files using the
Bouncy Castle Java libraries:

// Public Key FileName
String keyFileName = getKeyFileName();
// Private Key FileName
String keyFileNameSec = getKeyFileNameSec();
// Keyring Userid Used to Encrypt
String keyUserid = getKeyUserId();
// Private key password
String keyPassword = getKeyPassword();

from("direct:inline")
.marshal().pgp(keyFileName, keyUserid)
.to("mock:encrypted")
.unmarshal().pgp(keyFileNameSec, keyUserid, keyPassword)
.to("mock:unencrypted");

The following sample performs signing + encryption, and then signature verification +
decryption. It uses the same keyring for both signing and encryption, but you can obviously use
different keys:

PGPDataFormat pgpSignAndEncrypt = new PGPDataFormat();
pgpSignAndEncrypt.setKeyFileName(keyFileName);
pgpSignAndEncrypt.setKeyUserid(keyUserid);
pgpSignAndEncrypt.setSignatureKeyFileName(keyFileNameSec);
pgpSignAndEncrypt.setSignatureKeyUserid(keyUserid);

378 PROTOBUF - PROTOCOL BUFFERS

http://www.bouncycastle.org/java.html

pgpSignAndEncrypt.setSignaturePassword(keyPassword);

PGPDataFormat pgpVerifyAndDecrypt = new PGPDataFormat();
pgpVerifyAndDecrypt.setKeyFileName(keyFileNameSec);
pgpVerifyAndDecrypt.setKeyUserid(keyUserid);
pgpVerifyAndDecrypt.setPassword(keyPassword);
pgpVerifyAndDecrypt.setSignatureKeyFileName(keyFileName);
pgpVerifyAndDecrypt.setSignatureKeyUserid(keyUserid);

from("direct:inline-sign")
.marshal(pgpSignAndEncrypt)
.to("mock:encrypted")
.unmarshal(pgpVerifyAndDecrypt)
.to("mock:unencrypted");

Or using Spring:

<dataFormats>
<!-- will load the file from classpath by default, but you can prefix with file: to

load from file system -->
<pgp id="encrypt" keyFileName="org/apache/camel/component/crypto/pubring.gpg"

keyUserid="sdude@nowhere.net"/>
<pgp id="decrypt" keyFileName="org/apache/camel/component/crypto/secring.gpg"

keyUserid="sdude@nowhere.net" password="sdude"/>
</dataFormats>

<route>
<from uri="direct:inline"/>
<marshal ref="encrypt"/>
<to uri="mock:encrypted"/>
<unmarshal ref="decrypt"/>
<to uri="mock:unencrypted"/>

</route>

To work with the previous example you need the following

• A public keyring file which contains the public keys used to encrypt the data
• A private keyring file which contains the keys used to decrypt the data
• The keyring password

Managing your keyring

To manage the keyring, I use the command line tools, I find this to be the simplest approach in
managing the keys. There are also Java libraries available from http://www.bouncycastle.org/
java.html if you would prefer to do it that way.

1. Install the command line utilities on linux

PROTOBUF - PROTOCOL BUFFERS 379

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html

apt-get install gnupg

2. Create your keyring, entering a secure password

gpg --gen-key

3. If you need to import someone elses public key so that you can encrypt a file for
them.

gpg --import <filename.key

4. The following files should now exist and can be used to run the example

ls -l ~/.gnupg/pubring.gpg ~/.gnupg/secring.gpg

Dependencies

To use the Crypto dataformat in your camel routes you need to add the following dependency
to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>2.9.0</version>

</dependency>

See Also

• Data Format
• Crypto (Digital Signatures)
• http://www.bouncycastle.org/java.html

SYSLOG DATAFORMAT

Available as of Camel 2.6

The syslog dataformat is used for working with RFC3164 messages.

This component supports the following:
▪ UDP consumption of syslog messages
▪ Agnostic data format using either plain String objects or SyslogMessage model objects.
▪ Type Converter from/to SyslogMessage and String
▪ Integration with the camel-mina component.

380 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/crypto.html
http://camel.apache.org/data-format.html
http://camel.apache.org/crypto-digital-signatures.html
http://www.bouncycastle.org/java.html
http://www.ietf.org/rfc/rfc3164.txt
http://camel.apache.org/type-converter.html
http://camel.apache.org/mina.html

▪ Integration with the camel-netty component.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-syslog</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

RFC3164 Syslog protocol

Syslog uses the user datagram protocol (UDP) [1] as its underlying transport layer mechanism.
The UDP port that has been assigned to syslog is 514.

To expose a Syslog listener service we reuse the existing camel-mina component or camel-
netty where we just use the Rfc3164SyslogDataFormat to marshal and unmarshal
messages

Exposing a Syslog listener

In our Spring XML file, we configure an endpoint to listen for udp messages on port 10514,
note that in netty we disable the defaultCodec, this
will allow a fallback to a NettyTypeConverter and delivers the message as an InputStream:

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

<route>
<from

uri="netty:udp://localhost:10514?sync=false&allowDefaultCodec=false"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stop1"/>

</route>

</camelContext>

The same route using camel-mina

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

PROTOBUF - PROTOCOL BUFFERS 381

http://camel.apache.org/netty.html
http://camel.apache.org/mina.html
http://camel.apache.org/netty.html
http://camel.apache.org/netty.html
http://camel.apache.org/mina.html

<route>
<from uri="mina:udp://localhost:10514"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stop1"/>

</route>

</camelContext>

Sending syslog messages to a remote destination

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

<route>
<from uri="direct:syslogMessages"/>
<marshal ref="mySyslog"/>
<to uri="mina:udp://remotehost:10514"/>

</route>

</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

382 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

C H A P T E R 1 0

° ° ° °

Pattern Appendix

There now follows a breakdown of the various Enterprise Integration Patterns that Camel
supports

MESSAGING SYSTEMS

Message Channel

Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal
implementation detail of the Endpoint interface and all interactions with the Message Channel
are via the Endpoint interfaces.

For more details see
• Message
• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message

Camel supports the Message from the EIP patterns using the Message interface.

CHAPTER 10 - PATTERN APPENDIX 383

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/message.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html

To support various message exchange patterns like one way Event Message and Request
Reply messages Camel uses an Exchange interface which has a pattern property which can be
set to InOnly for an Event Message which has a single inbound Message, or InOut for a
Request Reply where there is an inbound and outbound message.

Here is a basic example of sending a Message to a route in InOnly and InOut modes

Requestor Code

//InOnly
getContext().createProducerTemplate().sendBody("direct:startInOnly", "Hello World");

//InOut
String result = (String)
getContext().createProducerTemplate().requestBody("direct:startInOut", "Hello World");

Route Using the Fluent Builders

from("direct:startInOnly").inOnly("bean:process");

from("direct:startInOut").inOut("bean:process");

Route Using the Spring XML Extensions

<route>
<from uri="direct:startInOnly"/>
<inOnly uri="bean:process"/>

</route>

<route>
<from uri="direct:startInOut"/>
<inOut uri="bean:process"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

384 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Pipes and Filters

Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent Endpoint instances
which can then be chained together.

Using Routing Logic

You can create pipelines of logic using multiple Endpoint or Message Translator instances as
follows

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", "mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel.
The opposite to pipeline is multicast; which fires the same message into each of its outputs.
(See the example below).

In Spring XML you can use the <pipeline/> element

<route>
<from uri="activemq:SomeQueue"/>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</route>

In the above the pipeline element is actually unnecessary, you could use this...

<route>
<from uri="activemq:SomeQueue"/>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send
the same message into multiple pipelines - then the <pipeline/> element comes into its own.

<route>
<from uri="activemq:SomeQueue"/>

CHAPTER 10 - PATTERN APPENDIX 385

http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/message-translator.html

<multicast>
<pipeline>

<bean ref="something"/>
<to uri="log:Something"/>

</pipeline>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</multicast>

</route>

In the above example we are routing from a single Endpoint to a list of different endpoints
specified using URIs. If you find the above a bit confusing, try reading about the Architecture or
try the Examples

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Router

The Message Router from the EIP patterns allows you to consume from an input destination,
evaluate some predicate then choose the right output destination.

The following example shows how to route a request from an input queue:a endpoint to
either queue:b, queue:c or queue:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.choice()

.when(header("foo").isEqualTo("bar"))

386 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/architecture.html
http://camel.apache.org/examples.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

.to("direct:b")
.when(header("foo").isEqualTo("cheese"))

.to("direct:c")
.otherwise()

.to("direct:d");
}

};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<choice>

<when>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>

</when>
<otherwise>

<to uri="direct:d"/>
</otherwise>

</choice>
</route>

</camelContext>

Choice without otherwise

If you use a choice without adding an otherwise, any unmatched exchanges will be
dropped by default.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Translator

Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor
in the routing logic, by using a bean to perform the transformation, or by using transform() in

CHAPTER 10 - PATTERN APPENDIX 387

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean-integration.html

the DSL. You can also use a Data Format to marshal and unmarshal messages in different
encodings.

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in
your Registry such as your Spring XML configuration file as follows

from("activemq:SomeQueue").
beanRef("myTransformerBean", "myMethodName").
to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI etc.
You can omit the method name parameter from beanRef() and the Bean Integration will try to
deduce the method to invoke from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").transform(body().append(" World!")).to("mock:result");

Use Spring XML

You can also use Spring XML Extensions to do a transformation. Basically any Expression
language can be substituted inside the transform element as shown below

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<transform>

<simple>${in.body} extra data!</simple>
</transform>
<to uri="mock:end"/>

</route>
</camelContext>

Or you can use the Bean Integration to invoke a bean

388 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-integration.html

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

You can also use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example
using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

▪ Content Enricher
▪ Using getIn or getOut methods on Exchange

Message Endpoint

Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

When using the DSL to create Routes you typically refer to Message Endpoints by their
URIs rather than directly using the Endpoint interface. Its then a responsibility of the
CamelContext to create and activate the necessary Endpoint instances using the available
Component implementations.

For more details see

CHAPTER 10 - PATTERN APPENDIX 389

http://camel.apache.org/templating.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/activemq.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/using-getin-or-getout-methods-on-exchange.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html

• Message

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following
components

• SEDA for in-VM seda based messaging
• JMS for working with JMS Queues for high performance, clustering and load balancing
• JPA for using a database as a simple message queue
• XMPP for point-to-point communication over XMPP (Jabber)
• and others

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Publish Subscribe Channel

Camel supports the Publish Subscribe Channel from the EIP patterns using for example the
following components:

• JMS for working with JMS Topics for high performance, clustering and load balancing
• XMPP when using rooms for group communication
• SEDA for working with SEDA in the same CamelContext which can work in pub-sub,

but allowing multiple consumers.
• VM as SEDA but for intra-JVM.

390 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/seda.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/vm.html

Using Routing Logic

Another option is to explicitly list the publish-subscribe relationship in your routing logic; this
keeps the producer and consumer decoupled but lets you control the fine grained routing
configuration using the DSL or Xml Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<multicast>

<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>

</multicast>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 391

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DEAD LETTER CHANNEL

Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel
processor which is an Error Handler.

Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to
process; but the chances are if its tried a few more times with some time delay then it will
complete fine. So we typically wish to use some kind of redelivery policy to decide how many
times to try redeliver a message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize
things like

• how many times a message is attempted to be redelivered before it is considered a
failure and sent to the dead letter channel

• the initial redelivery timeout
• whether or not exponential backoff is used (i.e. the time between retries increases

using a backoff multiplier)
• whether to use collision avoidance to add some randomness to the timings
• delay pattern (see below for details)
• Camel 2.11: whether to allow redelivery during stopping/shutdown

Once all attempts at redelivering the message fails then the message is forwarded to the dead
letter queue.

About moving Exchange to dead letter queue and using handled

Handled on Dead Letter Channel

392 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/dead-letter-channel.html

Difference between Dead Letter Channel and Default Error
Handler
The major difference is that Dead Letter Channel has a dead letter queue that
whenever an Exchange could not be processed is moved to. It will always move
failed exchanges to this queue.

Unlike the Default Error Handler that does not have a dead letter queue. So whenever an
Exchange could not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with
the handled option.

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue
(the dead letter endpoint). The exchange is then complete and from the client point of view it
was processed. As such the Dead Letter Channel have handled the Exchange.

For instance configuring the dead letter channel as:

Using the Fluent Builders

errorHandler(deadLetterChannel("jms:queue:dead")
.maximumRedeliveries(3).redeliveryDelay(5000));

Using the Spring XML Extensions

<route errorHandlerRef="myDeadLetterErrorHandler">
...

</route>

<bean id="myDeadLetterErrorHandler"
class="org.apache.camel.builder.DeadLetterChannelBuilder">

<property name="deadLetterUri" value="jms:queue:dead"/>
<property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>

</bean>

<bean id="myRedeliveryPolicyConfig"
class="org.apache.camel.processor.RedeliveryPolicy">

<property name="maximumRedeliveries" value="3"/>
<property name="redeliveryDelay" value="5000"/>

</bean>

The Dead Letter Channel above will clear the caused exception (setException(null)), by
moving the caused exception to a property on the Exchange, with the key
Exchange.EXCEPTION_CAUGHT. Then the Exchange is moved to the
"jms:queue:dead" destination and the client will not notice the failure.

CHAPTER 10 - PATTERN APPENDIX 393

http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html

About moving Exchange to dead letter queue and using the original message

The option useOriginalMessage is used for routing the original input message instead of
the current message that potentially is modified during routing.

For instance if you have this route:

from("jms:queue:order:input")
.to("bean:validateOrder")
.to("bean:transformOrder")
.to("bean:handleOrder");

The route listen for JMS messages and validates, transforms and handle it. During this the
Exchange payload is transformed/modified. So in case something goes wrong and we want to
move the message to another JMS destination, then we can configure our Dead Letter Channel
with the useOriginalMessage option. But when we move the Exchange to this destination
we do not know in which state the message is in. Did the error happen in before the
transformOrder or after? So to be sure we want to move the original input message we
received from jms:queue:order:input. So we can do this by enabling the
useOriginalMessage option as shown below:

// will use original body
errorHandler(deadLetterChannel("jms:queue:dead")

.useOriginalMessage().mamimumRedeliveries(5).redeliverDelay(5000);

Then the messages routed to the jms:queue:dead is the original input. If we want to
manually retry we can move the JMS message from the failed to the input queue, with no
problem as the message is the same as the original we received.

OnRedelivery

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered. See below for sample.

Redelivery default values

Redelivery is disabled by default.

The default redeliver policy will use the following values:
• maximumRedeliveries=0
• redeliverDelay=1000L (1 second)
• maximumRedeliveryDelay = 60 * 1000L (60 seconds)
• And the exponential backoff and collision avoidance is turned off.
• The retriesExhaustedLogLevel are set to LoggingLevel.ERROR
• The retryAttemptedLogLevel are set to LoggingLevel.DEBUG

394 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html

onException and onRedeliver
We also support for per onException to set a onRedeliver. That means you
can do special on redelivery for different exceptions, as opposed to onRedelivery
set on Dead Letter Channel can be viewed as a global scope.

• Stack traces is logged for exhausted messages from Camel 2.2 onwards.
• Handled exceptions is not logged from Camel 2.3 onwards

The maximum redeliver delay ensures that a delay is never longer than the value, default 1
minute. This can happen if you turn on the exponential backoff.

The maximum redeliveries is the number of re delivery attempts. By default Camel will try
to process the exchange 1 + 5 times. 1 time for the normal attempt and then 5 attempts as
redeliveries.
Setting the maximumRedeliveries to a negative value such as -1 will then always redelivery
(unlimited).
Setting the maximumRedeliveries to 0 will disable any re delivery attempt.

Camel will log delivery failures at the DEBUG logging level by default. You can change this by
specifying retriesExhaustedLogLevel and/or retryAttemptedLogLevel. See
ExceptionBuilderWithRetryLoggingLevelSetTest for an example.

You can turn logging of stack traces on/off. If turned off Camel will still log the redelivery
attempt. Its just much less verbose.

Redeliver Delay Pattern

Delay pattern is used as a single option to set a range pattern for delays. If used then the
following options does not apply: (delay, backOffMultiplier, useExponentialBackOff,
useCollisionAvoidance, maximumRedeliveryDelay).

The idea is to set groups of ranges using the following syntax: limit:delay;limit
2:delay 2;limit 3:delay 3;...;limit N:delay N

Each group has two values separated with colon
▪ limit = upper limit
▪ delay = delay in millis

And the groups is again separated with semi colon.
The rule of thumb is that the next groups should have a higher limit than the previous
group.

Lets clarify this with an example:
delayPattern=5:1000;10:5000;20:20000

That gives us 3 groups:
▪ 5:1000
▪ 10:5000

CHAPTER 10 - PATTERN APPENDIX 395

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/dead-letter-channel.html

▪ 20:20000
Resulting in these delays for redelivery attempt:

▪ Redelivery attempt number 1..4 = 0 millis (as the first group start with 5)
▪ Redelivery attempt number 5..9 = 1000 millis (the first group)
▪ Redelivery attempt number 10..19 = 5000 millis (the second group)
▪ Redelivery attempt number 20.. = 20000 millis (the last group)

Note: The first redelivery attempt is 1, so the first group should start with 1 or higher.

You can start a group with limit 1 to eg have a starting delay:
delayPattern=1:1000;5:5000

▪ Redelivery attempt number 1..4 = 1000 millis (the first group)
▪ Redelivery attempt number 5.. = 5000 millis (the last group)

There is no requirement that the next delay should be higher than the previous. You can use
any delay value you like. For example with delayPattern=1:5000;3:1000 we start with
5 sec delay and then later reduce that to 1 second.

Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to
the message to indicate how many times its been redelivered.
Before Camel 2.6: The header is CamelRedeliveryCounter, which is also defined on the
Exchange.REDELIVERY_COUNTER.
Starting with 2.6: The header CamelRedeliveryMaxCounter, which is also defined on the
Exchange.REDELIVERY_MAX_COUNTER, contains the maximum redelivery setting. This
header is absent if you use retryWhile or have unlimited maximum redelivery configured.

And a boolean flag whether it is being redelivered or not (first attempt)
The header CamelRedelivered contains a boolean if the message is redelivered or not,
which is also defined on the Exchange.REDELIVERED.

Dynamically calculated delay from the exchange
In Camel 2.9 and 2.8.2: The header is CamelRedeliveryDelay, which is also defined on the
Exchange.REDELIVERY_DELAY.
Is this header is absent, normal redelivery rules apply.

Which endpoint failed

Available as of Camel 2.1

When Camel routes messages it will decorate the Exchange with a property that contains
the last endpoint Camel send the Exchange to:

String lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT, String.class);

The Exchange.TO_ENDPOINT have the constant value CamelToEndpoint.

396 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

This information is updated when Camel sends a message to any endpoint. So if it exists its
the last endpoint which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be
moved into the dead letter queue, then Camel also decorates the Exchange with another
property that contains that last endpoint:

String failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT,
String.class);

The Exchange.FAILURE_ENDPOINT have the constant value
CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter queue and use that
for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic Recipient List so you
know which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully
processed by a given endpoint, and then later fails for example in a local Bean processing
instead. So beware that this is a hint that helps pinpoint errors.

from("activemq:queue:foo")
.to("http://someserver/somepath")
.beanRef("foo");

Now suppose the route above and a failure happens in the foo bean. Then the
Exchange.TO_ENDPOINT and Exchange.FAILURE_ENDPOINT will still contain the
value of http://someserver/somepath.

Which route failed

Available as of Camel 2.10.4/2.11

When Camel error handler handles an error such as Dead Letter Channel or using
Exception Clause with handled=true, then Camel will decorate
the Exchange with the route id where the error occurred.

String failedRouteId = exchange.getProperty(Exchange.FAILURE_ROUTE_ID, String.class);

The Exchange.FAILURE_ROUTE_ID have the constant value CamelFailureRouteId.

This allows for example you to fetch this information in your dead letter queue and use that
for error reporting.

Control if redelivery is allowed during stopping/shutdown

Available as of Camel 2.11

CHAPTER 10 - PATTERN APPENDIX 397

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean.html
http://someserver/somepath
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exchange.html

Prior to Camel 2.10, Camel will perform redelivery while stopping a route, or shutting down
Camel. This has improved a bit in Camel 2.10 onwards, as Camel will not perform redelivery
attempts when shutting down aggressively (eg during Graceful Shutdown and timeout hit). From
Camel 2.11 onwards there is a new option allowRedeliveryWhileStopping which you
can use to control if redelivery is allowed or not; notice that any in progress redelivery will still
be executed. This option can only disallow any redelivery to be executed after the stopping of
a route/shutdown of Camel has been triggered. If a redelivery is dissallowed then a
RejectedExcutionException is set on the Exchange and the processing of the Exchange
stops. This means any consumer will see the Exchange as failed due the
RejectedExecutionException.

The default value is true to be backwards compatible as before. For example the following
sample shows how to do this with Java DSL and XML DSL

// this error handler will try up till 20 redelivery attempts with 1 second between.
// however if we are stopping then do not allow any redeliver attempts.
errorHandler(defaultErrorHandler()

.allowRedeliveryWhileStopping(false)

.maximumRedeliveries(20).redeliveryDelay(1000).retryAttemptedLogLevel(LoggingLevel.INFO));

from("seda:foo").routeId("foo")
.to("mock:foo")
.throwException(new IllegalArgumentException("Forced"));

And the sample sample with XML DSL

<!-- notice we use the errorHandlerRef attribute to refer to the error handler to use
as default -->

<camelContext errorHandlerRef="myErrorHandler" xmlns="http://camel.apache.org/
schema/spring">

<!-- configure error handler, to redeliver up till 10 times, with 1 sec delay
and if we are stopping then do not allow redeliveries, to stop faster -->

<errorHandler id="myErrorHandler" type="DefaultErrorHandler">
<redeliveryPolicy maximumRedeliveries="20" redeliveryDelay="1000"

allowRedeliveryWhileStopping="false" retryAttemptedLogLevel="INFO"/>
</errorHandler>

<route id="foo">
<from uri="seda:foo"/>

<to uri="mock:foo"/>
<throwException ref="forced"/>

</route>

</camelContext>

398 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/graceful-shutdown.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Samples

The following example shows how to configure the Dead Letter Channel configuration using
the DSL

RouteBuilder builder = new RouteBuilder() {
public void configure() {

// using dead letter channel with a seda queue for errors
errorHandler(deadLetterChannel("seda:errors"));

// here is our route
from("seda:a").to("seda:b");

}
};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder() {
public void configure() {

// configures dead letter channel to use seda queue for errors and use at most
2 redelveries

// and exponential backoff

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).useExponentialBackOff());

// here is our route
from("seda:a").to("seda:b");

}
};

How can I modify the Exchange before redelivery?

We support directly in Dead Letter Channel to set a Processor that is executed before each
redelivery attempt.

When Dead Letter Channel is doing redeliver its possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you
need to alter the message before its redelivered.

Here we configure the Dead Letter Channel to use our processor
MyRedeliveryProcessor to be executed before each redelivery.

// we configure our Dead Letter Channel to invoke
// MyRedeliveryProcessor before a redelivery is
// attempted. This allows us to alter the message before
errorHandler(deadLetterChannel("mock:error").maximumRedeliveries(5)

.onRedelivery(new MyRedeliverProcessor())
// setting delay to zero is just to make unit testing faster
.redeliveryDelay(0L));

CHAPTER 10 - PATTERN APPENDIX 399

http://camel.apache.org/dsl.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html

And this is the processor MyRedeliveryProcessor where we alter the message.

// This is our processor that is executed before every redelivery attempt
// here we can do what we want in the java code, such as altering the message
public class MyRedeliverProcessor implements Processor {

public void process(Exchange exchange) throws Exception {
// the message is being redelivered so we can alter it

// we just append the redelivery counter to the body
// you can of course do all kind of stuff instead
String body = exchange.getIn().getBody(String.class);
int count = exchange.getIn().getHeader(Exchange.REDELIVERY_COUNTER,

Integer.class);

exchange.getIn().setBody(body + count);

// the maximum redelivery was set to 5
int max = exchange.getIn().getHeader(Exchange.REDELIVERY_MAX_COUNTER,

Integer.class);
assertEquals(5, max);

}
}

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

▪ Error Handler
▪ Exception Clause

Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using among others the
following components:

• File for using file systems as a persistent store of messages
• JMS when using persistent delivery (the default) for working with JMS Queues and

Topics for high performance, clustering and load balancing
• JPA for using a database as a persistence layer, or use any of the many other database

component such as SQL, JDBC, iBATIS/MyBatis, Hibernate
• HawtDB for a lightweight key-value persistent store

400 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/exception-clause.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/file2.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/sql.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/mybatis.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/hawtdb.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Bus

Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message
Bus itself as it allows producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the JMS
component for traditional MOM support.
Also worthy of note is the XMPP component for supporting messaging over XMPP (Jabber)

Of course there are also ESB products such as Apache ServiceMix which serve as full fledged
message busses.
You can interact with Apache ServiceMix from Camel in many ways, but in particular you can
use the NMR or JBI component to access the ServiceMix message bus directly.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 401

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://camel.apache.org/nmr.html
http://camel.apache.org/jbi.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Message Construction

EVENT MESSAGE

Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOnly to indicate a oneway event message. Camel
Components then implement this pattern using the underlying transport or protocols.

The default behaviour of many Components is InOnly such as for JMS, File or SEDA

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange Pattern
for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl.

Using the Fluent Builders

from("mq:someQueue").
inOnly().
bean(Foo.class);

or you can invoke an endpoint with an explicit pattern

from("mq:someQueue").
inOnly("mq:anotherQueue");

Using the Spring XML Extensions

402 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://camel.apache.org/jms.html
http://camel.apache.org/file2.html
http://camel.apache.org/seda.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Related
See the related Request Reply message.

<route>
<from uri="mq:someQueue"/>
<inOnly uri="bean:foo"/>

</route>

<route>
<from uri="mq:someQueue"/>
<inOnly uri="mq:anotherQueue"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

REQUEST REPLY

Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern
on a Message which can be set to InOut to indicate a request/reply. Camel Components then
implement this pattern using the underlying transport or protocols.

For example when using JMS with InOut the component will by default perform these
actions

• create by default a temporary inbound queue
• set the JMSReplyTo destination on the request message
• set the JMSCorrelationID on the request message
• send the request message
• consume the response and associate the inbound message to the request using the

JMSCorrelationID (as you may be performing many concurrent request/responses).

CHAPTER 10 - PATTERN APPENDIX 403

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/jms.html
http://camel.apache.org/request-reply.html

Related
See the related Event Message message

Explicitly specifying InOut

When consuming messages from JMS a Request-Reply is indicated by the presence of the
JMSReplyTo header.

You can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

jms:MyQueue?exchangePattern=InOut

You can specify the exchange pattern in DSL rule or Spring configuration.

// Send to an endpoint using InOut
from("direct:testInOut").inOut("mock:result");

// Send to an endpoint using InOut
from("direct:testInOnly").inOnly("mock:result");

// Set the exchange pattern to InOut, then send it from direct:inOnly to mock:result
endpoint
from("direct:testSetToInOnlyThenTo")

.setExchangePattern(ExchangePattern.InOnly)

.to("mock:result");
from("direct:testSetToInOutThenTo")

.setExchangePattern(ExchangePattern.InOut)

.to("mock:result");

// Or we can pass the pattern as a parameter to the to() method
from("direct:testToWithInOnlyParam").to(ExchangePattern.InOnly, "mock:result");
from("direct:testToWithInOutParam").to(ExchangePattern.InOut, "mock:result");
from("direct:testToWithRobustInOnlyParam").to(ExchangePattern.RobustInOnly,
"mock:result");

// Set the exchange pattern to InOut, then send it on
from("direct:testSetExchangePatternInOnly")

.setExchangePattern(ExchangePattern.InOnly).to("mock:result");

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- Send the exchange as InOnly -->
<route>

<from uri="direct:testInOut"/>
<inOut uri="mock:result"/>

</route>

<!-- Send the exchange as InOnly -->

404 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/event-message.html

<route>
<from uri="direct:testInOnly"/>
<inOnly uri="mock:result"/>

</route>

<!-- lets set the exchange pattern then send it on -->
<route>

<from uri="direct:testSetToInOnlyThenTo"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>

</route>
<route>

<from uri="direct:testSetToInOutThenTo"/>
<setExchangePattern pattern="InOut"/>
<to uri="mock:result"/>

</route>
<route>

<from uri="direct:testSetExchangePatternInOnly"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>

</route>

<!-- Lets pass the pattern as an argument in the to element -->
<route>

<from uri="direct:testToWithInOnlyParam"/>
<to uri="mock:result" pattern="InOnly"/>

</route>
<route>

<from uri="direct:testToWithInOutParam"/>
<to uri="mock:result" pattern="InOut"/>

</route>
<route>

<from uri="direct:testToWithRobustInOnlyParam"/>
<to uri="mock:result" pattern="RobustInOnly"/>

</route>
</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Correlation Identifier

Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header
on a Message.

CHAPTER 10 - PATTERN APPENDIX 405

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message.html

When working with the ActiveMQ or JMS components the correlation identifier header is
called JMSCorrelationID. You can add your own correlation identifier to any message
exchange to help correlate messages together to a single conversation (or business process).

The use of a Correlation Identifier is key to working with the Camel Business Activity
Monitoring Framework and can also be highly useful when testing with simulation or canned
data such as with the Mock testing framework

Some EIP patterns will spin off a sub message, and in those cases, Camel will add a
correlation id on the Exchange as a property with they key Exchange.CORRELATION_ID,
which links back to the source Exchange. For example the Splitter, Multicast, Recipient List, and
Wire Tap EIP does this.

See Also

• BAM

RETURN ADDRESS

Camel supports the Return Address from the EIP patterns by using the JMSReplyTo header.

For example when using JMS with InOut the component will by default return to the address
given in JMSReplyTo.

Requestor Code

406 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/bam.html
http://camel.apache.org/bam.html
http://camel.apache.org/mock.html
http://camel.apache.org/eip.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/multicast.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/bam.html
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html

getMockEndpoint("mock:bar").expectedBodiesReceived("Bye World");
template.sendBodyAndHeader("direct:start", "World", "JMSReplyTo", "queue:bar");

Route Using the Fluent Builders

from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
from("activemq:queue:foo").transform(body().prepend("Bye "));
from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

Route Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="activemq:queue:foo?preserveMessageQos=true"/>

</route>

<route>
<from uri="activemq:queue:foo"/>
<transform>

<simple>Bye ${in.body}</simple>
</transform>

</route>

<route>
<from uri="activemq:queue:bar?disableReplyTo=true"/>
<to uri="mock:bar"/>

</route>

For a complete example of this pattern, see this junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE ROUTING

Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct
destination based on the contents of the message exchanges.

CHAPTER 10 - PATTERN APPENDIX 407

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://camel.apache.org/enterprise-integration-patterns.html

The following example shows how to route a request from an input seda:a endpoint to
either seda:b, seda:c or seda:d depending on the evaluation of various Predicate
expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.choice()

.when(header("foo").isEqualTo("bar"))
.to("direct:b")

.when(header("foo").isEqualTo("cheese"))
.to("direct:c")

.otherwise()
.to("direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<choice>

<when>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>

</when>
<otherwise>

<to uri="direct:d"/>
</otherwise>

</choice>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test case

408 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup

See Why can I not use when or otherwise in a Java Camel route if you have
problems with the Java DSL, accepting using when or otherwise.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Filter

The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming messages
from an endpoint called queue:a, which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.filter(header("foo").isEqualTo("bar"))

.to("direct:b");
}

};

You can, of course, use many different Predicate languages such as XPath, XQuery, SQL or
various Scripting Languages. Here is an XPath example

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter().method(MyBean.class, "isGoldCustomer").to("mock:result").end()
.to("mock:end");

CHAPTER 10 - PATTERN APPENDIX 409

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/why-can-i-not-use-when-or-otherwise-in-a-java-camel-route.html

public static class MyBean {
public boolean isGoldCustomer(@Header("level") String level) {

return level.equals("gold");
}

}

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</filter>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test case

Using stop

Available as of Camel 2.0

Stop is a bit different than a message filter as it will filter out all messages and end the route
entirely (filter only applies to its child processor). Stop is convenient to use in a Content Based
Router when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word Bye
in the message body. Notice how we prevent this in the when predicate by using the
.stop().

from("direct:start")
.choice()

.when(body().contains("Hello")).to("mock:hello")

.when(body().contains("Bye")).to("mock:bye").stop()

.otherwise().to("mock:other")
.end()
.to("mock:result");

Knowing if Exchange was filtered or not

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange that states if it was filtered or
not.

410 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/exchange.html

filtered endpoint required inside </filter> tag
make sure you put the endpoint you want to filter (<to uri="seda:b"/>, etc.) before
the closing </filter> tag or the filter will not be applied (in 2.8+, omitting this will
result in an error)

The property has the key Exchange.FILTER_MATCHED, which has the String value of
CamelFilterMatched. Its value is a boolean indicating true or false. If the value is
true then the Exchange was routed in the filter block. This property will be visible within the
Message Filter block who's Predicate matches (value set to true), and to the steps immediately
following the Message Filter with the value set based on the results of the last Message Filter
Predicate evaluated.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

DYNAMIC ROUTER

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the
dependency of the router on all possible destinations while maintaining its efficiency.

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a dynamic
Routing Slip which evaluates the slip on-the-fly.

Options

Name
Default
Value

Description

uriDelimiter , Delimiter used if the Expression returned multiple endpoints.

CHAPTER 10 - PATTERN APPENDIX 411

http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/expression.html

Beware
You must ensure the expression used for the dynamicRouter such as a bean,
will return null to indicate the end. Otherwise the dynamicRouter will keep
repeating endlessly.

ignoreInvalidEndpoints false
If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will thrown an exception stating the
endpoint uri is not valid.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5 the Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the
Exchange which contains the current endpoint as it advanced though the slip. This allows you to
know how far we have processed in the slip. (It's a slip because the Dynamic Router
implementation is based on top of Routing Slip).

Java DSL

In Java DSL you can use the dynamicRouter as shown below:

from("direct:start")
// use a bean as the dynamic router
.dynamicRouter(method(DynamicRouterTest.class, "slip"));

Which will leverage a Bean to compute the slip on-the-fly, which could be implemented as
follows:

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @return endpoints to go, or <tt>null</tt> to indicate the end
*/

public String slip(String body) {
bodies.add(body);
invoked++;

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

412 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/dynamic-router.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean.html

}

// no more so return null
return null;

}

Mind that this example is only for show and tell. The current implementation is not thread safe.
You would have to store the state on the Exchange, to ensure thread safety, as shown below:

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @param properties the exchange properties where we can store state between

invocations
* @return endpoints to go, or <tt>null</tt> to indicate the end
*/

public String slip(String body, @Properties Map<String, Object> properties) {
bodies.add(body);

// get the state from the exchange properties and keep track how many times
// we have been invoked
int invoked = 0;
Object current = properties.get("invoked");
if (current != null) {

invoked = Integer.valueOf(current.toString());
}
invoked++;
// and store the state back on the properties
properties.put("invoked", invoked);

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

}

// no more so return null
return null;

}

You could also store state as message headers, but they are not guaranteed to be preserved
during routing, where as properties on the Exchange are. Although there was a bug in the
method call expression, see the warning below.

CHAPTER 10 - PATTERN APPENDIX 413

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Using beans to store state
Mind that in Camel 2.9.2 or older, when using a Bean the state is not propagated, so
you will have to use a Processor instead. This is fixed in Camel 2.9.3 onwards.

Spring XML

The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<dynamicRouter>

<!-- use a method call on a bean as dynamic router -->
<method ref="mySlip" method="slip"/>

</dynamicRouter>
</route>

<route>
<from uri="direct:foo"/>
<transform><constant>Bye World</constant></transform>
<to uri="mock:foo"/>

</route>

</camelContext>

@DynamicRouter annotation

You can also use the @DynamicRouter annotation, for example the Camel 2.4 example
below could be written as follows. The route method would then be invoked repeatedly as
the message is processed dynamically. The idea is to return the next endpoint uri where to go.
Return null to indicate the end. You can return multiple endpoints if you like, just as the
Routing Slip, where each endpoint is separated by a delimiter.

public class MyDynamicRouter {

@Consume(uri = "activemq:foo")
@DynamicRouter
public String route(@XPath("/customer/id") String customerId, @Header("Location")

String location, Document body) {
// query a database to find the best match of the endpoint based on the input

parameteres
// return the next endpoint uri, where to go. Return null to indicate the end.

414 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean.html
http://camel.apache.org/processor.html

}
}

Dynamic Router in Camel 2.4 or older

The simplest way to implement this is to use the RecipientList Annotation on a Bean method to
determine where to route the message.

public class MyDynamicRouter {

@Consume(uri = "activemq:foo")
@RecipientList
public List<String> route(@XPath("/customer/id") String customerId,

@Header("Location") String location, Document body) {
// query a database to find the best match of the endpoint based on the input

parameteres
...

}
}

In the above we can use the Parameter Binding Annotations to bind different parts of the
Message to method parameters or use an Expression such as using XPath or XQuery.

The method can be invoked in a number of ways as described in the Bean Integration such
as

• POJO Producing
• Spring Remoting
• Bean component

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of
dynamically specified recipients.

CHAPTER 10 - PATTERN APPENDIX 415

http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/bean.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/enterprise-integration-patterns.html

The recipients will receive a copy of the same Exchange, and Camel will execute them
sequentially.

Options

Name
Default
Value

Description

delimiter , Delimiter used if the Expression returned multiple endpoints.

strategyRef Ê
An AggregationStrategy that will assemble the replies from recipients into a single outgoing message from the Recipient List.
By default Camel will use the last reply as the outgoing message.

parallelProcessing false
Camel 2.2: If enabled, messages are sent to the recipients concurrently. Note that the calling thread will still wait until all
messages have been fully processed before it continues; it's the sending and processing of replies from recipients which
happens in parallel.

executorServiceRef Ê
Camel 2.2: A custom Thread Pool to use for parallel processing. Note that enabling this option implies parallel processing,
so you need not enable that option as well.

stopOnException false
Camel 2.2: Whether to immediately stop processing when an exception occurs. If disabled, Camel will send the message
to all recipients regardless of any individual failures. You can process exceptions in an AggregationStrategy implementation,
which supports full control of error handling.

ignoreInvalidEndpoints false
Camel 2.3: Whether to ignore an endpoint URI that could not be resolved. If disabled, Camel will throw an exception
identifying the invalid endpoint URI.

streaming false
Camel 2.5: If enabled, Camel will process replies out-of-order - that is, in the order received in reply from each recipient.
If disabled, Camel will process replies in the same order as specified by the Expression.

timeout Ê

Camel 2.5: Specifies a processing timeout milliseconds. If the Recipient List hasn't been able to send and process all replies
within this timeframe, then the timeout triggers and the Recipient List breaks out, with message flow continuing to the next
element. Note that if you provide a TimeoutAwareAggregationStrategy, its timeout method is invoked before breaking
out. Beware: If the timeout is reached with running tasks still remaining, certain tasks for which it is difficult for Camel to
shut down in a graceful manner may continue to run. So use this option with a bit of care. We may be able to improve this
functionality in future Camel releases.

onPrepareRef Ê
Camel 2.8: A custom Processor to prepare the copy of the Exchange each recipient will receive. This allows you to
perform arbitrary transformations, such as deep-cloning the message payload (or any other custom logic).

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more details.

Static Recipient List

The following example shows how to route a request from an input queue:a endpoint to a
static list of destinations

Using Annotations
You can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For
more details see the Bean Integration.

Using the Fluent Builders

416 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<multicast>

<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>

</multicast>
</route>

</camelContext>

Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients
is dynamic and calculated at runtime. The following example demonstrates how to create a
dynamic recipient list using an Expression (which in this case it extracts a named header value
dynamically) to calculate the list of endpoints which are either of type Endpoint or are
converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.recipientList(header("foo"));

}
};

The above assumes that the header contains a list of endpoint URIs. The following takes a single
string header and tokenizes it

from("direct:a").recipientList(
header("recipientListHeader").tokenize(","));

CHAPTER 10 - PATTERN APPENDIX 417

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html

Iteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:
▪ java.util.Collection
▪ java.util.Iterator
▪ arrays
▪ org.w3c.dom.NodeList
▪ a single String with values separated with comma
▪ any other type will be regarded as a single value

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<recipientList>

<xpath>$foo</xpath>
</recipientList>

</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using delimiter in Spring XML

In Spring DSL you can set the delimiter attribute for setting a delimiter to be used if the
header value is a single String with multiple separated endpoints. By default Camel uses comma
as delimiter, but this option lets you specify a customer delimiter to use instead.

<route>
<from uri="direct:a" />
<!-- use comma as a delimiter for String based values -->
<recipientList delimiter=",">

<header>myHeader</header>
</recipientList>

</route>

So if myHeader contains a String with the value "activemq:queue:foo,
activemq:topic:hello , log:bar" then Camel will split the String using the
delimiter given in the XML that was comma, resulting into 3 endpoints to send to. You can use
spaces between the endpoints as Camel will trim the value when it lookup the endpoint to send
to.

Note: In Java DSL you use the tokenizer to archive the same. The route above in Java
DSL:

418 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup

from("direct:a").recipientList(header("myHeader").tokenize(","));

In Camel 2.1 its a bit easier as you can pass in the delimiter as 2nd parameter:

from("direct:a").recipientList(header("myHeader"), "#");

Sending to multiple recipients in parallel

Available as of Camel 2.2

The Recipient List now supports parallelProcessing that for example Splitter also
supports. You can use it to use a thread pool to have concurrent tasks sending the Exchange to
multiple recipients concurrently.

from("direct:a").recipientList(header("myHeader")).parallelProcessing();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList parallelProcessing="true">

<header>myHeader</header>
</recipientList>

</route>

Stop continuing in case one recipient failed

Available as of Camel 2.2

The Recipient List now supports stopOnException that for example Splitter also
supports. You can use it to stop sending to any further recipients in case any recipient failed.

from("direct:a").recipientList(header("myHeader")).stopOnException();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList stopOnException="true">

<header>myHeader</header>
</recipientList>

</route>

CHAPTER 10 - PATTERN APPENDIX 419

http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html

Note: You can combine parallelProcessing and stopOnException and have them
both true.

Ignore invalid endpoints

Available as of Camel 2.3

The Recipient List now supports ignoreInvalidEndpoints which the Routing Slip
also supports. You can use it to skip endpoints which is invalid.

from("direct:a").recipientList(header("myHeader")).ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList ignoreInvalidEndpoints="true">

<header>myHeader</header>
</recipientList>

</route>

Then lets say the myHeader contains the following two endpoints direct:foo,xxx:bar.
The first endpoint is valid and works. However the 2nd is invalid and will just be ignored. Camel
logs at INFO level about, so you can see why the endpoint was invalid.

Using custom AggregationStrategy

Available as of Camel 2.2

You can now use you own AggregationStrategy with the Recipient List. However its
not that often you need that. What its good for is that in case you are using Request Reply
messaging then the replies from the recipient can be aggregated. By default Camel uses
UseLatestAggregationStrategy which just keeps that last received reply. What if you
must remember all the bodies that all the recipients send back, then you can use your own
custom aggregator that keeps those. Its the same principle as with the Aggregator EIP so check
it out for details.

from("direct:a")
.recipientList(header("myHeader")).aggregationStrategy(new

MyOwnAggregationStrategy())
.to("direct:b");

And in Spring XML its an attribute on the recipient list tag.

420 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/recipient-list.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/aggregator.html

<route>
<from uri="direct:a"/>
<recipientList strategyRef="myStrategy">

<header>myHeader</header>
</recipientList>
<to uri="direct:b"/>

</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

Using custom thread pool

Available as of Camel 2.2

A thread pool is only used for parallelProcessing. You supply your own custom
thread pool via the ExecutorServiceStrategy (see Camel's Threading Model), the same
way you would do it for the aggregationStrategy. By default Camel uses a thread pool
with 10 threads (subject to change in a future version).

Using method call as recipient list

You can use a Bean to provide the recipients, for example:

from("activemq:queue:test").recipientList().method(MessageRouter.class, "routeTo");

And then MessageRouter:

public class MessageRouter {

public String routeTo() {
String queueName = "activemq:queue:test2";
return queueName;

}
}

When you use a Bean then do not also use the @RecipientList annotation as this will in
fact add yet another recipient list, so you end up having two. Do not do like this.

public class MessageRouter {

@RecipientList
public String routeTo() {

String queueName = "activemq:queue:test2";
return queueName;

}
}

CHAPTER 10 - PATTERN APPENDIX 421

http://camel.apache.org/threading-model.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html

Well you should only do like that above (using @RecipientList) if you route just route to a
Bean which you then want to act as a recipient list.
So the original route can be changed to:

from("activemq:queue:test").bean(MessageRouter.class, "routeTo");

Which then would invoke the routeTo method and detect its annotated with
@RecipientList and then act accordingly as if it was a recipient list EIP.

Using timeout

Available as of Camel 2.5

If you use parallelProcessing then you can configure a total timeout value in millis.
Camel will then process the messages in parallel until the timeout is hit. This allows you to
continue processing if one message is slow. For example you can set a timeout value of 20 sec.
For example in the unit test below you can see we multicast the message to 3 destinations. We
have a timeout of 2 seconds, which means only the last two messages can be completed within
the timeframe. This means we will only aggregate the last two which yields a result aggregation
which outputs "BC".

from("direct:start")
.multicast(new AggregationStrategy() {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
if (oldExchange == null) {

return newExchange;
}

String body = oldExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(body +

newExchange.getIn().getBody(String.class));
return oldExchange;

}
})
.parallelProcessing().timeout(250).to("direct:a", "direct:b", "direct:c")

// use end to indicate end of multicast route
.end()
.to("mock:result");

from("direct:a").delay(1000).to("mock:A").setBody(constant("A"));

from("direct:b").to("mock:B").setBody(constant("B"));

from("direct:c").to("mock:C").setBody(constant("C"));

By default if a timeout occurs the AggregationStrategy is not invoked. However you can
implement a specialized version

422 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/bean.html

Tasks may keep running
If the timeout is reached with running tasks still remaining, certain tasks for which it
is difficult for Camel to shut down in a graceful manner may continue to run. So use
this option with a bit of care. We may be able to improve this functionality in future
Camel releases.

Timeout in other EIPs
This timeout feature is also supported by Splitter and both multicast and
recipientList.

public interface TimeoutAwareAggregationStrategy extends AggregationStrategy {

/**
* A timeout occurred
*
* @param oldExchange the oldest exchange (is <tt>null</tt> on first aggregation

as we only have the new exchange)
* @param index the index
* @param total the total
* @param timeout the timeout value in millis
*/

void timeout(Exchange oldExchange, int index, int total, long timeout);

This allows you to deal with the timeout in the AggregationStrategy if you really need
to.

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

See details at Multicast

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 423

http://camel.apache.org/multicast.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/splitter.html

Timeout is total
The timeout is total, which means that after X time, Camel will aggregate the
messages which has completed within the timeframe. The remainders will be
cancelled. Camel will also only invoke the timeout method in the
TimeoutAwareAggregationStrategy once, for the first index which caused
the timeout.

Splitter

The Splitter from the EIP patterns allows you split a message into a number of pieces and
process them individually

You need to specify a Splitter as split(). In earlier versions of Camel, you need to use
splitter().

Options

Name
Default
Value

Description

strategyRef Ê
Refers to an AggregationStrategy to be used to assemble the replies from the sub-messages, into a single outgoing message from
the Splitter. See the defaults described below in What the Splitter returns.

parallelProcessing false
If enables then processing the sub-messages occurs concurrently. Note the caller thread will still wait until all sub-messages has
been fully processed, before it continues.

executorServiceRef Ê
Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then parallel processing is
automatic implied, and you do not have to enable that option as well.

stopOnException false
Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If disable, then Camel
continue splitting and process the sub-messages regardless if one of them failed. You can deal with exceptions in the
AggregationStrategy class where you have full control how to handle that.

streaming false

If enabled then Camel will split in a streaming fashion, which means it will split the input message in chunks. This reduces the
memory overhead. For example if you split big messages its recommended to enable streaming. If streaming is enabled then the
sub-message replies will be aggregated out-of-order, eg in the order they come back. If disabled, Camel will process sub-message
replies in the same order as they where splitted.

timeout Ê

Camel 2.5: Sets a total timeout specified in millis. If the Recipient List hasn't been able to split and process all replies within the
given timeframe, then the timeout triggers and the Splitter breaks out and continues. Notice if you provide a
TimeoutAwareAggregationStrategy then the timeout method is invoked before breaking out. If the timeout is reached with
running tasks still remaining, certain tasks for which it is difficult for Camel to shut down in a graceful manner may continue to
run. So use this option with a bit of care. We may be able to improve this functionality in future Camel releases.

onPrepareRef Ê
Camel 2.8: Refers to a custom Processor to prepare the sub-message of the Exchange, before its processed. This allows you to
do any custom logic, such as deep-cloning the message payload if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See further below for more details.

Exchange properties

The following properties are set on each Exchange that are split:

424 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/splitter.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html

property type description

CamelSplitIndex int
A split counter that increases for each Exchange
being split. The counter starts from 0.

CamelSplitSize int

The total number of Exchanges that was splitted.
This header is not applied for stream based splitting.
From Camel 2.9 onwards this header is also set in
stream based splitting, but only on the completed
Exchange.

CamelSplitComplete boolean
Camel 2.4: Whether or not this Exchange is the
last.

Examples

The following example shows how to take a request from the queue:a endpoint the split it
into pieces using an Expression, then forward each piece to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.split(body(String.class).tokenize("\n"))

.to("direct:b");
}

};

The splitter can use any Expression language so you could use any of the Languages Supported
such as XPath, XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activemq:my.queue").split(xpath("//foo/
bar")).convertBodyTo(String.class).to("file://some/directory")

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<split>

<xpath>/invoice/lineItems</xpath>
<to uri="direct:b"/>

</split>

CHAPTER 10 - PATTERN APPENDIX 425

http://camel.apache.org/expression.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/languages-supported.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using Tokenizer from Spring XML Extensions*

You can use the tokenizer expression in the Spring DSL to split bodies or headers using a
token. This is a common use-case, so we provided a special tokenizer tag for this.
In the sample below we split the body using a @ as separator. You can of course use comma or
space or even a regex pattern, also set regex=true.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<split>

<tokenize token="@"/>
<to uri="mock:result"/>

</split>
</route>

</camelContext>

Splitting the body in Spring XML is a bit harder as you need to use the Simple language to
dictate this

<split>
<simple>${body}</simple>
<to uri="mock:result"/>

</split>

What the Splitter returns

Camel 2.2 or older:
The Splitter will by default return the last splitted message.

Camel 2.3 and newer
The Splitter will by default return the original input message.

For all versions
You can override this by suppling your own strategy as an AggregationStrategy. There is
a sample on this page (Split aggregate request/reply sample). Notice its the same strategy as the
Aggregator supports. This Splitter can be viewed as having a build in light weight Aggregator.

426 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/simple.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator.html

Parallel execution of distinct 'parts'

If you want to execute all parts in parallel you can use special notation of split() with two
arguments, where the second one is a boolean flag if processing should be parallel. e.g.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").split(xPathBuilder, true).to("activemq:my.parts");

The boolean option has been refactored into a builder method parallelProcessing so its
easier to understand what the route does when we use a method instead of true|false.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").split(xPathBuilder).parallelProcessing().to("activemq:my.parts");

Stream based

You can split streams by enabling the streaming mode using the streaming builder method.

from("direct:streaming").split(body().tokenize(",")).streaming().to("activemq:my.parts");

You can also supply your custom splitter to use with streaming like this:

import static org.apache.camel.builder.ExpressionBuilder.beanExpression;
from("direct:streaming")

.split(beanExpression(new MyCustomIteratorFactory(), "iterator"))

.streaming().to("activemq:my.parts")

Streaming big XML payloads using Tokenizer language

Available as of Camel 2.9
If you have a big XML payload, from a file source, and want to split it in streaming mode, then
you can use the Tokenizer language with start/end tokens to do this with low memory
footprint.
For example you may have a XML payload structured as follows

<orders>
<order>

<!-- order stuff here -->
</order>
<order>

<!-- order stuff here -->
</order>

CHAPTER 10 - PATTERN APPENDIX 427

Splitting big XML payloads
The XPath engine in Java and saxon will load the entire XML content into memory.
And thus they are not well suited for very big XML payloads.
Instead you can use a custom Expression which will iterate the XML payload in a
streamed fashion. From Camel 2.9 onwards you can use the Tokenizer language
which supports this when you supply the start and end tokens.

StAX component
The Camel StAX component can also be used to split big XML files in a streaming
mode. See more details at StAX.

...
<order>

<!-- order stuff here -->
</order>

</orders>

Now to split this big file using XPath would cause the entire content to be loaded into memory.
So instead we can use the Tokenizer language to do this as follows:

from("file:inbox")
.split().tokenizeXML("order").streaming()

.to("activemq:queue:order");

In XML DSL the route would be as follows:

<route>
<from uri="file:inbox"/>
<split streaming="true">

<tokenize token="order" xml="true"/>
<to uri="activemq:queue:order"/>

</split>
</route>

Notice the tokenizeXML method which will split the file using the tag name of the child
node, which mean it will grab the content between the <order> and </order> tags (incl.
the tokens). So for example a splitted message would be as follows:

428 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/stax.html
http://camel.apache.org/stax.html

<order>
<!-- order stuff here -->

</order>

If you want to inherit namespaces from a root/parent tag, then you can do this as well by
providing the name of the root/parent tag:

<route>
<from uri="file:inbox"/>
<split streaming="true">

<tokenize token="order" inheritNamespaceTagName="orders" xml="true"/>
<to uri="activemq:queue:order"/>

</split>
</route>

And in Java DSL its as follows:

from("file:inbox")
.split().tokenizeXML("order", "orders").streaming()

.to("activemq:queue:order");

Splitting files by grouping N lines together

Available as of Camel 2.10

The Tokenizer language has a new option group that allows you to group N parts
together, for example to split big files into chunks of 1000 lines.

from("file:inbox")
.split().tokenize("\n", 1000).streaming()

.to("activemq:queue:order");

And in XML DSL

<route>
<from uri="file:inbox"/>
<split streaming="true">

<tokenize token="\n" group="1000"/>
<to uri="activemq:queue:order"/>

</split>
</route>

The group option is a number that must be a positive number that dictates how many groups
to combine together. Each part will be combined using the token.
So in the example above the message being sent to the activemq order queue, will contain 1000

CHAPTER 10 - PATTERN APPENDIX 429

http://camel.apache.org/tokenizer.html

lines, and each line separated by the token (which is a new line token).
The output when using the group option is always a java.lang.String type.

Specifying a custom aggregation strategy

This is specified similar to the Aggregator.

Specifying a custom ThreadPoolExecutor

You can customize the underlying ThreadPoolExecutor used in the parallel splitter. In the Java
DSL try something like this:

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");

ExecutorService pool = ...

from("activemq:my.queue")
.split(xPathBuilder).parallelProcessing().executorService(pool)

.to("activemq:my.parts");

Using a Pojo to do the splitting

As the Splitter can use any Expression to do the actual splitting we leverage this fact and use a
method expression to invoke a Bean to get the splitted parts.
The Bean should return a value that is iterable such as: java.util.Collection,
java.util.Iterator or an array.
So the returned value, will then be used by Camel at runtime, to split the message.
In the route we define the Expression as a method call to invoke our Bean that we have
registered with the id mySplitterBean in the Registry.

from("direct:body")
// here we use a POJO bean mySplitterBean to do the split of the payload
.split().method("mySplitterBean", "splitBody")
.to("mock:result");

from("direct:message")
// here we use a POJO bean mySplitterBean to do the split of the message
// with a certain header value
.split().method("mySplitterBean", "splitMessage")
.to("mock:result");

And the logic for our Bean is as simple as. Notice we use Camel Bean Binding to pass in the
message body as a String object.

430 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/aggregator.html
http://camel.apache.org/splitter.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html

Streaming mode and using pojo
When you have enabled the streaming mode, then you should return a Iterator
to ensure streamish fashion. For example if the message is a big file, then by using an
iterator, that returns a piece of the file in chunks, in the next method of the
Iterator ensures low memory footprint. This avoids the need for reading the
entire content into memory. For an example see the source code for the
TokenizePair implementation.

public class MySplitterBean {

/**
* The split body method returns something that is iteratable such as a

java.util.List.
*
* @param body the payload of the incoming message
* @return a list containing each part splitted
*/

public List<String> splitBody(String body) {
// since this is based on an unit test you can of cause
// use different logic for splitting as Camel have out
// of the box support for splitting a String based on comma
// but this is for show and tell, since this is java code
// you have the full power how you like to split your messages
List<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {

answer.add(part);
}
return answer;

}

/**
* The split message method returns something that is iteratable such as a

java.util.List.
*
* @param header the header of the incoming message with the name user
* @param body the payload of the incoming message
* @return a list containing each part splitted
*/

public List<Message> splitMessage(@Header(value = "user") String header, @Body
String body) {

// we can leverage the Parameter Binding Annotations
// http://camel.apache.org/parameter-binding-annotations.html
// to access the message header and body at same time,
// then create the message that we want, splitter will
// take care rest of them.
// *NOTE* this feature requires Camel version >= 1.6.1
List<Message> answer = new ArrayList<Message>();
String[] parts = header.split(",");

CHAPTER 10 - PATTERN APPENDIX 431

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/main/java/org/apache/camel/support/TokenPairExpressionIterator.java

for (String part : parts) {
DefaultMessage message = new DefaultMessage();
message.setHeader("user", part);
message.setBody(body);
answer.add(message);

}
return answer;

}
}

Split aggregate request/reply sample

This sample shows how you can split an Exchange, process each splitted message, aggregate and
return a combined response to the original caller using request/reply.

The route below illustrates this and how the split supports a aggregationStrategy to
hold the in progress processed messages:

// this routes starts from the direct:start endpoint
// the body is then splitted based on @ separator
// the splitter in Camel supports InOut as well and for that we need
// to be able to aggregate what response we need to send back, so we provide our
// own strategy with the class MyOrderStrategy.
from("direct:start")

.split(body().tokenize("@"), new MyOrderStrategy())
// each splitted message is then send to this bean where we can process it
.to("bean:MyOrderService?method=handleOrder")
// this is important to end the splitter route as we do not want to do more

routing
// on each splitted message

.end()
// after we have splitted and handled each message we want to send a single

combined
// response back to the original caller, so we let this bean build it for us
// this bean will receive the result of the aggregate strategy: MyOrderStrategy
.to("bean:MyOrderService?method=buildCombinedResponse")

And the OrderService bean is as follows:

public static class MyOrderService {

private static int counter;

/**
* We just handle the order by returning a id line for the order
*/

public String handleOrder(String line) {
LOG.debug("HandleOrder: " + line);
return "(id=" + ++counter + ",item=" + line + ")";

432 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html

}

/**
* We use the same bean for building the combined response to send
* back to the original caller
*/

public String buildCombinedResponse(String line) {
LOG.debug("BuildCombinedResponse: " + line);
return "Response[" + line + "]";

}
}

And our custom aggregationStrategy that is responsible for holding the in progress
aggregated message that after the splitter is ended will be sent to the
buildCombinedResponse method for final processing before the combined response can
be returned to the waiting caller.

/**
* This is our own order aggregation strategy where we can control
* how each splitted message should be combined. As we do not want to
* loos any message we copy from the new to the old to preserve the
* order lines as long we process them
*/

public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
// put order together in old exchange by adding the order from new exchange

if (oldExchange == null) {
// the first time we aggregate we only have the new exchange,
// so we just return it
return newExchange;

}

String orders = oldExchange.getIn().getBody(String.class);
String newLine = newExchange.getIn().getBody(String.class);

LOG.debug("Aggregate old orders: " + orders);
LOG.debug("Aggregate new order: " + newLine);

// put orders together separating by semi colon
orders = orders + ";" + newLine;
// put combined order back on old to preserve it
oldExchange.getIn().setBody(orders);

// return old as this is the one that has all the orders gathered until now
return oldExchange;

}
}

CHAPTER 10 - PATTERN APPENDIX 433

So lets run the sample and see how it works.
We send an Exchange to the direct:start endpoint containing a IN body with the String
value: A@B@C. The flow is:

HandleOrder: A
HandleOrder: B
Aggregate old orders: (id=1,item=A)
Aggregate new order: (id=2,item=B)
HandleOrder: C
Aggregate old orders: (id=1,item=A);(id=2,item=B)
Aggregate new order: (id=3,item=C)
BuildCombinedResponse: (id=1,item=A);(id=2,item=B);(id=3,item=C)
Response to caller: Response[(id=1,item=A);(id=2,item=B);(id=3,item=C)]

Stop processing in case of exception

Available as of Camel 2.1

The Splitter will by default continue to process the entire Exchange even in case of one of
the splitted message will thrown an exception during routing.
For example if you have an Exchange with 1000 rows that you split and route each sub
message. During processing of these sub messages an exception is thrown at the 17th. What
Camel does by default is to process the remainder 983 messages. You have the chance to
remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and
let the Camel error handler handle it. You can do this in Camel 2.1 by specifying that it should
stop in case of an exception occurred. This is done by the stopOnException option as
shown below:

from("direct:start")
.split(body().tokenize(",")).stopOnException()

.process(new MyProcessor())

.to("mock:split");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<split stopOnException="true">

<tokenize token=","/>
<process ref="myProcessor"/>
<to uri="mock:split"/>

</split>
</route>

434 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

See details at Multicast

Sharing unit of work

Available as of Camel 2.8

The Splitter will by default not share unit of work between the parent exchange and each
splitted exchange. This means each sub exchange has its own individual unit of work.

For example you may have an use case, where you want to split a big message. And you
want to regard that process as an atomic isolated operation that either is a success or failure. In
case of a failure you want that big message to be moved into a dead letter queue. To support
this use case, you would have to share the unit of work on the Splitter.

Here is an example in Java DSL

errorHandler(deadLetterChannel("mock:dead").useOriginalMessage()
.maximumRedeliveries(3).redeliveryDelay(0));

from("direct:start")
.to("mock:a")
// share unit of work in the splitter, which tells Camel to propagate failures from
// processing the splitted messages back to the result of the splitter, which

allows
// it to act as a combined unit of work
.split(body().tokenize(",")).shareUnitOfWork()

.to("mock:b")

.to("direct:line")
.end()
.to("mock:result");

from("direct:line")
.to("log:line")
.process(new MyProcessor())
.to("mock:line");

Now in this example what would happen is that in case there is a problem processing each sub
message, the error handler will kick in (yes error handling still applies for the sub messages).
But what doesn't happen is that if a sub message fails all redelivery attempts (its exhausted),
then its not moved into that dead letter queue. The reason is that we have shared the unit of
work, so the sub message will report the error on the shared unit of work. When the Splitter
is done, it checks the state of the shared unit of work and checks if any errors occurred. And if
an error occurred it will set the exception on the Exchange and mark it for rollback. The error
handler will yet again kick in, as the Exchange has been marked as rollback and it had an
exception as well. No redelivery attempts is performed (as it was marked for rollback) and the
Exchange will be moved into the dead letter queue.

CHAPTER 10 - PATTERN APPENDIX 435

http://camel.apache.org/multicast.html
http://camel.apache.org/splitter.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html

Using this from XML DSL is just as easy as you just have to set the shareUnitOfWork
attribute to true:

<camelContext errorHandlerRef="dlc" xmlns="http://camel.apache.org/schema/spring">

<!-- define error handler as DLC, with use original message enabled -->
<errorHandler id="dlc" type="DeadLetterChannel" deadLetterUri="mock:dead"

useOriginalMessage="true">
<redeliveryPolicy maximumRedeliveries="3" redeliveryDelay="0"/>

</errorHandler>

<route>
<from uri="direct:start"/>
<to uri="mock:a"/>
<!-- share unit of work in the splitter, which tells Camel to propagate failures

from
processing the splitted messages back to the result of the splitter, which

allows
it to act as a combined unit of work -->

<split shareUnitOfWork="true">
<tokenize token=","/>
<to uri="mock:b"/>
<to uri="direct:line"/>

</split>
<to uri="mock:result"/>

</route>

<!-- route for processing each splitted line -->
<route>

<from uri="direct:line"/>
<to uri="log:line"/>
<process ref="myProcessor"/>
<to uri="mock:line"/>

</route>

</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Aggregator

This applies for Camel version 2.3 or newer. If you use an older version then
use this Aggregator link instead.

The Aggregator from the EIP patterns allows you to combine a number of messages
together into a single message.

436 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/aggregator.html
http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://camel.apache.org/enterprise-integration-patterns.html

Implementation of shared unit of work
So in reality the unit of work is not shared as a single object instance. Instead
SubUnitOfWork is attached to their parent, and issues callback to the parent
about their status (commit or rollback). This may be refactored in Camel 3.0 where
larger API changes can be done.

A correlation Expression is used to determine the messages which should be aggregated
together. If you want to aggregate all messages into a single message, just use a constant
expression. An AggregationStrategy is used to combine all the message exchanges for a single
correlation key into a single message exchange.

Aggregator options

The aggregator supports the following options:

Option Default Description

correlationExpression Ê
Mandatory Expression which evaluates the correlation key to use for aggregation. The Exchange which has the same
correlation key is aggregated together. If the correlation key could not be evaluated an Exception is thrown. You can
disable this by using the ignoreBadCorrelationKeys option.

aggregationStrategy Ê

Mandatory AggregationStrategy which is used to merge the incoming Exchange with the existing already merged
exchanges. At first call the oldExchange parameter is null. On subsequent invocations the oldExchange
contains the merged exchanges and newExchange is of course the new incoming Exchange. From Camel 2.9.2
onwards the strategy can also be a TimeoutAwareAggregationStrategy implementation, supporting the
timeout callback, see further below for more details.

strategyRef Ê A reference to lookup the AggregationStrategy in the Registry.

completionSize Ê
Number of messages aggregated before the aggregation is complete. This option can be set as either a fixed value or
using an Expression which allows you to evaluate a size dynamically - will use Integer as result. If both are set Camel
will fallback to use the fixed value if the Expression result was null or 0.

completionTimeout Ê

Time in millis that an aggregated exchange should be inactive before its complete. This option can be set as either a fixed
value or using an Expression which allows you to evaluate a timeout dynamically - will use Long as result. If both are set
Camel will fallback to use the fixed value if the Expression result was null or 0. You cannot use this option together
with completionInterval, only one of the two can be used.

completionInterval Ê
A repeating period in millis by which the aggregator will complete all current aggregated exchanges. Camel has a
background task which is triggered every period. You cannot use this option together with completionTimeout, only one
of them can be used.

completionPredicate Ê A Predicate to indicate when an aggregated exchange is complete.

completionFromBatchConsumer false
This option is if the exchanges are coming from a Batch Consumer. Then when enabled the Aggregator2 will use the
batch size determined by the Batch Consumer in the message header CamelBatchSize. See more details at Batch
Consumer. This can be used to aggregate all files consumed from a File endpoint in that given poll.

forceCompletionOnStop false Camel 2.9 Indicates to complete all current aggregated exchanges when the context is stopped

eagerCheckCompletion false

Whether or not to eager check for completion when a new incoming Exchange has been received. This option
influences the behavior of the completionPredicate option as the Exchange being passed in changes accordingly.
When false the Exchange passed in the Predicate is the aggregated Exchange which means any information you may
store on the aggregated Exchange from the AggregationStrategy is available for the Predicate. When true the
Exchange passed in the Predicate is the incoming Exchange, which means you can access data from the incoming
Exchange.

CHAPTER 10 - PATTERN APPENDIX 437

http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/file2.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html

groupExchanges false

If enabled then Camel will group all aggregated Exchanges into a single combined
org.apache.camel.impl.GroupedExchange holder class that holds all the aggregated Exchanges. And as a
result only one Exchange is being sent out from the aggregator. Can be used to combine many incoming Exchanges into
a single output Exchange without coding a custom AggregationStrategy yourself. Important: This option does
not support persistant repository with the aggregator.

ignoreInvalidCorrelationKeys false
Whether or not to ignore correlation keys which could not be evaluated to a value. By default Camel will throw an
Exception, but you can enable this option and ignore the situation instead.

closeCorrelationKeyOnCompletion Ê

Whether or not too late Exchanges should be accepted or not. You can enable this to indicate that if a correlation key
has already been completed, then any new exchanges with the same correlation key be denied. Camel will then throw a
closedCorrelationKeyException exception. When using this option you pass in a integer which is a
number for a LRUCache which keeps that last X number of closed correlation keys. You can pass in 0 or a negative
value to indicate a unbounded cache. By passing in a number you are ensured that cache won't grow too big if you use a
log of different correlation keys.

discardOnCompletionTimeout false
Camel 2.5: Whether or not exchanges which complete due to a timeout should be discarded. If enabled then when a
timeout occurs the aggregated message will not be sent out but dropped (discarded).

aggregationRepository Ê
Allows you to plugin you own implementation of org.apache.camel.spi.AggregationRepository which
keeps track of the current inflight aggregated exchanges. Camel uses by default a memory based implementation.

aggregationRepositoryRef Ê Reference to lookup a aggregationRepository in the Registry.

parallelProcessing false
When aggregated are completed they are being send out of the aggregator. This option indicates whether or not Camel
should use a thread pool with multiple threads for concurrency. If no custom thread pool has been specified then Camel
creates a default pool with 10 concurrent threads.

executorService Ê
If using parallelProcessing you can specify a custom thread pool to be used. In fact also if you are not using
parallelProcessing this custom thread pool is used to send out aggregated exchanges as well.

executorServiceRef Ê Reference to lookup a executorService in the Registry

timeoutCheckerExecutorService Ê
Camel 2.9: If using either of the completionTimeout, completionTimeoutExpression, or
completionInterval options a background thread is created to check for the completion for every aggregator. Set
this option to provide a custom thread pool to be used rather than creating a new thread for every aggregator.

timeoutCheckerExecutorServiceRef Ê Camel 2.9: Reference to lookup a timeoutCheckerExecutorService in the Registry

optimisticLocking false

Camel 2.11: Turns on using optimistic locking, which requires the aggregationRepository being used, is
supporting this by implementing the
org.apache.camel.spi.OptimisticLockingAggregationRepository interface. See further below for
more details.

Exchange Properties

The following properties are set on each aggregated Exchange:

header type description

CamelAggregatedSize int The total number of Exchanges aggregated into this combined Exchange.

CamelAggregatedCompletedBy String
Indicator how the aggregation was completed as a value of either: predicate, size, consumer, timeout or
interval.

About AggregationStrategy

The AggregationStrategy is used for aggregating the old (lookup by its correlation id)
and the new exchanges together into a single exchange. Possible implementations include
performing some kind of combining or delta processing, such as adding line items together into
an invoice or just using the newest exchange and removing old exchanges such as for state
tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be provided to the
aggregator.

Here are a few example AggregationStrategy implementations that should help you create
your own custom strategy.

438 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

//simply combines Exchange String body values using '+' as a delimiter
class StringAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
if (oldExchange == null) {

return newExchange;
}

String oldBody = oldExchange.getIn().getBody(String.class);
String newBody = newExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(oldBody + "+" + newBody);
return oldExchange;

}
}

//simply combines Exchange body values into an ArrayList<Object>
class ArrayListAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
Object newBody = newExchange.getIn().getBody();
ArrayList<Object> list = null;
if (oldExchange == null) {

list = new ArrayList<Object>();
list.add(newBody);
newExchange.getIn().setBody(list);
return newExchange;

} else {
list = oldExchange.getIn().getBody(ArrayList.class);
list.add(newBody);
return oldExchange;

}
}

}

About completion

When aggregation Exchanges at some point you need to indicate that the aggregated exchanges
is complete, so they can be send out of the aggregator. Camel allows you to indicate
completion in various ways as follows:

▪ completionTimeout - Is an inactivity timeout in which is triggered if no new exchanges
have been aggregated for that particular correlation key within the period.

▪ completionInterval - Once every X period all the current aggregated exchanges are
completed.

▪ completionSize - Is a number indicating that after X aggregated exchanges it's
complete.

▪ completionPredicate - Runs a Predicate when a new exchange is aggregated to
determine if we are complete or not

▪ completionFromBatchConsumer - Special option for Batch Consumer which allows
you to complete when all the messages from the batch has been aggregated.

CHAPTER 10 - PATTERN APPENDIX 439

http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html

▪ forceCompletionOnStop - Camel 2.9 Indicates to complete all current aggregated
exchanges when the context is stopped

Notice that all the completion ways are per correlation key. And you can combine them in any
way you like. It's basically the first which triggers that wins. So you can use a completion size
together with a completion timeout. Only completionTimeout and completionInterval cannot
be used at the same time.

Notice the completion is a mandatory option and must be provided to the aggregator. If not
provided Camel will thrown an Exception on startup.

Persistent AggregationRepository

The aggregator provides a pluggable repository which you can implement your own
org.apache.camel.spi.AggregationRepository.
If you need persistent repository then you can use either Camel HawtDB or SQL Component
components.

Examples

See some examples from the old Aggregator which is somewhat similar to this new aggregator.

Using completionTimeout

In this example we want to aggregate all incoming messages and after 3 seconds of inactivity we
want the aggregation to complete. This is done using the completionTimeout option as
shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and after 3 seconds of inactivity them timeout and complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new BodyInAggregatingStrategy()).completionTimeout(3000)

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="3000">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<to uri="mock:aggregated"/>

</aggregate>

440 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/aggregator.html

Callbacks
See the TimeoutAwareAggregationStrategy and
CompletionAwareAggregationStrategy extensions to
AggregationStrategy that has callbacks when the aggregated Exchange was
completed and if a timeout occurred.

Setting options in Spring XML
Many of the options are configurable as attributes on the <aggregate> tag when
using Spring XML.

</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using TimeoutAwareAggregationStrategy

Available as of Camel 2.9.2

If your aggregation strategy implements TimeoutAwareAggregationStrategy, then
Camel will invoke the timeout method when the timeout occurs. Notice that the values for
index and total parameters will be -1, and the timeout parameter will be provided only if
configured as a fixed value. You must not throw any exceptions from the timeout method.

Using CompletionAwareAggregationStrategy

Available as of Camel 2.9.3

If your aggregation strategy implements CompletionAwareAggregationStrategy,
then Camel will invoke the onComplete method when the aggregated Exchange is completed.
This allows you to do any last minute custom logic such as to cleanup some resources, or
additional work on the exchange as it's now completed.
You must not throw any exceptions from the onCompletion method.

CHAPTER 10 - PATTERN APPENDIX 441

Using completionSize

In this example we want to aggregate all incoming messages and when we have 3 messages
aggregated (in the same correlation group) we want the aggregation to complete. This is done
using the completionSize option as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and after 3 messages has been aggregated then complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new BodyInAggregatingStrategy()).completionSize(3)

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionSize="3">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using completionPredicate

In this example we want to aggregate all incoming messages and use a Predicate to determine
when we are complete. The Predicate can be evaluated using either the aggregated exchange
(default) or the incoming exchange. We will so both situations as examples. We start with the
default situation as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and when the aggregated body contains A+B+C then complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionPredicate(body().contains("A+B+C"))
.to("mock:aggregated");

And the same example using Spring XML:

442 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionPredicate>

<simple>${body} contains 'A+B+C'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

And the other situation where we use the eagerCheckCompletion option to tell Camel to
use the incoming Exchange. Notice how we can just test in the completion predicate that the
incoming message is the END message:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy
// do eager checking which means the completion predicate will use the incoming

exchange
// which allows us to trigger completion when a certain exchange arrived which is

the
// END message
.aggregate(header("id"), new BodyInAggregatingStrategy())

.eagerCheckCompletion().completionPredicate(body().isEqualTo("END"))

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" eagerCheckCompletion="true">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionPredicate>

<simple>${body} == 'END'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 443

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using dynamic completionTimeout

In this example we want to aggregate all incoming messages and after a period of inactivity we
want the aggregation to complete. The period should be computed at runtime based on the
timeout header in the incoming messages. This is done using the completionTimeout
option as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and the timeout header contains the timeout in millis of inactivity them

timeout and complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionTimeout(header("timeout"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionTimeout>

<header>timeout</header>
</completionTimeout>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed timeout value and Camel will fallback to use this value if the
dynamic value was null or 0.

444 CHAPTER 10 - PATTERN APPENDIX

Using dynamic completionSize

In this example we want to aggregate all incoming messages based on a dynamic size per
correlation key. The size is computed at runtime based on the mySize header in the incoming
messages. This is done using the completionSize option as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and the header mySize determines the number of aggregated messages should

trigger the completion
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionSize(header("mySize"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionSize>

<header>mySize</header>
</completionSize>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed size value and Camel will fallback to use this value if the
dynamic value was null or 0.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 445

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Manually Force the Completion of All Aggregated Exchanges
Immediately

Available as of Camel 2.9
You can manually trigger completion of all current aggregated exchanges by sending a message
containing the header Exchange.AGGREGATION_COMPLETE_ALL_GROUPS set to true. The
message is considered a signal message only, the message headers/contents will not be
processed otherwise.

Available as of Camel 2.11
You can alternatively set the header
Exchange.AGGREGATION_COMPLETE_ALL_GROUPS_INCLUSIVE to true to trigger
completion of all groups after processing the current message.

Using a List<V> in AggregationStrategy

Available as of Camel 2.11

If you want to aggregate some value from the messages <V> into a List<V> then we have
added a
org.apache.camel.processor.aggregate.AbstractListAggregationStrategy
abstract class in Camel 2.11 that makes this easier. The completed Exchange that is sent out
of the aggregator will contain the List<V> in the message body.

For example to aggregate a List<Integer> you can extend this class as shown below, and
implement the getValue method:

/**
* Our strategy just group a list of integers.
*/

public final class MyListOfNumbersStrategy extends
AbstractListAggregationStrategy<Integer> {

@Override
public Integer getValue(Exchange exchange) {

// the message body contains a number, so just return that as-is
return exchange.getIn().getBody(Integer.class);

}
}

See also

▪ The Loan Broker Example which uses an aggregator
▪ Blog post by Torsten Mielke about using the aggregator correctly.
▪ The old Aggregator
▪ HawtDB or SQL Component for persistence support
▪ Aggregate Example for an example application

446 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/loan-broker-example.html
http://tmielke.blogspot.com/2009/01/using-camel-aggregator-correctly.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/aggregate-example.html

Resequencer

The Resequencer from the EIP patterns allows you to reorganise messages based on some
comparator. By default in Camel we use an Expression to create the comparator; so that you
can compare by a message header or the body or a piece of a message etc.

Camel supports two resequencing algorithms:
• Batch resequencing collects messages into a batch, sorts the messages and sends

them to their output.
• Stream resequencing re-orders (continuous) message streams based on the

detection of gaps between messages.
By default the Resequencer does not support duplicate messages and will only keep the last
message, in case a message arrives with the same message expression. However in the batch
mode you can enable it to allow duplicates.

Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages
are sorted in order of the body() expression. That is messages are collected into a batch
(either by a maximum number of messages per batch or using a timeout) then they are sorted
in order and then sent out to their output.

Using the Fluent Builders

from("direct:start")
.resequence().body()
.to("mock:result");

This is equvalent to

from("direct:start")
.resequence(body()).batch()
.to("mock:result");

The batch-processing resequencer can be further configured via the size() and timeout()
methods.

from("direct:start")
.resequence(body()).batch().size(300).timeout(4000L)
.to("mock:result")

CHAPTER 10 - PATTERN APPENDIX 447

http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/fluent-builders.html

Change in Camel 2.7
The <batch-config> and <stream-config> tags in XML DSL in the
Resequencer EIP must now be configured in the top, and not in the bottom. So if
you use those, then move them up just below the <resequence> EIP starts in
the XML. If you are using Camel older than 2.7, then those configs should be at the
bottom.

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is
100 and the timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
.resequence(body()).batch(new BatchResequencerConfig(300, 4000L))
.to("mock:result")

So the above example will reorder messages from endpoint direct:a in order of their bodies,
to the endpoint mock:result.
Typically you'd use a header rather than the body to order things; or maybe a part of the body.
So you could replace this expression with

resequencer(header("mySeqNo"))

for example to reorder messages using a custom sequence number in the header mySeqNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or
various Scripting Languages.

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start" />
<resequence>

<simple>body</simple>
<to uri="mock:result" />
<!--

batch-config can be ommitted for default (batch) resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequence>
</route>

</camelContext>

448 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

Allow Duplicates

Available as of Camel 2.4

In the batch mode, you can now allow duplicates. In Java DSL there is a
allowDuplicates() method and in Spring XML there is an allowDuplicates=true
attribute on the <batch-config/> you can use to enable it.

Reverse

Available as of Camel 2.4

In the batch mode, you can now reverse the expression ordering. By default the order is
based on 0..9,A..Z, which would let messages with low numbers be ordered first, and thus also
also outgoing first. In some cases you want to reverse order, which is now possible.

In Java DSL there is a reverse() method and in Spring XML there is an reverse=true
attribute on the <batch-config/> you can use to enable it.

Resequence JMS messages based on JMSPriority

Available as of Camel 2.4

It's now much easier to use the Resequencer to resequence messages from JMS queues
based on JMSPriority. For that to work you need to use the two new options
allowDuplicates and reverse.

from("jms:queue:foo")
// sort by JMSPriority by allowing duplicates (message can have same JMSPriority)
// and use reverse ordering so 9 is first output (most important), and 0 is last
// use batch mode and fire every 3th second

.resequence(header("JMSPriority")).batch().timeout(3000).allowDuplicates().reverse()
.to("mock:result");

Notice this is only possible in the batch mode of the Resequencer.

Ignore invalid exchanges

Available as of Camel 2.9

The Resequencer EIP will from Camel 2.9 onwards throw a CamelExchangeException
if the incoming Exchange is not valid for the resequencer - ie. the expression cannot be
evaluated, such as a missing header. You can use the option ignoreInvalidExchanges to
ignore these exceptions which means the Resequencer will then skip the invalid Exchange.

CHAPTER 10 - PATTERN APPENDIX 449

http://camel.apache.org/resequencer.html
http://camel.apache.org/jms.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html

from("direct:start")
.resequence(header("seqno")).batch().timeout(1000)

// ignore invalid exchanges (they are discarded)
.ignoreInvalidExchanges()

.to("mock:result");

This option is available for both batch and stream resequencer.

Reject Old Exchanges

Available as of Camel 2.11

This option can be used to prevent out of order messages from being sent regardless of the
event that delivered messages downstream (capacity, timeout, etc). If enabled using
rejectOld(), the Resequencer will throw a MessageRejectedException when an
incoming Exchange is "older" (based on the Comparator) than the last delivered message. This
provides an extra level of control with regards to delayed message ordering.

from("direct:start")
.onException(MessageRejectedException.class).handled(true).to("mock:error").end()
.resequence(header("seqno")).stream().timeout(1000).rejectOld()
.to("mock:result");

This option is available for the stream resequencer only.

Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-
ordered based on their sequence numbers given by a seqnum header using gap detection and
timeouts on the level of individual messages.

Using the Fluent Builders

from("direct:start").resequence(header("seqnum")).stream().to("mock:result");

The stream-processing resequencer can be further configured via the capacity() and
timeout() methods.

from("direct:start")
.resequence(header("seqnum")).stream().capacity(5000).timeout(4000L)
.to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the
capacity is 1000 and the timeout is 1000 ms). Alternatively, you can provide a configuration
object.

450 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html

from("direct:start")
.resequence(header("seqnum")).stream(new StreamResequencerConfig(5000, 4000L))
.to("mock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a message
stream rather than on a fixed batch size. Gap detection in combination with timeouts removes
the constraint of having to know the number of messages of a sequence (i.e. the batch size) in
advance. Messages must contain a unique sequence number for which a predecessor and a
successor is known. For example a message with the sequence number 3 has a predecessor
message with the sequence number 2 and a successor message with the sequence number 4.
The message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer
therefore has to retain message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship
with respect to the sequence number) in a message stream is known, then the resequencer's
timeout parameter should be set to this value. In this case it is guaranteed that all messages of a
stream are delivered in correct order to the next processor. The lower the timeout value is
compared to the out-of-sequence time difference the higher is the probability for out-of-
sequence messages delivered by this resequencer. Large timeout values should be supported by
sufficiently high capacity values. The capacity parameter is used to prevent the resequencer
from running out of memory.

By default, the stream resequencer expects long sequence numbers but other sequence
numbers types can be supported as well by providing a custom expression.

public class MyFileNameExpression implements Expression {

public String getFileName(Exchange exchange) {
return exchange.getIn().getBody(String.class);

}

public Object evaluate(Exchange exchange) {
// parser the file name with YYYYMMDD-DNNN pattern
String fileName = getFileName(exchange);
String[] files = fileName.split("-D");
Long answer = Long.parseLong(files[0]) * 1000 + Long.parseLong(files[1]);
return answer;

}

public <T> T evaluate(Exchange exchange, Class<T> type) {
Object result = evaluate(exchange);
return exchange.getContext().getTypeConverter().convertTo(type, result);

}

}

CHAPTER 10 - PATTERN APPENDIX 451

from("direct:start").resequence(new
MyFileNameExpression()).stream().timeout(100).to("mock:result");

or custom comparator via the comparator() method

ExpressionResultComparator<Exchange> comparator = new MyComparator();
from("direct:start")

.resequence(header("seqnum")).stream().comparator(comparator)

.to("mock:result");

or via a StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(100, 1000L, comparator);

from("direct:start")
.resequence(header("seqnum")).stream(config)
.to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<resequence>

<simple>in.header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequence>
</route>

</camelContext>

Further Examples

For further examples of this pattern in use you could look at the batch-processing resequencer
junit test case and the stream-processing resequencer junit test case

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

452 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Composed Message Processor

The Composed Message Processor from the EIP patterns allows you to process a composite
message by splitting it up, routing the sub-messages to appropriate destinations and the re-
aggregating the responses back into a single message.

In Camel we provide two solutions
▪ using both a Splitter and Aggregator EIPs
▪ using only a Splitter

The difference is when using only a Splitter it aggregates back all the splitted messages into the
same aggregation group, eg like a fork/join pattern.
Whereas using the Aggregator allows you group into multiple groups, a pattern which provides
more options.

Example using both Splitter and Aggregator

In this example we want to check that a multipart order can be filled. Each part of the order
requires a check at a different inventory.

// split up the order so individual OrderItems can be validated by the appropriate bean
from("direct:start")

.split().body()

.choice()
.when().method("orderItemHelper", "isWidget")

.to("bean:widgetInventory")
.otherwise()

.to("bean:gadgetInventory")
.end()
.to("seda:aggregate");

// collect and re-assemble the validated OrderItems into an order again
from("seda:aggregate")

.aggregate(new
MyOrderAggregationStrategy()).header("orderId").completionTimeout(1000L)

.to("mock:result");

Using the Spring XML Extensions

CHAPTER 10 - PATTERN APPENDIX 453

http://www.enterpriseintegrationpatterns.com/DistributionAggregate.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/spring-xml-extensions.html

Using the splitter alone is often easier and possibly a better solution. So take a look
at this first, before involving the aggregator.

<route>
<from uri="direct:start"/>
<split>

<simple>body</simple>
<choice>

<when>
<method bean="orderItemHelper" method="isWidget"/>
<to uri="bean:widgetInventory"/>

</when>
<otherwise>

<to uri="bean:gadgetInventory"/>
</otherwise>

</choice>
<to uri="seda:aggregate"/>

</split>
</route>

<route>
<from uri="seda:aggregate"/>
<aggregate strategyRef="myOrderAggregatorStrategy" completionTimeout="1000">

<correlationExpression>
<simple>header.orderId</simple>

</correlationExpression>
<to uri="mock:result"/>

</aggregate>
</route>

To do this we split up the order using a Splitter. The Splitter then sends individual
OrderItems to a Content Based Router which checks the item type. Widget items get sent
for checking in the widgetInventory bean and gadgets get sent to the
gadgetInventory bean. Once these OrderItems have been validated by the appropriate
bean, they are sent on to the Aggregator which collects and re-assembles the validated
OrderItems into an order again.

When an order is sent it contains a header with the order id. We use this fact when we
aggregate, as we configure this .header("orderId") on the aggregate DSL to instruct
Camel to use the header with the key orderId as correlation expression.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java

454 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/aggregator2.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java

Example using only Splitter

In this example we want to split an incoming order using the Splitter eip, transform each order
line, and then combine the order lines into a new order message.

// this routes starts from the direct:start endpoint
// the body is then splitted based on @ separator
// the splitter in Camel supports InOut as well and for that we need
// to be able to aggregate what response we need to send back, so we provide our
// own strategy with the class MyOrderStrategy.
from("direct:start")

.split(body().tokenize("@"), new MyOrderStrategy())
// each splitted message is then send to this bean where we can process it
.to("bean:MyOrderService?method=handleOrder")
// this is important to end the splitter route as we do not want to do more

routing
// on each splitted message

.end()
// after we have splitted and handled each message we want to send a single

combined
// response back to the original caller, so we let this bean build it for us
// this bean will receive the result of the aggregate strategy: MyOrderStrategy
.to("bean:MyOrderService?method=buildCombinedResponse")

The bean with the methods to transform the order line and process the order as well:

public static class MyOrderService {

private static int counter;

/**
* We just handle the order by returning a id line for the order
*/

public String handleOrder(String line) {
LOG.debug("HandleOrder: " + line);
return "(id=" + ++counter + ",item=" + line + ")";

}

/**
* We use the same bean for building the combined response to send
* back to the original caller
*/

public String buildCombinedResponse(String line) {
LOG.debug("BuildCombinedResponse: " + line);
return "Response[" + line + "]";

}
}

And the AggregationStrategy we use with the Splitter eip to combine the orders back
again (eg fork/join):

CHAPTER 10 - PATTERN APPENDIX 455

http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html

Using XML
If you use XML, then the <split> tag offers the strategyRef attribute to refer to your
custom AggregationStrategy

/**
* This is our own order aggregation strategy where we can control
* how each splitted message should be combined. As we do not want to
* loos any message we copy from the new to the old to preserve the
* order lines as long we process them
*/

public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
// put order together in old exchange by adding the order from new exchange

if (oldExchange == null) {
// the first time we aggregate we only have the new exchange,
// so we just return it
return newExchange;

}

String orders = oldExchange.getIn().getBody(String.class);
String newLine = newExchange.getIn().getBody(String.class);

LOG.debug("Aggregate old orders: " + orders);
LOG.debug("Aggregate new order: " + newLine);

// put orders together separating by semi colon
orders = orders + ";" + newLine;
// put combined order back on old to preserve it
oldExchange.getIn().setBody(orders);

// return old as this is the one that has all the orders gathered until now
return oldExchange;

}
}

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

456 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Scatter-Gather

The Scatter-Gather from the EIP patterns allows you to route messages to a number of
dynamically specified recipients and re-aggregate the responses back into a single message.

Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from several different vendors. We use
a dynamic Recipient List to get the request for a quote to all vendors and an Aggregator to pick
the best quote out of all the responses. The routes for this are defined as:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<recipientList>

<header>listOfVendors</header>
</recipientList>

</route>
<route>

<from uri="seda:quoteAggregator"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">

<correlationExpression>
<header>quoteRequestId</header>

</correlationExpression>
<to uri="mock:result"/>

</aggregate>
</route>

</camelContext>

So in the first route you see that the Recipient List is looking at the listOfVendors header
for the list of recipients. So, we need to send a message like

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("listOfVendors", "bean:vendor1, bean:vendor2, bean:vendor3");
headers.put("quoteRequestId", "quoteRequest-1");
template.sendBodyAndHeaders("direct:start", "<quote_request item=\"beer\"/>", headers);

CHAPTER 10 - PATTERN APPENDIX 457

http://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/recipient-list.html

This message will be distributed to the following Endpoints: bean:vendor1,
bean:vendor2, and bean:vendor3. These are all beans which look like

public class MyVendor {
private int beerPrice;

@Produce(uri = "seda:quoteAggregator")
private ProducerTemplate quoteAggregator;

public MyVendor(int beerPrice) {
this.beerPrice = beerPrice;

}

public void getQuote(@XPath("/quote_request/@item") String item, Exchange
exchange) throws Exception {

if ("beer".equals(item)) {
exchange.getIn().setBody(beerPrice);
quoteAggregator.send(exchange);

} else {
throw new Exception("No quote available for " + item);

}
}

}

and are loaded up in Spring like

<bean id="aggregatorStrategy"
class="org.apache.camel.spring.processor.scattergather.LowestQuoteAggregationStrategy"/>

<bean id="vendor1" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>1</value>
</constructor-arg>

</bean>

<bean id="vendor2" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>2</value>
</constructor-arg>

</bean>

<bean id="vendor3" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>3</value>
</constructor-arg>

</bean>

Each bean is loaded with a different price for beer. When the message is sent to each bean
endpoint, it will arrive at the MyVendor.getQuote method. This method does a simple
check whether this quote request is for beer and then sets the price of beer on the exchange
for retrieval at a later step. The message is forwarded on to the next step using POJO
Producing (see the @Produce annotation).

458 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html

At the next step we want to take the beer quotes from all vendors and find out which one
was the best (i.e. the lowest!). To do this we use an Aggregator with a custom aggregation
strategy. The Aggregator needs to be able to compare only the messages from this particular
quote; this is easily done by specifying a correlationExpression equal to the value of the
quoteRequestId header. As shown above in the message sending snippet, we set this header to
quoteRequest-1. This correlation value should be unique or you may include responses
that are not part of this quote. To pick the lowest quote out of the set, we use a custom
aggregation strategy like

public class LowestQuoteAggregationStrategy implements AggregationStrategy {
public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {

// the first time we only have the new exchange
if (oldExchange == null) {

return newExchange;
}

if (oldExchange.getIn().getBody(int.class) <
newExchange.getIn().getBody(int.class)) {

return oldExchange;
} else {

return newExchange;
}

}
}

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

result.expectedBodiesReceived(1); // expect the lowest quote

You can find the full example source here:

camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-
gather.xml

Static Scatter-Gather Example

You can lock down which recipients are used in the Scatter-Gather by using a static Recipient
List. It looks something like this

from("direct:start").multicast().to("seda:vendor1", "seda:vendor2", "seda:vendor3");

from("seda:vendor1").to("bean:vendor1").to("seda:quoteAggregator");
from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")

CHAPTER 10 - PATTERN APPENDIX 459

http://camel.apache.org/aggregator.html
http://camel.apache.org/aggregator.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html

.aggregate(header("quoteRequestId"), new
LowestQuoteAggregationStrategy()).to("mock:result")

A full example of the static Scatter-Gather configuration can be found in the Loan Broker
Example.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Routing Slip

The Routing Slip from the EIP patterns allows you to route a message consecutively through a
series of processing steps where the sequence of steps is not known at design time and can
vary for each message.

Options

Name
Default
Value

Description

uriDelimiter , Delimiter used if the Expression returned multiple endpoints.

ignoreInvalidEndpoints false
If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will throw an exception stating the
endpoint uri is not valid.

Example

The following route will take any messages sent to the Apache ActiveMQ queue SomeQueue
and pass them into the Routing Slip pattern.

from("activemq:SomeQueue").routingSlip("aRoutingSlipHeader");

460 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/loan-broker-example.html
http://camel.apache.org/loan-broker-example.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://activemq.apache.org
http://www.enterpriseintegrationpatterns.com/RoutingTable.html

Messages will be checked for the existance of the "aRoutingSlipHeader" header. The value of
this header should be a comma-delimited list of endpoint URIs you wish the message to be
routed to. The Message will be routed in a pipeline fashion (i.e. one after the other).

From Camel 2.5 the Routing Slip will set a property (Exchange.SLIP_ENDPOINT) on
the Exchange which contains the current endpoint as it advanced though the slip. This allows
you to know how far we have processed in the slip.

The Routing Slip will compute the slip beforehand which means, the slip is only computed
once. If you need to compute the slip on-the-fly then use the Dynamic Router pattern instead.

Configuration options

Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders

from("direct:c").routingSlip(header("aRoutingSlipHeader"), "#");

Using the Spring XML Extensions

<camelContext id="buildRoutingSlip" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="direct:c"/>
<routingSlip uriDelimiter="#">

<header>aRoutingSlipHeader</header>
</routingSlip>

</route>
</camelContext>

Ignore invalid endpoints

Available as of Camel 2.3

The Routing Slip now supports ignoreInvalidEndpoints which the Recipient List
also supports. You can use it to skip endpoints which are invalid.

from("direct:a").routingSlip("myHeader").ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<routingSlip ignoreInvalidEndpoints="true"/>

<header>myHeader</header>

CHAPTER 10 - PATTERN APPENDIX 461

http://camel.apache.org/uris.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/exchange.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html

</routingSlip>
</route>

Then lets say the myHeader contains the following two endpoints direct:foo,xxx:bar.
The first endpoint is valid and works. However the 2nd is invalid and will just be ignored. Camel
logs at INFO level, so you can see why the endpoint was invalid.

Expression supporting

Available as of Camel 2.4

The Routing Slip now supports to take the expression parameter as the Recipient List does.
You can tell Camel the expression that you want to use to get the routing slip.

from("direct:a").routingSlip(header("myHeader")).ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<!--NOTE from Camel 2.4.0, you need to specify the expression element inside of

the routingSlip element -->
<routingSlip ignoreInvalidEndpoints="true">

<header>myHeader</header>
</routingSlip>

</route>

Further Examples

For further examples of this pattern in use you could look at the routing slip test cases.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Throttler

The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or
that we don't exceed an agreed SLA with some external service.

462 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Options

Name
Default
Value

Description

maximumRequestsPerPeriod Ê
Maximum number of requests per period to throttle. This option must be provided as a positive number. Notice, in the
XML DSL, from Camel 2.8 onwards this option is configured using an Expression instead of an attribute.

timePeriodMillis 1000
The time period in milliseconds, in which the throttler will allow at most maximumRequestsPerPeriod number of
messages.

asyncDelayed false Camel 2.4: If enabled then any messages which is delayed happens asynchronously using a scheduled thread pool.

executorServiceRef Ê Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected true
Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should execute the task if the
thread pool rejected the task.

Examples

Using the Fluent Builders

from("seda:a").throttle(3).timePeriodMillis(10000).to("log:result", "mock:result");

So the above example will throttle messages all messages received on seda:a before being sent
to mock:result ensuring that a maximum of 3 messages are sent in any 10 second window.

Note that since timePeriodMillis defaults to 1000 milliseconds, just setting the
maximumRequestsPerPeriod has the effect of setting the maximum number of requests
per second. So to throttle requests at 100 requests per second between two endpoints, it
would look more like this...

from("seda:a").throttle(100).to("seda:b");

For further examples of this pattern in use you could look at the junit test case

Using the Spring XML Extensions

Camel 2.7.x or older

<route>
<from uri="seda:a" />
<throttle maximumRequestsPerPeriod="3" timePeriodMillis="10000">

<to uri="mock:result" />
</throttle>

</route>

Camel 2.8 onwards

In Camel 2.8 onwards you must set the maximum period as an Expression as shown below
where we use a Constant expression:

CHAPTER 10 - PATTERN APPENDIX 463

http://camel.apache.org/expression.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/constant.html

<route>
<from uri="seda:a"/>
<!-- throttle 3 messages per 10 sec -->
<throttle timePeriodMillis="10000">

<constant>3</constant>
<to uri="mock:result"/>

</throttle>
</route>

Dynamically changing maximum requests per period

Available as of Camel 2.8
Since we use an Expression you can adjust this value at runtime, for example you can provide a
header with the value. At runtime Camel evaluates the expression and converts the result to a
java.lang.Long type. In the example below we use a header from the message to
determine the maximum requests per period. If the header is absent, then the Throttler uses
the old value. So that allows you to only provide a header if the value is to be changed:

<route>
<from uri="direct:expressionHeader"/>
<throttle timePeriodMillis="500">

<!-- use a header to determine how many messages to throttle per 0.5 sec -->
<header>throttleValue</header>
<to uri="mock:result"/>

</throttle>
</route>

Asynchronous delaying

Available as of Camel 2.4

You can let the Throttler use non blocking asynchronous delaying, which means Camel will
use a scheduler to schedule a task to be executed in the future. The task will then continue
routing. This allows the caller thread to not block and be able to service other messages, etc.

from("seda:a").throttle(100).asyncDelayed().to("seda:b");

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

464 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/throttler.html
http://camel.apache.org/throttler.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

SAMPLING THROTTLER

Available as of Camel 2.1

A sampling throttler allows you to extract a sample of the exchanges from the traffic
through a route.
It is configured with a sampling period during which only a single exchange is allowed to pass
through. All other exchanges will be stopped.

Will by default use a sample period of 1 seconds.

Options

Name Default Value Description

messageFrequency Ê Samples the message every N'th message. You can only use either frequency or period.

samplePeriod 1 Samples the message every N'th period. You can only use either frequency or period.

units SECOND Time unit as an enum of java.util.concurrent.TimeUnit from the JDK.

Samples

You use this EIP with the sample DSL as show in these samples.

Using the Fluent Builders
These samples also show how you can use the different syntax to configure the sampling
period:

from("direct:sample")
.sample()
.to("mock:result");

from("direct:sample-configured")
.sample(1, TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-configured-via-dsl")
.sample().samplePeriod(1).timeUnits(TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-messageFrequency")
.sample(10)
.to("mock:result");

from("direct:sample-messageFrequency-via-dsl")
.sample().sampleMessageFrequency(5)
.to("mock:result");

Using the Spring XML Extensions
And the same example in Spring XML is:

CHAPTER 10 - PATTERN APPENDIX 465

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:sample"/>
<sample samplePeriod="1" units="seconds">

<to uri="mock:result"/>
</sample>

</route>
<route>

<from uri="direct:sample-messageFrequency"/>
<sample messageFrequency="10">

<to uri="mock:result"/>
</sample>

</route>
<route>

<from uri="direct:sample-messageFrequency-via-dsl"/>
<sample messageFrequency="5">

<to uri="mock:result"/>
</sample>

</route>

And since it uses a default of 1 second you can omit this configuration in case you also want to
use 1 second

<route>
<from uri="direct:sample"/>
<!-- will by default use 1 second period -->
<sample>

<to uri="mock:result"/>
</sample>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See Also

▪ Throttler
▪ Aggregator

Delayer

The Delayer Pattern allows you to delay the delivery of messages to some destination.

466 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/throttler.html
http://camel.apache.org/aggregator.html

The expression is a value in millis to wait from the current time, so the expression
should just be 3000.
However you can use a long value for a fixed value to indicate the delay in millis.
See the Spring DSL samples for Delayer.

Using Delayer in Java DSL
See this ticket: https://issues.apache.org/jira/browse/CAMEL-2654

Options

Name
Default
Value

Description

asyncDelayed false Camel 2.4: If enabled then delayed messages happens asynchronously using a scheduled thread pool.

executorServiceRef Ê Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected true
Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should execute the task if the
thread pool rejected the task.

Using the Fluent Builders

from("seda:b").delay(1000).to("mock:result");

So the above example will delay all messages received on seda:b 1 second before sending
them to mock:result.

You can of course use many different Expression languages such as XPath, XQuery, SQL or
various Scripting Languages. You can just delay things a fixed amount of time from the point at
which the delayer receives the message. For example to delay things 2 seconds

delayer(2000)

The above assume that the delivery order is maintained and that the messages are delivered in
delay order. If you want to reorder the messages based on delivery time, you can use the
Resequencer with this pattern. For example

from("activemq:someQueue").resequencer(header("MyDeliveryTime")).delay("MyRedeliveryTime").to("activemq:aDelayedQueue");

Spring DSL

The sample below demonstrates the delay in Spring DSL:

CHAPTER 10 - PATTERN APPENDIX 467

http://camel.apache.org/threading-model.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/resequencer.html
https://issues.apache.org/jira/browse/CAMEL-2654

<bean id="myDelayBean" class="org.apache.camel.processor.MyDelayCalcBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="seda:a"/>
<delay>

<header>MyDelay</header>
</delay>
<to uri="mock:result"/>

</route>
<route>

<from uri="seda:b"/>
<delay>

<constant>1000</constant>
</delay>
<to uri="mock:result"/>

</route>
<route>

<from uri="seda:c"/>
<delay>

<method ref="myDelayBean" method="delayMe"/>
</delay>
<to uri="mock:result"/>

</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

Asynchronous delaying

Available as of Camel 2.4

You can let the Delayer use non blocking asynchronous delaying, which means Camel will
use a scheduler to schedule a task to be executed in the future. The task will then continue
routing. This allows the caller thread to not block and be able to service other messages etc.

From Java DSL

You use the asyncDelayed() to enable the async behavior.

from("activemq:queue:foo").delay(1000).asyncDelayed().to("activemq:aDelayedQueue");

From Spring XML

You use the asyncDelayed="true" attribute to enable the async behavior.

468 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java?view=markup
http://camel.apache.org/delayer.html

<route>
<from uri="activemq:queue:foo"/>
<delay asyncDelayed="true">

<constant>1000</constant>
</delay>
<to uri="activemq:aDealyedQueue"/>

</route>

Creating a custom delay

You can use an expression to determine when to send a message using something like this

from("activemq:foo").
delay().method("someBean", "computeDelay").
to("activemq:bar");

then the bean would look like this...

public class SomeBean {
public long computeDelay() {

long delay = 0;
// use java code to compute a delay value in millis
return delay;

}
}

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See Also

• Delay Interceptor

Load Balancer

The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a
variety of different load balancing policies.

Built-in load balancing policies

Camel provides the following policies out-of-the-box:

CHAPTER 10 - PATTERN APPENDIX 469

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/delay-interceptor.html

Policy Description

Round
Robin

The exchanges are selected from in a round robin fashion. This is a well known
and classic policy, which spreads the load evenly.

Random A random endpoint is selected for each exchange.

Sticky
Sticky load balancing using an Expression to calculate a correlation key to
perform the sticky load balancing; rather like jsessionid in the web or
JMSXGroupID in JMS.

Topic Topic which sends to all destinations (rather like JMS Topics)

Failover In case of failures the exchange will be tried on the next endpoint.

Weighted
Round-
Robin

Camel 2.5: The weighted load balancing policy allows you to specify a
processing load distribution ratio for each server with respect to the others. In
addition to the weight, endpoint selection is then further refined using round-
robin distribution based on weight.

Weighted
Random

Camel 2.5: The weighted load balancing policy allows you to specify a
processing load distribution ratio for each server with respect to others.In
addition to the weight, endpoint selection is then further refined using
random distribution based on weight.

Custom
Camel 2.8: From Camel 2.8 onwards the preferred way of using a custom
Load Balancer is to use this policy, instead of using the @deprecated ref
attribute.

Round Robin

The round robin load balancer is not meant to work with failover, for that you should use the
dedicated failover load balancer. The round robin load balancer will only change to next
endpoint per message.

The round robin load balancer is stateful as it keeps state of which endpoint to use next
time.

Using the Fluent Builders

from("direct:start").loadBalance().
roundRobin().to("mock:x", "mock:y", "mock:z");

Using the Spring configuration

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>

470 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/FailOverLoadBalancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/fluent-builders.html

Load balancing HTTP endpoints
If you are proxying and load balancing HTTP, then see this page for more details.

<loadBalance>
<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

The above example loads balance requests from direct:start to one of the available mock
endpoint instances, in this case using a round robin policy.
For further examples of this pattern look at this junit test case

Failover

The failover load balancer is capable of trying the next processor in case an Exchange failed
with an exception during processing.
You can constrain the failover to activate only when one exception of a list you specify
occurs. If you do not specify a list any exception will cause fail over to occur. This balancer uses
the same strategy for matching exceptions as the Exception Clause does for the
onException.
Failover offers the following options:

Option Type Default Description

inheritErrorHandler boolean true

Camel 2.3: Whether or not the Error
Handler configured on the route should
be used. Disable this if you want failover
to transfer immediately to the next
endpoint. On the other hand, if you
have this option enabled, then Camel
will first let the Error Handler try to
process the message. The Error
Handler may have been configured to
redeliver and use delays between
attempts. If you have enabled a number
of redeliveries then Camel will try to
redeliver to the same endpoint, and
only fail over to the next endpoint,
when the Error Handler is exhausted.

CHAPTER 10 - PATTERN APPENDIX 471

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RoundRobinLoadBalanceTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html

Enable stream caching if using streams
If you use streaming then you should enable Stream caching when using the failover
load balancer. This is needed so the stream can be re-read after failing over to the
next processor.

maximumFailoverAttempts int -1

Camel 2.3: A value to indicate after X
failover attempts we should exhaust
(give up). Use -1 to indicate never give
up and continuously try to failover. Use
0 to never failover. And use e.g. 3 to
failover at most 3 times before giving
up. This option can be used whether or
not roundRobin is enabled or not.

roundRobin boolean false

Camel 2.3: Whether or not the
failover load balancer should
operate in round robin mode or not. If
not, then it will always start from the
first endpoint when a new message is to
be processed. In other words it restart
from the top for every message. If
round robin is enabled, then it keeps
state and will continue with the next
endpoint in a round robin fashion.
When using round robin it will not stick
to last known good endpoint, it will
always pick the next endpoint to use.

Camel 2.2 or older behavior
The current implementation of failover load balancer uses simple logic which always tries the
first endpoint, and in case of an exception being thrown it tries the next in the list, and so forth.
It has no state, and the next message will thus always start with the first endpoint.

Camel 2.3 onwards behavior
The failover load balancer now supports round robin mode, which allows you to failover in
a round robin fashion. See the roundRobin option.
Here is a sample to failover only if a IOException related exception was thrown:

from("direct:start")
// here we will load balance if IOException was thrown
// any other kind of exception will result in the Exchange as failed
// to failover over any kind of exception we can just omit the exception
// in the failOver DSL

472 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/stream-caching.html

Redelivery must be enabled
In Camel 2.2 or older the failover load balancer requires you have enabled Camel
Error Handler to use redelivery. In Camel 2.3 onwards this is not required as such,
as you can mix and match. See the inheritErrorHandler option.

.loadBalance().failover(IOException.class)
.to("direct:x", "direct:y", "direct:z");

You can specify multiple exceptions to failover as the option is varargs, for instance:

// enable redelivery so failover can react
errorHandler(defaultErrorHandler().maximumRedeliveries(5));

from("direct:foo").
loadBalance().failover(IOException.class, MyOtherException.class)

.to("direct:a", "direct:b");

Using failover in Spring DSL

Failover can also be used from Spring DSL and you configure it as:

<route errorHandlerRef="myErrorHandler">
<from uri="direct:foo"/>
<loadBalance>

<failover>
<exception>java.io.IOException</exception>
<exception>com.mycompany.MyOtherException</exception>

</failover>
<to uri="direct:a"/>
<to uri="direct:b"/>

</loadBalance>
</route>

Using failover in round robin mode

An example using Java DSL:

from("direct:start")
// Use failover load balancer in stateful round robin mode
// which mean it will failover immediately in case of an exception
// as it does NOT inherit error handler. It will also keep retrying as

CHAPTER 10 - PATTERN APPENDIX 473

http://camel.apache.org/error-handler.html

// its configured to newer exhaust.
.loadBalance().failover(-1, false, true).

to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<!-- failover using stateful round robin,
which will keep retrying forever those 4 endpoints until success.
You can set the maximumFailoverAttempt to break out after X attempts -->

<failover roundRobin="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>
<to uri="direct:good2"/>

</loadBalance>
</route>

Weighted Round-Robin and Random Load Balancing

Available as of Camel 2.5

In many enterprise environments where server nodes of unequal processing power &
performance characteristics are utilized to host services and processing endpoints, it is
frequently necessary to distribute processing load based on their individual server capabilities so
that some endpoints are not unfairly burdened with requests. Obviously simple round-robin or
random load balancing do not alleviate problems of this nature. A Weighted Round-Robin and/
or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio
for each server with respect to others. You can specify this as a positive processing weight for
each server. A larger number indicates that the server can handle a larger load. The weight is
utilized to determine the payload distribution ratio to different processing endpoints with
respect to others.
The parameters that can be used are

In Camel 2.5

Option Type Default Description

roundRobin boolean false
The default value for round-robin is false. In
the absence of this setting or parameter the
load balancing algorithm used is random.

474 CHAPTER 10 - PATTERN APPENDIX

Disabled inheritErrorHandler
You can configure inheritErrorHandler=false if you want to failover to
the next endpoint as fast as possible. By disabling the Error Handler you ensure it
does not intervene which allows the failover load balancer to handle failover
asap. By also enabling roundRobin mode, then it will keep retrying until it
success. You can then configure the maximumFailoverAttempts option to a
high value to let it eventually exhaust (give up) and fail.

Disabled inheritErrorHandler
As of Camel 2.6, the Weighted Load balancer usage has been further simplified,
there is no need to send in distributionRatio as a List<Integer>. It can be simply
sent as a delimited String of integer weights separated by a delimiter of choice.

distributionRatio List<Integer> none

The distributionRatio is a list consisting on
integer weights passed in as a parameter.
The distributionRatio must match the
number of endpoints and/or processors
specified in the load balancer list. In Camel
2.5 if endpoints do not match ratios, then a
best effort distribution is attempted.

Available In Camel 2.6

Option Type Default Description

roundRobin boolean false

The default value for round-robin is
false. In the absence of this setting or
parameter the load balancing algorithm
used is random.

distributionRatio String none

The distributionRatio is a delimited
String consisting on integer weights
separated by delimiters for example
"2,3,5". The distributionRatio must
match the number of endpoints and/or
processors specified in the load balancer
list.

CHAPTER 10 - PATTERN APPENDIX 475

http://camel.apache.org/error-handler.html

distributionRatioDelimiter String ,

The distributionRatioDelimiter is the
delimiter used to specify the
distributionRatio. If this attribute is not
specified a default delimiter "," is
expected as the delimiter used for
specifying the distributionRatio.

Using Weighted round-robin & random load balancing

In Camel 2.5

An example using Java DSL:

ArrayList<integer> distributionRatio = new ArrayList<integer>();
distributionRatio.add(4);
distributionRatio.add(2);
distributionRatio.add(1);

// round-robin
from("direct:start")

.loadBalance().weighted(true, distributionRatio)

.to("mock:x", "mock:y", "mock:z");

//random
from("direct:start")

.loadBalance().weighted(false, distributionRatio)

.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<weighted roundRobin="false" distributionRatio="4 2 1"/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

Available In Camel 2.6

An example using Java DSL:

// round-robin
from("direct:start")

.loadBalance().weighted(true, "4:2:1" distributionRatioDelimiter=":")

.to("mock:x", "mock:y", "mock:z");

476 CHAPTER 10 - PATTERN APPENDIX

//random
from("direct:start")

.loadBalance().weighted(false, "4,2,1")

.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<weighted roundRobin="false" distributionRatio="4-2-1"
distributionRatioDelimiter="-" />

<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

Custom Load Balancer

You can use a custom load balancer (eg your own implementation) also.

An example using Java DSL:

from("direct:start")
// using our custom load balancer
.loadBalance(new MyLoadBalancer())
.to("mock:x", "mock:y", "mock:z");

And the same example using XML DSL:

<!-- this is the implementation of our custom load balancer -->
<bean id="myBalancer"
class="org.apache.camel.processor.CustomLoadBalanceTest$MyLoadBalancer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<loadBalance>

<!-- refer to my custom load balancer -->
<custom ref="myBalancer"/>
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 477

Notice in the XML DSL above we use <custom> which is only available in Camel 2.8
onwards. In older releases you would have to do as follows instead:

<loadBalance ref="myBalancer">
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>

To implement a custom load balancer you can extend some support classes such as
LoadBalancerSupport and SimpleLoadBalancerSupport. The former supports the
asynchronous routing engine, and the latter does not. Here is an example:

Listing 1.Listing 1. Custom load balancer implementationCustom load balancer implementation

public static class MyLoadBalancer extends LoadBalancerSupport {

public boolean process(Exchange exchange, AsyncCallback callback) {
String body = exchange.getIn().getBody(String.class);
try {

if ("x".equals(body)) {
getProcessors().get(0).process(exchange);

} else if ("y".equals(body)) {
getProcessors().get(1).process(exchange);

} else {
getProcessors().get(2).process(exchange);

}
} catch (Throwable e) {

exchange.setException(e);
}
callback.done(true);
return true;

}
}

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Multicast

The Multicast allows to route the same message to a number of endpoints and process them in
a different way. The main difference between the Multicast and Splitter is that Splitter will split
the message into several pieces but the Multicast will not modify the request message.

478 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Options

Name
Default
Value

Description

strategyRef Ê
Refers to an AggregationStrategy to be used to assemble the replies from the multicasts, into a single outgoing message from the
Multicast. By default Camel will use the last reply as the outgoing message.

parallelProcessing false
If enables then sending messages to the multicasts occurs concurrently. Note the caller thread will still wait until all messages has
been fully processed, before it continues. Its only the sending and processing the replies from the multicasts which happens
concurrently.

executorServiceRef Ê
Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then parallel processing is
automatic implied, and you do not have to enable that option as well.

stopOnException false
Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If disable, then Camel will
send the message to all multicasts regardless if one of them failed. You can deal with exceptions in the AggregationStrategy class
where you have full control how to handle that.

streaming false
If enabled then Camel will process replies out-of-order, eg in the order they come back. If disabled, Camel will process replies in
the same order as multicasted.

timeout Ê

Camel 2.5: Sets a total timeout specified in millis. If the Multicast hasn't been able to send and process all replies within the
given timeframe, then the timeout triggers and the Multicast breaks out and continues. Notice if you provide a
TimeoutAwareAggregationStrategy then the timeout method is invoked before breaking out. If the timeout is reached with
running tasks still remaining, certain tasks for which it is difficult for Camel to shut down in a graceful manner may continue to
run. So use this option with a bit of care. We may be able to improve this functionality in future Camel releases.

onPrepareRef Ê
Camel 2.8: Refers to a custom Processor to prepare the copy of the Exchange each multicast will receive. This allows you to do
any custom logic, such as deep-cloning the message payload if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more details.

Example

The following example shows how to take a request from the direct:a endpoint , then
multicast these request to direct:x, direct:y, direct:z.

Using the Fluent Builders

from("direct:a").multicast().to("direct:x", "direct:y", "direct:z");

By default Multicast invokes each endpoint sequentially. If parallel processing is desired, simply
use

from("direct:a").multicast().parallelProcessing().to("direct:x", "direct:y",
"direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating all reply messages.
The default is to only use the latest reply message and discard any earlier replies. The
aggregation strategy is configurable:

from("direct:start")
.multicast(new MyAggregationStrategy())
.parallelProcessing().timeout(500).to("direct:a", "direct:b", "direct:c")
.end()
.to("mock:result");

CHAPTER 10 - PATTERN APPENDIX 479

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/multicast.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/multicast.html
http://camel.apache.org/multicast.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/fluent-builders.html

Stop processing in case of exception

Available as of Camel 2.1

The Multicast will by default continue to process the entire Exchange even in case one of the
multicasted messages will thrown an exception during routing.
For example if you want to multicast to 3 destinations and the 2nd destination fails by an
exception. What Camel does by default is to process the remainder destinations. You have the
chance to remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and
let the Camel error handler handle it. You can do this in Camel 2.1 by specifying that it should
stop in case of an exception occurred. This is done by the stopOnException option as
shown below:

from("direct:start")
.multicast()

.stopOnException().to("direct:foo", "direct:bar", "direct:baz")
.end()
.to("mock:result");

from("direct:foo").to("mock:foo");

from("direct:bar").process(new MyProcessor()).to("mock:bar");

from("direct:baz").to("mock:baz");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<multicast stopOnException="true">

<to uri="direct:foo"/>
<to uri="direct:bar"/>
<to uri="direct:baz"/>

</multicast>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<to uri="mock:foo"/>

</route>

<route>
<from uri="direct:bar"/>
<process ref="myProcessor"/>
<to uri="mock:bar"/>

</route>

<route>
<from uri="direct:baz"/>

480 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html
http://camel.apache.org/exchange.html

<to uri="mock:baz"/>
</route>

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

The Multicast will copy the source Exchange and multicast each copy. However the copy is a
shallow copy, so in case you have mutateable message bodies, then any changes will be visible
by the other copied messages. If you want to use a deep clone copy then you need to use a
custom onPrepare which allows you to do this using the Processor interface.

Notice the onPrepare can be used for any kind of custom logic which you would like to
execute before the Exchange is being multicasted.
For example if you have a mutable message body as this Animal class:

Listing 1.Listing 1. AnimalAnimal

public class Animal implements Serializable {
private static final long serialVersionUID = 1L;
private int id;
private String name;

public Animal() {
}

public Animal(int id, String name) {
this.id = id;
this.name = name;

}

public Animal deepClone() {
Animal clone = new Animal();
clone.setId(getId());
clone.setName(getName());
return clone;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {

CHAPTER 10 - PATTERN APPENDIX 481

http://camel.apache.org/multicast.html
http://camel.apache.org/exchange.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html

Design for immutable
Its best practice to design for immutable objects.

this.name = name;
}

@Override
public String toString() {

return id + " " + name;
}

}

Then we can create a deep clone processor which clones the message body:

Listing 1.Listing 1. AnimalDeepClonePrepareAnimalDeepClonePrepare

public class AnimalDeepClonePrepare implements Processor {

public void process(Exchange exchange) throws Exception {
Animal body = exchange.getIn().getBody(Animal.class);

// do a deep clone of the body which wont affect when doing multicasting
Animal clone = body.deepClone();
exchange.getIn().setBody(clone);

}
}

Then we can use the AnimalDeepClonePrepare class in the Multicast route using the
onPrepare option as shown:

Listing 1.Listing 1. Multicast using onPrepareMulticast using onPrepare

from("direct:start")
.multicast().onPrepare(new AnimalDeepClonePrepare()).to("direct:a").to("direct:b");

And the same example in XML DSL

Listing 1.Listing 1. Multicast using onPrepareMulticast using onPrepare

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<!-- use on prepare with multicast -->
<multicast onPrepareRef="animalDeepClonePrepare">

<to uri="direct:a"/>
<to uri="direct:b"/>

</multicast>
</route>

482 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html

<route>
<from uri="direct:a"/>
<process ref="processorA"/>
<to uri="mock:a"/>

</route>
<route>

<from uri="direct:b"/>
<process ref="processorB"/>
<to uri="mock:b"/>

</route>
</camelContext>

<!-- the on prepare Processor which performs the deep cloning -->
<bean id="animalDeepClonePrepare"
class="org.apache.camel.processor.AnimalDeepClonePrepare"/>

<!-- processors used for the last two routes, as part of unit test -->
<bean id="processorA"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorA"/>
<bean id="processorB"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorB"/>

Notice the onPrepare option is also available on other EIPs such as Splitter, Recipient List,
and Wire Tap.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

LOOP

The Loop allows for processing a message a number of times, possibly in a different way for
each iteration. Useful mostly during testing.

Options

Name
Default
Value

Description

copy false

Camel 2.8: Whether or not copy mode is used. If false then the
same Exchange will be used for each iteration. So the result from the
previous iteration will be visible for the next iteration. Instead you can
enable copy mode, and then each iteration restarts with a fresh copy
of the input Exchange.

CHAPTER 10 - PATTERN APPENDIX 483

http://camel.apache.org/eip.html
http://camel.apache.org/splitter.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/exchange.html

Default mode
Notice by default the loop uses the same exchange throughout the looping. So the
result from the previous iteration will be used for the next (eg Pipes and Filters).
From Camel 2.8 onwards you can enable copy mode instead. See the options
table for more details.

Exchange properties

For each iteration two properties are set on the Exchange. Processors can rely on these
properties to process the Message in different ways.

Property Description

CamelLoopSize Total number of loops

CamelLoopIndex Index of the current iteration (0 based)

Examples

The following example shows how to take a request from the direct:x endpoint, then send
the message repetitively to mock:result. The number of times the message is sent is either
passed as an argument to loop(), or determined at runtime by evaluating an expression. The
expression must evaluate to an int, otherwise a RuntimeCamelException is thrown.

Using the Fluent Builders

Pass loop count as an argument

from("direct:a").loop(8).to("mock:result");

Use expression to determine loop count

from("direct:b").loop(header("loop")).to("mock:result");

Use expression to determine loop count

from("direct:c").loop().xpath("/hello/@times").to("mock:result");

Using the Spring XML Extensions

Pass loop count as an argument

<route>
<from uri="direct:a"/>

484 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/pipes-and-filters.html

<loop>
<constant>8</constant>
<to uri="mock:result"/>

</loop>
</route>

Use expression to determine loop count

<route>
<from uri="direct:b"/>
<loop>

<header>loop</header>
<to uri="mock:result"/>

</loop>
</route>

For further examples of this pattern in use you could look at one of the junit test case

Using copy mode

Available as of Camel 2.8

Now suppose we send a message to "direct:start" endpoint containing the letter A.
The output of processing this route will be that, each "mock:loop" endpoint will receive "AB" as
message.

from("direct:start")
// instruct loop to use copy mode, which mean it will use a copy of the input

exchange
// for each loop iteration, instead of keep using the same exchange all over
.loop(3).copy()

.transform(body().append("B"))

.to("mock:loop")
.end()
.to("mock:result");

However if we do not enable copy mode then "mock:loop" will receive "AB", "ABB", "ABBB",
etc. messages.

from("direct:start")
// by default loop will keep using the same exchange so on the 2nd and 3rd

iteration its
// the same exchange that was previous used that are being looped all over
.loop(3)

.transform(body().append("B"))

.to("mock:loop")
.end()
.to("mock:result");

CHAPTER 10 - PATTERN APPENDIX 485

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java?view=markup

The equivalent example in XML DSL in copy mode is as follows:

<route>
<from uri="direct:start"/>
<!-- enable copy mode for loop eip -->
<loop copy="true">

<constant>3</constant>
<transform>

<simple>${body}B</simple>
</transform>
<to uri="mock:loop"/>

</loop>
<to uri="mock:result"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGE TRANSFORMATION

Content Enricher

Camel supports the Content Enricher from the EIP patterns using a Message Translator, an
arbitrary Processor in the routing logic, or using the enrich DSL element to enrich the message.

Content enrichment using a Message Translator or a Processor

Using the Fluent Builders

You can use Templating to consume a message from one destination, transform it with
something like Velocity or XQuery, and then send it on to another destination. For example
using InOnly (one way messaging)

486 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/processor.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/templating.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue
queue on ActiveMQ with a template generated response, then sending responses back to the
JMSReplyTo Destination you could use this:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Here is a simple example using the DSL directly to transform the message body

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor using explicit Java code

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Finally we can use Bean Integration to use any Java method on any bean to act as the
transformer

from("activemq:My.Queue").
beanRef("myBeanName", "myMethodName").
to("activemq:Another.Queue");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 487

http://camel.apache.org/activemq.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup

Content enrichment using the enrich DSL element

Camel comes with two flavors of content enricher in the DSL
▪ enrich
▪ pollEnrich

enrich uses a Producer to obtain the additional data. It is usually used for Request Reply
messaging, for instance to invoke an external web service.
pollEnrich on the other hand uses a Polling Consumer to obtain the additional data. It is
usually used for Event Message messaging, for instance to read a file or download a FTP file.

Enrich Options

Name
Default
Value

Description

uri Ê The endpoint uri for the external service to enrich from. You must use either uri or ref.

ref Ê Refers to the endpoint for the external service to enrich from. You must use either uri or ref.

strategyRef Ê
Refers to an AggregationStrategy to be used to merge the reply from the external service, into a single outgoing message. By default
Camel will use the reply from the external service as outgoing message.

Using the Fluent Builders

AggregationStrategy aggregationStrategy = ...

from("direct:start")
.enrich("direct:resource", aggregationStrategy)
.to("direct:result");

from("direct:resource")
...

The content enricher (enrich) retrieves additional data from a resource endpoint in order to
enrich an incoming message (contained in the original exchange). An aggregation strategy is used
to combine the original exchange and the resource exchange. The first parameter of the
AggregationStrategy.aggregate(Exchange, Exchange) method corresponds
to the the original exchange, the second parameter the resource exchange. The results from
the resource endpoint are stored in the resource exchange's out-message. Here's an example
template for implementing an aggregation strategy:

public class ExampleAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange original, Exchange resource) {
Object originalBody = original.getIn().getBody();
Object resourceResponse = resource.getIn().getBody();
Object mergeResult = ... // combine original body and resource response
if (original.getPattern().isOutCapable()) {

original.getOut().setBody(mergeResult);
} else {

original.getIn().setBody(mergeResult);

488 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/request-reply.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/event-message.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/fluent-builders.html

}
return original;

}

}

Using this template the original exchange can be of any pattern. The resource exchange created
by the enricher is always an in-out exchange.

Using Spring XML

The same example in the Spring DSL

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
<to uri="direct:result"/>

</route>
<route>

<from uri="direct:resource"/>
...

</route>
</camelContext>

<bean id="aggregationStrategy" class="..." />

Aggregation strategy is optional

The aggregation strategy is optional. If you do not provide it Camel will by default just use the
body obtained from the resource.

from("direct:start")
.enrich("direct:resource")
.to("direct:result");

In the route above the message sent to the direct:result endpoint will contain the output
from the direct:resource as we do not use any custom aggregation.

And for Spring DSL just omit the strategyRef attribute:

<route>
<from uri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 489

Content enrichment using pollEnrich

The pollEnrich works just as the enrich however as it uses a Polling Consumer we have
3 methods when polling

▪ receive
▪ receiveNoWait
▪ receive(timeout)

PollEnrich Options

Name
Default
Value

Description

uri Ê The endpoint uri for the external service to enrich from. You must use either uri or ref.

ref Ê Refers to the endpoint for the external service to enrich from. You must use either uri or ref.

strategyRef Ê
Refers to an AggregationStrategy to be used to merge the reply from the external service, into a single outgoing message. By default
Camel will use the reply from the external service as outgoing message.

timeout -1 Timeout in millis when polling from the external service. See below for important details about the timeout.

If there is no data then the newExchange in the aggregation strategy is null.

You can pass in a timeout value that determines which method to use
▪ if timeout is -1 or other negative number then receive is selected (Important:

the receive method may block if there is no message)
▪ if timeout is 0 then receiveNoWait is selected
▪ otherwise receive(timeout) is selected

The timeout values is in millis.

Example

In this example we enrich the message by loading the content from the file named inbox/
data.txt.

from("direct:start")
.pollEnrich("file:inbox?fileName=data.txt")
.to("direct:result");

And in XML DSL you do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt"/>
<to uri="direct:result"/>

</route>

If there is no file then the message is empty. We can use a timeout to either wait (potentially
forever) until a file exists, or use a timeout to wait a certain period.

490 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/polling-consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Good practice to use timeout value
By default Camel will use the receive. Which may block until there is a message
available. It is therefore recommended to always provide a timeout value, to make
this clear that we may wait for a message, until the timeout is hit.

Data from current Exchange not used
pollEnrich does not access any data from the current Exchange which means
when polling it cannot use any of the existing headers you may have set on the
Exchange. For example you cannot set a filename in the Exchange.FILE_NAME
header and use pollEnrich to consume only that file. For that you must set the
filename in the endpoint URI.

For example to wait up to 5 seconds you can do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt" timeout="5000"/>
<to uri="direct:result"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Content Filter

Camel supports the Content Filter from the EIP patterns using one of the following mechanisms
in the routing logic to transform content from the inbound message.

• Message Translator
• invoking a Java bean
• Processor object

CHAPTER 10 - PATTERN APPENDIX 491

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or
one of the supported Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests
• TransformTest
• TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

You can also use XPath to filter out part of the message you are interested in:

<route>
<from uri="activemq:Input"/>
<setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath></setBody>
<to uri="activemq:Output"/>

</route>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

492 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Claim Check

The Claim Check from the EIP patterns allows you to replace message content with a claim
check (a unique key), which can be used to retrieve the message content at a later time. The
message content is stored temporarily in a persistent store like a database or file system. This
pattern is very useful when message content is very large (thus it would be expensive to send
around) and not all components require all information.

It can also be useful in situations where you cannot trust the information with an outside
party; in this case, you can use the Claim Check to hide the sensitive portions of data.

Example

In this example we want to replace a message body with a claim check, and restore the body at
a later step.

Using the Fluent Builders

from("direct:start").to("bean:checkLuggage", "mock:testCheckpoint",
"bean:dataEnricher", "mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<pipeline>

<to uri="bean:checkLuggage"/>
<to uri="mock:testCheckpoint"/>
<to uri="bean:dataEnricher"/>
<to uri="mock:result"/>

</pipeline>
</route>

The example route is pretty simple - its just a Pipeline. In a real application you would have
some other steps where the mock:testCheckpoint endpoint is in the example.

The message is first sent to the checkLuggage bean which looks like

CHAPTER 10 - PATTERN APPENDIX 493

http://www.enterpriseintegrationpatterns.com/StoreInLibrary.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/pipes-and-filters.html

public static final class CheckLuggageBean {
public void checkLuggage(Exchange exchange, @Body String body,

@XPath("/order/@custId") String custId) {
// store the message body into the data store, using the custId as the claim

check
dataStore.put(custId, body);
// add the claim check as a header
exchange.getIn().setHeader("claimCheck", custId);
// remove the body from the message
exchange.getIn().setBody(null);

}
}

This bean stores the message body into the data store, using the custId as the claim check. In
this example, we're just using a HashMap to store the message body; in a real application you
would use a database or file system, etc. Next the claim check is added as a message header for
use later. Finally we remove the body from the message and pass it down the pipeline.

The next step in the pipeline is the mock:testCheckpoint endpoint which is just used
to check that the message body is removed, claim check added, etc.

To add the message body back into the message, we use the dataEnricher bean which
looks like

public static final class DataEnricherBean {
public void addDataBackIn(Exchange exchange, @Header("claimCheck") String

claimCheck) {
// query the data store using the claim check as the key and add the data
// back into the message body
exchange.getIn().setBody(dataStore.get(claimCheck));
// remove the message data from the data store
dataStore.remove(claimCheck);
// remove the claim check header
exchange.getIn().removeHeader("claimCheck");

}
}

This bean queries the data store using the claim check as the key and then adds the data back
into the message. The message body is then removed from the data store and finally the claim
check is removed. Now the message is back to what we started with!

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

494 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Normalizer

Camel supports the Normalizer from the EIP patterns by using a Message Router in front of a
number of Message Translator instances.

Example

This example shows a Message Normalizer that converts two types of XML messages into a
common format. Messages in this common format are then filtered.

Using the Fluent Builders

// we need to normalize two types of incoming messages
from("direct:start")

.choice()
.when().xpath("/employee").to("bean:normalizer?method=employeeToPerson")
.when().xpath("/customer").to("bean:normalizer?method=customerToPerson")

.end()

.to("mock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

public class MyNormalizer {
public void employeeToPerson(Exchange exchange, @XPath("/employee/name/text()")

String name) {
exchange.getOut().setBody(createPerson(name));

}

public void customerToPerson(Exchange exchange, @XPath("/customer/@name") String
name) {

exchange.getOut().setBody(createPerson(name));
}

private String createPerson(String name) {
return "<person name=\"" + name + "\"/>";

}
}

Using the Spring XML Extensions

CHAPTER 10 - PATTERN APPENDIX 495

http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

The same example in the Spring DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<choice>

<when>
<xpath>/employee</xpath>
<to uri="bean:normalizer?method=employeeToPerson"/>

</when>
<when>

<xpath>/customer</xpath>
<to uri="bean:normalizer?method=customerToPerson"/>

</when>
</choice>
<to uri="mock:result"/>

</route>
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

See Also

• Message Router
• Content Based Router
• Message Translator

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

SORT

Sort can be used to sort a message. Imagine you consume text files and before processing each
file you want to be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or
uses the string representation. You can provide your own comparator, and even an expression
to return the value to be sorted. Sort requires the value returned from the expression
evaluation is convertible to java.util.List as this is required by the JDK sort operation.

496 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Options

Name
Default
Value

Description

comparatorRef Ê
Refers to a custom java.util.Comparator to use for sorting the message body. Camel will by default use a comparator
which does a A..Z sorting.

Using from Java DSL

In the route below it will read the file content and tokenize by line breaks so each line can be
sorted.

from("file://inbox").sort(body().tokenize("\n")).to("bean:MyServiceBean.processLine");

You can pass in your own comparator as a 2nd argument:

from("file://inbox").sort(body().tokenize("\n"), new
MyReverseComparator()).to("bean:MyServiceBean.processLine");

Using from Spring DSL

In the route below it will read the file content and tokenize by line breaks so each line can be
sorted.

Listing 1.Listing 1. Camel 2.7 or betterCamel 2.7 or better

<route>
<from uri="file://inbox"/>
<sort>

<simple>body</simple>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>

</route>

Listing 1.Listing 1. Camel 2.6 or olderCamel 2.6 or older

<route>
<from uri="file://inbox"/>
<sort>

<expression>
<simple>body</simple>

</expression>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>

</route>

And to use our own comparator we can refer to it as a spring bean:

Listing 1.Listing 1. Camel 2.7 or betterCamel 2.7 or better

CHAPTER 10 - PATTERN APPENDIX 497

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">

<simple>body</simple>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>

</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Listing 1.Listing 1. Camel 2.6 or olderCamel 2.6 or older

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">

<expression>
<simple>body</simple>

</expression>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>

</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Besides <simple>, you can supply an expression using any language you like, so long as it
returns a list.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

MESSAGING ENDPOINTS

Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Message Translator
pattern or the Type Converter module.

498 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/languages.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/type-converter.html

See also

• Message Translator
• Type Converter
• CXF for JAX-WS support for binding business logic to messaging & web services
• Pojo
• Bean

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer
model is event based (i.e. asynchronous) as this means that the Camel container can then
manage pooling, threading and concurrency for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing the Processor
interface which is invoked by the Message Endpoint when a Message is available for processing.

For more details see
• Message
• Message Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Polling Consumer

Camel supports implementing the Polling Consumer from the EIP patterns using the
PollingConsumer interface which can be created via the Endpoint.createPollingConsumer()
method.

CHAPTER 10 - PATTERN APPENDIX 499

http://camel.apache.org/message-translator.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/cxf.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message.html
http://camel.apache.org/message.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()

So in your Java code you can do

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

The ConsumerTemplate (discussed below) is also available.

There are 3 main polling methods on PollingConsumer

Method
name

Description

receive()
Waits until a message is available and then returns it; potentially blocking
forever

receive(long)
Attempts to receive a message exchange, waiting up to the given
timeout and returning null if no message exchange could be received
within the time available

receiveNoWait()
Attempts to receive a message exchange immediately without waiting
and returning null if a message exchange is not available yet

ConsumerTemplate

The ConsumerTemplate is a template much like Spring's JmsTemplate or JdbcTemplate
supporting the Polling Consumer EIP. With the template you can consume Exchanges from an
Endpoint.

The template supports the 3 operations above, but also including convenient methods for
returning the body, etc consumeBody.
The example from above using ConsumerTemplate is:

Exchange exchange = consumerTemplate.receive("activemq:my.queue");

Or to extract and get the body you can do:

Object body = consumerTemplate.receiveBody("activemq:my.queue");

And you can provide the body type as a parameter and have it returned as the type:

500 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

String body = consumerTemplate.receiveBody("activemq:my.queue", String.class);

You get hold of a ConsumerTemplate from the CamelContext with the
createConsumerTemplate operation:

ConsumerTemplate consumer = context.createConsumerTemplate();

Using ConsumerTemplate with Spring DSL

With the Spring DSL we can declare the consumer in the CamelContext with the
consumerTemplate tag, just like the ProducerTemplate. The example below illustrates this:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define a producer template -->
<template id="producer"/>
<!-- define a consumer template -->
<consumerTemplate id="consumer"/>

<route>
<from uri="seda:foo"/>
<to id="result" uri="mock:result"/>

</route>
</camelContext>

Then we can get leverage Spring to inject the ConsumerTemplate in our java class. The
code below is part of an unit test but it shows how the consumer and producer can work
together.

@ContextConfiguration
public class SpringConsumerTemplateTest extends SpringRunWithTestSupport {

@Autowired
private ProducerTemplate producer;

@Autowired
private ConsumerTemplate consumer;

@EndpointInject(ref = "result")
private MockEndpoint mock;

@Test
public void testConsumeTemplate() throws Exception {

// we expect Hello World received in our mock endpoint
mock.expectedBodiesReceived("Hello World");

// we use the producer template to send a message to the seda:start endpoint

CHAPTER 10 - PATTERN APPENDIX 501

producer.sendBody("seda:start", "Hello World");

// we consume the body from seda:start
String body = consumer.receiveBody("seda:start", String.class);
assertEquals("Hello World", body);

// and then we send the body again to seda:foo so it will be routed to the mock
// endpoint so our unit test can complete
producer.sendBody("seda:foo", body);

// assert mock received the body
mock.assertIsSatisfied();

}

}

Timer based polling consumer

In this sample we use a Timer to schedule a route to be started every 5th second and invoke
our bean MyCoolBean where we implement the business logic for the Polling Consumer.
Here we want to consume all messages from a JMS queue, process the message and send them
to the next queue.

First we setup our route as:

MyCoolBean cool = new MyCoolBean();
cool.setProducer(template);
cool.setConsumer(consumer);

from("timer://foo?period=5000").bean(cool, "someBusinessLogic");

from("activemq:queue.foo").to("mock:result");

And then we have out logic in our bean:

public static class MyCoolBean {

private int count;
private ConsumerTemplate consumer;
private ProducerTemplate producer;

public void setConsumer(ConsumerTemplate consumer) {
this.consumer = consumer;

}

public void setProducer(ProducerTemplate producer) {
this.producer = producer;

}

502 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/timer.html
http://camel.apache.org/polling-consumer.html

public void someBusinessLogic() {
// loop to empty queue
while (true) {

// receive the message from the queue, wait at most 3 sec
String msg = consumer.receiveBody("activemq:queue.inbox", 3000,

String.class);
if (msg == null) {

// no more messages in queue
break;

}

// do something with body
msg = "Hello " + msg;

// send it to the next queue
producer.sendBodyAndHeader("activemq:queue.foo", msg, "number", count++);

}
}

}

Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and
push them through the Camel processing routes. That is to say externally from the client the
endpoint appears to use an Event Driven Consumer but internally a scheduled poll is used to
monitor some kind of state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this pattern.

There is also the Quartz Component which provides scheduled delivery of messages using
the Quartz enterprise scheduler.

For more details see:
• PollingConsumer
• Scheduled Polling Components

◦ ScheduledPollConsumer
◦ Atom
◦ File
◦ FTP
◦ hbase
◦ iBATIS
◦ JPA
◦ Mail
◦ MyBatis
◦ Quartz
◦ SNMP
◦ AWS-S3

CHAPTER 10 - PATTERN APPENDIX 503

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/atom.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/hbase.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jpa.html
http://camel.apache.org/mail.html
http://camel.apache.org/mybatis.html
http://camel.apache.org/quartz.html
http://camel.apache.org/snmp.html
http://camel.apache.org/aws-s3.html

◦ AWS-SQS

ScheduledPollConsumer Options

The ScheduledPollConsumer supports the following options:

Option Default Description

pollStrategy ▪

A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to provide
your custom implementation to control error handling usually occurred during the poll operation
before an Exchange have been created and being routed in Camel. In other words the error occurred
while the polling was gathering information, for instance access to a file network failed so Camel cannot
access it to scan for files. The default implementation will log the caused exception at WARN level and
ignore it.

sendEmptyMessageWhenIdle false
Camel 2.9: If the polling consumer did not poll any files, you can enable this option to send an empty
message (no body) instead.

startScheduler true Whether the scheduler should be auto started.

initialDelay 1000 Milliseconds before the first poll starts.

delay 500 Milliseconds before the next poll.

useFixedDelay Ê
Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details. In Camel
2.7.x or older the default value is false. From Camel 2.8 onwards the default value is true.

timeUnit TimeUnit.MILLISECONDS time unit for initialDelay and delay options.

runLoggingLevel TRACE
Camel 2.8: The consumer logs a start/complete log line when it polls. This option allows you to
configure the logging level for that.

scheduledExecutorService null
Camel 2.10: Allows for configuring a custom/shared thread pool to use for the consumer. By default
each consumer has its own single threaded thread pool. This option allows you to share a thread pool
among multiple consumers.

About error handling and scheduled polling consumers

ScheduledPollConsumer is scheduled based and its run method is invoked periodically based
on schedule settings. But errors can also occur when a poll is being executed. For instance if
Camel should poll a file network, and this network resource is not available then a
java.io.IOException could occur. As this error happens before any Exchange has been
created and prepared for routing, then the regular Error handling in Camel does not apply. So
what does the consumer do then? Well the exception is propagated back to the run method
where its handled. Camel will by default log the exception at WARN level and then ignore it. At
next schedule the error could have been resolved and thus being able to poll the endpoint
successfully.

Controlling the error handling using
PollingConsumerPollStrategy

org.apache.camel.PollingConsumerPollStrategy is a pluggable strategy that
you can configure on the ScheduledPollConsumer. The default implementation
org.apache.camel.impl.DefaultPollingConsumerPollStrategy will log the
caused exception at WARN level and then ignore this issue.

The strategy interface provides the following 3 methods
▪ begin

504 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/aws-sqs.html
http://camel.apache.org/exchange.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html

▪ void begin(Consumer consumer, Endpoint endpoint)
▪ begin (Camel 2.3)

▪ boolean begin(Consumer consumer, Endpoint endpoint)
▪ commit

▪ void commit(Consumer consumer, Endpoint endpoint)
▪ commit (Camel 2.6)

▪ void commit(Consumer consumer, Endpoint endpoint,
int polledMessages)

▪ rollback
▪ boolean rollback(Consumer consumer, Endpoint
endpoint, int retryCounter, Exception e) throws
Exception

In Camel 2.3 onwards the begin method returns a boolean which indicates whether or not to
skipping polling. So you can implement your custom logic and return false if you do not want
to poll this time.

In Camel 2.6 onwards the commit method has an additional parameter containing the
number of message that was actually polled. For example if there was no messages polled, the
value would be zero, and you can react accordingly.

The most interesting is the rollback as it allows you do handle the caused exception and
decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer we can
implement the PollingConsumerPollStrategy method and put the retry logic in the
rollback method. Lets just retry up till 3 times:

public boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter,
Exception e) throws Exception {

if (retryCounter < 3) {
// return true to tell Camel that it should retry the poll immediately
return true;

}
// okay we give up do not retry anymore
return false;

}

Notice that we are given the Consumer as a parameter. We could use this to restart the
consumer as we can invoke stop and start:

// error occurred lets restart the consumer, that could maybe resolve the issue
consumer.stop();
consumer.start();

Notice: If you implement the begin operation make sure to avoid throwing exceptions as in
such a case the poll operation is not invoked and Camel will invoke the rollback directly.

CHAPTER 10 - PATTERN APPENDIX 505

Configuring an Endpoint to use PollingConsumerPollStrategy

To configure an Endpoint to use a custom PollingConsumerPollStrategy you use the
option pollStrategy. For example in the file consumer below we want to use our custom
strategy defined in the Registry with the bean id myPoll:

from("file://inbox/?pollStrategy=#myPoll").to("activemq:queue:inbox")

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

See Also

▪ POJO Consuming
▪ Batch Consumer

Competing Consumers

Camel supports the Competing Consumers from the EIP patterns using a few different
components.

You can use the following components to implement competing consumers:-
• SEDA for SEDA based concurrent processing using a thread pool
• JMS for distributed SEDA based concurrent processing with queues which support

reliable load balancing, failover and clustering.

506 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/batch-consumer.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html

Enabling Competing Consumers with JMS

To enable Competing Consumers you just need to set the concurrentConsumers
property on the JMS endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5").bean(SomeBean.class);

or in Spring DSL

<route>
<from uri="jms:MyQueue?concurrentConsumers=5"/>
<to uri="bean:someBean"/>

</route>

Or just run multiple JVMs of any ActiveMQ or JMS route

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

You can use a component like JMS with selectors to implement a Selective Consumer as the
Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Content Based Router as the Message Dispatcher.

CHAPTER 10 - PATTERN APPENDIX 507

http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/content-based-router.html

See Also

• JMS
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when creating
your consumer. For example when using JMS you can specify a selector parameter so that the
message broker will only deliver messages matching your criteria.

The other approach is to use a Message Filter which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.filter(header("foo").isEqualTo("bar"))

.process(myProcessor);
}

};

Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

508 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/uris.html
http://camel.apache.org/jms.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<process ref="myProcessor"/>

</filter>
</route>

</camelContext>

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the JMS component which
supports publish & subscribe using Topics with support for non-durable and durable
subscribers.

Another alternative is to combine the Message Dispatcher or Content Based Router with
File or JPA components for durable subscribers then something like SEDA for non-durable.

Here is a simple example of creating durable subscribers to a JMS topic

Using the Fluent Builders

from("direct:start").to("activemq:topic:foo");

from("activemq:topic:foo?clientId=1&durableSubscriptionName=bar1").to("mock:result1");

from("activemq:topic:foo?clientId=2&durableSubscriptionName=bar2").to("mock:result2");

Using the Spring XML Extensions

CHAPTER 10 - PATTERN APPENDIX 509

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:start"/>
<to uri="activemq:topic:foo"/>

</route>

<route>
<from uri="activemq:topic:foo?clientId=1&durableSubscriptionName=bar1"/>
<to uri="mock:result1"/>

</route>

<route>
<from uri="activemq:topic:foo?clientId=2&durableSubscriptionName=bar2"/>
<to uri="mock:result2"/>

</route>

Here is another example of JMS durable subscribers, but this time using virtual topics
(recommended by AMQ over durable subscriptions)

Using the Fluent Builders

from("direct:start").to("activemq:topic:VirtualTopic.foo");

from("activemq:queue:Consumer.1.VirtualTopic.foo").to("mock:result1");

from("activemq:queue:Consumer.2.VirtualTopic.foo").to("mock:result2");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="activemq:topic:VirtualTopic.foo"/>

</route>

<route>
<from uri="activemq:queue:Consumer.1.VirtualTopic.foo"/>
<to uri="mock:result1"/>

</route>

<route>
<from uri="activemq:queue:Consumer.2.VirtualTopic.foo"/>
<to uri="mock:result2"/>

</route>

See Also

• JMS
• File
• JPA
• Message Dispatcher

510 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/jms.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/message-dispatcher.html

• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Idempotent Consumer

The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression
to calculate a unique message ID string for a given message exchange; this ID can then be
looked up in the IdempotentRepository to see if it has been seen before; if it has the message is
consumed; if its not then the message is processed and the ID is added to the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter out duplicates.

Camel will add the message id eagerly to the repository to detect duplication also for
Exchanges currently in progress.
On completion Camel will remove the message id from the repository if the Exchange failed,
otherwise it stays there.

Camel provides the following Idempotent Consumer implementations:
▪ MemoryIdempotentRepository
▪ FileIdempotentRepository
▪ HazelcastIdempotentRepository (Available as of Camel 2.8)
▪ JdbcMessageIdRepository (Available as of Camel 2.7)
▪ JpaMessageIdRepository

Options

The Idempotent Consumer has the following options:

Option Default Description

eager true

Eager controls whether Camel adds the message to
the repository before or after the exchange has been
processed. If enabled before then Camel will be able
to detect duplicate messages even when messages
are currently in progress. By disabling Camel will only
detect duplicates when a message has successfully
been processed.

CHAPTER 10 - PATTERN APPENDIX 511

http://camel.apache.org/selective-consumer.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/file2.html
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/jpa.html

messageIdRepositoryRef null
A reference to a IdempotentRepository to
lookup in the registry. This option is mandatory
when using XML DSL.

skipDuplicate true

Camel 2.8: Sets whether to skip duplicate
messages. If set to false then the message will be
continued. However the Exchange has been marked
as a duplicate by having the
Exchange.DUPLICATE_MESSAG exchange
property set to a Boolean.TRUE value.

removeOnFailure true
Camel 2.9: Sets whether to remove the id of an
Exchange that failed.

Using the Fluent Builders

The following example will use the header myMessageId to filter out duplicates

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.idempotentConsumer(header("myMessageId"),

MemoryIdempotentRepository.memoryIdempotentRepository(200))
.to("direct:b");

}
};

The above example will use an in-memory based MessageIdRepository which can easily run out
of memory and doesn't work in a clustered environment. So you might prefer to use the JPA
based implementation which uses a database to store the message IDs which have been
processed

from("direct:start").idempotentConsumer(
header("messageId"),
jpaMessageIdRepository(lookup(JpaTemplate.class), PROCESSOR_NAME)

).to("mock:result");

In the above example we are using the header messageId to filter out duplicates and using
the collection myProcessorName to indicate the Message ID Repository to use. This name
is important as you could process the same message by many different processors; so each may
require its own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test case

512 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Spring XML example

The following example will use the header myMessageId to filter out duplicates

<!-- repository for the idempotent consumer -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<idempotentConsumer messageIdRepositoryRef="myRepo">

<!-- use the messageId header as key for identifying duplicate messages -->
<header>messageId</header>
<!-- if not a duplicate send it to this mock endpoint -->
<to uri="mock:result"/>

</idempotentConsumer>
</route>

</camelContext>

How to handle duplicate messages in the route

Available as of Camel 2.8

You can now set the skipDuplicate option to false which instructs the idempotent
consumer to route duplicate messages as well. However the duplicate message has been
marked as duplicate by having a property on the Exchange set to true. We can leverage this fact
by using a Content Based Router or Message Filter to detect this and handle duplicate
messages.

For example in the following example we use the Message Filter to send the message to a
duplicate endpoint, and then stop continue routing that message.

Listing 1.Listing 1. Filter duplicate messagesFilter duplicate messages

from("direct:start")
// instruct idempotent consumer to not skip duplicates as we will filter then our

self

.idempotentConsumer(header("messageId")).messageIdRepository(repo).skipDuplicate(false)
.filter(property(Exchange.DUPLICATE_MESSAGE).isEqualTo(true))

// filter out duplicate messages by sending them to someplace else and then
stop

.to("mock:duplicate")

.stop()
.end()
// and here we process only new messages (no duplicates)
.to("mock:result");

The sample example in XML DSL would be:

Listing 1.Listing 1. Filter duplicate messagesFilter duplicate messages

CHAPTER 10 - PATTERN APPENDIX 513

http://camel.apache.org/exchange.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html

<!-- idempotent repository, just use a memory based for testing -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<!-- we do not want to skip any duplicate messages -->
<idempotentConsumer messageIdRepositoryRef="myRepo" skipDuplicate="false">

<!-- use the messageId header as key for identifying duplicate messages -->
<header>messageId</header>
<!-- we will to handle duplicate messages using a filter -->
<filter>

<!-- the filter will only react on duplicate messages, if this
property is set on the Exchange -->

<property>CamelDuplicateMessage</property>
<!-- and send the message to this mock, due its part of an unit test

-->
<!-- but you can of course do anything as its part of the route -->
<to uri="mock:duplicate"/>
<!-- and then stop -->
<stop/>

</filter>
<!-- here we route only new messages -->
<to uri="mock:result"/>

</idempotentConsumer>
</route>

</camelContext>

How to handle duplicate message in a clustered environment with a data
grid

Available as of Camel 2.8

If you have running Camel in a clustered environment, a in memory idempotent repository
doesn't work (see above). You can setup either a central database or use the idempotent
consumer implementation based on the Hazelcast data grid. Hazelcast finds the nodes over
multicast (which is default - configure Hazelcast for tcp-ip) and creates automatically a map
based repository:

HazelcastIdempotentRepository idempotentRepo = new
HazelcastIdempotentRepository("myrepo");

from("direct:in").idempotentConsumer(header("messageId"),
idempotentRepo).to("mock:out");

You have to define how long the repository should hold each message id (default is to delete it
never). To avoid that you run out of memory you should create an eviction strategy based on
the Hazelcast configuration. For additional information see camel-hazelcast.

514 CHAPTER 10 - PATTERN APPENDIX

http://www.hazelcast.com/
http://www.hazelcast.com/documentation.jsp#MapEviction
http://camel.apache.org/hazelcast-component.html

See this little tutorial, how setup such an idempotent repository on two cluster nodes using
Apache Karaf.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Transactional Client

Camel recommends supporting the Transactional Client from the EIP patterns using spring
transactions.

Transaction Oriented Endpoints (Camel Toes) like JMS support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate
in the current transaction context that they are called from.
You should use the SpringRouteBuilder to setup the routes since you will need to setup the
spring context with the TransactionTemplates that will define the transaction manager
configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the JMS component, this can be done by looking it
up in the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Then you look them up and use them to create the JmsComponent.

CHAPTER 10 - PATTERN APPENDIX 515

http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/what-is-a-camel-toe.html
http://camel.apache.org/jms.html
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html

Configuration of Redelivery
The redelivery in transacted mode is not handled by Camel but by the backing
system (the transaction manager). In such cases you should resort to the backing
system how to configure the redelivery.

PlatformTransactionManager transactionManager = (PlatformTransactionManager)
spring.getBean("jmsTransactionManager");

ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");

JmsComponent component = JmsComponent.jmsComponentTransacted(connectionFactory,
transactionManager);

component.getConfiguration().setConcurrentConsumers(1);
ctx.addComponent("activemq", component);

Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you
do not want your outbound endpoint to enlist in the same transaction as your inbound
endpoint? The solution is to add a Transaction Policy to the processing route. You first have to
define transaction policies that you will be using. The policies use a spring TransactionTemplate
under the covers for declaring the transaction demarcation to use. So you will need to add
something like the following to your spring xml:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects
for each of the templates.

public void configure() {
...
Policy requried = bean(SpringTransactionPolicy.class, "PROPAGATION_REQUIRED"));
Policy requirenew = bean(SpringTransactionPolicy.class,

"PROPAGATION_REQUIRES_NEW"));

516 CHAPTER 10 - PATTERN APPENDIX

http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

...
}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("activemq:queue:bar");

OSGi Blueprint

If you are using OSGi Blueprint then you most likely have to explicit declare a policy and refer
to the policy from the transacted in the route.

<bean id="required" class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

And then refer to "required" from the route:

<route>
<from uri="activemq:queue:foo"/>
<transacted ref="required"/>
<to uri="activemq:queue:bar"/>

</route>

Database Sample

In this sample we want to ensure that two endpoints is under transaction control. These two
endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we have defined a
DataSource to the HSQLDB and a most importantly
the Spring DataSoruce TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any
of the Spring based TransactionMananger, eg. if you are in a full blown J2EE container you could
use JTA or the WebLogic or WebSphere specific managers.

CHAPTER 10 - PATTERN APPENDIX 517

http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log

As we use the new convention over configuration we do not need to configure a
transaction policy bean, so we do not have any PROPAGATION_REQUIRED beans.
All the beans needed to be configured is standard Spring beans only, eg. there are no Camel
specific configuration at all.

<!-- this example uses JDBC so we define a data source -->
<jdbc:embedded-database id="dataSource" type="DERBY">

<jdbc:script location="classpath:sql/init.sql" />
</jdbc:embedded-database>

<!-- spring transaction manager -->
<!-- this is the transaction manager Camel will use for transacted routes -->
<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

<!-- bean for book business logic -->
<bean id="bookService" class="org.apache.camel.spring.interceptor.BookService">

<property name="dataSource" ref="dataSource"/>
</bean>

Then we are ready to define our Camel routes. We have two routes: 1 for success conditions,
and 1 for a forced rollback condition.
This is after all based on a unit test. Notice that we mark each route as transacted using the
transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:okay"/>
<!-- we mark this route as transacted. Camel will lookup the spring

transaction manager
and use it by default. We can optimally pass in arguments to specify a

policy to use
that is configured with a spring transaction manager of choice. However

Camel supports
convention over configuration as we can just use the defaults out of the

box and Camel
that suites in most situations -->

<transacted/>
<setBody>

<constant>Tiger in Action</constant>
</setBody>
<bean ref="bookService"/>
<setBody>

<constant>Elephant in Action</constant>
</setBody>
<bean ref="bookService"/>

</route>

<route>

518 CHAPTER 10 - PATTERN APPENDIX

<from uri="direct:fail"/>
<!-- we mark this route as transacted. See comments above. -->
<transacted/>
<setBody>

<constant>Tiger in Action</constant>
</setBody>
<bean ref="bookService"/>
<setBody>

<constant>Donkey in Action</constant>
</setBody>
<bean ref="bookService"/>

</route>
</camelContext>

That is all that is needed to configure a Camel route as being transacted. Just remember to use
the transacted DSL. The rest is standard Spring XML to setup the transaction manager.

JMS Sample

In this sample we want to listen for messages on a queue and process the messages with our
business logic java code and send them along. Since its based on a unit test the destination is a
mock endpoint.

First we configure the standard Spring XML to declare a JMS connection factory, a JMS
transaction manager and our ActiveMQ component that we use in our routing.

<!-- setup JMS connection factory -->
<bean id="poolConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory">

<property name="maxConnections" value="8"/>
<property name="connectionFactory" ref="jmsConnectionFactory"/>

</bean>

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

<!-- setup spring jms TX manager -->
<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="poolConnectionFactory"/>
</bean>

<!-- define our activemq component -->
<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="connectionFactory" ref="poolConnectionFactory"/>
<!-- define the jms consumer/producer as transacted -->
<property name="transacted" value="true"/>
<!-- setup the transaction manager to use -->
<!-- if not provided then Camel will automatic use a JmsTransactionManager,

CHAPTER 10 - PATTERN APPENDIX 519

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log

however if you
for instance use a JTA transaction manager then you must configure it -->

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

And then we configure our routes. Notice that all we have to do is mark the route as
transacted using the transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- disable JMX during testing -->
<jmxAgent id="agent" disabled="true"/>
<route>

<!-- 1: from the jms queue -->
<from uri="activemq:queue:okay"/>
<!-- 2: mark this route as transacted -->
<transacted/>
<!-- 3: call our business logic that is myProcessor -->
<process ref="myProcessor"/>
<!-- 4: if success then send it to the mock -->
<to uri="mock:result"/>

</route>
</camelContext>

<bean id="myProcessor"
class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest$MyProcessor"/>

USING MULTIPLE ROUTES WITH DIFFERENT
PROPAGATION BEHAVIORS

Available as of Camel 2.2
Suppose you want to route a message through two routes and by which the 2nd route should
run in its own transaction. How do you do that? You use propagation behaviors for that where
you configure it as follows:

▪ The first route use PROPAGATION_REQUIRED
▪ The second route use PROPAGATION_REQUIRES_NEW

This is configured in the Spring XML file:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>

520 CHAPTER 10 - PATTERN APPENDIX

Transaction error handler
When a route is marked as transacted using transacted Camel will automatic use
the TransactionErrorHandler as Error Handler. It supports basically the same
feature set as the DefaultErrorHandler, so you can for instance use Exception
Clause as well.

<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>
</bean>

Then in the routes you use transacted DSL to indicate which of these two propagations it uses.

from("direct:mixed")
// using required
.transacted("PROPAGATION_REQUIRED")
// all these steps will be okay
.setBody(constant("Tiger in Action")).beanRef("bookService")
.setBody(constant("Elephant in Action")).beanRef("bookService")
// continue on route 2
.to("direct:mixed2");

from("direct:mixed2")
// tell Camel that if this route fails then only rollback this last route
// by using (rollback only *last*)
.onException(Exception.class).markRollbackOnlyLast().end()
// using a different propagation which is requires new
.transacted("PROPAGATION_REQUIRES_NEW")
// this step will be okay
.setBody(constant("Lion in Action")).beanRef("bookService")
// this step will fail with donkey
.setBody(constant("Donkey in Action")).beanRef("bookService");

Notice how we have configured the onException in the 2nd route to indicate in case of any
exceptions we should handle it and just rollback this transaction.
This is done using the markRollbackOnlyLast which tells Camel to only do it for the
current transaction and not globally.

See Also

• Error handling in Camel
• TransactionErrorHandler
• Error Handler
• JMS

CHAPTER 10 - PATTERN APPENDIX 521

http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/jms.html
http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exception-clause.html

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Messaging Gateway

Camel has several endpoint components that support the Messaging Gateway from the EIP
patterns.

Components like Bean and CXF provide a a way to bind a Java interface to the message
exchange.

However you may want to read the Using CamelProxy documentation as a true Messaging
Gateway EIP solution.
Another approach is to use @Produce which you can read about in POJO Producing which
also can be used as a Messaging Gateway EIP solution.

See Also

• Bean
• CXF
• Using CamelProxy
• POJO Producing
• Spring Remoting

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Service Activator

Camel has several endpoint components that support the Service Activator from the EIP
patterns.

522 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html

Components like Bean, CXF and Pojo provide a a way to bind the message exchange to a
Java interface/service where the route defines the endpoints and wires it up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

Here is a simple example of using a Direct endpoint to create a messaging interface to a
Pojo Bean service.

Using the Fluent Builders

from("direct:invokeMyService").to("bean:myService");

Using the Spring XML Extensions

<route>
<from uri="direct:invokeMyService"/>
<to uri="bean:myService"/>

</route>

See Also

• Bean
• Pojo
• CXF

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 523

http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/direct.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/cxf.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

SYSTEM MANAGEMENT

Detour

The Detour from the EIP patterns allows you to send messages through additional steps if a
control condition is met. It can be useful for turning on extra validation, testing, debugging code
when needed.

Example

In this example we essentially have a route like
from("direct:start").to("mock:result") with a conditional detour to the
mock:detour endpoint in the middle of the route..

from("direct:start").choice()
.when().method("controlBean", "isDetour").to("mock:detour").end()
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>

<choice>
<when>

<method bean="controlBean" method="isDetour"/>
<to uri="mock:detour"/>

</when>
</choice>
<to uri="mock:result"/>

</route>

whether the detour is turned on or off is decided by the ControlBean. So, when the detour
is on the message is routed to mock:detour and then mock:result. When the detour is
off, the message is routed to mock:result.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

524 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/Detour.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

Wire Tap

Wire Tap (from the EIP patterns) allows you to route messages to a separate location while
they are being forwarded to the ultimate destination.

Options

Name
Default
Value

Description

uri Ê The URI of the endpoint to which the wire-tapped message will be sent. You should use either uri or ref.

ref Ê Reference identifier of the endpoint to which the wire-tapped message will be sent. You should use either uri or ref.

executorServiceRef Ê
Reference identifier of a custom Thread Pool to use when processing the wire-tapped messages. If not set, Camel will use a
default thread pool.

processorRef Ê Reference identifier of a custom Processor to use for creating a new message (e.g., the "send a new message" mode). See below.

copy true Camel 2.3: Whether to copy the Exchange before wire-tapping the message.

onPrepareRef Ê
Camel 2.8: Reference identifier of a custom Processor to prepare the copy of the Exchange to be wire-tapped. This allows
you to do any custom logic, such as deep-cloning the message payload.

WireTap thread pool

The Wire Tap uses a thread pool to process the tapped messages. This thread pool will by
default use the settings detailed at Threading Model. In particular, when the pool is exhausted
(with all threads utilized), further wiretaps will be executed synchronously by the calling thread.
To remedy this, you can configure an explicit thread pool on the Wire Tap having either a
different rejection policy, a larger worker queue, or more worker threads.

WireTap node

Camel's Wire Tap node supports two flavors when tapping an Exchange:

-With the traditional Wire Tap, Camel will copy the original Exchange and set its Exchange
Pattern to InOnly, as we want the tapped Exchange to be sent in a fire and forget style. The
tapped Exchange is then sent in a separate thread so it can run in parallel with the original.

CHAPTER 10 - PATTERN APPENDIX 525

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Streams
If you Wire Tap a stream message body then you should consider enabling Stream
caching to ensure the message body can be read at each endpoint. See more details
at Stream caching.

-Camel also provides an option of sending a new Exchange allowing you to populate it with
new values.

Sending a copy (traditional wiretap)

Using the Fluent Builders

from("direct:start")
.to("log:foo")
.wireTap("direct:tap")
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="log:foo"/>
<wireTap uri="direct:tap"/>
<to uri="mock:result"/>

</route>

Sending a new Exchange

Using the Fluent Builders
Camel supports either a processor or an Expression to populate the new Exchange. Using a
processor gives you full power over how the Exchange is populated as you can set properties,
headers, et cetera. An Expression can only be used to set the IN body.

From Camel 2.3 onwards the Expression or Processor is pre-populated with a copy of the
original Exchange, which allows you to access the original message when you prepare a new
Exchange to be sent. You can use the copy option (enabled by default) to indicate whether
you want this. If you set copy=false, then it works as in Camel 2.2 or older where the
Exchange will be empty.

Below is the processor variation. This example is from Camel 2.3, where we disable copy
by passing in false to create a new, empty Exchange.

526 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/stream-caching.html

from("direct:start")
.wireTap("direct:foo", false, new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getIn().setBody("Bye World");
exchange.getIn().setHeader("foo", "bar");

}
}).to("mock:result");

from("direct:foo").to("mock:foo");

Here is the Expression variation. This example is from Camel 2.3, where we disable copy by
passing in false to create a new, empty Exchange.

from("direct:start")
.wireTap("direct:foo", false, constant("Bye World"))
.to("mock:result");

from("direct:foo").to("mock:foo");

Using the Spring XML Extensions
The processor variation, which uses a processorRef attribute to refer to a Spring bean by
ID:

<route>
<from uri="direct:start2"/>
<wireTap uri="direct:foo" processorRef="myProcessor"/>
<to uri="mock:result"/>

</route>

Here is the Expression variation, where the expression is defined in the body tag:

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

<body><constant>Bye World</constant></body>
</wireTap>
<to uri="mock:result"/>

</route>

This variation accesses the body of the original message and creates a new Exchange based on
the Expression. It will create a new Exchange and have the body contain "Bye ORIGINAL
BODY MESSAGE HERE"

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

CHAPTER 10 - PATTERN APPENDIX 527

http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html

<body><simple>Bye ${body}</simple></body>
</wireTap>
<to uri="mock:result"/>

</route>

Further Example

For another example of this pattern, refer to the wire tap test case.

Sending a new Exchange and set headers in DSL

Available as of Camel 2.8

If you send a new message using Wire Tap, then you could only set the message body using
an Expression from the DSL. If you also need to set headers, you would have to use a
Processor. In Camel 2.8 onwards, you can now set headers as well in the DSL.

The following example sends a new message which has
▪ "Bye World" as message body
▪ a header with key "id" with the value 123
▪ a header with key "date" which has current date as value

Java DSL

from("direct:start")
// tap a new message and send it to direct:tap
// the new message should be Bye World with 2 headers
.wireTap("direct:tap")

// create the new tap message body and headers
.newExchangeBody(constant("Bye World"))
.newExchangeHeader("id", constant(123))
.newExchangeHeader("date", simple("${date:now:yyyyMMdd}"))

.end()
// here we continue routing the original messages
.to("mock:result");

// this is the tapped route
from("direct:tap")

.to("mock:tap");

XML DSL

The XML DSL is slightly different than Java DSL in how you configure the message body and
headers using <body> and <setHeader>:

528 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java
http://camel.apache.org/exchange.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/expression.html
http://camel.apache.org/processor.html

<route>
<from uri="direct:start"/>
<!-- tap a new message and send it to direct:tap -->
<!-- the new message should be Bye World with 2 headers -->
<wireTap uri="direct:tap">

<!-- create the new tap message body and headers -->
<body><constant>Bye World</constant></body>
<setHeader headerName="id"><constant>123</constant></setHeader>
<setHeader headerName="date"><simple>${date:now:yyyyMMdd}</simple></setHeader>

</wireTap>
<!-- here we continue routing the original message -->
<to uri="mock:result"/>

</route>

Using onPrepare to execute custom logic when preparing messages

Available as of Camel 2.8

See details at Multicast

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

LOG

How can I log processing a Message?

Camel provides many ways to log processing a message. Here is just some examples:
▪ You can use the Log component which logs the Message content.
▪ You can use the Tracer which trace logs message flow.
▪ You can also use a Processor or Bean and log from Java code.
▪ You can use the log DSL.

Using log DSL

And in Camel 2.2 you can use the log DSL which allows you to use Simple language to
construct a dynamic message which gets logged.
For example you can do

from("direct:start").log("Processing ${id}").to("bean:foo");

CHAPTER 10 - PATTERN APPENDIX 529

http://camel.apache.org/multicast.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/message.html
http://camel.apache.org/log.html
http://camel.apache.org/tracer.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean.html
http://camel.apache.org/simple.html

Which will construct a String message at runtime using the Simple language. The log message
will by logged at INFO level using the route id as the log name. By default a route is named
route-1, route-2 etc. But you can use the routeId("myCoolRoute") to set a route
name of choice.
The log DSL have overloaded methods to set the logging level and/or name as well.

from("direct:start").log(LoggingLevel.DEBUG, "Processing ${id}").to("bean:foo");

For example you can use this to log the file name being processed if you consume files.

from("file://target/files").log(LoggingLevel.DEBUG, "Processing file
${file:name}").to("bean:foo");

Using log DSL from Spring

In Spring DSL its also easy to use log DSL as shown below:

<route id="foo">
<from uri="direct:foo"/>
<log message="Got ${body}"/>
<to uri="mock:foo"/>

</route>

The log tag has attributes to set the message, loggingLevel and logName. For example:

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
<to uri="mock:baz"/>

</route>

Using slf4j Marker

Available as of Camel 2.9

You can specify a marker name in the DSL

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"

marker="myMarker"/>
<to uri="mock:baz"/>

</route>

530 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/simple.html

Difference between log in the DSL and Log component
The log DSL is much lighter and meant for logging human logs such as Starting
to do ... etc. It can only log a message based on the Simple language. On the
other hand Log component is a full fledged component which involves using
endpoints and etc. The Log component is meant for logging the Message itself and
you have many URI options to control what you would like to be logged.

Using This Pattern

If you would like to use this EIP Pattern then please read the Getting Started, you may also find
the Architecture useful particularly the description of Endpoint and URIs. Then you could try
out some of the Examples first before trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 531

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/log.html
http://camel.apache.org/simple.html
http://camel.apache.org/log.html
http://camel.apache.org/log.html

C H A P T E R 1 1

° ° ° °

Component Appendix

There now follows the documentation on each Camel component.

ACTIVEMQ COMPONENT

The ActiveMQ component allows messages to be sent to a JMS Queue or Topic or messages to
be consumed from a JMS Queue or Topic using Apache ActiveMQ.

This component is based on JMS Component and uses Spring's JMS support for declarative
transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming. All the options from the JMS component
also applies for this component.

To use this component make sure you have the activemq.jar or activemq-
core.jar on your classpath along with any Camel dependencies such as camel-core.jar,
camel-spring.jar and camel-jms.jar.

URI format

activemq:[queue:|topic:]destinationName

Where destinationName is an ActiveMQ queue or topic name. By default, the
destinationName is interpreted as a queue name. For example, to connect to the queue,
FOO.BAR, use:

activemq:FOO.BAR

You can include the optional queue: prefix, if you prefer:

activemq:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the
topic, Stocks.Prices, use:

532 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Transacted and caching
See section Transactions and Cache Levels below on JMS page if you are using
transactions with JMS as it can impact performance.

activemq:topic:Stocks.Prices

Options

See Options on the JMS component as all these options also apply for this component.

Configuring the Connection Factory

This test case shows how to add an ActiveMQComponent to the CamelContext using the
activeMQComponent() method while specifying the brokerURL used to connect to
ActiveMQ.

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML

You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
</camelContext>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>

</bean>

</beans>

CHAPTER 11 - COMPONENT APPENDIX 533

http://camel.apache.org/jms.html
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://camel.apache.org/camelcontext.html
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/configuring-transports.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Using connection pooling

When sending to an ActiveMQ broker using Camel it's recommended to use a pooled
connection factory to efficiently handle pooling of JMS connections, sessions and producers.
This is documented on the ActiveMQ Spring Support page.

You can grab ActiveMQ's
org.apache.activemq.pool.PooledConnectionFactory with Maven:

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-pool</artifactId>
<version>5.6.0</version>

</dependency>

And then setup the activemq Camel component as follows:

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

<bean id="pooledConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory" init-method="start"

destroy-method="stop">
<property name="maxConnections" value="8" />
<property name="connectionFactory" ref="jmsConnectionFactory" />

</bean>

<bean id="jmsConfig"
class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="pooledConnectionFactory"/>
<property name="concurrentConsumers" value="10"/>

</bean>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="configuration" ref="jmsConfig"/>

</bean>

The PooledConnectionFactory will then create a connection pool with up to 8
connections in use at the same time. Each connection can be shared by many sessions. There is
an option named maxActive you can use to configure the maximum number of sessions per
connection; the default value is 500. From ActiveMQ 5.7 onwards the option has been
renamed to better reflect its purpose, being named as
maxActiveSessionPerConnection. Notice the concurrentConsumers is set to a
higher value than maxConnections is. This is okay, as each consumer is using a session, and
as a session can share the same connection, we are in the safe. In this example we can have 8 *
500 = 4000 active sessions at the same time.

534 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/spring-support.html

Notice the init and destroy methods on the pooled connection factory. This is
important to ensure the connection pool is properly started and shutdown.

Invoking MessageListener POJOs in a Camel route

The ActiveMQ component also provides a helper Type Converter from a JMS MessageListener
to a Processor. This means that the Bean component is capable of invoking any JMS
MessageListener bean directly inside any route.

So for example you can create a MessageListener in JMS like this:

public class MyListener implements MessageListener {
public void onMessage(Message jmsMessage) {

// ...
}

}

Then use it in your Camel route as follows

from("file://foo/bar").
bean(MyListener.class);

That is, you can reuse any of the Camel Components and easily integrate them into your JMS
MessageListener POJO!

Using ActiveMQ Destination Options

Available as of ActiveMQ 5.6

You can configure the Destination Options in the endpoint uri, using the "destination."
prefix. For example to mark a consumer as exclusive, and set its prefetch size to 50, you can do
as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://src/test/data?noop=true"/>
<to uri="activemq:queue:foo"/>

</route>
<route>

<!-- use consumer.exclusive ActiveMQ destination option, notice we have to prefix
with destination. -->

<from
uri="activemq:foo?destination.consumer.exclusive=true&destination.consumer.prefetchSize=50"/>

<to uri="mock:results"/>
</route>

</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 535

http://camel.apache.org/type-converter.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean.html
http://camel.apache.org/components.html
http://activemq.apache.org/destination-options.html

Consuming Advisory Messages

ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such
messages can help you send alerts in case you detect slow consumers or to build statistics
(number of messages/produced per day, etc.) The following Spring DSL example shows you
how to read messages from a topic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection. To watch another
topic, simply change the name according to the name provided in ActiveMQ Advisory Messages
documentation. The parameter mapJmsMessage=false allows for converting the
org.apache.activemq.command.ActiveMqMessage object from the jms queue. Next, the body
received is converted into a String for the purposes of this example and a carriage return is
added. Finally, the string is added to a file

<route>
<from uri="activemq:topic:ActiveMQ.Advisory.Connection?mapJmsMessage=false" />
<convertBodyTo type="java.lang.String"/>
<transform>

<simple>${in.body}</simple>
</transform>
<to uri="file://data/

activemq/?fileExist=Append&fileName=advisoryConnection-${date:now:yyyyMMdd}.txt" />
</route>

If you consume a message on a queue, you should see the following files under the data/
activemq folder :

advisoryConnection-20100312.txt
advisoryProducer-20100312.txt

and containing string:

ActiveMQMessage {commandId = 0, responseRequired = false,
messageId = ID:dell-charles-3258-1268399815140
-1:0:0:0:221, originalDestination = null, originalTransactionId = null,
producerId = ID:dell-charles-3258-1268399815140-1:0:0:0,
destination = topic://ActiveMQ.Advisory.Connection, transactionId = null,
expiration = 0, timestamp = 0, arrival = 0, brokerInTime = 1268403383468,
brokerOutTime = 1268403383468, correlationId = null, replyTo = null,
persistent = false, type = Advisory, priority = 0, groupID = null, groupSequence = 0,
targetConsumerId = null, compressed = false, userID = null, content = null,
marshalledProperties = org.apache.activemq.util.ByteSequence@17e2705,
dataStructure = ConnectionInfo {commandId = 1, responseRequired = true,
connectionId = ID:dell-charles-3258-1268399815140-2:50,
clientId = ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****,
brokerPath = null, brokerMasterConnector = false, manageable = true,
clientMaster = true}, redeliveryCounter = 0, size = 0, properties =
{originBrokerName=master, originBrokerId=ID:dell-charles-3258-1268399815140-0:0,
originBrokerURL=vm://master}, readOnlyProperties = true, readOnlyBody = true,
droppable = false}

536 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/advisory-message.html

Getting Component JAR

You will need this dependency
▪ activemq-camel

ActiveMQ is an extension of the JMS component released with the ActiveMQ project.

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>
<version>5.6.0</version>

</dependency>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

ACTIVEMQ JOURNAL COMPONENT

The ActiveMQ Journal Component allows messages to be stored in a rolling log file and then
consumed from that log file. The journal aggregates and batches up concurrent writes so that
the overhead of writing and waiting for the disk sync is relatively constant regardless of how
many concurrent writes are being done. Therefore, this component supports and encourages
you to use multiple concurrent producers to the same journal endpoint.

Each journal endpoint uses a different log file and therefore write batching (and the
associated performance boost) does not occur between multiple endpoints.

This component only supports one active consumer on the endpoint. After the message is
processed by the consumer's processor, the log file is marked and only subsequent messages in
the log file will get delivered to consumers.

URI format

activemq.journal:directoryName[?options]

So for example, to send to the journal located in the /tmp/data directory you would use the
following URI:

activemq.journal:/tmp/data

CHAPTER 11 - COMPONENT APPENDIX 537

http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://activemq.apache.org
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Options

Name
Default
Value

Description

syncConsume false
If set to true, when the journal is marked after a message is consumed, wait till the Operating System has verified the mark update
is safely stored on disk.

syncProduce true If set to true, wait till the Operating System has verified the message is safely stored on disk.

You can append query options to the URI in the following format,
?option=value&option=value&...

Expected Exchange Data Types

The consumer of a Journal endpoint generates DefaultExchange objects with the in message :
• header "journal" : set to the endpoint uri of the journal the message came from
• header "location" : set to a Location which identifies where the recored was stored

on disk
• body : set to ByteSequence which contains the byte array data of the stored message

The producer to a Journal endpoint expects an Exchange with an In message where the body
can be converted to a ByteSequence or a byte[].

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

AMQP

The amqp: component supports the AMQP protocol using the Client API of the Qpid project.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-amqp</artifactId>
<version>${camel.version}</version> <!-- use the same version as your Camel core

version -->
</dependency>

538 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://camel.apache.org/maven/current//camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.amqp.org/
http://qpid.apache.org/

URI format

amqp:[queue:|topic:]destinationName[?options]

You can specify all of the various configuration options of the JMS component after the
destination name.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

SQS COMPONENT

Available as of Camel 2.6

The sqs component supports sending and receiving messages to Amazon's SQS service.

URI Format

aws-sqs://queue-name[?options]

The queue will be created if they don't already exists.
You can append query options to the URI in the following format,
?options=value&option2=value&...

URI Options

Name
Default
Value

Context Description

amazonSQSClient null Shared Reference to a com.amazonaws.services.sqs.AmazonSQS in the Registry.

accessKey null Shared Amazon AWS Access Key

secretKey null Shared Amazon AWS Secret Key

amazonSQSEndpoint null Shared The region with which the AWS-SQS client wants to work with.

attributeNames null Consumer
A list of attributes to set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest.

defaultVisibilityTimeout null Shared
The visibility timeout (in seconds) to set in the
com.amazonaws.services.sqs.model.CreateQueueRequest.

deleteAfterRead true Consumer Delete message from SQS after it has been read

maxMessagesPerPoll null Consumer
The maximum number of messages which can be received in one poll to set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest.

CHAPTER 11 - COMPONENT APPENDIX 539

http://camel.apache.org/jms.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://aws.amazon.com/sqs
http://camel.apache.org/registry.html

Prerequisites
You must have a valid Amazon Web Services developer account, and be signed up
to use Amazon SQS. More information are available at Amazon SQS.

visibilityTimeout null Shared

The duration (in seconds) that the received messages are hidden from subsequent retrieve requests
after being retrieved by a ReceiveMessage request to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest. This only make
sense if its different from defaultVisibilityTimeout. It changes the queue visibility timeout
attribute permanently.

messageVisibilityTimeout null Consumer

Camel 2.8: The duration (in seconds) that the received messages are hidden from subsequent
retrieve requests after being retrieved by a ReceiveMessage request to set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest. It does NOT change
the queue visibility timeout attribute permanently.

extendMessageVisibility false Consumer
Camel 2.10: If enabled then a scheduled background task will keep extending the message visibility
on SQS. This is needed if it taks a long time to process the message. If set to true
defaultVisibilityTimeout must be set. See details at Amazon docs.

maximumMessageSize null Shared
Camel 2.8: The maximumMessageSize (in bytes) an SQS message can contain for this queue, to set
in the com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

messageRetentionPeriod null Shared
Camel 2.8: The messageRetentionPeriod (in seconds) a message will be retained by SQS for this
queue, to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

policy null Shared
Camel 2.8: The policy for this queue to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

delaySeconds null Producer Camel 2.9.3: Delay sending messages for a number of seconds.

waitTimeSeconds 0 Producer
Camel 2.11: Duration in seconds (0 to 20) that the ReceiveMessage action call will wait until a
message is in the queue to include in the response.

receiveMessageWaitTimeSeconds 0 Shared
Camel 2.11: If you do not specify WaitTimeSeconds in the request, the queue attribute
ReceiveMessageWaitTimeSeconds is used to determine how long to wait.

Batch Consumer

This component implements the Batch Consumer.

This allows you for instance to know how many messages exists in this batch and for
instance let the Aggregator aggregate this number of messages.

Usage

Message headers set by the SQS producer

Header Type Description

CamelAwsSqsMD5OfBody String The MD5 checksum of the Amazon SQS message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

CamelAwsSqsDelaySeconds Integer Since Camel 2.11, the delay seconds that the Amazon SQS message can be see by others.

Message headers set by the SQS consumer

Header Type Description

540 CHAPTER 11 - COMPONENT APPENDIX

http://docs.amazonwebservices.com/AWSSimpleQueueService/latest/APIReference/Query_QueryChangeMessageVisibility.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/aggregator.html
http://aws.amazon.com/sqs

Required SQS component options
You have to provide the amazonSQSClient in the Registry or your accessKey and
secretKey to access the Amazon's SQS.

CamelAwsSqsMD5OfBody String The MD5 checksum of the Amazon SQS message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

CamelAwsSqsReceiptHandle String The Amazon SQS message receipt handle.

CamelAwsSqsAttributes Map<String, String> The Amazon SQS message attributes.

Advanced AmazonSQS configuration

If your Camel Application is running behind a firewall or if you need to have more control over
the AmazonSQS instance configuration, you can create your own instance:

AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonSQS client = new AmazonSQSClient(awsCredentials, clientConfiguration);

registry.bind("client", client);

and refer to it in your Camel aws-sqs component configuration:

from("aws-sqs://MyQueue?amazonSQSClient=#client&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

Dependencies

Maven users will need to add the following dependency to their pom.xml.

Listing 1.Listing 1. pom.xmlpom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-aws</artifactId>
<version>${camel-version}</version>

</dependency>

where ${camel-version} must be replaced by the actual version of Camel (2.6 or higher).

CHAPTER 11 - COMPONENT APPENDIX 541

http://camel.apache.org/registry.html
http://aws.amazon.com/sqs

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ AWS Component

ATOM COMPONENT

The atom: component is used for polling Atom feeds.

Camel will poll the feed every 60 seconds by default.
Note: The component currently only supports polling (consuming) feeds.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-atom</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

atom://atomUri[?options]

Where atomUri is the URI to the Atom feed to poll.

Options

Property Default Description

splitEntries true
If true Camel will poll the feed and for the subsequent polls return each entry poll by poll. If the feed contains 7 entries
then Camel will return the first entry on the first poll, the 2nd entry on the next poll, until no more entries where as
Camel will do a new update on the feed. If false then Camel will poll a fresh feed on every invocation.

filter true
Is only used by the split entries to filter the entries to return. Camel will default use the UpdateDateFilter that only
return new entries from the feed. So the client consuming from the feed never receives the same entry more than once.
The filter will return the entries ordered by the newest last.

lastUpdate null
Is only used by the filter, as the starting timestamp for selection never entries (uses the entry.updated timestamp).
Syntax format is: yyyy-MM-ddTHH:MM:ss. Example: 2007-12-24T17:45:59.

throttleEntries true
Camel 2.5: Sets whether all entries identified in a single feed poll should be delivered immediately. If true, only one
entry is processed per consumer.delay. Only applicable when splitEntries is set to true.

feedHeader true Sets whether to add the Abdera Feed object as a header.

sortEntries false If splitEntries is true, this sets whether to sort those entries by updated date.

consumer.delay 60000 Delay in millis between each poll.

consumer.initialDelay 1000 Millis before polling starts.

542 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/aws.html

consumer.userFixedDelay false If true, use fixed delay between pools, otherwise fixed rate is used. See ScheduledExecutorService in JDK for details.

You can append query options to the URI in the following format,
?option=value&option=value&...

Exchange data format

Camel will set the In body on the returned Exchange with the entries. Depending on the
splitEntries flag Camel will either return one Entry or a List<Entry>.

Option Value Behavior

splitEntries true Only a single entry from the currently being processed feed is set: exchange.in.body(Entry)

splitEntries false The entire list of entries from the feed is set: exchange.in.body(List<Entry>)

Camel can set the Feed object on the In header (see feedHeader option to disable this):

Message Headers

Camel atom uses these headers.

Header Description

CamelAtomFeed When consuming the org.apache.abdera.model.Feed object is set to this header.

Samples

In this sample we poll James Strachan's blog.

from("atom://http://macstrac.blogspot.com/feeds/posts/default").to("seda:feeds");

In this sample we want to filter only good blogs we like to a SEDA queue. The sample also
shows how to setup Camel standalone, not running in any Container or using Spring.

// This is the CamelContext that is the heart of Camel
private CamelContext context;

protected CamelContext createCamelContext() throws Exception {

// First we register a blog service in our bean registry
SimpleRegistry registry = new SimpleRegistry();
registry.put("blogService", new BlogService());

// Then we create the camel context with our bean registry
context = new DefaultCamelContext(registry);

// Then we add all the routes we need using the route builder DSL syntax
context.addRoutes(createMyRoutes());

return context;
}

CHAPTER 11 - COMPONENT APPENDIX 543

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

/**
* This is the route builder where we create our routes using the Camel DSL
*/

protected RouteBuilder createMyRoutes() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// We pool the atom feeds from the source for further processing in the

seda queue
// we set the delay to 1 second for each pool as this is a unit test also

and we can
// not wait the default poll interval of 60 seconds.
// Using splitEntries=true will during polling only fetch one Atom Entry

at any given time.
// As the feed.atom file contains 7 entries, using this will require 7

polls to fetch the entire
// content. When Camel have reach the end of entries it will refresh the

atom feed from URI source
// and restart - but as Camel by default uses the UpdatedDateFilter it

will only deliver new
// blog entries to "seda:feeds". So only when James Straham updates his

blog with a new entry
// Camel will create an exchange for the seda:feeds.
from("atom:file:src/test/data/

feed.atom?splitEntries=true&consumer.delay=1000").to("seda:feeds");

// From the feeds we filter each blot entry by using our blog service class
from("seda:feeds").filter().method("blogService",

"isGoodBlog").to("seda:goodBlogs");

// And the good blogs is moved to a mock queue as this sample is also used
for unit testing

// this is one of the strengths in Camel that you can also use the mock
endpoint for your

// unit tests
from("seda:goodBlogs").to("mock:result");

}
};

}

/**
* This is the actual junit test method that does the assertion that our routes is

working as expected
*/

@Test
public void testFiltering() throws Exception {

// create and start Camel
context = createCamelContext();
context.start();

// Get the mock endpoint
MockEndpoint mock = context.getEndpoint("mock:result", MockEndpoint.class);

// There should be at least two good blog entries from the feed
mock.expectedMinimumMessageCount(2);

544 CHAPTER 11 - COMPONENT APPENDIX

// Asserts that the above expectations is true, will throw assertions exception if
it failed

// Camel will default wait max 20 seconds for the assertions to be true, if the
conditions

// is true sooner Camel will continue
mock.assertIsSatisfied();

// stop Camel after use
context.stop();

}

/**
* Services for blogs
*/

public class BlogService {

/**
* Tests the blogs if its a good blog entry or not
*/

public boolean isGoodBlog(Exchange exchange) {
Entry entry = exchange.getIn().getBody(Entry.class);
String title = entry.getTitle();

// We like blogs about Camel
boolean good = title.toLowerCase().contains("camel");
return good;

}

}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ RSS

BEAN COMPONENT

The bean: component binds beans to Camel message exchanges.

URI format

bean:beanID[?options]

CHAPTER 11 - COMPONENT APPENDIX 545

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/rss.html

Where beanID can be any string which is used to look up the bean in the Registry

Options

Name Type Default Description

method String null

The method name from the bean that will be invoked. If not provided, Camel will try to determine the method
itself. In case of ambiguity an exception will be thrown. See Bean Binding for more details. From Camel 2.8
onwards you can specify type qualifiers to pin-point the exact method to use for overloaded methods. From
Camel 2.9 onwards you can specify parameter values directly in the method syntax. See more details at Bean
Binding.

cache boolean false
If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled if the bean in the
Registry is defined as a singleton scope.

multiParameterArray boolean false
How to treat the parameters which are passed from the message body; if it is true, the In message body should
be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

Using

The object instance that is used to consume messages must be explicitly registered with the
Registry. For example, if you are using Spring you must define the bean in the Spring
configuration, spring.xml; or if you don't use Spring, by registering the bean in JNDI.

// lets populate the context with the services we need
// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();
context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);

Once an endpoint has been registered, you can build Camel routes that use it to process
exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {

public void configure() {
from("direct:hello").to("bean:bye");

}
});

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot consume from it,
you can only route from some inbound message Endpoint to the bean endpoint as output. So
consider using a direct: or queue: endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy that will
generate BeanExchanges and send them to any endpoint:

546 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

And the same route using Spring DSL:

<route>
<from uri="direct:hello">
<to uri="bean:bye"/>

</route>

Bean as endpoint

Camel also supports invoking Bean as an Endpoint. In the route below:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<to uri="myBean"/>
<to uri="mock:results"/>

</route>
</camelContext>

<bean id="myBean" class="org.apache.camel.spring.bind.ExampleBean"/>

What happens is that when the exchange is routed to the myBean Camel will use the Bean
Binding to invoke the bean.
The source for the bean is just a plain POJO:

public class ExampleBean {

public String sayHello(String name) {
return "Hello " + name + "!";

}
}

Camel will use Bean Binding to invoke the sayHello method, by converting the Exchange's In
body to the String type and storing the output of the method on the Exchange Out body.

Java DSL bean syntax

Java DSL comes with syntactic sugar for the Bean component. Instead of specifying the bean
explicitly as the endpoint (i.e. to("bean:beanName")) you can use the following syntax:

CHAPTER 11 - COMPONENT APPENDIX 547

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html

// Send message to the bean endpoint
// and invoke method resolved using Bean Binding.
from("direct:start").beanRef("beanName");

// Send message to the bean endpoint
// and invoke given method.
from("direct:start").beanRef("beanName", "methodName");

Instead of passing name of the reference to the bean (so that Camel will lookup for it in the
registry), you can specify the bean itself:

// Send message to the given bean instance.
from("direct:start").bean(new ExampleBean());

// Explicit selection of bean method to be invoked.
from("direct:start").bean(new ExampleBean(), "methodName");

// Camel will create the instance of bean and cache it for you.
from("direct:start").bean(ExampleBean.class);

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the
method parameter) and how parameter values are constructed from the Message are all
defined by the Bean Binding mechanism which is used throughout all of the various Bean
Integration mechanisms in Camel.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Class component
• Bean Binding
• Bean Integration

BEAN VALIDATION COMPONENT

Available as of Camel 2.3

The Validation component performs bean validation of the message body using the Java Bean
Validation API (JSR 303). Camel uses the reference implementation, which is Hibernate
Validator.

548 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-bean-validator</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

bean-validator:something[?options]

or

bean-validator://something[?options]

Where something must be present to provide a valid url
You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options

Option Default Description

group javax.validation.groups.Default The custom validation group to use.

messageInterpolator
org.hibernate.validator.engine.
ResourceBundleMessageInterpolator

Reference to a custom
javax.validation.MessageInterpolator in the Registry.

traversableResolver
org.hibernate.validator.engine.resolver.
DefaultTraversableResolver

Reference to a custom
javax.validation.TraversableResolver in the Registry.

constraintValidatorFactory
org.hibernate.validator.engine.
ConstraintValidatorFactoryImpl

Reference to a custom
javax.validation.ConstraintValidatorFactory in the
Registry.

ServiceMix4/OSGi Deployment.

The bean-validator when deployed in an OSGi environment requires a little help to
accommodate the resource loading specified in JSR303, this was fixed in Servicemix-Specs
1.6-SNAPSHOT.

Example

Assumed we have a java bean with the following annotations

Listing 1.Listing 1. Car.javaCar.java

CHAPTER 11 - COMPONENT APPENDIX 549

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

public class Car {

@NotNull
private String manufacturer;

@NotNull
@Size(min = 5, max = 14, groups = OptionalChecks.class)
private String licensePlate;

// getter and setter
}

and an interface definition for our custom validation group

Listing 1.Listing 1. OptionalChecks.javaOptionalChecks.java

public interface OptionalChecks {
}

with the following Camel route, only the @NotNull constraints on the attributes
manufacturer and licensePlate will be validated (Camel uses the default group
javax.validation.groups.Default).

from("direct:start")
.to("bean-validator://x")
.to("mock:end")

If you want to check the constraints from the group OptionalChecks, you have to define
the route like this

from("direct:start")
.to("bean-validator://x?group=OptionalChecks")
.to("mock:end")

If you want to check the constraints from both groups, you have to define a new interface first

Listing 1.Listing 1. AllChecks.javaAllChecks.java

@GroupSequence({Default.class, OptionalChecks.class})
public interface AllChecks {
}

and then your route definition should looks like this

from("direct:start")
.to("bean-validator://x?group=AllChecks")
.to("mock:end")

550 CHAPTER 11 - COMPONENT APPENDIX

And if you have to provide your own message interpolator, traversable resolver and constraint
validator factory, you have to write a route like this

<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")
.to("bean-validator://x?group=AllChecks&messageInterpolator=#myMessageInterpolator
&traversableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFactory")
.to("mock:end")

It's also possible to describe your constraints as XML and not as Java annotations. In this case,
you have to provide the file META-INF/validation.xml which could looks like this

Listing 1.Listing 1. validation.xmlvalidation.xml

<?xml version="1.0" encoding="UTF-8"?>
<validation-config

xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">
<default-provider>org.hibernate.validator.HibernateValidator</default-provider>

<message-interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</message-interpolator>

<traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</traversable-resolver>

<constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</constraint-validator-factory>

<constraint-mapping>/constraints-car.xml</constraint-mapping>
</validation-config>

and the constraints-car.xml file

Listing 1.Listing 1. constraints-car.xmlconstraints-car.xml

<?xml version="1.0" encoding="UTF-8"?>
<constraint-mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping
validation-mapping-1.0.xsd"

xmlns="http://jboss.org/xml/ns/javax/validation/mapping">
<default-package>org.apache.camel.component.bean.validator</default-package>

<bean class="CarWithoutAnnotations" ignore-annotations="true">
<field name="manufacturer">

<constraint annotation="javax.validation.constraints.NotNull"
/>

</field>

<field name="licensePlate">
<constraint annotation="javax.validation.constraints.NotNull"

/>

CHAPTER 11 - COMPONENT APPENDIX 551

<constraint annotation="javax.validation.constraints.Size">
<groups>

<value>org.apache.camel.component.bean.validator.OptionalChecks</value>
</groups>
<element name="min">5</element>
<element name="max">14</element>

</constraint>
</field>

</bean>
</constraint-mappings>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

BROWSE COMPONENT

The Browse component provides a simple BrowsableEndpoint which can be useful for testing,
visualisation tools or debugging. The exchanges sent to the endpoint are all available to be
browsed.

URI format

browse:someName

Where someName can be any string to uniquely identify the endpoint.

Sample

In the route below, we insert a browse: component to be able to browse the Exchanges that
are passing through:

from("activemq:order.in").to("browse:orderReceived").to("bean:processOrder");

We can now inspect the received exchanges from within the Java code:

552 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/browsableendpoint.html

private CamelContext context;

public void inspectRecievedOrders() {
BrowsableEndpoint browse = context.getEndpoint("browse:orderReceived",

BrowsableEndpoint.class);
List<Exchange> exchanges = browse.getExchanges();
...
// then we can inspect the list of received exchanges from Java
for (Exchange exchange : exchanges) {

String payload = exchange.getIn().getBody();
...

}
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CACHE COMPONENT

Available as of Camel 2.1

The cache component enables you to perform caching operations using EHCache as the
Cache Implementation. The cache itself is created on demand or if a cache of that name already
exists then it is simply utilized with its original settings.

This component supports producer and event based consumer endpoints.

The Cache consumer is an event based consumer and can be used to listen and respond to
specific cache activities. If you need to perform selections from a pre-existing cache, use the
processors defined for the cache component.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cache</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 553

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

URI format

cache://cacheName[?options]

You can append query options to the URI in the following format,
?option=value&option=#beanRef&...

Options

Name Default Value Description

maxElementsInMemory 1000 The number of elements that may be stored in the defined cache

memoryStoreEvictionPolicy MemoryStoreEvictionPolicy.LFU

The number of elements that may be stored in the defined cache. Options include
▪ MemoryStoreEvictionPolicy.LFU - Least frequently used
▪ MemoryStoreEvictionPolicy.LRU - Least recently used
▪ MemoryStoreEvictionPolicy.FIFO - first in first out, the oldest

element by creation time

overflowToDisk true Specifies whether cache may overflow to disk

eternal false
Sets whether elements are eternal. If eternal, timeouts are ignored and the
element never expires.

timeToLiveSeconds 300
The maximum time between creation time and when an element expires.
Is used only if the element is not eternal

timeToIdleSeconds 300 The maximum amount of time between accesses before an element expires

diskPersistent false Whether the disk store persists between restarts of the Virtual Machine.

diskExpiryThreadIntervalSeconds 120 The number of seconds between runs of the disk expiry thread.

cacheManagerFactory null

Camel 2.8: If you want to use a custom factory which instantiates and creates the
EHCache net.sf.ehcache.CacheManager.

Type: abstract org.apache.camel.component.cache.CacheManagerFactory

eventListenerRegistry null

Camel 2.8: Sets a list of EHCache
net.sf.ehcache.event.CacheEventListener for all new caches- no
need to define it per cache in EHCache xml config anymore.

Type: org.apache.camel.component.cache.CacheEventListenerRegistry

cacheLoaderRegistry null

Camel 2.8: Sets a list of
org.apache.camel.component.cache.CacheLoaderWrapper that
extends EHCache net.sf.ehcache.loader.CacheLoader for all new
caches- no need to define it per cache in EHCache xml config anymore.

Type: org.apache.camel.component.cache.CacheLoaderRegistry

key null
Camel 2.10: To configure using a cache key by default. If a key is provided in the
message header, then the key from the header takes precedence.

operation null
Camel 2.10: To configure using an cache operation by default. If an operation in
the message header, then the operation from the header takes precedence.

Sending/Receiving Messages to/from the cache

Message Headers up to Camel 2.7

Header Description

554 CHAPTER 11 - COMPONENT APPENDIX

CACHE_OPERATION

The operation to be performed on the cache. Valid options are
▪ GET
▪ CHECK
▪ ADD
▪ UPDATE
▪ DELETE
▪ DELETEALL

GET and CHECK requires Camel 2.3 onwards.

CACHE_KEY The cache key used to store the Message in the cache. The cache key is optional if the CACHE_OPERATION is DELETEALL

Message Headers Camel 2.8+

Header Description

CamelCacheOperation

The operation to be performed on the cache. The valid options are
▪ CamelCacheGet
▪ CamelCacheCheck
▪ CamelCacheAdd
▪ CamelCacheUpdate
▪ CamelCacheDelete
▪ CamelCacheDeleteAll

CamelCacheKey The cache key used to store the Message in the cache. The cache key is optional if the CamelCacheOperation is CamelCacheDeleteAll

The CamelCacheAdd and CamelCacheUpdate operations support additional headers:

Header Type Description

CamelCacheTimeToLive Integer Camel 2.11: Time to live in seconds.

CamelCacheTimeToIdle Integer Camel 2.11: Time to idle in seconds.

CamelCacheEternal Boolean Camel 2.11: Whether the content is eternal.

Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a
pre-existing or created-on-demand cache. The mechanics of doing this involve

▪ setting the Message Exchange Headers shown above.
▪ ensuring that the Message Exchange Body contains the message directed to the cache

Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-
existing or created-on-demand Cache using an event Listener and receive automatic
notifications when any cache activity take place (i.e CamelCacheGet/CamelCacheUpdate/
CamelCacheDelete/CamelCacheDeleteAll). Upon such an activity taking place

▪ an exchange containing Message Exchange Headers and a Message Exchange Body
containing the just added/updated payload is placed and sent.

▪ in case of a CamelCacheDeleteAll operation, the Message Exchange Header
CamelCacheKey and the Message Exchange Body are not populated.

CHAPTER 11 - COMPONENT APPENDIX 555

Header changes in Camel 2.8
The header names and supported values have changed to be prefixed with
'CamelCache' and use mixed case. This makes them easier to identify and keep
separate from other headers. The CacheConstants variable names remain
unchanged, just their values have been changed. Also, these headers are now
removed from the exchange after the cache operation is performed.

Cache Processors

There are a set of nice processors with the ability to perform cache lookups and selectively
replace payload content at the

▪ body
▪ token
▪ xpath level

Cache Usage Samples

Example 1: Configuring the cache

from("cache://MyApplicationCache" +
"?maxElementsInMemory=1000" +
"&memoryStoreEvictionPolicy=" +

"MemoryStoreEvictionPolicy.LFU" +
"&overflowToDisk=true" +
"&eternal=true" +
"&timeToLiveSeconds=300" +
"&timeToIdleSeconds=true" +
"&diskPersistent=true" +
"&diskExpiryThreadIntervalSeconds=300")

Example 2: Adding keys to the cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

}
};

556 CHAPTER 11 - COMPONENT APPENDIX

Example 2: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_UPDATE))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

}
};

Example 3: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_DELETE))
.setHeader(CacheConstants.CACHE_KEY", constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

}
};

Example 4: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_DELETEALL))
.to("cache://TestCache1");

}
};

Example 5: Notifying any changes registering in a Cache to
Processors and other Producers

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("cache://TestCache1")
.process(new Processor() {

public void process(Exchange exchange)

CHAPTER 11 - COMPONENT APPENDIX 557

throws Exception {
String operation = (String)

exchange.getIn().getHeader(CacheConstants.CACHE_OPERATION);
String key = (String) exchange.getIn().getHeader(CacheConstants.CACHE_KEY);
Object body = exchange.getIn().getBody();
// Do something

}
})

}
};

Example 6: Using Processors to selectively replace payload with
cache values

RouteBuilder builder = new RouteBuilder() {
public void configure() {

//Message Body Replacer
from("cache://TestCache1")
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("greeting"))
.process(new CacheBasedMessageBodyReplacer("cache://TestCache1","farewell"))
.to("direct:next");

//Message Token replacer
from("cache://TestCache1")
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("quote"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","novel","#novel#"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","author","#author#"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","number","#number#"))
.to("direct:next");

//Message XPath replacer
from("cache://TestCache1").
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("XML_FRAGMENT"))
.process(new CacheBasedXPathReplacer("cache://TestCache1","book1","/books/book1"))
.process (new CacheBasedXPathReplacer("cache://TestCache1","book2","/books/book2"))
.to("direct:next");

}
};

Example 7: Getting an entry from the Cache

from("direct:start")
// Prepare headers
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_GET))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).

558 CHAPTER 11 - COMPONENT APPENDIX

.to("cache://TestCache1").
// Check if entry was not found
.choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).

// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

.end()

.to("direct:nextPhase");

Example 8: Checking for an entry in the Cache

Note: The CHECK command tests existence of an entry in the cache but doesn't place a
message in the body.

from("direct:start")
// Prepare headers
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_CHECK))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
.to("cache://TestCache1").
// Check if entry was not found
.choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).

// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

.end();

Management of EHCache

EHCache has its own statistics and management from JMX.

Here's a snippet on how to expose them via JMX in a Spring application context:

<bean id="ehCacheManagementService"
class="net.sf.ehcache.management.ManagementService" init-method="init"
lazy-init="false">

<constructor-arg>
<bean class="net.sf.ehcache.CacheManager" factory-method="getInstance"/>

</constructor-arg>
<constructor-arg>

<bean class="org.springframework.jmx.support.JmxUtils"
factory-method="locateMBeanServer"/>

CHAPTER 11 - COMPONENT APPENDIX 559

http://ehcache.org/
http://camel.apache.org/camel-jmx.html

</constructor-arg>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>

</bean>

Of course you can do the same thing in straight Java:

ManagementService.registerMBeans(CacheManager.getInstance(), mbeanServer, true, true,
true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also
change CacheConfiguration parameters on the fly.

Cache replication Camel 2.8+

The Camel Cache component is able to distribute a cache across server nodes using several
different replication mechanisms including: RMI, JGroups, JMS and Cache Server.

There are two different ways to make it work:

1. You can configure ehcache.xml manually

OR

2. You can configure these three options:
▪ cacheManagerFactory
▪ eventListenerRegistry
▪ cacheLoaderRegistry

Configuring Camel Cache replication using the first option is a bit of hard work as you have to
configure all caches separately. So in a situation when the all names of caches are not known,
using ehcache.xml is not a good idea.

The second option is much better when you want to use many different caches as you do
not need to define options per cache. This is because replication options are set per
CacheManager and per CacheEndpoint. Also it is the only way when cache names are
not know at the development phase.

Example: JMS cache replication

JMS replication is the most powerful and secured replication method. Used together with
Camel Cache replication makes it also rather simple.
An example is available on a separate page.

560 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/cachereplicationjmsexample.html

It might be useful to read the EHCache manual to get a better understanding of the
Camel Cache replication mechanism.

CLASS COMPONENT

Available as of Camel 2.4

The class: component binds beans to Camel message exchanges. It works in the same way
as the Bean component but instead of looking up beans from a Registry it creates the bean
based on the class name.

URI format

class:className[?options]

Where className is the fully qualified class name to create and use as bean.

Options

Name Type Default Description

method String null
The method name that bean will be invoked. If not provided, Camel will try to pick the method itself. In case of
ambiguity an exception is thrown. See Bean Binding for more details.

multiParameterArray boolean false
How to treat the parameters which are passed from the message body; if it is true, the In message body should
be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

Using

You simply use the class component just as the Bean component but by specifying the fully
qualified classname instead.
For example to use the MyFooBean you have to do as follows:

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean").to("mock:result");

You can also specify which method to invoke on the MyFooBean, for example hello:

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean?method=hello").to("mock:result");

CHAPTER 11 - COMPONENT APPENDIX 561

http://camel.apache.org/bean.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://ehcache.org/documentation

SETTING PROPERTIES ON THE CREATED INSTANCE

In the endpoint uri you can specify properties to set on the created instance, for example if it
has a setPrefix method:

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
.to("mock:result");

And you can also use the # syntax to refer to properties to be looked up in the Registry.

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#foo")
.to("mock:result");

Which will lookup a bean from the Registry with the id foo and invoke the setCool method
on the created instance of the MyPrefixBean class.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Bean
• Bean Binding
• Bean Integration

COMETD COMPONENT

The cometd: component is a transport for working with the jetty implementation of the
cometd/bayeux protocol.
Using this component in combination with the dojo toolkit library it's possible to push Camel
messages directly into the browser using an AJAX based mechanism.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cometd</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

562 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://www.mortbay.org/jetty
http://docs.codehaus.org/display/JETTY/Cometd+%28aka+Bayeux%29

See more
See more details at the Bean component as the class component works in much
the same way.

URI format

cometd://host:port/channelName[?options]

The channelName represents a topic that can be subscribed to by the Camel endpoints.

Examples

cometd://localhost:8080/service/mychannel
cometds://localhost:8443/service/mychannel

where cometds: represents an SSL configured endpoint.

See this blog entry by David Greco who contributed this component to Apache Camel, for a
full sample.

Options

Name
Default
Value

Description

resourceBase Ê
The root directory for the web resources or classpath. Use the protocol file: or classpath: depending if you want that the
component loads the resource from file system or classpath. Classpath is required for OSGI deployment where the resources
are packaged in the jar. Notice this option has been renamed to baseResource from Camel 2.7 onwards.

baseResource Ê
Camel 2.7: The root directory for the web resources or classpath. Use the protocol file: or classpath: depending if you want
that the component loads the resource from file system or classpath. Classpath is required for OSGI deployment where the
resources are packaged in the jar

timeout 240000 The server side poll timeout in milliseconds. This is how long the server will hold a reconnect request before responding.

interval 0 The client side poll timeout in milliseconds. How long a client will wait between reconnects

maxInterval 30000 The max client side poll timeout in milliseconds. A client will be removed if a connection is not received in this time.

multiFrameInterval 1500 The client side poll timeout, if multiple connections are detected from the same browser.

jsonCommented true
If true, the server will accept JSON wrapped in a comment and will generate JSON wrapped in a comment. This is a defence
against Ajax Hijacking.

logLevel 1 0=none, 1=info, 2=debug.

sslContextParameters Ê
Camel 2.9: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry.Ê This
reference overrides any configured SSLContextParameters at the component level.Ê See Using the JSSE Configuration Utility.

crossOriginFilterOn false Camel 2.10: If true, the server will support for cross-domain filtering

allowedOrigins * Camel 2.10: The origins domain that support to cross, if the crosssOriginFilterOn is true

filterPath Ê Camel 2.10: The filterPath will be used by the CrossOriginFilter, if the crosssOriginFilterOn is true

You can append query options to the URI in the following format,
?option=value&option=value&...

Here is some examples on How to pass the parameters

CHAPTER 11 - COMPONENT APPENDIX 563

http://www.davidgreco.it/MySite/Blog/Entries/2008/12/4_Camel,_Cometd_and_Bayeux_what_a_nice_combination.html
http://camel.apache.org/registry.html
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/bean.html

For file (for webapp resources located in the Web Application directory -->
cometd://localhost:8080?resourceBase=file./webapp
For classpath (when by example the web resources are packaged inside the webapp folder -->
cometd://localhost:8080?resourceBase=classpath:webapp

Authentication

Available as of Camel 2.8

You can configure custom SecurityPolicy and Extension's to the
CometdComponent which allows you to use authentication as documented here

Setting up SSL for Cometd Component

Using the JSSE Configuration Utility

As of Camel 2.9, the Cometd component supports SSL/TLS configuration through the Camel
JSSE Configuration Utility.Ê This utility greatly decreases the amount of component specific
code you need to write and is configurable at the endpoint and component levels.Ê The
following examples demonstrate how to use the utility with the Cometd component.

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);
scp.setTrustManagers(tmp);

CometdComponent commetdComponent = getContext().getComponent("cometds",
CometdComponent.class);
commetdComponent.setSslContextParameters(scp);

564 CHAPTER 11 - COMPONENT APPENDIX

http://cometd.org/documentation/howtos/authentication
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
<camel:trustManagers>

<camel:keyStore
resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to uri="cometds://127.0.0.1:443/service/test?baseResource=file:./target/

test-classes/
webapp&timeout=240000&interval=0&maxInterval=30000&multiFrameInterval=1500&jsonCommented=true&logLevel=2&sslContextParameters=#sslContextParameters"/>...

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CONTEXT COMPONENT

Available as of Camel 2.7

The context component allows you to create new Camel Components from a
CamelContext with a number of routes which is then treated as a black box, allowing you to
refer to the local endpoints within the component from other CamelContexts.

It is similar to the Routebox component in idea, though the Context component tries to be
really simple for end users; just a simple convention over configuration approach to refer to
local endpoints inside the CamelContext Component.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-context</artifactId>
<version>x.x.x</version>

CHAPTER 11 - COMPONENT APPENDIX 565

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/routebox.html

<!-- use the same version as your Camel core version -->
</dependency>

URI format

context:camelContextId:localEndpointName[?options]

Or you can omit the "context:" prefix.

camelContextId:localEndpointName[?options]

• camelContextId is the ID you used to register the CamelContext into the
Registry.

• localEndpointName can be a valid Camel URI evaluated within the black box
CamelContext. Or it can be a logical name which is mapped to any local endpoints.
For example if you locally have endpoints like direct:invoices and
seda:purchaseOrders inside a CamelContext of id supplyChain, then you can
just use the URIs supplyChain:invoices or supplyChain:purchaseOrders to
omit the physical endpoint kind and use pure logical URIs.

You can append query options to the URI in the following format,
?option=value&option=value&...

Example

In this example we'll create a black box context, then we'll use it from another CamelContext.

Defining the context component

First you need to create a CamelContext, add some routes in it, start it and then register the
CamelContext into the Registry (JNDI, Spring, Guice or OSGi etc).

This can be done in the usual Camel way from this test case (see the createRegistry()
method); this example shows Java and JNDI being used...

// lets create our black box as a camel context and a set of routes
DefaultCamelContext blackBox = new DefaultCamelContext(registry);
blackBox.setName("blackBox");
blackBox.addRoutes(new RouteBuilder() {

@Override
public void configure() throws Exception {

// receive purchase orders, lets process it in some way then send an invoice
// to our invoice endpoint

566 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-context/src/test/java/org/apache/camel/component/context/JavaDslBlackBoxTest.java?revision=1069442&view=markup

from("direct:purchaseOrder").
setHeader("received").constant("true").
to("direct:invoice");

}
});
blackBox.start();

registry.bind("accounts", blackBox);

Notice in the above route we are using pure local endpoints (direct and seda). Also note we
expose this CamelContext using the accounts ID. We can do the same thing in Spring via

<camelContext id="accounts" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:purchaseOrder"/>
...
<to uri="direct:invoice"/>

</route>
</camelContext>

Using the context component

Then in another CamelContext we can then refer to this "accounts black box" by just sending
to accounts:purchaseOrder and consuming from accounts:invoice.

If you prefer to be more verbose and explicit you could use
context:accounts:purchaseOrder or even
context:accounts:direct://purchaseOrder if you prefer. But using logical endpoint
URIs is preferred as it hides the implementation detail and provides a simple logical naming
scheme.

For example if we wish to then expose this accounts black box on some middleware
(outside of the black box) we can do things like...

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- consume from an ActiveMQ into the black box -->
<from uri="activemq:Accounts.PurchaseOrders"/>
<to uri="accounts:purchaseOrders"/>

</route>
<route>

<!-- lets send invoices from the black box to a different ActiveMQ Queue -->
<from uri="accounts:invoice"/>
<to uri="activemq:UK.Accounts.Invoices"/>

</route>
</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 567

Naming endpoints

A context component instance can have many public input and output endpoints that can be
accessed from outside it's CamelContext. When there are many it is recommended that you
use logical names for them to hide the middleware as shown above.

However when there is only one input, output or error/dead letter endpoint in a
component we recommend using the common posix shell names in, out and err

CRYPTO COMPONENT FOR DIGITAL SIGNATURES

Available as of Camel 2.3

With Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create
Digital Signatures for Exchanges. Camel provides a pair of flexible endpoints which get used in
concert to create a signature for an exchange in one part of the exchange's workflow and then
verify the signature in a later part of the workflow.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Introduction

Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a
(very) high level, the algorithms use pairs of complimentary keys with the special property that
data encrypted with one key can only be decrypted with the other. One, the private key, is
closely guarded and used to 'sign' the message while the other, public key, is shared around to
anyone interested in verifying the signed messages. Messages are signed by using the private key
to encrypting a digest of the message. This encrypted digest is transmitted along with the
message. On the other side the verifier recalculates the message digest and uses the public key
to decrypt the the digest in the signature. If both digests match the verifier knows only the
holder of the private key could have created the signature.

Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy
cryptographic lifting required to create exchange signatures. The following are some excellent
resources for explaining the mechanics of Cryptography, Message digests and Digital Signatures
and how to leverage them with the JCE.

▪ Bruce Schneier's Applied Cryptography
▪ Beginning Cryptography with Java by David Hook
▪ The ever insightful Wikipedia Digital_signatures

568 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://en.wikipedia.org/wiki/Digital_signature

URI format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures

crypto:sign:name[?options]
crypto:verify:name[?options]

• crypto:sign creates the signature and stores it in the Header keyed by the
constant Exchange.SIGNATURE, i.e. "CamelDigitalSignature".

• crypto:verify will read in the contents of this header and do the verification
calculation.

In order to correctly function, the sign and verify process needs a pair of keys to be shared,
signing requiring a PrivateKey and verifying a PublicKey (or a Certificate containing
one). Using the JCE it is very simple to generate these key pairs but it is usually most secure to
use a KeyStore to house and share your keys. The DSL is very flexible about how keys are
supplied and provides a number of mechanisms.

Note a crypto:sign endpoint is typically defined in one route and the complimentary
crypto:verify in another, though for simplicity in the examples they appear one after the
other. It goes without saying that both signing and verifying should be configured identically.

Options

Name Type Default Description

algorithm String DSA The name of the JCE Signature algorithm that will be used.

alias String null An alias name that will be used to select a key from the keystore.

bufferSize Integer 2048 the size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the exchange's payload. Either this or a Public Key is required.

keystore KeyStore null A reference to a JCE Keystore that stores keys and certificates used to sign and verify.

provider String null The name of the JCE Security Provider that should be used.

privateKey PrivatKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the exchange's payload.

secureRandom secureRandom null A reference to a SecureRandom object that will be used to initialize the Signature service.

password char[] null The password for the keystore.

clearHeaders String true Remove camel crypto headers from Message after a verify operation (value can be "true"/"false").

Using

1) Raw keys

The most basic way to way to sign and verify an exchange is with a KeyPair as follows.

from("direct:keypair").to("crypto:sign://basic?privateKey=#myPrivateKey",
"crypto:verify://basic?publicKey=#myPublicKey", "mock:result");

CHAPTER 11 - COMPONENT APPENDIX 569

The same can be achieved with the Spring XML Extensions using references to keys

<route>
<from uri="direct:keypair"/>
<to uri="crypto:sign://basic?privateKey=#myPrivateKey" />
<to uri="crypto:verify://basic?publicKey=#myPublicKey" />
<to uri="mock:result"/>

</route>

2) KeyStores and Aliases.

The JCE provides a very versatile keystore concept for housing pairs of private keys and
certificates, keeping them encrypted and password protected. They can be retrieved by applying
an alias to the retrieval APIs. There are a number of ways to get keys and Certificates into a
keystore, most often this is done with the external 'keytool' application. This is a good example
of using keytool to create a KeyStore with a self signed Cert and Private key.

The examples use a Keystore with a key and cert aliased by 'bob'. The password for the
keystore and the key is 'letmein'

The following shows how to use a Keystore via the Fluent builders, it also shows how to
load and initialize the keystore.

from("direct:keystore").to("crypto:sign://keystore?keystore=#keystore&alias=bob&password=letmein",
"crypto:verify://keystore?keystore=#keystore&alias=bob", "mock:result");

Again in Spring a ref is used to lookup an actual keystore instance.

<route>
<from uri="direct:keystore"/>
<to

uri="crypto:sign://keystore?keystore=#keystore&alias=bob&password=letmein" />
<to uri="crypto:verify://keystore?keystore=#keystore&alias=bob" />
<to uri="mock:result"/>

</route>

3) Changing JCE Provider and Algorithm

Changing the Signature algorithm or the Security provider is a simple matter of specifying their
names. You will need to also use Keys that are compatible with the algorithm you choose.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(512, new SecureRandom());
keyPair = keyGen.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();

570 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://www.exampledepot.com/egs/java.security.cert/CreateCert.html

PublicKey publicKey = keyPair.getPublic();

// we can set the keys explicitly on the endpoint instances.
context.getEndpoint("crypto:sign://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class).setPrivateKey(privateKey);
context.getEndpoint("crypto:verify://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class).setPublicKey(publicKey);
from("direct:algorithm").to("crypto:sign://rsa?algorithm=MD5withRSA",
"crypto:verify://rsa?algorithm=MD5withRSA", "mock:result");

from("direct:provider").to("crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN",
"crypto:verify://provider?publicKey=#myPublicKey&provider=SUN", "mock:result");

or

<route>
<from uri="direct:algorithm"/>
<to uri="crypto:sign://rsa?algorithm=MD5withRSA&privateKey=#rsaPrivateKey" />
<to uri="crypto:verify://rsa?algorithm=MD5withRSA&publicKey=#rsaPublicKey" />
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:provider"/>
<to uri="crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN" />
<to uri="crypto:verify://provider?publicKey=#myPublicKey&provider=SUN" />
<to uri="mock:result"/>

</route>

4) Changing the Signature Mesasge Header

It may be desirable to change the message header used to store the signature. A different
header name can be specified in the route definition as follows

from("direct:signature-header").to("crypto:sign://another?privateKey=#myPrivateKey&signatureHeader=AnotherDigitalSignature",

"crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSignature",
"mock:result");

or

<route>
<from uri="direct:signature-header"/>
<to

CHAPTER 11 - COMPONENT APPENDIX 571

uri="crypto:sign://another?privateKey=#myPrivateKey&signatureHeader=AnotherDigitalSignature"
/>

<to
uri="crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSignature"
/>

<to uri="mock:result"/>
</route>

5) Changing the buffersize

In case you need to update the size of the buffer...

from("direct:buffersize").to("crypto:sign://buffer?privateKey=#myPrivateKey&buffersize=1024",
"crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024", "mock:result");

or

<route>
<from uri="direct:buffersize" />
<to uri="crypto:sign://buffer?privateKey=#myPrivateKey&buffersize=1024" />
<to uri="crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024" />
<to uri="mock:result"/>

</route>

6) Supplying Keys dynamically.

When using a Recipient list or similar EIP the recipient of an exchange can vary dynamically.
Using the same key across all recipients may be neither feasible nor desirable. It would be useful
to be able to specify signature keys dynamically on a per-exchange basis. The exchange could
then be dynamically enriched with the key of its target recipient prior to signing. To facilitate
this the signature mechanisms allow for keys to be supplied dynamically via the message headers
below

• Exchange.SIGNATURE_PRIVATE_KEY, "CamelSignaturePrivateKey"
• Exchange.SIGNATURE_PUBLIC_KEY_OR_CERT,
"CamelSignaturePublicKeyOrCert"

from("direct:headerkey-sign").to("crypto:sign://alias");
from("direct:headerkey-verify").to("crypto:verify://alias", "mock:result");

or

572 CHAPTER 11 - COMPONENT APPENDIX

<route>
<from uri="direct:headerkey-sign"/>
<to uri="crypto:sign://headerkey" />

</route>
<route>

<from uri="direct:headerkey-verify"/>
<to uri="crypto:verify://headerkey" />
<to uri="mock:result"/>

</route>

Even better would be to dynamically supply a keystore alias. Again the alias can be supplied in a
message header

• Exchange.KEYSTORE_ALIAS, "CamelSignatureKeyStoreAlias"

from("direct:alias-sign").to("crypto:sign://alias?keystore=#keystore");
from("direct:alias-verify").to("crypto:verify://alias?keystore=#keystore",
"mock:result");

or

<route>
<from uri="direct:alias-sign"/>
<to uri="crypto:sign://alias?keystore=#keystore" />

</route>
<route>

<from uri="direct:alias-verify"/>
<to uri="crypto:verify://alias?keystore=#keystore" />
<to uri="mock:result"/>

</route>

The header would be set as follows

Exchange unsigned = getMandatoryEndpoint("direct:alias-sign").createExchange();
unsigned.getIn().setBody(payload);
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_ALIAS, "bob");
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_PASSWORD,
"letmein".toCharArray());
template.send("direct:alias-sign", unsigned);
Exchange signed = getMandatoryEndpoint("direct:alias-sign").createExchange();
signed.getIn().copyFrom(unsigned.getOut());
signed.getIn().setHeader(KEYSTORE_ALIAS, "bob");
template.send("direct:alias-verify", signed);

See Also

• Configuring Camel
• Component
• Endpoint

CHAPTER 11 - COMPONENT APPENDIX 573

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html

• Getting Started
• Crypto Crypto is also available as a Data Format

CXF COMPONENT

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services
hosted in CXF.

• CXF Component
• URI format
• Options
• The descriptions of the dataformats
• How to enable CXF's LoggingOutInterceptor in MESSAGE mode
• Description of relayHeaders option
• Available only in POJO mode
• Changes since Release 2.0
• Configure the CXF endpoints with Spring
• Configuring the CXF Endpoints with Apache Aries Blueprint.
• How to make the camel-cxf component use log4j instead of java.util.logging
• How to let camel-cxf response message with xml start document
• How to consume a message from a camel-cxf endpoint in POJO data format
• How to prepare the message for the camel-cxf endpoint in POJO data format
• How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
• How to get and set SOAP headers in POJO mode
• How to get and set SOAP headers in PAYLOAD mode
• SOAP headers are not available in MESSAGE mode
• How to throw a SOAP Fault from Camel
• How to propagate a camel-cxf endpoint's request and response context
• Attachment Support
• Streaming Support in PAYLOAD mode
• See Also

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

cxf:bean:cxfEndpoint[?options]

574 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/crypto.html
http://camel.apache.org/data-format.html
http://cxf.apache.org

When using CXF as a consumer, the CXF Bean Component allows you to factor
out how message payloads are received from their processing as a RESTful or SOAP
web service. This has the potential of using a multitude of transports to consume
web services. The bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

When using CXF in streaming modes (see DataFormat option), then also read
about Stream caching.

CXF dependencies
If you want to learn about CXF dependencies you can checkout the WHICH-JARS
text file.

Where cxfEndpoint represents a bean ID that references a bean in the Spring bean registry.
With this URI format, most of the endpoint details are specified in the bean definition.

cxf://someAddress[?options]

Where someAddress specifies the CXF endpoint's address. With this URI format, most of
the endpoint details are specified using options.

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

Options

Name Required Description

wsdlURL No
The location of the WSDL. It is obtained from endpoint address by default.

Example: file://local/wsdl/hello.wsdl or wsdl/hello.wsdl

CHAPTER 11 - COMPONENT APPENDIX 575

/local/wsdl/hello.wsdl
http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/stream-caching.html
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

serviceClass Yes

The name of the SEI (Service Endpoint Interface) class. This class can have, but does not require, JSR181
annotations.
This option is only required by POJO mode. If the wsdlURL option is provided, serviceClass is not required for
PAYLOAD and MESSAGE mode. When wsdlURL option is used without serviceClass, the serviceName and
portName (endpointName for Spring configuration) options MUST be provided. It is possible to use # notation to
reference a serviceClass object instance from the registry. E.g. serviceClass=#beanName. The
serviceClass for a CXF producer (that is, the to endpoint) should be a Java interface.
Since 2.8, it is possible to omit both wsdlURL and serviceClass options for PAYLOAD and MESSAGE mode.
When they are omitted, arbitrary XML elements can be put in CxfPayload's body in PAYLOAD mode to facilitate
CXF Dispatch Mode.

Please be advised that the referenced object cannot be a Proxy (Spring AOP Proxy is OK) as it relies on
Object.getClass().getName() method for non Spring AOP Proxy.

Example: org.apache.camel.Hello

serviceName No

The service name this service is implementing, it maps to the wsdl:service@name.

Required for camel-cxf consumer since camel-2.2.0 or if more than one serviceName is present in WSDL.

Example: {http:?//org.apache.camel}ServiceName

portName No

The port name this service is implementing, it maps to the wsdl:port@name.

Required for camel-cxf consumer since camel-2.2.0 or if more than one portName is present under
serviceName.

Example: {http:?//org.apache.camel}PortName

dataFormat No

The data type messages supported by the CXF endpoint.

Default: POJO
Example: POJO, PAYLOAD, MESSAGE

relayHeaders No

Please see the Description of relayHeaders option section for this option. Should a CXF endpoint relay
headers along the route. Currently only available when dataFormat=POJO

Default: true
Example: true, false

wrapped No

Which kind of operation that CXF endpoint producer will invoke

Default: false
Example: true, false

wrappedStyle No

New in 2.5.0 The WSDL style that describes how parameters are represented in the SOAP body. If the value is
false, CXF will chose the document-literal unwrapped style, If the value is true, CXF will chose the document-literal
wrapped style

Default: Null
Example: true, false

setDefaultBus No

Will set the default bus when CXF endpoint create a bus by itself

Default: false
Example: true, false

bus No

A default bus created by CXF Bus Factory. Use # notation to reference a bus object from the registry. The
referenced object must be an instance of org.apache.cxf.Bus.

Example: bus=#busName

cxfBinding No

Use # notation to reference a CXF binding object from the registry. The referenced object must be an instance of
org.apache.camel.component.cxf.CxfBinding (use an instance of
org.apache.camel.component.cxf.DefaultCxfBinding).

Example: cxfBinding=#bindingName

headerFilterStrategy No

Use # notation to reference a header filter strategy object from the registry. The referenced object must be an
instance of org.apache.camel.spi.HeaderFilterStrategy (use an instance of
org.apache.camel.component.cxf.CxfHeaderFilterStrategy).

Example: headerFilterStrategy=#strategyName

loggingFeatureEnabled No

New in 2.3. This option enables CXF Logging Feature which writes inbound and outbound SOAP messages to log.

Default: false
Example: loggingFeatureEnabled=true

defaultOperationName No

New in 2.4, this option will set the default operationName that will be used by the CxfProducer which invokes the
remote service.

Default: null
Example: defaultOperationName=greetMe

576 CHAPTER 11 - COMPONENT APPENDIX

defaultOperationNamespace No

New in 2.4. This option will set the default operationNamespace that will be used by the CxfProducer which
invokes the remote service.

Default: null
Example: defaultOperationNamespace=http://apache.org/hello_world_soap_http

synchronous No

New in 2.5. This option will let cxf endpoint decide to use sync or async API to do the underlying work. The default
value is false which means camel-cxf endpoint will try to use async API by default.

Default: false
Example: synchronous=true

publishedEndpointUrl No

New in 2.5. This option can override the endpointUrl that published from the WSDL which can be accessed with
service address url plus ?wsdl.

Default: null
Example: publshedEndpointUrl=http://example.com/service

properties.XXX No
Camel 2.8: Allows to set custom properties to CXF in the endpoint uri. For example setting
properties.mtom-enabled=true to enable MTOM.

allowStreaming No
New in 2.8.2. This option controls whether the CXF component, when running in PAYLOAD mode (see below),
will DOM parse the incoming messages into DOM Elements or keep the payload as a javax.xml.transform.Source
object that would allow streaming in some cases.

skipFaultLogging No New in 2.11. This option controls whether the PhaseInterceptorChain skips logging the Fault that it catches.

The serviceName and portName are QNames, so if you provide them be sure to prefix
them with their {namespace} as shown in the examples above.

The descriptions of the dataformats

DataFormat Description

POJO
POJOs (Plain old Java objects) are the Java parameters to the method being invoked on the target server. Both Protocol and Logical JAX-WS handlers
are supported.

PAYLOAD
PAYLOAD is the message payload (the contents of the soap:body) after message configuration in the CXF endpoint is applied. Only Protocol JAX-
WS handler is supported. Logical JAX-WS handler is not supported.

MESSAGE
MESSAGE is the raw message that is received from the transport layer. It is not suppose to touch or change Stream, some of the CXF interceptor
will be removed if you are using this kind of DataFormat so you can't see any soap headers after the camel-cxf consumer and JAX-WS handler is not
supported.

CXF_MESSAGE
New in Camel 2.8.2, CXF_MESSAGE allows for invoking the full capabilities of CXF interceptors by converting the message from the transport
layer into a raw SOAP message

You can determine the data format mode of an exchange by retrieving the exchange property,
CamelCXFDataFormat. The exchange key constant is defined in
org.apache.camel.component.cxf.CxfConstants.DATA_FORMAT_PROPERTY.

How to enable CXF's LoggingOutInterceptor in MESSAGE mode

CXF's LoggingOutInterceptor outputs outbound message that goes on the wire to
logging system (Java Util Logging). Since the LoggingOutInterceptor is in PRE_STREAM
phase (but PRE_STREAM phase is removed in MESSAGE mode), you have to configure
LoggingOutInterceptor to be run during the WRITE phase. The following is an example.

<bean id="loggingOutInterceptor"
class="org.apache.cxf.interceptor.LoggingOutInterceptor">

<!-- it really should have been user-prestream but CXF does have such phase!
-->

<constructor-arg value="target/write"/>
</bean>

CHAPTER 11 - COMPONENT APPENDIX 577

http://apache.org/hello_world_soap_http
http://example.com/service
http://en.wikipedia.org/wiki/QName

<cxf:cxfEndpoint id="serviceEndpoint"
address="http://localhost:${CXFTestSupport.port2}/LoggingInterceptorInMessageModeTest/
helloworld"

serviceClass="org.apache.camel.component.cxf.HelloService">
<cxf:outInterceptors>

<ref bean="loggingOutInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
</cxf:properties>

</cxf:cxfEndpoint>

Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS
WSDL-first developer.

The in-band headers are headers that are explicitly defined as part of the WSDL binding
contract for an endpoint such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly
part of the WSDL binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers,
such as SOAP headers, be relayed along the route to be consumed say by another JAXWS
endpoint, then relayHeaders should be set to true, which is the default value.

Available only in POJO mode

The relayHeaders=true express an intent to relay the headers. The actual decision on
whether a given header is relayed is delegated to a pluggable instance that implements the
MessageHeadersRelay interface. A concrete implementation of
MessageHeadersRelay will be consulted to decide if a header needs to be relayed or not.
There is already an implementation of SoapMessageHeadersRelay which binds itself to
well-known SOAP name spaces. Currently only out-of-band headers are filtered, and in-band
headers will always be relayed when relayHeaders=true. If there is a header on the wire,
whose name space is unknown to the runtime, then a fall back
DefaultMessageHeadersRelay will be used, which simply allows all headers to be
relayed.

The relayHeaders=false setting asserts that all headers in-band and out-of-band will
be dropped.

You can plugin your own MessageHeadersRelay implementations overriding or adding
additional ones to the list of relays. In order to override a preloaded relay instance just make

578 CHAPTER 11 - COMPONENT APPENDIX

sure that your MessageHeadersRelay implementation services the same name spaces as
the one you looking to override. Also note, that the overriding relay has to service all of the
name spaces as the one you looking to override, or else a runtime exception on route start up
will be thrown as this would introduce an ambiguity in name spaces to relay instance mappings.

<cxf:cxfEndpoint ...>
<cxf:properties>

<entry key="org.apache.camel.cxf.message.headers.relays">
<list>

<ref bean="customHeadersRelay"/>
</list>

</entry>
</cxf:properties>

</cxf:cxfEndpoint>
<bean id="customHeadersRelay"

class="org.apache.camel.component.cxf.soap.headers.CustomHeadersRelay"/>

Take a look at the tests that show how you'd be able to relay/drop headers here:

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/
java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

Changes since Release 2.0

• POJO and PAYLOAD modes are supported. In POJO mode, only out-of-band message
headers are available for filtering as the in-band headers have been processed and
removed from header list by CXF. The in-band headers are incorporated into the
MessageContentList in POJO mode. The camel-cxf component does make
any attempt to remove the in-band headers from the MessageContentList. If
filtering of in-band headers is required, please use PAYLOAD mode or plug in a
(pretty straightforward) CXF interceptor/JAXWS Handler to the CXF endpoint.

• The Message Header Relay mechanism has been merged into
CxfHeaderFilterStrategy. The relayHeaders option, its semantics, and
default value remain the same, but it is a property of
CxfHeaderFilterStrategy.
Here is an example of configuring it.

<bean id="dropAllMessageHeadersStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">

<!-- Set relayHeaders to false to drop all SOAP headers -->
<property name="relayHeaders" value="false"/>

</bean>

Then, your endpoint can reference the CxfHeaderFilterStrategy.

CHAPTER 11 - COMPONENT APPENDIX 579

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

<route>
<from

uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
<to

uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
</route>

• The MessageHeadersRelay interface has changed slightly and has been renamed
to MessageHeaderFilter. It is a property of CxfHeaderFilterStrategy.
Here is an example of configuring user defined Message Header Filters:

<bean id="customMessageFilterStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">

<property name="messageHeaderFilters">
<list>

<!-- SoapMessageHeaderFilter is the built in filter. It can be
removed by omitting it. -->

<bean
class="org.apache.camel.component.cxf.common.header.SoapMessageHeaderFilter"/>

<!-- Add custom filter here -->
<bean

class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
</list>

</property>
</bean>

• Other than relayHeaders, there are new properties that can be configured in
CxfHeaderFilterStrategy.

Name Required Description

relayHeaders No

All message headers will be processed by Message Header Filters

Type: boolean
Default: true

relayAllMessageHeaders No

All message headers will be propagated (without processing by Message Header Filters)

Type: boolean
Default: false

allowFilterNamespaceClash No

If two filters overlap in activation namespace, the property control how it should be handled. If
the value is true, last one wins. If the value is false, it will throw an exception

Type: boolean
Default: false

Configure the CXF endpoints with Spring

You can configure the CXF endpoint with the Spring configuration file shown below,
and you can also embed the endpoint into the camelContext tags. When you are
invoking the service endpoint, you can set the operationName and
operationNamespace headers to explicitly state which operation you are calling.

580 CHAPTER 11 - COMPONENT APPENDIX

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

camel-cxf.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/

CamelContext/RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>
<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/

SoapContext/SoapPort"
wsdlURL="testutils/hello_world.wsdl"
serviceClass="org.apache.hello_world_soap_http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"

xmlns:s="http://apache.org/hello_world_soap_http" />
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>

<from uri="cxf:bean:routerEndpoint" />
<to uri="cxf:bean:serviceEndpoint" />

</route>
</camelContext>

</beans>

Be sure to include the JAX-WS schemaLocation attribute specified on the root
beans element. This allows CXF to validate the file and is required. Also note the
namespace declarations at the end of the <cxf:cxfEndpoint/> tag--these are
required because the combined {namespace}localName syntax is presently not
supported for this tag's attribute values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

PortName
The endpoint name this service is implementing, it maps to the wsdl:port@name. In the format of ns:PORT_NAME where ns is a
namespace prefix valid at this scope.

serviceName
The service name this service is implementing, it maps to the wsdl:service@name. In the format of ns:SERVICE_NAME where ns is
a namespace prefix valid at this scope.

wsdlURL The location of the WSDL. Can be on the classpath, file system, or be hosted remotely.

bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could have JSR181 annotation or not.

It also supports many child elements:

Name Value

cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.

CHAPTER 11 - COMPONENT APPENDIX 581

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See below.

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See below.

cxf:dataBinding
You can specify the which DataBinding will be use in the endpoint. This can be supplied using the Spring <bean
class="MyDataBinding"/> syntax.

cxf:binding
You can specify the BindingFactory for this endpoint to use. This can be supplied using the Spring <bean
class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of {{<bean>}}s or {{<ref>}}s

cxf:schemaLocations The schema locations for endpoint to use. A list of {{<schemaLocation>}}s

cxf:serviceFactory
The service factory for this endpoint to use. This can be supplied using the Spring <bean
class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide interceptors , properties
and handlers here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

NOTE
You can use cxf:properties to set the camel-cxf endpoint's dataFormat and setDefaultBus
properties from spring configuration file.

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
serviceClass="org.apache.camel.component.cxf.HelloService"
endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
<entry key="setDefaultBus" value="true"/>

</cxf:properties>
</cxf:cxfEndpoint>

Configuring the CXF Endpoints with Apache Aries Blueprint.

Since camel 2.8 there is support for utilizing aries blueprint dependency injection for your CXF
endpoints.
The schema utilized is very similar to the spring schema so the transition is fairly transparent.

Example

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xmlns:camel-cxf="http://camel.apache.org/schema/blueprint/cxf"
xmlns:cxfcore="http://cxf.apache.org/blueprint/core"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<camel-cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:9001/router"

582 CHAPTER 11 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">
<camel-cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
</camel-cxf:properties>

</camel-cxf:cxfEndpoint>

<camel-cxf:cxfEndpoint id="serviceEndpoint"
address="http://localhost:9000/SoapContext/SoapPort"

serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">
</camel-cxf:cxfEndpoint>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>

<from uri="routerEndpoint"/>
<to uri="log:request"/>

</route>
</camelContext>

</blueprint>

Currently the endpoint element is the first supported CXF namespacehandler.

You can also use the bean references just as in spring

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
xmlns:cxf="http://cxf.apache.org/blueprint/core"
xmlns:camel="http://camel.apache.org/schema/blueprint"
xmlns:camelcxf="http://camel.apache.org/schema/blueprint/cxf"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd

http://cxf.apache.org/blueprint/jaxws http://cxf.apache.org/schemas/
blueprint/jaxws.xsd

http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/
blueprint/core.xsd

">

<camelcxf:cxfEndpoint id="reportIncident"
address="/camel-example-cxf-blueprint/webservices/incident"
wsdlURL="META-INF/wsdl/report_incident.wsdl"

serviceClass="org.apache.camel.example.reportincident.ReportIncidentEndpoint">
</camelcxf:cxfEndpoint>

<bean id="reportIncidentRoutes"
class="org.apache.camel.example.reportincident.ReportIncidentRoutes" />

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

CHAPTER 11 - COMPONENT APPENDIX 583

<routeBuilder ref="reportIncidentRoutes"/>
</camelContext>

</blueprint>

How to make the camel-cxf component use log4j instead of java.util.logging

CXF's default logger is java.util.logging. If you want to change it to log4j, proceed as
follows. Create a file, in the classpath, named META-INF/cxf/
org.apache.cxf.logger. This file should contain the fully-qualified name of the class,
org.apache.cxf.common.logging.Log4jLogger, with no comments, on a single
line.

How to let camel-cxf response message with xml start document

If you are using some soap client such as PHP, you will get this kind of error, because CXF
doesn't add the XML start document "<?xml version="1.0" encoding="utf-8"?>"

Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in [...]

To resolved this issue, you just need to tell StaxOutInterceptor to write the XML start
document for you.

public class WriteXmlDeclarationInterceptor extends
AbstractPhaseInterceptor<SoapMessage> {

public WriteXmlDeclarationInterceptor() {
super(Phase.PRE_STREAM);
addBefore(StaxOutInterceptor.class.getName());

}

public void handleMessage(SoapMessage message) throws Fault {
message.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);

}

}

You can add a customer interceptor like this and configure it into you camel-cxf endpont

<cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:${CXFTestSupport.port2}/CXFGreeterRouterTest/CamelContext/
RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"
skipFaultLogging="true">

<cxf:outInterceptors>

584 CHAPTER 11 - COMPONENT APPENDIX

<!-- This interceptor will force the CXF server send the XML start document
to client -->

<bean class="org.apache.camel.component.cxf.WriteXmlDeclarationInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>

<!-- Set the publishedEndpointUrl which could override the service address
from generated WSDL as you want -->

<entry key="publishedEndpointUrl" value="http://www.simple.com/services/
test" />

</cxf:properties>
</cxf:cxfEndpoint>

Or adding a message header for it like this if you are using Camel 2.4.

// set up the response context which force start document
Map<String, Object> map = new HashMap<String, Object>();
map.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
exchange.getOut().setHeader(Client.RESPONSE_CONTEXT, map);

How to consume a message from a camel-cxf endpoint in POJO data format

The camel-cxf endpoint consumer POJO data format is based on the cxf invoker, so the
message header has a property with the name of CxfConstants.OPERATION_NAME and
the message body is a list of the SEI method parameters.

public class PersonProcessor implements Processor {

private static final transient Logger LOG =
LoggerFactory.getLogger(PersonProcessor.class);

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

LOG.info("processing exchange in camel");

BindingOperationInfo boi =
(BindingOperationInfo)exchange.getProperty(BindingOperationInfo.class.toString());

if (boi != null) {
LOG.info("boi.isUnwrapped" + boi.isUnwrapped());

}
// Get the parameters list which element is the holder.
MessageContentsList msgList = (MessageContentsList)exchange.getIn().getBody();
Holder<String> personId = (Holder<String>)msgList.get(0);
Holder<String> ssn = (Holder<String>)msgList.get(1);
Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length() == 0) {
LOG.info("person id 123, so throwing exception");
// Try to throw out the soap fault message
org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =

CHAPTER 11 - COMPONENT APPENDIX 585

http://cwiki.apache.org/CXF20DOC/invokers.html

new org.apache.camel.wsdl_first.types.UnknownPersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl_first.UnknownPersonFault fault =

new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null value
of person name", personFault);

// Since camel has its own exception handler framework, we can't throw the
exception to trigger it

// We just set the fault message in the exchange for camel-cxf component
handling and return

exchange.getOut().setFault(true);
exchange.getOut().setBody(fault);
return;

}

name.value = "Bonjour";
ssn.value = "123";
LOG.info("setting Bonjour as the response");
// Set the response message, first element is the return value of the

operation,
// the others are the holders of method parameters
exchange.getOut().setBody(new Object[] {null, personId, ssn, name});

}

}

How to prepare the message for the camel-cxf endpoint in POJO data
format

The camel-cxf endpoint producer is based on the cxf client API. First you need to specify
the operation name in the message header, then add the method parameters to a list, and
initialize the message with this parameter list. The response message's body is a
messageContentsList, you can get the result from that list.

If you want to get the object array from the message body, you can get the body using
message.getbody(Object[].class), as follows:

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();
// The response message's body is an MessageContentsList which first element is the
return value of the operation,
// If there are some holder parameters, the holder parameter will be filled in the
reset of List.

586 CHAPTER 11 - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

// The result will be extract from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList)out.getBody();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = CastUtils.cast((Map<?,
?>)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-8",
responseContext.get(org.apache.cxf.message.Message.ENCODING));
assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE, result.get(0));

How to deal with the message for a camel-cxf endpoint in PAYLOAD data
format

PAYLOAD means that you process the payload message from the SOAP envelope. You can use
the Header.HEADER_LIST as the key to set or get the SOAP headers and use the
List<Element> to set or get SOAP body elements.
Message.getBody() will return an
org.apache.camel.component.cxf.CxfPayload object, which has getters for
SOAP message headers and Body elements. This change enables decoupling the native CXF
message from the Camel message.

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from(simpleEndpointURI + "&dataFormat=PAYLOAD").to("log:info").process(new

Processor() {
@SuppressWarnings("unchecked")
public void process(final Exchange exchange) throws Exception {

CxfPayload<SoapHeader> requestPayload =
exchange.getIn().getBody(CxfPayload.class);

List<Source> inElements = requestPayload.getBodySources();
List<Source> outElements = new ArrayList<Source>();
// You can use a customer toStringConverter to turn a CxfPayLoad

message into String as you want
String request = exchange.getIn().getBody(String.class);
XmlConverter converter = new XmlConverter();
String documentString = ECHO_RESPONSE;

Element in = new XmlConverter().toDOMElement(inElements.get(0));
// Just check the element namespace
if (!in.getNamespaceURI().equals(ELEMENT_NAMESPACE)) {

throw new IllegalArgumentException("Wrong element namespace");
}
if (in.getLocalName().equals("echoBoolean")) {

documentString = ECHO_BOOLEAN_RESPONSE;
checkRequest("ECHO_BOOLEAN_REQUEST", request);

} else {
documentString = ECHO_RESPONSE;
checkRequest("ECHO_REQUEST", request);

CHAPTER 11 - COMPONENT APPENDIX 587

}
Document outDocument = converter.toDOMDocument(documentString);
outElements.add(new DOMSource(outDocument.getDocumentElement()));
// set the payload header with null
CxfPayload<SoapHeader> responsePayload = new

CxfPayload<SoapHeader>(null, outElements, null);
exchange.getOut().setBody(responsePayload);

}
});

}
};

}

How to get and set SOAP headers in POJO mode

POJO means that the data format is a "list of Java objects" when the Camel-cxf endpoint
produces or consumes Camel exchanges. Even though Camel expose message body as POJOs
in this mode, Camel-cxf still provides access to read and write SOAP headers. However, since
CXF interceptors remove in-band SOAP headers from Header list after they have been
processed, only out-of-band SOAP headers are available to Camel-cxf in POJO mode.

The following example illustrate how to get/set SOAP headers. Suppose we have a route
that forwards from one Camel-cxf endpoint to another. That is, SOAP Client -> Camel -> CXF
service. We can attach two processors to obtain/insert SOAP headers at (1) before request
goes out to the CXF service and (2) before response comes back to the SOAP Client.
Processor (1) and (2) in this example are InsertRequestOutHeaderProcessor and
InsertResponseOutHeaderProcessor. Our route looks like this:

<route>
<from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
<process ref="InsertRequestOutHeaderProcessor" />
<to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
<process ref="InsertResponseOutHeaderProcessor" />

</route>

SOAP headers are propagated to and from Camel Message headers. The Camel message
header name is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header.HEADER_LIST). The header value is a List of CXF SoapHeader
objects (org.apache.cxf.binding.soap.SoapHeader). The following snippet is the
InsertResponseOutHeaderProcessor (that insert a new SOAP header in the response message).
The way to access SOAP headers in both InsertResponseOutHeaderProcessor and
InsertRequestOutHeaderProcessor are actually the same. The only difference between the two
processors is setting the direction of the inserted SOAP header.

public static class InsertResponseOutHeaderProcessor implements Processor {

588 CHAPTER 11 - COMPONENT APPENDIX

public void process(Exchange exchange) throws Exception {
// You should be able to get the header if exchange is routed from camel-cxf

endpoint
List<SoapHeader> soapHeaders =

CastUtils.cast((List<?>)exchange.getIn().getHeader(Header.HEADER_LIST));
if (soapHeaders == null) {

// we just create a new soap headers in case the header is null
soapHeaders = new ArrayList<SoapHeader>();

}

// Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "

+ "xmlns=\"http://cxf.apache.org/outofband/Header\"
hdrAttribute=\"testHdrAttribute\" "

+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"
soap:mustUnderstand=\"1\">"

+
"<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outofbandHeader>";

SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
DOMUtils.readXml(new StringReader(xml)).getDocumentElement());

// make sure direction is OUT since it is a response message.
newHeader.setDirection(Direction.DIRECTION_OUT);
//newHeader.setMustUnderstand(false);
soapHeaders.add(newHeader);

}

}

How to get and set SOAP headers in PAYLOAD mode

We've already shown how to access SOAP message (CxfPayload object) in PAYLOAD mode
(See "How to deal with the message for a camel-cxf endpoint in PAYLOAD data format").

Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method
that returns a List of DOM Elements (SOAP headers).

from(getRouterEndpointURI()).process(new Processor() {
@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

CxfPayload<SoapHeader> payload = exchange.getIn().getBody(CxfPayload.class);
List<Source> elements = payload.getBodySources();
assertNotNull("We should get the elements here", elements);
assertEquals("Get the wrong elements size", 1, elements.size());

Element el = new XmlConverter().toDOMElement(elements.get(0));
elements.set(0, new DOMSource(el));
assertEquals("Get the wrong namespace URI", "http://camel.apache.org/pizza/

types",
el.getNamespaceURI());

CHAPTER 11 - COMPONENT APPENDIX 589

List<SoapHeader> headers = payload.getHeaders();
assertNotNull("We should get the headers here", headers);
assertEquals("Get the wrong headers size", headers.size(), 1);
assertEquals("Get the wrong namespace URI",

((Element)(headers.get(0).getObject())).getNamespaceURI(),
"http://camel.apache.org/pizza/types");

}

})
.to(getServiceEndpointURI());

SOAP headers are not available in MESSAGE mode

SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

How to throw a SOAP Fault from Camel

If you are using a camel-cxf endpoint to consume the SOAP request, you may need to
throw the SOAP Fault from the camel context.
Basically, you can use the throwFault DSL to do that; it works for POJO, PAYLOAD and
MESSAGE data format.
You can define the soap fault like this

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

Then throw it as you like

from(routerEndpointURI).setFaultBody(constant(SOAP_FAULT));

If your CXF endpoint is working in the MESSAGE data format, you could set the the SOAP
Fault message in the message body and set the response code in the message header.

from(routerEndpointURI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message out = exchange.getOut();
// Set the message body with the
out.setBody(this.getClass().getResourceAsStream("SoapFaultMessage.xml"));
// Set the response code here
out.setHeader(org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));

}

590 CHAPTER 11 - COMPONENT APPENDIX

});

Same for using POJO data format. You can set the SOAPFault on the out body and also indicate
it's a fault by calling Message.setFault(true):

from("direct:start").onException(SoapFault.class).maximumRedeliveries(0).handled(true)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
SoapFault fault = exchange

.getProperty(Exchange.EXCEPTION_CAUGHT, SoapFault.class);
exchange.getOut().setFault(true);
exchange.getOut().setBody(fault);

}

}).end().to(serviceURI);

How to propagate a camel-cxf endpoint's request and response context

cxf client API provides a way to invoke the operation with request and response context. If you
are using a camel-cxf endpoint producer to invoke the outside web service, you can set the
request context and get response context with the following code:

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new
Processor() {

public void process(final Exchange exchange) {
final List<String> params = new ArrayList<String>();
params.add(TEST_MESSAGE);
// Set the request context to the inMessage
Map<String, Object> requestContext = new HashMap<String, Object>();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

JAXWS_SERVER_ADDRESS);
exchange.getIn().setBody(params);
exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext);
exchange.getIn().setHeader(CxfConstants.OPERATION_NAME,

GREET_ME_OPERATION);
}

});
org.apache.camel.Message out = exchange.getOut();
// The output is an object array, the first element of the array is the

return value
Object\[\] output = out.getBody(Object\[\].class);
LOG.info("Received output text: " + output\[0\]);
// Get the response context form outMessage
Map<String, Object> responseContext =

CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("Get the wrong wsdl opertion name", "{http://apache.org/

CHAPTER 11 - COMPONENT APPENDIX 591

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

hello_world_soap_http}greetMe",
responseContext.get("javax.xml.ws.wsdl.operation").toString());

Attachment Support

POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in
Payload Mode for enabling MTOM).Ê However, SOAP with Attachment is not tested.Ê Since
attachments are marshalled and unmarshalled into POJOs, users typically do not need to deal
with the attachment themself.Ê Attachments are propagated to Camel message's attachments
since 2.1.Ê So, it is possible to retreive attachments by Camel Message API

DataHandler Message.getAttachment(String id)

.

Payload Mode: MTOM is supported since 2.1. Attachments can be retrieved by Camel
Message APIs mentioned above. SOAP with Attachment (SwA) is supported and attachments
can be retrieved since 2.5. SwA is the default (same as setting the CXF endpoint property
"mtom-enabled" to false).Ê

To enable MTOM, set the CXF endpoint property "mtom-enabled" to true. (I believe you
can only do it with Spring.)

<cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:${CXFTestSupport.port1}/CxfMtomRouterPayloadModeTest/
jaxws-mtom/hello"

wsdlURL="mtom.wsdl"
serviceName="ns:HelloService"
endpointName="ns:HelloPort"
xmlns:ns="http://apache.org/camel/cxf/mtom_feature">

<cxf:properties>
<!-- enable mtom by setting this property to true -->
<entry key="mtom-enabled" value="true"/>

<!-- set the camel-cxf endpoint data fromat to PAYLOAD mode -->
<entry key="dataFormat" value="PAYLOAD"/>

</cxf:properties>

You can produce a Camel message with attachment to send to a CXF endpoint in Payload
mode.

Exchange exchange = context.createProducerTemplate().send("direct:testEndpoint", new
Processor() {

public void process(Exchange exchange) throws Exception {

592 CHAPTER 11 - COMPONENT APPENDIX

exchange.setPattern(ExchangePattern.InOut);
List<Source> elements = new ArrayList<Source>();
elements.add(new DOMSource(DOMUtils.readXml(new

StringReader(MtomTestHelper.REQ_MESSAGE)).getDocumentElement()));
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new

ArrayList<SoapHeader>(),
elements, null);

exchange.getIn().setBody(body);
exchange.getIn().addAttachment(MtomTestHelper.REQ_PHOTO_CID,

new DataHandler(new ByteArrayDataSource(MtomTestHelper.REQ_PHOTO_DATA,
"application/octet-stream")));

exchange.getIn().addAttachment(MtomTestHelper.REQ_IMAGE_CID,
new DataHandler(new ByteArrayDataSource(MtomTestHelper.requestJpeg, "image/

jpeg")));

}

});

// process response

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element oute = new XmlConverter().toDOMElement(out.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include", oute,

XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue("//ns:DetailResponse/ns:image/xop:Include", oute,
XPathConstants.NODE);

String imageId = ele.getAttribute("href").substring(4); // skip "cid:"

DataHandler dr = exchange.getOut().getAttachment(photoId);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.RESP_PHOTO_DATA,
IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getOut().getAttachment(imageId);
Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

You can also consume a Camel message received from a CXF endpoint in Payload mode.

CHAPTER 11 - COMPONENT APPENDIX 593

public static class MyProcessor implements Processor {

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);

// verify request
assertEquals(1, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element body = new XmlConverter().toDOMElement(in.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", body,

XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"
assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", body,
XPathConstants.NODE);

String imageId = ele.getAttribute("href").substring(4); // skip "cid:"
assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageId);

DataHandler dr = exchange.getIn().getAttachment(photoId);
assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA,

IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getIn().getAttachment(imageId);
assertEquals("image/jpeg", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg,

IOUtils.readBytesFromStream(dr.getInputStream()));

// create response
List<Source> elements = new ArrayList<Source>();
elements.add(new DOMSource(DOMUtils.readXml(new

StringReader(MtomTestHelper.RESP_MESSAGE)).getDocumentElement()));
CxfPayload<SoapHeader> sbody = new CxfPayload<SoapHeader>(new

ArrayList<SoapHeader>(),
elements, null);

exchange.getOut().setBody(sbody);
exchange.getOut().addAttachment(MtomTestHelper.RESP_PHOTO_CID,

new DataHandler(new ByteArrayDataSource(MtomTestHelper.RESP_PHOTO_DATA,
"application/octet-stream")));

exchange.getOut().addAttachment(MtomTestHelper.RESP_IMAGE_CID,
new DataHandler(new ByteArrayDataSource(MtomTestHelper.responseJpeg,

"image/jpeg")));

}
}

594 CHAPTER 11 - COMPONENT APPENDIX

Message Mode: Attachments are not supported as it does not process the message at all.

Streaming Support in PAYLOAD mode

In 2.8.2, the camel-cxf component now supports streaming of incoming messages when using
PAYLOAD mode. Previously, the incoming messages would have been completely DOM
parsed. For large messages, this is time consuming and uses a significant amount of memory.
Starting in 2.8.2, the incoming messages can remain as a javax.xml.transform.Source while being
routed and, if nothing modifies the payload, can then be directly streamed out to the target
destination. For common "simple proxy" use cases (example: from("cxf:...").to("cxf:...")), this can
provide very significant performance increases as well as significantly lowered memory
requirements.

However, there are cases where streaming may not be appropriate or desired. Due to the
streaming nature, invalid incoming XML may not be caught until later in the processing chain.
Also, certain actions may require the message to be DOM parsed anyway (like WS-Security or
message tracing and such) in which case the advantages of the streaming is limited. At this point,
there are two ways to control the streaming:

• Endpoint property: you can add "allowStreaming=false" as an endpoint property to
turn the streaming on/off.

• Component property: the CxfComponent object also has an allowStreaming property
that can set the default for endpoints created from that component.

• Global system property: you can add a system property of
"org.apache.camel.component.cxf.streaming" to "false" to turn if off. That sets the
global default, but setting the endpoint property above will override this value for that
endpoint.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CXF BEAN COMPONENT

The cxfbean: component allows other Camel endpoints to send exchange and invoke Web
service bean objects. (Currently, it only supports JAXRS, JAXWS(new to
camel2.1) annotated service bean.)

CHAPTER 11 - COMPONENT APPENDIX 595

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CxfBeanEndpoint is a ProcessorEndpoint so it has no consumers. It
works similarly to a Bean component.

URI format

cxfbean:serviceBeanRef

Where serviceBeanRef is a registry key to look up the service bean object. If
serviceBeanRef references a List object, elements of the List are the service bean
objects accepted by the endpoint.

Options

Name Description Example Required? Default Value

cxfBeanBinding
CXF bean binding specified by the # notation. The referenced object must be
an instance of
org.apache.camel.component.cxf.cxfbean.CxfBeanBinding.

cxfBinding=#bindingName No DefaultCxfBeanBinding

bus
CXF bus reference specified by the # notation. The referenced object must be
an instance of org.apache.cxf.Bus.

bus=#busName No
Default bus created by CXF Bus
Factory

headerFilterStrategy
Header filter strategy specified by the # notation. The referenced object must
be an instance of org.apache.camel.spi.HeaderFilterStrategy.

headerFilterStrategy=#strategyName No CxfHeaderFilterStrategy

setDefaultBus Will set the default bus when CXF endpoint create a bus by itself. true, false No false

populateFromClass
Since 2.3, the wsdlLocation annotated in the POJO is ignored (by default)
unless this option is set toÊ false. Prior to 2.3, the wsdlLocation annotated
in the POJO is always honored and it is not possible to ignore.

true, false No true

providers Since 2.5, setting the providers for the CXFRS endpoint. providers=#providerRef1,#providerRef2 No null

Headers

Name Description Type Required?
Default
Value

In/
Out

Examples

CamelHttpCharacterEncoding
(before 2.0-m2:
CamelCxfBeanCharacterEncoding)

Character encoding String No None In ISO-8859-1

CamelContentType (before 2.0-m2:
CamelCxfBeanContentType)

Content type String No */* In text/xml

CamelHttpBaseUri
(2.0-m3 and before:
CamelCxfBeanRequestBasePath)

The value of this header will be set in
the CXF message as the
Message.BASE_PATH property. It
is needed by CXF JAX-RS processing.
Basically, it is the scheme, host and
port portion of the request URI.

String Yes

The Endpoint
URI of the
source
endpoint in the
Camel
exchange

In http://localhost:9000

CamelHttpPath (before 2.0-m2:
CamelCxfBeanRequestPath)

Request URI's path String Yes None In consumer/123

CamelHttpMethod (before 2.0-m2:
CamelCxfBeanVerb)

RESTful request verb String Yes None In
GET, PUT, POST,
DELETE

CamelHttpResponseCode HTTP response code Integer No None Out 200

596 CHAPTER 11 - COMPONENT APPENDIX

http://localhost:9000

Currently, CXF Bean component has (only) been tested with Jetty HTTP
component it can understand headers from Jetty HTTP component without
requiring conversion.

A Working Sample

This sample shows how to create a route that starts a Jetty HTTP server. The route sends
requests to a CXF Bean and invokes a JAXRS annotated service.

First, create a route as follows. The from endpoint is a Jetty HTTP endpoint that is listening
on port 9000. Notice that the matchOnUriPrefix option must be set to true because
RESTful request URI will not match the endpoint's URI http:?//localhost:9000 exactly.

<route>
<from ref="ep1" />
<to uri="cxfbean:customerServiceBean" />
<to uri="mock:endpointA" />

</route>

The to endpoint is a CXF Bean with bean name customerServiceBean. The name will be
looked up from the registry. Next, we make sure our service bean is available in Spring registry.
We create a bean definition in the Spring configuration. In this example, we create a List of
service beans (of one element). We could have created just a single bean without a List.

<util:list id="customerServiceBean">
<bean class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

</util:list>

<bean class="org.apache.camel.wsdl_first.PersonImpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can
make a request and receive response.

CXFRS COMPONENT

The cxfrs: component provides integration with Apache CXF for connecting to JAX-RS
services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>

CHAPTER 11 - COMPONENT APPENDIX 597

http://incubator.apache.org/cxf/

When using CXF as a consumer, the CXF Bean Component allows you to factor
out how message payloads are received from their processing as a RESTful or SOAP
web service. This has the potential of using a multitude of transports to consume
web services. The bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

<artifactId>camel-cxf</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->

</dependency>

URI format

cxfrs://address?options

Where address represents the CXF endpoint's address

cxfrs:bean:rsEndpoint

Where rsEndpoint represents the spring bean's name which presents the CXFRS client or
server

For either style above, you can append options to the URI as follows:

cxfrs:bean:cxfEndpoint?resourceClasses=org.apache.camel.rs.Example

Options

Name Description Example Required?
default
value

resourceClasses
The resource classes which you want to
export as REST service. Multiple classes can
be separated by comma.

resourceClasses=org.apache.camel.rs.Example1,
org.apache.camel.rs.Exchange2

No None

resourceClass
Deprecated: Use resourceClasses
The resource class which you want to export
as REST service.

resourceClass =org.apache.camel.rs.Example1 No None

httpClientAPI

new to Camel 2.1 If it is true, the
CxfRsProducer will use the HttpClientAPI to
invoke the service
If it is false, the CxfRsProducer will use the
ProxyClientAPI to invoke the service

httpClientAPI=true No true

synchronous

New in 2.5, this option will let
CxfRsConsumer decide to use sync or async
API to do the underlying work. The default
value is false which means it will try to use
async API by default.

synchronous=true No false

598 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/cxf-bean-component.html

throwExceptionOnFailure

New in 2.6, this option tells the
CxfRsProducer to inspect return codes and
will generate an Exception if the return code
is larger than 207.

throwExceptionOnFailure=true No true

maxClientCacheSize

New in 2.6, you can set a IN message header
CamelDestinationOverrideUrl to dynamically
override the target destination Web Service
or REST Service defined in your routes.Ê The
implementation caches CXF clients or
ClientFactoryBean in CxfProvider and
CxfRsProvider.Ê This option allows you to
configure the maximum size of the cache.

maxClientCacheSize=5 No 10

setDefaultBus
New in 2.9.0. Will set the default bus when
CXF endpoint create a bus by itself

setDefaultBus=true No false

bus

New in 2.9.0. A default bus created by CXF
Bus Factory. Use # notation to reference a
bus object from the registry. The referenced
object must be an instance of
org.apache.cxf.Bus.

bus=#busName No None

bindingStyle

As of 2.11. Sets how requests and responses
will be mapped to/from Camel. Two values
are possible:

▪ SimpleConsumer =>
see the Consuming a REST
Request with the Simple
Binding Style below.

▪ Default => the default
style. For consumers this
passes on a
MessageContentsList
to the route, requiring low-
level processing in the
route.

bindingStyle=SimpleConsumer No Default

You can also configure the CXF REST endpoint through the spring configuration. Since there
are lots of difference between the CXF REST client and CXF REST Server, we provide different
configuration for them.
Please check out the schema file and CXF REST user guide for more information.

How to configure the REST endpoint in Camel

In camel-cxf schema file, there are two elements for the REST endpoint definition.
cxf:rsServer for REST consumer, cxf:rsClient for REST producer.
You can find a Camel REST service route configuration example here.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xmlns:jaxrs="http://cxf.apache.org/jaxrs"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

camel-cxf.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>

CHAPTER 11 - COMPONENT APPENDIX 599

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd

<!-- Defined the real JAXRS back end service -->
<jaxrs:server id="restService"

address="http://localhost:${CXFTestSupport.port2}/CxfRsRouterTest/rest"
staticSubresourceResolution="true">

<jaxrs:serviceBeans>
<ref bean="customerService"/>

</jaxrs:serviceBeans>
</jaxrs:server>

<!-- bean id="jsonProvider" class="org.apache.cxf.jaxrs.provider.JSONProvider"/-->

<bean id="customerService"
class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

<!-- Defined the server endpoint to create the cxf-rs consumer -->
<cxf:rsServer id="rsServer"

address="http://localhost:${CXFTestSupport.port1}/CxfRsRouterTest/route"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"
loggingFeatureEnabled="true" loggingSizeLimit="20" skipFaultLogging="true"/>

<!-- Defined the client endpoint to create the cxf-rs consumer -->
<cxf:rsClient id="rsClient"

address="http://localhost:${CXFTestSupport.port2}/CxfRsRouterTest/rest"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"
loggingFeatureEnabled="true" skipFaultLogging="true"/>

<!-- The camel route context -->
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="cxfrs://bean://rsServer"/>
<!-- We can remove this configure as the CXFRS producer is using the HttpAPI by

default -->
<setHeader headerName="CamelCxfRsUsingHttpAPI">

<constant>True</constant>
</setHeader>
<to uri="cxfrs://bean://rsClient"/>

</route>
</camelContext>

</beans>

Consuming a REST Request - Simple Binding Style

Available as of Camel 2.11

The Default binding style is rather low-level, requiring the user to manually process the
MessageContentsList object coming into the route. Thus, it tightly couples the route
logic with the method signature and parameter indices of the JAX-RS operation. Somewhat
inelegant, difficult and error-prone.

600 CHAPTER 11 - COMPONENT APPENDIX

In contrast, the SimpleConsumer binding style performs the following mappings, in order
to make the request data more accessible to you within the Camel Message:

• JAX-RS Parameters (@HeaderParam, @QueryParam, etc.) are injected as IN
message headers. The header name matches the value of the annotation.

• The request entity (POJO or other type) becomes the IN message body. If a single
entity cannot be identified in the JAX-RS method signature, it falls back to the original
MessageContentsList.

• Binary @Multipart body parts become IN message attachments, supporting
DataHandler, InputStream, DataSource and CXF's Attachment class.

• Non-binary @Multipart body parts are mapped as IN message headers. The
header name matches the Body Part name.

Additionally, the following rules apply to the Response mapping:
• If the message body type is different to javax.ws.rs.core.Response (user-

built response), a new Response is created and the message body is set as the
entity (so long it's not null). The response status code is taken from the
Exchange.HTTP_RESPONSE_CODE header, or defaults to 200 OK if not present.

• If the message body type is equal to javax.ws.rs.core.Response, it means
that the user has built a custom response, and therefore it is respected and it
becomes the final response.

• In all cases, Camel headers permitted by custom or default
HeaderFilterStrategy are added to the HTTP response.

Enabling the Simple Binding Style

This binding style can be activated by setting the bindingStyle parameter in the consumer
endpoint to value SimpleConsumer:

from("cxf:bean:rsServer?bindingStyle=SimpleConsumer")
.to("log:TEST?showAll=true");

Examples of request binding with different method signatures

Below is a list of method signatures along with the expected result from the Simple binding.

public Response doAction(BusinessObject request);
Request payload is placed in IN message body, replacing the original MessageContentsList.

public Response doAction(BusinessObject request,
@HeaderParam("abcd") String abcd, @QueryParam("defg") String
defg);
Request payload placed in IN message body, replacing the original MessageContentsList. Both
request params mapped as IN message headers with names abcd and defg.

CHAPTER 11 - COMPONENT APPENDIX 601

public Response doAction(@HeaderParam("abcd") String abcd,
@QueryParam("defg") String defg);
Both request params mapped as IN message headers with names abcd and defg. The original
MessageContentsList is preserved, even though it only contains the 2 parameters.

public Response doAction(@Multipart(value="body1")
BusinessObject request, @Multipart(value="body2") BusinessObject
request2);
The first parameter is transferred as a header with name body1, and the second one is mapped
as header body2. The original MessageContentsList is preserved as the IN message body.

public Response doAction(InputStream abcd);
The InputStream is unwrapped from the MessageContentsList and preserved as the IN message
body.

public Response doAction(DataHandler abcd);
The DataHandler is unwrapped from the MessageContentsList and preserved as the IN
message body.

More examples of the Simple Binding Style

Given a JAX-RS resource class with this method:

@POST @Path("/customers/{type}")
public Response newCustomer(Customer customer, @PathParam("type") String type,

@QueryParam("active") @DefaultValue("true") boolean active) {
return null;

}

Serviced by the following route:

from("cxf:bean:rsServer?bindingStyle=SimpleConsumer")
.recipientList(simple("direct:${header.operationName}"));

from("direct:newCustomer")
.log("Request: type=${header.type}, active=${header.active},

customerData=${body}");

The following HTTP request with XML payload (given that the Customer DTO is JAXB-
annotated):

POST /customers/gold?active=true

Payload:
<Customer>

<fullName>Raul Kripalani</fullName>
<country>Spain</country>

602 CHAPTER 11 - COMPONENT APPENDIX

<project>Apache Camel</project>
</Customer>

Will print the message:

Request: type=gold, active=true, customerData=<Customer.toString() representation>

For more examples on how to process requests and write responses can be found here.

Consuming a REST Request - Default Binding Style

CXF JAXRS front end implements the JAXRS(JSR311) API, so we can export the resources
classes as a REST service. And we leverage the CXF Invoker API to turn a REST request into a
normal Java object method invocation.
Unlike the camel-restlet, you don't need to specify the URI template within your restlet
endpoint, CXF take care of the REST request URI to resource class method mapping according
to the JSR311 specification. All you need to do in Camel is delegate this method request to a
right processor or endpoint.

Here is an example of a CXFRS route...

private static final String CXF_RS_ENDPOINT_URI = "cxfrs://http://localhost:" + CXT +
"/rest?resourceClasses=org.apache.camel.component.cxf.jaxrs.testbean.CustomerServiceResource";

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() {
errorHandler(new NoErrorHandlerBuilder());
from(CXF_RS_ENDPOINT_URI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
// Get the operation name from in message
String operationName =

inMessage.getHeader(CxfConstants.OPERATION_NAME, String.class);
if ("getCustomer".equals(operationName)) {

String httpMethod = inMessage.getHeader(Exchange.HTTP_METHOD,
String.class);

assertEquals("Get a wrong http method", "GET", httpMethod);
String path = inMessage.getHeader(Exchange.HTTP_PATH,

String.class);
// The parameter of the invocation is stored in the body of in

message
String id = inMessage.getBody(String.class);
if ("/customerservice/customers/126".equals(path))

{
Customer customer = new Customer();
customer.setId(Long.parseLong(id));
customer.setName("Willem");

CHAPTER 11 - COMPONENT APPENDIX 603

https://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/jaxrs/simplebinding/
http://cwiki.apache.org/CXF20DOC/jax-rs.html
https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers

// We just put the response Object into the out message
body

exchange.getOut().setBody(customer);
} else {

if ("/customerservice/customers/400".equals(path)) {
// We return the remote client IP address this time
org.apache.cxf.message.Message cxfMessage =

inMessage.getHeader(CxfConstants.CAMEL_CXF_MESSAGE,
org.apache.cxf.message.Message.class);

ServletRequest request = (ServletRequest)
cxfMessage.get("HTTP.REQUEST");

String remoteAddress = request.getRemoteAddr();
Response r = Response.status(200).entity("The

remoteAddress is " + remoteAddress).build();
exchange.getOut().setBody(r);
return;

}
if ("/customerservice/customers/123".equals(path)) {

// send a customer response back
Response r = Response.status(200).entity("customer

response back!").build();
exchange.getOut().setBody(r);
return;

}
if ("/customerservice/customers/456".equals(path)) {

Response r = Response.status(404).entity("Can't found
the customer with uri " + path).build();

throw new WebApplicationException(r);
} else {

throw new RuntimeCamelException("Can't found the
customer with uri " + path);

}
}

}
if ("updateCustomer".equals(operationName)) {

assertEquals("Get a wrong customer message header",
"header1;header2", inMessage.getHeader("test"));

String httpMethod = inMessage.getHeader(Exchange.HTTP_METHOD,
String.class);

assertEquals("Get a wrong http method", "PUT", httpMethod);
Customer customer = inMessage.getBody(Customer.class);
assertNotNull("The customer should not be null.", customer);
// Now you can do what you want on the customer object
assertEquals("Get a wrong customer name.", "Mary",

customer.getName());
// set the response back
exchange.getOut().setBody(Response.ok().build());

}

}

});
}

604 CHAPTER 11 - COMPONENT APPENDIX

};
}

And the corresponding resource class used to configure the endpoint...

@Path("/customerservice/")
public interface CustomerServiceResource {

@GET
@Path("/customers/{id}/")
Customer getCustomer(@PathParam("id") String id);

@PUT
@Path("/customers/")
Response updateCustomer(Customer customer);

}

How to invoke the REST service through camel-cxfrs producer

CXF JAXRS front end implements a proxy based client API, with this API you can invoke the
remote REST service through a proxy.
camel-cxfrs producer is based on this proxy API.
So, you just need to specify the operation name in the message header and prepare the
parameter in the message body, camel-cxfrs producer will generate right REST request for you.

Here is an example

Exchange exchange = template.send("direct://proxy", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
setupDestinationURL(inMessage);
// set the operation name
inMessage.setHeader(CxfConstants.OPERATION_NAME, "getCustomer");
// using the proxy client API
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.FALSE);
// set a customer header
inMessage.setHeader("key", "value");
// set the parameters , if you just have one parameter
// camel will put this object into an Object[] itself
inMessage.setBody("123");

}
});

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");

CHAPTER 11 - COMPONENT APPENDIX 605

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI

note about the resource class
This class is used to configure the JAXRS properties ONLY. The methods will NOT
be executed during the routing of messages to the endpoint, the route itself is
responsible for ALL processing instead.

assertEquals("Get a wrong customer name", response.getName(), "John");
assertEquals("Get a wrong response code", 200,
exchange.getOut().getHeader(Exchange.HTTP_RESPONSE_CODE));
assertEquals("Get a wrong header value", "value", exchange.getOut().getHeader("key"));

CXF JAXRS front end also provides a http centric client API, You can also invoke this API from
camel-cxfrs producer. You need to specify the HTTP_PATH and Http method and let the
the producer know to use the http centric client by using the URI option httpClientAPI or
set the message header with CxfConstants.CAMEL_CXF_RS_USING_HTTP_API. You can
turn the response object to the type class that you specify with
CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS.

Exchange exchange = template.send("direct://http", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
setupDestinationURL(inMessage);
// using the http central client API
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.TRUE);
// set the Http method
inMessage.setHeader(Exchange.HTTP_METHOD, "GET");
// set the relative path
inMessage.setHeader(Exchange.HTTP_PATH, "/customerservice/customers/

123");
// Specify the response class , cxfrs will use InputStream as the response

object type
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS, Customer.class);
// set a customer header
inMessage.setHeader("key", "value");
// since we use the Get method, so we don't need to set the message body
inMessage.setBody(null);

}
});

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");
assertEquals("Get a wrong customer name", response.getName(), "John");
assertEquals("Get a wrong response code", 200,

606 CHAPTER 11 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HTTPcentricclients

exchange.getOut().getHeader(Exchange.HTTP_RESPONSE_CODE));
assertEquals("Get a wrong header value", "value", exchange.getOut().getHeader("key"));

From Camel 2.1, we also support to specify the query parameters from cxfrs URI for the
CXFRS http centric client.

Exchange exchange = template.send("cxfrs://http://localhost:" + getPort2() + "/" +
getClass().getSimpleName() + "/testQuery?httpClientAPI=true&q1=12&q2=13"

To support the Dynamical routing, you can override the URI's query parameters by using the
CxfConstants.CAMEL_CXF_RS_QUERY_MAP header to set the parameter map for it.

Map<String, String> queryMap = new LinkedHashMap<String, String>();
queryMap.put("q1", "new");
queryMap.put("q2", "world");
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_QUERY_MAP, queryMap);

DATASET COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.
The DataSet component provides a mechanism to easily perform load & soak testing of your
system. It works by allowing you to create DataSet instances both as a source of messages and
as a way to assert that the data set is received.

Camel will use the throughput logger when sending dataset's.

URI format

dataset:name[?options]

Where name is used to find the DataSet instance in the Registry

Camel ships with a support implementation of
org.apache.camel.component.dataset.DataSet, the
org.apache.camel.component.dataset.DataSetSupport class, that can be used
as a base for implementing your own DataSet. Camel also ships with a default implementation,
the org.apache.camel.component.dataset.SimpleDataSet that can be used for
testing.

CHAPTER 11 - COMPONENT APPENDIX 607

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/log.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/registry.html

Options

Option Default Description

produceDelay 3
Allows a delay in ms to be specified, which causes producers to pause in order to simulate slow producers. Uses a minimum of 3 ms delay
unless you set this option to -1 to force no delay at all.

consumeDelay 0 Allows a delay in ms to be specified, which causes consumers to pause in order to simulate slow consumers.

preloadSize 0 Sets how many messages should be preloaded (sent) before the route completes its initialization.

initialDelay 1000 Camel 2.1: Time period in millis to wait before starting sending messages.

minRate 0 Wait until the DataSet contains at least this number of messages

You can append query options to the URI in the following format,
?option=value&option=value&...

Configuring DataSet

Camel will lookup in the Registry for a bean implementing the DataSet interface. So you can
register your own DataSet as:

<bean id="myDataSet" class="com.mycompany.MyDataSet">
<property name="size" value="100"/>

</bean>

Example

For example, to test that a set of messages are sent to a queue and then consumed from the
queue without losing any messages:

// send the dataset to a queue
from("dataset:foo").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemq:SomeQueue").to("dataset:foo");

The above would look in the Registry to find the foo DataSet instance which is used to create
the messages.

Then you create a DataSet implementation, such as using the SimpleDataSet as
described below, configuring things like how big the data set is and what the messages look like
etc.

Properties on SimpleDataSet

Property Type Description

defaultBody Object
Specifies the default message body. For SimpleDataSet it is a constant payload; though if you want to create custom payloads per message,
create your own derivation of DataSetSupport.

reportGroup long Specifies the number of messages to be received before reporting progress. Useful for showing progress of a large load test.

size long Specifies how many messages to send/consume.

608 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

DB4O COMPONENT

Available as of Camel 2.5

The db4o: component allows you to work with db4o NoSQL database. The camel-db4o
library is provided by the Camel Extra project which hosts all *GPL related components for
Camel.

Sending to the endpoint

Sending POJO object to the db4o endpoint adds and saves object into the database. The body
of the message is assumed to be a POJO that has to be saved into the db40 database store.

Consuming from the endpoint

Consuming messages removes (or updates) POJO objects in the database. This allows you to
use a Db4o datastore as a logical queue; consumers take messages from the queue and then
delete them to logically remove them from the queue.

If you do not wish to delete the object when it has been processed, you can specify
consumeDelete=false on the URI. This will result in the POJO being processed each poll.

URI format

db4o:className[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

consumeDelete true Option for Db4oConsumer only. Specifies whether or not the entity is deleted after it is consumed.

consumer.delay 500 Option for HibernateConsumer only. Delay in millis between each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

CHAPTER 11 - COMPONENT APPENDIX 609

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://www.db4o.com
http://code.google.com/p/camel-extra/

consumer.userFixedDelay false
Option for HibernateConsumer only. Set to true to use fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

DIRECT COMPONENT

The direct: component provides direct, synchronous invocation of any consumers when a
producer sends a message exchange.
This endpoint can be used to connect existing routes in the same camel context.

URI format

direct:someName[?options]

Where someName can be any string to uniquely identify the endpoint

Options

Name
Default
Value

Description

allowMultipleConsumers true
@deprecated If set to false, then when a second consumer is started on the endpoint, an
IllegalStateException is thrown. Will be removed in Camel 2.1: Direct endpoint does not support multiple
consumers.

You can append query options to the URI in the following format,
?option=value&option=value&...

Samples

In the route below we use the direct component to link the two routes together:

from("activemq:queue:order.in")
.to("bean:orderServer?method=validate")
.to("direct:processOrder");

from("direct:processOrder")
.to("bean:orderService?method=process")
.to("activemq:queue:order.out");

610 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Asynchronous
The SEDA component provides asynchronous invocation of any consumers when a
producer sends a message exchange.

Connection to other camel contexts
The VM component provides connections between Camel contexts as long they run
in the same JVM.

And the sample using spring DSL:

<route>
<from uri="activemq:queue:order.in"/>
<to uri="bean:orderService?method=validate"/>
<to uri="direct:processOrder"/>

</route>

<route>
<from uri="direct:processOrder"/>
<to uri="bean:orderService?method=process"/>
<to uri="activemq:queue:order.out"/>

</route>

See also samples from the SEDA component, how they can be used together.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ SEDA
▪ VM

DNS

Available as of Camel 2.7

This is an additional component for Camel to run DNS queries, using DNSJava. The
component is a thin layer on top of DNSJava.
The component offers the following operations:

▪ ip, to resolve a domain by its ip

CHAPTER 11 - COMPONENT APPENDIX 611

http://camel.apache.org/seda.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html

▪ lookup, to lookup information about the domain
▪ dig, to run DNS queries

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-dns</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

The URI scheme for a DNS component is as follows

dns://operation

This component only supports producers.

Options

None.

Headers

Header Type Operations Description

dns.domain String ip The domain name. Mandatory.

dns.name String lookup The name to lookup. Mandatory.

dns.type ▪ lookup, dig The type of the lookup. Should match the values of org.xbill.dns.Type. Optional.

dns.class ▪ lookup, dig he DNS class of the lookup. Should match the values of org.xbill.dns.DClass. Optional.

dns.query String dig The query itself. Mandatory.

dns.server String dig
The server in particular for the query. If none is given, the default one specified by the OS will be used.
Optional.

Examples

IP lookup

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:ip"/>

</route>

612 CHAPTER 11 - COMPONENT APPENDIX

Requires SUN JVM
The DNSJava library requires running on the SUN JVM.
If you use Apache ServiceMix or Apache Karaf, you'll need to adjust the etc/
jre.properties file, to add sun.net.spi.nameservice to the list of Java
platform packages exported. The server will need restarting before this change
takes effect.

This looks up a domain's IP. For example, www.example.com resolves to 192.0.32.10.
The IP address to lookup must be provided in the header with key "dns.domain".

DNS lookup

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:lookup"/>

</route>

This returns a set of DNS records associated with a domain.
The name to lookup must be provided in the header with key "dns.name".

DNS Dig

Dig is a Unix command-line utility to run DNS queries.

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:dig"/>

</route>

The query must be provided in the header with key "dns.query".

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 11 - COMPONENT APPENDIX 613

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

EJB COMPONENT

Available as of Camel 2.4

The ejb: component binds EJBs to Camel message exchanges.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ejb</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ejb:ejbName[?options]

Where ejbName can be any string which is used to look up the EJB in the Application Server
JNDI Registry

Options

Name Type Default Description

method String null
The method name that bean will be invoked. If not provided, Camel will try to pick the method itself. In case of
ambiguity an exception is thrown. See Bean Binding for more details.

multiParameterArray boolean false
How to treat the parameters which are passed from the message body; if it is true, the In message body should
be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

The EJB component extends the Bean component in which most of the details from the
Bean component applies to this component as well.

Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the
method parameter) and how parameter values are constructed from the Message are all
defined by the Bean Binding mechanism which is used throughout all of the various Bean
Integration mechanisms in Camel.

Examples

In the following examples we use the Greater EJB which is defined as follows:

614 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/ejb.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

Listing 1.Listing 1. GreaterLocal.javaGreaterLocal.java

public interface GreaterLocal {

String hello(String name);

String bye(String name);

}

And the implementation

Listing 1.Listing 1. GreaterImpl.javaGreaterImpl.java

@Stateless
public class GreaterImpl implements GreaterLocal {

public String hello(String name) {
return "Hello " + name;

}

public String bye(String name) {
return "Bye " + name;

}

}

Using Java DSL

In this example we want to invoke the hello method on the EJB. Since this example is based
on an unit test using Apache OpenEJB we have to set a JndiContext on the EJB component
with the OpenEJB settings.

@Override
protected CamelContext createCamelContext() throws Exception {

CamelContext answer = new DefaultCamelContext();

// enlist EJB component using the JndiContext
EjbComponent ejb = answer.getComponent("ejb", EjbComponent.class);
ejb.setContext(createEjbContext());

return answer;
}

private static Context createEjbContext() throws NamingException {
// here we need to define our context factory to use OpenEJB for our testing
Properties properties = new Properties();
properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.apache.openejb.client.LocalInitialContextFactory");

CHAPTER 11 - COMPONENT APPENDIX 615

http://camel.apache.org/ejb.html

return new InitialContext(properties);
}

Then we are ready to use the EJB in the Camel route:

from("direct:start")
// invoke the greeter EJB using the local interface and invoke the hello method
.to("ejb:GreaterImplLocal?method=hello")
.to("mock:result");

Using Spring XML

And this is the same example using Spring XML instead:

Again since this is based on an unit test we need to setup the EJB component:

<!-- setup Camel EJB component -->
<bean id="ejb" class="org.apache.camel.component.ejb.EjbComponent">

<property name="properties" ref="jndiProperties"/>
</bean>

<!-- use OpenEJB context factory -->
<p:properties id="jndiProperties">

<prop
key="java.naming.factory.initial">org.apache.openejb.client.LocalInitialContextFactory</prop>
</p:properties>

Before we are ready to use EJB in the Camel routes:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<to uri="ejb:GreaterImplLocal?method=hello"/>
<to uri="mock:result"/>

</route>
</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Bean
• Bean Binding

616 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/ejb.html
http://camel.apache.org/ejb.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html

In a real application server
In a real application server you most likely do not have to setup a JndiContext
on the EJB component as it will create a default JndiContext on the same JVM
as the application server, which usually allows it to access the JNDI registry and
lookup the EJBs.
However if you need to access a application server on a remote JVM or the likes,
you have to prepare the properties beforehand.

• Bean Integration

ESPER

The Esper component supports the Esper Library for Event Stream Processing. The camel-
esper library is provided by the Camel Extra project which hosts all *GPL related components
for Camel.

URI format

esper:name[?options]

When consuming from an Esper endpoint you must specify a pattern or eql statement to
query the event stream.

For example

from("esper://cheese?pattern=every event=MyEvent(bar=5)").
to("activemq:Foo");

Options

Name Default Value Description

pattern Ê The Esper Pattern expression as a String to filter events

eql Ê The Esper EQL expression as a String to filter events

You can append query options to the URI in the following format,
?option=value&option=value&...

Demo

There is a demo which shows how to work with ActiveMQ, Camel and Esper in the Camel
Extra project

CHAPTER 11 - COMPONENT APPENDIX 617

http://camel.apache.org/bean-integration.html
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://camel.apache.org/ejb.html
http://camel.apache.org/ejb.html

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Esper Camel Demo

EVENT COMPONENT

The event: component provides access to the Spring ApplicationEvent objects. This allows
you to publish ApplicationEvent objects to a Spring ApplicationContext or to consume them.
You can then use Enterprise Integration Patterns to process them such as Message Filter.

URI format

spring-event://default

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

FILE COMPONENT

The File component provides access to file systems, allowing files to be processed by any other
Camel Components or messages from other components to be saved to disk.

URI format

file:directoryName[?options]

or

file://directoryName[?options]

Where directoryName represents the underlying file directory.

618 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/components.html

You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options

Common

Name
Default
Value

Description

autoCreate true
Automatically create missing directories in the file's pathname. For the file consumer, that means creating the starting
directory. For the file producer, it means the directory the files should be written to.

bufferSize 128kb Write buffer sized in bytes.

fileName null

Use Expression such as File Language to dynamically set the filename. For consumers, it's used as a filename filter. For
producers, it's used to evaluate the filename to write. If an expression is set, it take precedence over the
CamelFileName header. (Note: The header itself can also be an Expression). The expression options support both
String and Expression types. If the expression is a String type, it is always evaluated using the File Language.
If the expression is an Expression type, the specified Expression type is used - this allows you, for instance, to
use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for instance consume today's
file using the File Language syntax: mydata-${date:now:yyyyMMdd}.txt. From Camel 2.11 onwards the
producers support the CamelOverruleFileName header which takes precedence over any existing
CamelFileName header; the CamelOverruleFileName is a header that is used only once, and makes it easier as
this avoids to temporary store CamelFileName and have to restore it afterwards.

flatten false

Flatten is used to flatten the file name path to strip any leading paths, so it's just the file name. This allows you to
consume recursively into sub-directories, but when you eg write the files to another directory they will be written in a
single directory. Setting this to true on the producer enforces that any file name recived in CamelFileName header
will be stripped for any leading paths.

charset null

Camel 2.9.3: this option is used to specify the encoding of the file, and camel will set the Exchange property with
Exchange.CHARSET_NAME with the value of this option. You can use this on the consumer, to specify the
encodings of the files, which allow Camel to know the charset it should load the file content in case the file content is
being accessed. Likewise when writing a file, you can use this option to specify which charset to write the file as well.
See further below for a examples and more important details.

copyAndDeleteOnRenameFail true
Camel 2.9: whether to fallback and do a copy and delete file, in case the file could not be renamed directly. This
option is not available for the FTP component.

Consumer

Name
Default
Value

Description

initialDelay 1000 Milliseconds before polling the file/directory starts.

delay 500 Milliseconds before the next poll of the file/directory.

useFixedDelay Ê
Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for details. In Camel
2.7.x or older the default value is false. From Camel 2.8 onwards the default value is true.

runLoggingLevel TRACE
Camel 2.8: The consumer logs a start/complete log line when it polls. This option allows you to configure
the logging level for that.

recursive false If a directory, will look for files in all the sub-directories as well.

delete false If true, the file will be deleted after it is processed

noop false
If true, the file is not moved or deleted in any way. This option is good for readonly data, or for ETL type
requirements. If noop=true, Camel will set idempotent=true as well, to avoid consuming the same
files over and over again.

preMove null
Expression (such as File Language) used to dynamically set the filename when moving it before processing.
For example to move in-progress files into the order directory set this value to order.

move .camel
Expression (such as File Language) used to dynamically set the filename when moving it after processing.
To move files into a .done subdirectory just enter .done.

CHAPTER 11 - COMPONENT APPENDIX 619

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ognl.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/etl.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html

Only directories
Camel supports only endpoints configured with a starting directory. So the
directoryName must be a directory.
If you want to consume a single file only, you can use the fileName option, e.g. by
setting fileName=thefilename.
Also, the starting directory must not contain dynamic expressions with ${ }
placeholders. Again use the fileName option to specify the dynamic part of the
filename.

Avoid reading files currently being written by another application
Beware the JDK File IO API is a bit limited in detecting whether another application
is currently writing/copying a file. And the implementation can be different
depending on OS platform as well. This could lead to that Camel thinks the file is
not locked by another process and start consuming it. Therefore you have to do
you own investigation what suites your environment. To help with this Camel
provides different readLock options and doneFileName option that you can
use. See also the section Consuming files from folders where others drop files directly.

moveFailed null

Expression (such as File Language) used to dynamically set a different target directory when moving files
after processing (configured via move defined above) failed. For example, to move files into a .error
subdirectory use: .error. Note: When moving the files to the ÒfailÓ location Camel will handle the
error and will not pick up the file again.

include null Is used to include files, if filename matches the regex pattern.

exclude null Is used to exclude files, if filename matches the regex pattern.

antInclude null
Camel 2.10: Ant style filter inclusion, for example antInclude=*/.txt. Multiple inclusions may be
specified in comma-delimited format. See below for more details about ant path filters.

antExclude null
Camel 2.10: Ant style filter exclusion. If both antInclude and antExclude are used, antExclude
takes precedence over antInclude. Multiple exclusions may be specified in comma-delimited format. See
below for more details about ant path filters.

antFilterCaseSensitive true Camel 2.11: Ant style filter which is case sensitive or not.

idempotent false
Option to use the Idempotent Consumer EIP pattern to let Camel skip already processed files. Will by
default use a memory based LRUCache that holds 1000 entries. If noop=true then idempotent will be
enabled as well to avoid consuming the same files over and over again.

idempotentKey Expression

Camel 2.11: To use a custom idempotent key. By default the absolute path of the file is used. You can
use the File Language, for example to use the file name and file size, you can do:

idempotentKey=${file:name}-${file:size}

.

idempotentRepository null
A pluggable repository org.apache.camel.spi.IdempotentRepository which by default use
MemoryMessageIdRepository if none is specified and idempotent is true.

inProgressRepository memory
A pluggable in-progress repository org.apache.camel.spi.IdempotentRepository. The in-progress repository
is used to account the current in progress files being consumed. By default a memory based repository is
used.

filter null
Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class. Will skip
files if filter returns false in its accept() method. More details in section below.

sorter null Pluggable sorter as a java.util.Comparator<org.apache.camel.component.file.GenericFile> class.

620 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/file-language.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html

sortBy null
Built-in sort using the File Language. Supports nested sorts, so you can have a sort by file name and as a 2nd
group sort by modified date. See sorting section below for details.

readLock markerFile

Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the file is not in-
progress or being written). Camel will wait until the file lock is granted.
This option provides the build in strategies:
markerFile Camel creates a marker file and then holds a lock on it. This option is not available for the
FTP component.
changed is using file length/modification timestamp to detect whether the file is currently being copied or
not. Will at least use 1 sec. to determine this, so this option cannot consume files as fast as the others, but
can be more reliable as the JDK IO API cannot always determine whether a file is currently being used by
another process. The option readLockCheckInterval can be used to set the check frequency. This
option is only avail for the FTP component from Camel 2.8 onwards. Notice that from Camel 2.10.1
onwards the FTP option fastExistsCheck can be enabled to speedup this readLock strategy, if the
FTP server support the LIST operation with a full file name (some servers may not).
fileLock is for using java.nio.channels.FileLock. This option is not avail for the FTP
component. This approach should be avoided when accessing a remote file system via a mount/share unless
that file system supports distributed file locks.
rename is for using a try to rename the file as a test if we can get exclusive read-lock.
none is for no read locks at all.
Notice from Camel 2.10 onwards the read locks changed, fileLock and rename will also use a
markerFile as well, to ensure not picking up files that may be in process by another Camel consumer
running on another node (eg cluster). This is only supported by the file component (not the ftp
component).

readLockTimeout 10000

Optional timeout in millis for the read-lock, if supported by the read-lock. If the read-lock could not be
granted and the timeout triggered, then Camel will skip the file. At next poll Camel, will try the file again,
and this time maybe the read-lock could be granted. Use a value of 0 or lower to indicate forever. In
Camel 2.0 the default value is 0. Starting with Camel 2.1 the default value is 10000. Currently
fileLock, changed and rename support the timeout. Notice: For FTP the default
readLockTimeout value is 20000 instead of 10000.

readLockCheckInterval 1000

Camel 2.6: Interval in millis for the read-lock, if supported by the read lock. This interval is used for
sleeping between attempts to acquire the read lock. For example when using the changed read lock, you
can set a higher interval period to cater for slow writes. The default of 1 sec. may be too fast if the producer
is very slow writing the file. For FTP the default readLockCheckInterval is 5000.

readLockMinLength 1
Camel 2.10.1: This option applied only for readLock=changed. This option allows you to configure a
minimum file length. By default Camel expects the file to contain data, and thus the default value is 1. You
can set this option to zero, to allow consuming zero-length files.

directoryMustExist false
Camel 2.5: Similar to startingDirectoryMustExist but this applies during polling recursive sub
directories.

doneFileName null

Camel 2.6: If provided, Camel will only consume files if a done file exists. This option configures what file
name to use. Either you can specify a fixed name. Or you can use dynamic placeholders. The done file is
always expected in the same folder as the original file. See using done file and writing done file sections for
examples.

exclusiveReadLockStrategy null
Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy
implementation.

maxMessagesPerPoll 0

An integer to define a maximum messages to gather per poll. By default no maximum is set. Can be used to
set a limit of e.g. 1000 to avoid when starting up the server that there are thousands of files. Set a value of
0 or negative to disabled it. See more details at Batch Consumer. Notice: If this option is in use then the
File and FTP components will limit before any sorting. For example if you have 100000 files and use
maxMessagesPerPoll=500, then only the first 500 files will be picked up, and then sorted. You can
use the eagerMaxMessagesPerPoll option and set this to false to allow to scan all files first and
then sort afterwards.

eagerMaxMessagesPerPoll true

Camel 2.9.3: Allows for controlling whether the limit from maxMessagesPerPoll is eager or not. If
eager then the limit is during the scanning of files. Where as false would scan all files, and then perform
sorting. Setting this option to false allows for sorting all files first, and then limit the poll. Mind that this
requires a higher memory usage as all file details are in memory to perform the sorting.

minDepth 0
Camel 2.8: The minimum depth to start processing when recursively processing a directory. Using
minDepth=1 means the base directory. Using minDepth=2 means the first sub directory. This option is
supported by FTP consumer from Camel 2.8.2, 2.9 onwards.

maxDepth Integer.MAX_VALUE
Camel 2.8: The maximum depth to traverse when recursively processing a directory. This option is
supported by FTP consumer from Camel 2.8.2, 2.9 onwards.

processStrategy null

A pluggable org.apache.camel.component.file.GenericFileProcessStrategy allowing
you to implement your own readLock option or similar. Can also be used when special conditions must
be met before a file can be consumed, such as a special ready file exists. If this option is set then the
readLock option does not apply.

startingDirectoryMustExist false

Camel 2.5: Whether the starting directory must exist. Mind that the autoCreate option is default
enabled, which means the starting directory is normally auto created if it doesn't exist. You can disable
autoCreate and enable this to ensure the starting directory must exist. Will thrown an exception if the
directory doesn't exist.

CHAPTER 11 - COMPONENT APPENDIX 621

http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html

pollStrategy null

A pluggable org.apache.camel.PollingConsumerPollStrategy allowing you to provide your
custom implementation to control error handling usually occurred during the poll operation before an
Exchange have been created and being routed in Camel. In other words the error occurred while the
polling was gathering information, for instance access to a file network failed so Camel cannot access it to
scan for files. The default implementation will log the caused exception at WARN level and ignore it.

sendEmptyMessageWhenIdle false
Camel 2.9: If the polling consumer did not poll any files, you can enable this option to send an empty
message (no body) instead.

consumer.bridgeErrorHandler false

Camel 2.10: Allows for bridging the consumer to the Camel routing Error Handler, which mean any
exceptions occurred while trying to pickup files, or the likes, will now be processed as a message and
handled by the routing Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with exceptions, that by default will be
logged at WARN/ERROR level and ignored. See further below on this page fore more details, at section
How to use the Camel error handler to deal with exceptions triggered outside the routing engine.

scheduledExecutorService null
Camel 2.10: Allows for configuring a custom/shared thread pool to use for the consumer. By default each
consumer has its own single threaded thread pool. This option allows you to share a thread pool among
multiple file consumers.

Default behavior for file consumer

• By default the file is locked for the duration of the processing.
• After the route has completed, files are moved into the .camel subdirectory, so

that they appear to be deleted.
• The File Consumer will always skip any file whose name starts with a dot, such as .,
.camel, .m2 or .groovy.

• Only files (not directories) are matched for valid filename, if options such as:
include or exclude are used.

Producer

Name
Default
Value

Description

fileExist Override

What to do if a file already exists with the same name. The following values can be specified: Override, Append, Fail,
Ignore, and Move. Override, which is the default, replaces the existing file. Append adds content to the existing file.
Fail throws a GenericFileOperationException, indicating that there is already an existing file. Ignore silently
ignores the problem and does not override the existing file, but assumes everything is okay. The Move option requires
Camel 2.10.1 onwards, and the corresponding moveExisting option to be configured as well. The option
eagerDeleteTargetFile can be used to control what to do if an moving the file, and there exists already an existing
file, otherwise causing the move operation to fail. The Move option will move any existing files, before writing the target file.

tempPrefix null
This option is used to write the file using a temporary name and then, after the write is complete, rename it to the real name.
Can be used to identify files being written and also avoid consumers (not using exclusive read locks) reading in progress files.
Is often used by FTP when uploading big files.

tempFileName null
Camel 2.1: The same as tempPrefix option but offering a more fine grained control on the naming of the temporary
filename as it uses the File Language.

moveExisting null

Camel 2.10.1: Expression (such as File Language) used to compute file name to use when fileExist=Move is
configured. To move files into a backup subdirectory just enter backup. This option only supports the following File
Language tokens: "file:name", "file:name.ext", "file:name.noext", "file:onlyname", "file:onlyname.noext", "file:ext", and
"file:parent". Notice the "file:parent" is not supported by the FTP component, as the FTP component can only move any
existing files to a relative directory based on current dir as base.

keepLastModified false

Camel 2.2: Will keep the last modified timestamp from the source file (if any). Will use the
Exchange.FILE_LAST_MODIFIED header to located the timestamp. This header can contain either a
java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it will set this timestamp
on the written file. Note: This option only applies to the file producer. You cannot use this option with any of the ftp
producers.

622 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html

eagerDeleteTargetFile true

Camel 2.3: Whether or not to eagerly delete any existing target file. This option only applies when you use
fileExists=Override and the tempFileName option as well. You can use this to disable (set it to false) deleting the
target file before the temp file is written. For example you may write big files and want the target file to exists during the
temp file is being written. This ensure the target file is only deleted until the very last moment, just before the temp file is
being renamed to the target filename. From Camel 2.10.1 onwards this option is also used to control whether to delete
any existing files when fileExist=Move is enabled, and an existing file exists. If this option is false, then an exception will
be thrown if an existing file existed, if its true, then the existing file is deleted before the move operation.

doneFileName null

Camel 2.6: If provided, then Camel will write a 2nd done file when the original file has been written. The done file will be
empty. This option configures what file name to use. Either you can specify a fixed name. Or you can use dynamic
placeholders. The done file will always be written in the same folder as the original file. See writing done file section for
examples.

allowNullBody false

Camel 2.10.1: Used to specify if a null body is allowed during file writing. If set to true then an empty file will be created,
when set to false, and attempting to send a null body to the file component, a GenericFileWriteException of 'Cannot write
null body to file.' will be thrown. If the `fileExist` option is set to 'Override', then the file will be truncated, and if set to
`append` the file will remain unchanged.

forceWrites true
Camel 2.10.5/2.11: Whether to force syncing writes to the file system. You can turn this off if you do not want this level
of guarantee, for example if writing to logs / audit logs etc; this would yield better performance.

Default behavior for file producer

• By default it will override any existing file, if one exist with the same name.

Move and Delete operations

Any move or delete operations is executed after (post command) the routing has completed;
so during processing of the Exchange the file is still located in the inbox folder.

Lets illustrate this with an example:

from("file://inbox?move=.done").to("bean:handleOrder");

When a file is dropped in the inbox folder, the file consumer notices this and creates a new
FileExchange that is routed to the handleOrder bean. The bean then processes the
File object. At this point in time the file is still located in the inbox folder. After the bean
completes, and thus the route is completed, the file consumer will perform the move operation
and move the file to the .done sub-folder.

The move and preMove options should be a directory name, which can be either relative
or absolute. If relative, the directory is created as a sub-folder from within the folder where the
file was consumed.

By default, Camel will move consumed files to the .camel sub-folder relative to the
directory where the file was consumed.

If you want to delete the file after processing, the route should be:

from("file://inobox?delete=true").to("bean:handleOrder");

We have introduced a pre move operation to move files before they are processed. This
allows you to mark which files have been scanned as they are moved to this sub folder before
being processed.

CHAPTER 11 - COMPONENT APPENDIX 623

from("file://inbox?preMove=inprogress").to("bean:handleOrder");

You can combine the pre move and the regular move:

from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

So in this situation, the file is in the inprogress folder when being processed and after it's
processed, it's moved to the .done folder.

Fine grained control over Move and PreMove option

The move and preMove option is Expression-based, so we have the full power of the File
Language to do advanced configuration of the directory and name pattern.
Camel will, in fact, internally convert the directory name you enter into a File Language
expression. So when we enter move=.done Camel will convert this into:
${file:parent}/.done/${file:onlyname}. This is only done if Camel detects that
you have not provided a ${ } in the option value yourself. So when you enter a ${ } Camel will
not convert it and thus you have the full power.

So if we want to move the file into a backup folder with today's date as the pattern, we can
do:

move=backup/${date:now:yyyyMMdd}/${file:name}

About moveFailed

The moveFailed option allows you to move files that could not be processed succesfully
to another location such as a error folder of your choice. For example to move the files in an
error folder with a timestamp you can use
moveFailed=/error/${file:name.noext}-
${date:now:yyyyMMddHHmmssSSS}.${file:ext}.

See more examples at File Language

Message Headers

The following headers are supported by this component:

File producer only

Header Description

624 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
parent
onlyname
name.noext
ext
http://camel.apache.org/file-language.html

CamelFileName
Specifies the name of the file to write (relative to the endpoint directory). The name can be a String; a String with a File Language or
Simple expression; or an Expression object. If it's null then Camel will auto-generate a filename based on the message unique ID.

CamelFileNameProduced
The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-users
with the name of the file that was written.

CamelOverruleFileName
Camel 2.11: Is used for overruling CamelFileName header and use the value instead (but only once, as the producer will remove this
header after writing the file). The value can be only be a String. Notice that if the option fileName has been configured, then this is still being
evaluated.

File consumer only

Header Description

CamelFileName Name of the consumed file as a relative file path with offset from the starting directory configured on the endpoint.

CamelFileNameOnly Only the file name (the name with no leading paths).

CamelFileAbsolute
A boolean option specifying whether the consumed file denotes an absolute path or not. Should normally be false for relative paths.
Absolute paths should normally not be used but we added to the move option to allow moving files to absolute paths. But can be used
elsewhere as well.

CamelFileAbsolutePath The absolute path to the file. For relative files this path holds the relative path instead.

CamelFilePath The file path. For relative files this is the starting directory + the relative filename. For absolute files this is the absolute path.

CamelFileRelativePath The relative path.

CamelFileParent The parent path.

CamelFileLength A long value containing the file size.

CamelFileLastModified A Date value containing the last modified timestamp of the file.

Batch Consumer

This component implements the Batch Consumer.

Exchange Properties, file consumer only

As the file consumer is BatchConsumer it supports batching the files it polls. By batching it
means that Camel will add some properties to the Exchange so you know the number of files
polled the current index in that order.

Property Description

CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only true for the last entry.

This allows you for instance to know how many files exists in this batch and for instance let the
Aggregator2 aggregate this number of files.

Using charset

Available as of Camel 2.9.3
The charset option allows for configuring an encoding of the files on both the consumer and
producer endpoints. For example if you read utf-8 files, and want to convert the files to
iso-8859-1, you can do:

CHAPTER 11 - COMPONENT APPENDIX 625

http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/expression.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/aggregator2.html

from("file:inbox?charset=utf-8")
.to("file:outbox?charset=iso-8859-1")

You can also use the convertBodyTo in the route. In the example below we have still input
files in utf-8 format, but we want to convert the file content to a byte array in iso-8859-1
format. And then let a bean process the data. Before writing the content to the outbox folder
using the current charset.

from("file:inbox?charset=utf-8")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.to("file:outbox");

If you omit the charset on the consumer endpoint, then Camel does not know the charset of
the file, and would by default use "UTF-8". However you can configure a JVM system property
to override and use a different default encoding with the key
org.apache.camel.default.charset.

In the example below this could be a problem if the files is not in UTF-8 encoding, which
would be the default encoding for read the files.
In this example when writing the files, the content has already been converted to a byte array,
and thus would write the content directly as is (without any further encodings).

from("file:inbox")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.to("file:outbox");

You can also override and control the encoding dynamic when writing files, by setting a
property on the exchange with the key Exchange.CHARSET_NAME. For example in the
route below we set the property with a value from a message header.

from("file:inbox")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.setProperty(Exchange.CHARSET_NAME, header("someCharsetHeader"))
.to("file:outbox");

We suggest to keep things simpler, so if you pickup files with the same encoding, and want to
write the files in a specific encoding, then favor to use the charset option on the endpoints.

Notice that if you have explicit configured a charset option on the endpoint, then that
configuration is used, regardless of the Exchange.CHARSET_NAME property.

If you have some issues then you can enable DEBUG logging on
org.apache.camel.component.file, and Camel logs when it reads/write a file using a

626 CHAPTER 11 - COMPONENT APPENDIX

specific charset.
For example the route below will log the following:

from("file:inbox?charset=utf-8")
.to("file:outbox?charset=iso-8859-1")

And the logs:

DEBUG GenericFileConverter - Read file /Users/davsclaus/workspace/camel/
camel-core/target/charset/input/input.txt with charset utf-8
DEBUG FileOperations - Using Reader to write file: target/charset/
output.txt with charset: iso-8859-1

Common gotchas with folder and filenames

When Camel is producing files (writing files) there are a few gotchas affecting how to set a
filename of your choice. By default, Camel will use the message ID as the filename, and since the
message ID is normally a unique generated ID, you will end up with filenames such as: ID-
MACHINENAME-2443-1211718892437-1-0. If such a filename is not desired, then you
must provide a filename in the CamelFileName message header. The constant,
Exchange.FILE_NAME, can also be used.

The sample code below produces files using the message ID as the filename:

from("direct:report").to("file:target/reports");

To use report.txt as the filename you have to do:

from("direct:report").setHeader(Exchange.FILE_NAME, constant("report.txt")).to(
"file:target/reports");

... the same as above, but with CamelFileName:

from("direct:report").setHeader("CamelFileName", constant("report.txt")).to(
"file:target/reports");

And a syntax where we set the filename on the endpoint with the fileName URI option.

from("direct:report").to("file:target/reports/?fileName=report.txt");

CHAPTER 11 - COMPONENT APPENDIX 627

Filename Expression

Filename can be set either using the expression option or as a string-based File Language
expression in the CamelFileName header. See the File Language for syntax and samples.

Consuming files from folders where others drop files directly

Beware if you consume files from a folder where other applications write files directly. Take a
look at the different readLock options to see what suits your use cases. The best approach is
however to write to another folder and after the write move the file in the drop folder.
However if you write files directly to the drop folder then the option changed could better
detect whether a file is currently being written/copied as it uses a file changed algorithm to see
whether the file size / modification changes over a period of time. The other read lock options
rely on Java File API that sadly is not always very good at detecting this. You may also want to
look at the doneFileName option, which uses a marker file (done) to signal when a file is
done and ready to be consumed.

Using done files

Available as of Camel 2.6

See also section writing done files below.

If you want only to consume files when a done file exists, then you can use the
doneFileName option on the endpoint.

from("file:bar?doneFileName=done");

Will only consume files from the bar folder, if a file name done exists in the same directory as
the target files. Camel will automatically delete the done file when it's done consuming the files.
From Camel 2.9.3 onwards Camel will not automatic delete the done file if noop=true is
configured.

However its more common to have one done file per target file. This means there is a 1:1
correlation. To do this you must use dynamic placeholders in the doneFileName option.
Currently Camel supports the following two dynamic tokens: file:name and
file:name.noext which must be enclosed in ${ }. The consumer only supports the static
part of the done file name as either prefix or suffix (not both).

from("file:bar?doneFileName=${file:name}.done");

In this example only files will be polled if there exists a done file with the name file name.done.
For example

▪ hello.txt - is the file to be consumed
▪ hello.txt.done - is the associated done file

You can also use a prefix for the done file, such as:

628 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
name
name.noext

from("file:bar?doneFileName=ready-${file:name}");

▪ hello.txt - is the file to be consumed
▪ ready-hello.txt - is the associated done file

Writing done files

Available as of Camel 2.6

After you have written af file you may want to write an additional done file as a kinda of
marker, to indicate to others that the file is finished and has been written. To do that you can
use the doneFileName option on the file producer endpoint.

.to("file:bar?doneFileName=done");

Will simply create a file named done in the same directory as the target file.

However its more common to have one done file per target file. This means there is a 1:1
correlation. To do this you must use dynamic placeholders in the doneFileName option.
Currently Camel supports the following two dynamic tokens: file:name and
file:name.noext which must be enclosed in ${ }.

.to("file:bar?doneFileName=done-${file:name}");

Will for example create a file named done-foo.txt if the target file was foo.txt in the
same directory as the target file.

.to("file:bar?doneFileName=${file:name}.done");

Will for example create a file named foo.txt.done if the target file was foo.txt in the
same directory as the target file.

.to("file:bar?doneFileName=${file:name.noext}.done");

Will for example create a file named foo.done if the target file was foo.txt in the same
directory as the target file.

CHAPTER 11 - COMPONENT APPENDIX 629

name
name.noext

Samples

Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Read from a directory and write to another directory using a
overrule dynamic name

from("file://inputdir/?delete=true").to("file://outputdir?overruleFile=copy-of-${file:name}")

Listen on a directory and create a message for each file dropped there. Copy the contents to
the outputdir and delete the file in the inputdir.

Reading recursively from a directory and writing to another

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to
the outputdir and delete the file in the inputdir. Will scan recursively into sub-
directories. Will lay out the files in the same directory structure in the outputdir as the
inputdir, including any sub-directories.

inputdir/foo.txt
inputdir/sub/bar.txt

Will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the
source directory layout (e.g. to flatten out the path), you just add the flatten=true option
on the file producer side:

630 CHAPTER 11 - COMPONENT APPENDIX

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir?flatten=true")

Will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

Reading from a directory and the default move operation

Camel will by default move any processed file into a .camel subdirectory in the directory the
file was consumed from.

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Affects the layout as follows:
before

inputdir/foo.txt
inputdir/sub/bar.txt

after

inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Object body = exchange.getIn().getBody();
// do some business logic with the input body

}
});

The body will be a File object that points to the file that was just dropped into the
inputdir directory.

CHAPTER 11 - COMPONENT APPENDIX 631

Writing to files

Camel is of course also able to write files, i.e. produce files. In the sample below we receive
some reports on the SEDA queue that we process before they are written to a directory.

public void testToFile() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedFileExists("target/test-reports/report.txt");

template.sendBody("direct:reports", "This is a great report");

assertMockEndpointsSatisfied();
}

protected JndiRegistry createRegistry() throws Exception {
// bind our processor in the registry with the given id
JndiRegistry reg = super.createRegistry();
reg.bind("processReport", new ProcessReport());
return reg;

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// the reports from the seda queue is processed by our processor
// before they are written to files in the target/reports directory
from("direct:reports").processRef("processReport").to("file://target/

test-reports", "mock:result");
}

};
}

private static class ProcessReport implements Processor {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
// do some business logic here

// set the output to the file
exchange.getOut().setBody(body);

// set the output filename using java code logic, notice that this is done by
setting

// a special header property of the out exchange
exchange.getOut().setHeader(Exchange.FILE_NAME, "report.txt");

}

}

632 CHAPTER 11 - COMPONENT APPENDIX

Write to subdirectory using Exchange.FILE_NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a
route setup as such:

<route>
<from uri="bean:myBean"/>
<to uri="file:/rootDirectory"/>

</route>

You can have myBean set the header Exchange.FILE_NAME to values such as:

Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt
Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

This allows you to have a single route to write files to multiple destinations.

Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-
folder name:

from("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

See File Language for more samples.

Avoiding reading the same file more than once (idempotent consumer)

Camel supports Idempotent Consumer directly within the component so it will skip already
processed files. This feature can be enabled by setting the idempotent=true option.

from("file://inbox?idempotent=true").to("...");

Camel uses the absolute file name as the idempotent key, to detect duplicate files. From
Camel 2.11 onwards you can customize this key by using an expression in the idempotentKey
option. For example to use both the name and the file size as the key

<route>
<from

uri="file://inbox?idempotent=true&idempotentKey=${file:name}-${file-size}"/>
<to uri="bean:processInbox"/>

</route>

CHAPTER 11 - COMPONENT APPENDIX 633

http://camel.apache.org/file-language.html
http://camel.apache.org/idempotent-consumer.html

By default Camel uses a in memory based store for keeping track of consumed files, it uses a
least recently used cache holding up to 1000 entries. You can plugin your own implementation
of this store by using the idempotentRepository option using the # sign in the value to
indicate it's a referring to a bean in the Registry with the specified id.

<!-- define our store as a plain spring bean -->
<bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
<from uri="file://inbox?idempotent=true&idempotentRepository=#myStore"/>
<to uri="bean:processInbox"/>

</route>

Camel will log at DEBUG level if it skips a file because it has been consumed before:

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip this
file: target\idempotent\report.txt

Using a file based idempotent repository

In this section we will use the file based idempotent repository
org.apache.camel.processor.idempotent.FileIdempotentRepository
instead of the in-memory based that is used as default.
This repository uses a 1st level cache to avoid reading the file repository. It will only use the file
repository to store the content of the 1st level cache. Thereby the repository can survive
server restarts. It will load the content of the file into the 1st level cache upon startup. The file
structure is very simple as it stores the key in separate lines in the file. By default, the file store
has a size limit of 1mb. When the file grows larger Camel will truncate the file store, rebuilding
the content by flushing the 1st level cache into a fresh empty file.

We configure our repository using Spring XML creating our file idempotent repository and
define our file consumer to use our repository with the idempotentRepository using #
sign to indicate Registry lookup:

<!-- this is our file based idempotent store configured to use the .filestore.dat as
file -->
<bean id="fileStore"
class="org.apache.camel.processor.idempotent.FileIdempotentRepository">

<!-- the filename for the store -->
<property name="fileStore" value="target/fileidempotent/.filestore.dat"/>
<!-- the max filesize in bytes for the file. Camel will trunk and flush the cache

if the file gets bigger -->
<property name="maxFileStoreSize" value="512000"/>
<!-- the number of elements in our store -->
<property name="cacheSize" value="250"/>

</bean>

634 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://target/
fileidempotent/?idempotent=true&idempotentRepository=#fileStore&move=done/${file:name}"/>

<to uri="mock:result"/>
</route>

</camelContext>

Using a JPA based idempotent repository

In this section we will use the JPA based idempotent repository instead of the in-memory based
that is used as default.

First we need a persistence-unit in META-INF/persistence.xml where we need to
use the class
org.apache.camel.processor.idempotent.jpa.MessageProcessed as model.

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/

idempotentTest;create=true"/>
<property name="openjpa.ConnectionDriverName"

value="org.apache.derby.jdbc.EmbeddedDriver"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>

</properties>
</persistence-unit>

Then we need to setup a Spring jpaTemplate in the spring XML file:

<!-- this is standard spring JPA configuration -->
<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<!-- we use idempotentDB as the persitence unit name defined in the
persistence.xml file -->

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

And finally we can create our JPA idempotent repository in the spring XML file as well:

CHAPTER 11 - COMPONENT APPENDIX 635

<!-- we define our jpa based idempotent repository we want to use in the file consumer
-->
<bean id="jpaStore"
class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplate -->
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name).

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>

</bean>

And yes then we just need to refer to the jpaStore bean in the file consumer endpoint using
the idempotentRepository using the # syntax option:

<route>
<from uri="file://inbox?idempotent=true&idempotentRepository=#jpaStore"/>
<to uri="bean:processInbox"/>

</route>

Filter using org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. You can then configure the endpoint with such a
filter to skip certain files being processed.

In the sample we have built our own filter that skips files starting with skip in the filename:

public class MyFileFilter<T> implements GenericFileFilter<T> {
public boolean accept(GenericFile<T> file) {

// we want all directories
if (file.isDirectory()) {

return true;
}
// we dont accept any files starting with skip in the name
return !file.getFileName().startsWith("skip");

}
}

And then we can configure our route using the filter attribute to reference our filter (using #
notation) that we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?filter=#myFilter"/>
<to uri="bean:processInbox"/>

</route>

636 CHAPTER 11 - COMPONENT APPENDIX

Filtering using ANT path matcher

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to
depend on camel-spring if you are using Maven.
The reasons is that we leverage Spring's AntPathMatcher to do the actual matching.

The file paths is matched with the following rules:
▪ ? matches one character
▪ * matches zero or more characters
▪ ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<template id="camelTemplate"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan for
-->

<endpoint id="myFileEndpoint" uri="file://target/
antpathmatcher?recursive=true&filter=#myAntFilter"/>

<route>
<from ref="myFileEndpoint"/>
<to uri="mock:result"/>

</route>
</camelContext>

<!-- we use the antpath file filter to use ant paths for includes and exlucde -->
<bean id="myAntFilter"
class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">

<!-- include and file in the subfolder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to seperate

multiple excludes -->
<property name="excludes" value="**/*bad*,**/*.xml"/>

</bean>

Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the build in
java.util.Comparator in Java. You can then configure the endpoint with such a
comparator and have Camel sort the files before being processed.

In the sample we have built our own comparator that just sorts by file name:

public class MyFileSorter<T> implements Comparator<GenericFile<T>> {
public int compare(GenericFile<T> o1, GenericFile<T> o2) {

return o1.getFileName().compareToIgnoreCase(o2.getFileName());
}

}

CHAPTER 11 - COMPONENT APPENDIX 637

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

New options from Camel 2.10 onwards
There are now antInclude and antExclude options to make it easy to specify
ANT style include/exclude without having to define the filter. See the URI options
above for more information.

And then we can configure our route using the sorter option to reference to our sorter
(mySorter) we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="mySorter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?sorter=#mySorter"/>
<to uri="bean:processInbox"/>

</route>

Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the File Language to
configure the sorting. The sortBy option is configured as follows:

sortBy=group 1;group 2;group 3;...

Where each group is separated with semi colon. In the simple situations you just use one
group, so a simple example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse: to the group, so
the sorting is now Z..A:

sortBy=reverse:file:name

As we have the full power of File Language we can use some of the other parameters, so if we
want to sort by file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string comparison, so if you
want to use file name sorting but to ignore the case then we do:

638 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

URI options can reference beans using the # syntax
In the Spring DSL route about notice that we can refer to beans in the Registry by
prefixing the id with #. So writing sorter=#mySorter, will instruct Camel to go
look in the Registry for a bean with the ID, mySorter.

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modifed

And then we want to group by name as a 2nd option so files with same modifcation is sorted by
name:

sortBy=file:modifed;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine
as it will be in milliseconds, but what if we want to sort by date only and then subgroup by
name?
Well as we have the true power of File Language we can use the its date command that
supports patterns. So this can be solved as:

sortBy=date:file:yyyyMMdd;file:name

Yeah, that is pretty powerful, oh by the way you can also use reverse per group, so we could
reverse the file names:

sortBy=date:file:yyyyMMdd;reverse:file:name

Using GenericFileProcessStrategy

The option processStrategy can be used to use a custom
GenericFileProcessStrategy that allows you to implement your own begin, commit
and rollback logic.

CHAPTER 11 - COMPONENT APPENDIX 639

http://camel.apache.org/file-language.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

For instance lets assume a system writes a file in a folder you should consume. But you should
not start consuming the file before another ready file has been written as well.

So by implementing our own GenericFileProcessStrategy we can implement this
as:

▪ In the begin() method we can test whether the special ready file exists. The begin
method returns a boolean to indicate if we can consume the file or not.

▪ In the abort() method (Camel 2.10) special logic can be executed in case the
begin operation returned false, for example to cleanup resources etc.

▪ in the commit() method we can move the actual file and also delete the ready file.

Using filter

The filter option allows you to implement a custom filter in Java code by implementing the
org.apache.camel.component.file.GenericFileFilter interface. This
interface has an accept method that returns a boolean. Return true to include the file, and
false to skip the file. From Camel 2.10 onwards, there is a isDirectory method on
GenericFile whether the file is a directory. This allows you to filter unwanted directories,
to avoid traversing down unwanted directories.

For example to skip any directories which starts with "skip" in the name, can be
implemented as follows:

public class MyDirectoryFilter<T> implements GenericFileFilter<T> {

public boolean accept(GenericFile<T> file) {
// remember the name due unit testing (should not be needed in regular

use-cases)
names.add(file.getFileName());

// we dont accept any files within directory starting with skip in the name
if (file.isDirectory() && file.getFileName().startsWith("skip")) {

return false;
}

return true;
}

}

How to use the Camel error handler to deal with exceptions triggered
outside the routing engine

The file and ftp consumers, will by default try to pickup files. Only if that is successful then a
Camel Exchange can be created and passed in the Camel routing engine.
When the Exchange is processed by the routing engine, then the Camel Error Handling takes
over (eg the onException / errorHandler in the routes).

640 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html

However outside the scope of the routing engine, any exceptions handling is component
specific. Camel offers a org.apache.camel.spi.ExceptionHandler that allows
components
to use that as a pluggable hook for end users to use their own implementation. Camel offers a
default LoggingExceptionHandler that will log the exception at ERROR/WARN level.
For the file and ftp components this would be the case. However if you want to bridge the
ExceptionHandler so it uses the Camel Error Handling, then
you need to implement a custom ExceptionHandler that will handle the exception by
creating a Camel Exchange and send it to the routing engine; then the error handling of the
routing engine can get triggered.
Here is such an example based upon an unit test.

First we have a custom ExceptionHandler where you can see we deal with the
exception by sending it to a Camel Endpoint named "direct:file-error":

Listing 1.Listing 1. MyExceptionHandlerMyExceptionHandler

/**
* Custom {@link ExceptionHandler} to be used on the file consumer, to send
* exceptions to a Camel route, to let Camel deal with the error.
*/

private static class MyExceptionHandler implements ExceptionHandler {

private ProducerTemplate template;

/**
* We use a producer template to send a message to the Camel route
*/

public void setTemplate(ProducerTemplate template) {
this.template = template;

}

@Override
public void handleException(Throwable exception) {

handleException(exception.getMessage(), exception);
}

@Override
public void handleException(String message, Throwable exception) {

handleException(exception.getMessage(), null, exception);
}

@Override
public void handleException(final String message, final Exchange originalExchange,

final Throwable exception) {
// send the message to the special direct:file-error endpoint, which will

trigger exception handling
//
template.send("direct:file-error", new Processor() {

@Override
public void process(Exchange exchange) throws Exception {

// set an exception on the message from the start so the error

CHAPTER 11 - COMPONENT APPENDIX 641

http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

Easier with Camel 2.10
The new option consumer.bridgeErrorHandler can be set to true, to make this even
easier. See further below

handling is triggered
exchange.setException(exception);
exchange.getIn().setBody(message);

}
});

}
}

Then we have a Camel route that uses the Camel routing error handler, which is the
onException where we handle any IOException being thrown.
We then send the message to the same "direct:file-error" endpoint, where we handle it by
transforming it to a message, and then being sent to a Mock endpoint.
This is just for testing purpose. You can handle the exception in any custom way you want, such
as using a Bean or sending an email etc.

Notice how we configure our custom MyExceptionHandler by using the
consumer.exceptionHandler option to refer to #myExceptionHandler which is a
id of the bean registered in the Registry. If using Spring XML or OSGi Blueprint, then that
would be a <bean id="myExceptionHandler" class="com.foo.MyExceptionHandler"/>:

Listing 1.Listing 1. Camel route with routing engine error handlingCamel route with routing engine error handling

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// to handle any IOException being thrown
onException(IOException.class)

.handled(true)

.log("IOException occurred due: ${exception.message}")
// as we handle the exception we can send it to direct:file-error,
// where we could send out alerts or whatever we want
.to("direct:file-error");

// special route that handles file errors
from("direct:file-error")

.log("File error route triggered to deal with exception
${exception?.class}")

// as this is based on unit test just transform a message and send it
to a mock

.transform().simple("Error ${exception.message}")

.to("mock:error");

642 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mock.html
http://camel.apache.org/bean.html
http://camel.apache.org/registry.html

// this is the file route that pickup files, notice how we use our custom
exception handler on the consumer

// the exclusiveReadLockStrategy is only configured because this is from
an unit test, so we use that to simulate exceptions

from("file:target/
nospace?exclusiveReadLockStrategy=#myReadLockStrategy&consumer.exceptionHandler=#myExceptionHandler")

.convertBodyTo(String.class)

.to("mock:result");
}

};
}

The source code for this example can be seen here

Using consumer.bridgeErrorHandler

Available as of Camel 2.10

If you want to use the Camel Error Handler to deal with any exception occurring in the file
consumer, then you can enable the consumer.bridgeErrorHandler option as shown
below:

Listing 1.Listing 1. Using consumer.bridgeErrorHandlerUsing consumer.bridgeErrorHandler

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// to handle any IOException being thrown
onException(IOException.class)

.handled(true)

.log("IOException occurred due: ${exception.message}")

.transform().simple("Error ${exception.message}")

.to("mock:error");

// this is the file route that pickup files, notice how we bridge the
consumer to use the Camel routing error handler

// the exclusiveReadLockStrategy is only configured because this is from
an unit test, so we use that to simulate exceptions

from("file:target/
nospace?exclusiveReadLockStrategy=#myReadLockStrategy&consumer.bridgeErrorHandler=true")

.convertBodyTo(String.class)

.to("mock:result");
}

};
}

So all you have to do is to enable this option, and the error handler in the route will take it
from there.

CHAPTER 11 - COMPONENT APPENDIX 643

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/component/file/FileConsumerCustomExceptionHandlerTest.java
http://camel.apache.org/error-handler.html

Debug logging

This component has log level TRACE that can be helpful if you have problems.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ File Language
▪ FTP
▪ Polling Consumer

FLATPACK COMPONENT

The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.
Notice: This component only supports consuming from flatpack files to Object model. You
can not (yet) write from Object model to flatpack format.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

flatpack:[delim|fixed]:flatPackConfig.pzmap.xml[?options]

Or for a delimited file handler with no configuration file just use

flatpack:someName[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

644 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/polling-consumer.html
http://flatpack.sourceforge.net

URI Options

Name
Default
Value

Description

delimiter , The default character delimiter for delimited files.

textQualifier " The text qualifier for delimited files.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for the column headers).

splitRows true The component can either process each row one by one or the entire content at once.

allowShortLines false
Camel 2.9.7 and 2.10.5 onwards: Allows for lines to be shorter than expected and ignores the extra
characters.

ignoreExtraColumns false Camel 2.9.7 and 2.10.5 onwards: Allows for lines to be longer than expected and ignores the extra characters.

Examples

• flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint using the
foo.pzmap.xml file configuration.

• flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the
bar.pzmap.xml file configuration.

• flatpack:foo creates a delimited endpoint called foo with no file configuration.

Message Headers

Camel will store the following headers on the IN message:

Header Description

camelFlatpackCounter The current row index. For splitRows=false the counter is the total number of rows.

Message Body

The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that has
converters for java.util.Map or java.util.List.
Usually you want the Map if you process one row at a time (splitRows=true). Use List
for the entire content (splitRows=false), where each element in the list is a Map.
Each Map contains the key for the column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn().getBody(Map.class);
String firstName = row.get("FIRSTNAME");

However, you can also always get it as a List (even for splitRows=true). The same
example:

CHAPTER 11 - COMPONENT APPENDIX 645

List data = exchange.getIn().getBody(List.class);
Map row = (Map)data.get(0);
String firstName = row.get("FIRSTNAME");

Header and Trailer records

The header and trailer notions in Flatpack are supported. However, you must use fixed
record IDs:

• header for the header record (must be lowercase)
• trailer for the trailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit one or
both of them if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="DATE" length="8"/>

</RECORD>

<COLUMN name="FIRSTNAME" length="35" />
<COLUMN name="LASTNAME" length="35" />
<COLUMN name="ADDRESS" length="100" />
<COLUMN name="CITY" length="100" />
<COLUMN name="STATE" length="2" />
<COLUMN name="ZIP" length="5" />

<RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="STATUS" length="7"/>

</RECORD>

Using the endpoint

A common use case is sending a file to this endpoint for further processing in a separate route.
For example:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="file://someDirectory"/>
<to uri="flatpack:foo"/>

</route>

<route>
<from uri="flatpack:foo"/>
...

</route>
</camelContext>

646 CHAPTER 11 - COMPONENT APPENDIX

You can also convert the payload of each message created to a Map for easy Bean Integration

FLATPACK DATAFORMAT

The Flatpack component ships with the Flatpack data format that can be used to format
between fixed width or delimited text messages to a List of rows as Map.

▪ marshal = from List<Map<String, Object>> to OutputStream (can be
converted to String)

▪ unmarshal = from java.io.InputStream (such as a File or String) to a
java.util.List as an
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to process each row
one by one you can split the exchange, using Splitter.

Notice: The Flatpack library does currently not support header and trailers for the marshal
operation.

Options

The data format has the following options:

Option Default Description

definition null
The flatpack pzmap configuration file. Can be
omitted in simpler situations, but its preferred to
use the pzmap.

fixed false Delimited or fixed.

ignoreFirstRecord true
Whether the first line is ignored for delimited files
(for the column headers).

textQualifier " If the text is qualified with a char such as ".

delimiter , The delimiter char (could be ; , or similar)

parserFactory null Uses the default Flatpack parser factory.

allowShortLines false
Camel 2.9.7 and 2.10.5 onwards: Allows for
lines to be shorter than expected and ignores the
extra characters.

ignoreExtraColumns false
Camel 2.9.7 and 2.10.5 onwards: Allows for
lines to be longer than expected and ignores the
extra characters.

CHAPTER 11 - COMPONENT APPENDIX 647

http://camel.apache.org/bean-integration.html
http://camel.apache.org/flatpack.html
http://camel.apache.org/splitter.html

Usage

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
...
from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the input using the
Flatpack configuration file INVENTORY-Delimited.pzmap.xml that configures the
structure of the files. The result is a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

In the code above we marshal the data from a Object representation as a List of rows as
Maps. The rows as Map contains the column name as the key, and the the corresponding
value. This structure can be created in Java code from e.g. a processor. We marshal the data
according to the Flatpack format and convert the result as a String object and store it on a
JMS queue.

Dependencies

To use Flatpack in your camel routes you need to add the a dependency on camel-flatpack
which implements this data format.

If you use maven you could just add the following to your pom.xml, substituting the version
number for the latest & greatest release (see the download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>

</dependency>

See Also

• Configuring Camel
• Component
• Endpoint

648 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html

• Getting Started

FREEMARKER

The freemarker: component allows for processing a message using a FreeMarker template.
This can be ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-freemarker</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->

</dependency>

URI format

freemarker:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template (eg: file://folder/myfile.ftl).

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

contentCache true
Cache for the resource content when it's loaded.
Note: as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's clearContentCache
operation.

encoding null Character encoding of the resource content.

templateUpdateDelay 5 Camel 2.9: Number of seconds the loaded template resource will remain in the cache.

Headers

Headers set during the FreeMarker evaluation are returned to the message and added as
headers. This provides a mechanism for the FreeMarker component to return values to the
Message.

An example: Set the header value of fruit in the FreeMarker template:

${request.setHeader('fruit', 'Apple')}

CHAPTER 11 - COMPONENT APPENDIX 649

http://camel.apache.org/getting-started.html
http://freemarker.org/
http://camel.apache.org/templating.html
/folder/myfile.ftl

The header, fruit, is now accessible from the message.out.headers.

FreeMarker Context

Camel will provide exchange information in the FreeMarker context (just a Map). The
Exchange is transferred as:

key value

exchange The Exchange itself.

exchange.properties The Exchange properties.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

Hot reloading

The FreeMarker template resource is by default not hot reloadable for both file and classpath
resources (expanded jar). If you set contentCache=false, then Camel will not cache the
resource and hot reloading is thus enabled. This scenario can be used in development.

Dynamic templates

Camel provides two headers by which you can define a different resource location for a
template or the template content itself. If any of these headers is set then Camel uses this over
the endpoint configured resource. This allows you to provide a dynamic template at runtime.

Header Type Description
Support
Version

FreemarkerConstants.FREEMARKER_RESOURCE org.springframework.core.io.Resource The template resource <= 2.1

FreemarkerConstants.FREEMARKER_RESOURCE_URI String
A URI for the template resource to use instead of
the endpoint configured.

>= 2.1

FreemarkerConstants.FREEMARKER_TEMPLATE String
The template to use instead of the endpoint
configured.

>= 2.1

Samples

For example you could use something like:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl");

To use a FreeMarker template to formulate a response for a message for InOut message
exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you
could use:

650 CHAPTER 11 - COMPONENT APPENDIX

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl").
to("activemq:Another.Queue");

And to disable the content cache, e.g. for development usage where the .ftl template should
be hot reloaded:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl?contentCache=false").
to("activemq:Another.Queue");

And a file-based resource:

from("activemq:My.Queue").
to("freemarker:file://myfolder/MyResponse.ftl?contentCache=false").
to("activemq:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should use dynamically via
a header, so for example:

from("direct:in").
setHeader(FreemarkerConstants.FREEMARKER_RESOURCE_URI).constant("path/to/my/

template.ftl").
to("freemarker:dummy");

The Email Sample

In this sample we want to use FreeMarker templating for an order confirmation email. The
email template is laid out in FreeMarker as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();

Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");

CHAPTER 11 - COMPONENT APPENDIX 651

msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");

return exchange;
}

@Test
public void testFreemarkerLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel in

Action."
+ "\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a")

.to("freemarker:org/apache/camel/component/freemarker/letter.ftl")

.to("mock:result");
}

};
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

FTP/SFTP/FTPS COMPONENT

This component provides access to remote file systems over the FTP and SFTP protocols.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ftp</artifactId>
<version>x.x.x</version>

652 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

<!-- use the same version as your Camel core version -->
</dependency>

URI format

ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

Where directoryname represents the underlying directory. Can contain nested folders.

If no username is provided, then anonymous login is attempted using no password.
If no port number is provided, Camel will provide default values according to the protocol (ftp
= 21, sftp = 22, ftps = 2222).

You can append query options to the URI in the following format,
?option=value&option=value&...

This component uses two different libraries for the actual FTP work. FTP and FTPS uses
Apache Commons Net while SFTP uses JCraft JSCH.

The FTPS component is only available in Camel 2.2 or newer.
FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport
Layer Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.

URI Options

The options below are exclusive for the FTP component.

Name
Default
Value

Description

username null Specifies the username to use to log in to the remote file systen.

password null Specifies the password to use to log in to the remote file system.

binary false Specifies the file transfer mode, BINARY or ASCII. Default is ASCII (false).

disconnect false
Camel 2.2: Whether or not to disconnect from remote FTP server right after use. Can be used for both
consumer and producer. Disconnect will only disconnect the current connection to the FTP server. If you
have a consumer which you want to stop, then you need to stop the consumer/route instead.

localWorkDirectory null
When consuming, a local work directory can be used to store the remote file content directly in local files,
to avoid loading the content into memory. This is beneficial, if you consume a very big remote file and thus
can conserve memory. See below for more details.

passiveMode false
FTP and FTPS only: Specifies whether to use passive mode connections. Default is active mode
(false).

securityProtocol TLS
FTPS only: Sets the underlying security protocol. The following values are defined:
TLS: Transport Layer Security
SSL: Secure Sockets Layer

disableSecureDataChannelDefaults false
Camel 2.4: FTPS only: Whether or not to disable using default values for execPbsz and execProt
when using secure data transfer. You can set this option to true if you want to be in absolute full control
what the options execPbsz and execProt should be used.

download true
Camel 2.11: Whether the FTP consumer should download the file. If this option is set to false, then the
message body will be null, but the consumer will still trigger a Camel Exchange that has details about the
file such as file name, file size, etc. It's just that the file will not be downloaded.

CHAPTER 11 - COMPONENT APPENDIX 653

http://commons.apache.org/net/
http://www.jcraft.com/jsch/
http://camel.apache.org/exchange.html

More options
See File for more options as all the options from File is inherited.

Consuming from remote FTP server
Make sure you read the section titled Default when consuming files further below for
details related to consuming files.

More options
See File for more options as all the options from File is inherited.

streamDownload false

Camel 2.11:ÊWhether the consumer should download the entire file up front, the default behavior, or if it
should pass an InputStreamÊread from the remote resource rather than an in-memory array as the in body
of theÊCamelÊExchange. ÊThis option is ignored if downloadÊis falseÊor is localWorkDirectory is provided.
ÊThis option is useful for working with large remote files.

execProt null

Camel 2.4: FTPS only: Will by default use option P if secure data channel defaults hasn't been disabled.
Possible values are:
C: Clear
S: Safe (SSL protocol only)
E: Confidential (SSL protocol only)
P: Private

execPbsz null
Camel 2.4: FTPS only: This option specifies the buffer size of the secure data channel. If option
useSecureDataChannel has been enabled and this option has not been explicit set, then value 0 is used.

isImplicit false FTPS only: Sets the security mode(implicit/explicit). Default is explicit (false).

knownHostsFile null SFTP only: Sets the known_hosts file, so that the SFTP endpoint can do host key verification.

privateKeyFile null SFTP only: Set the private key file to that the SFTP endpoint can do private key verification.

privateKeyFilePassphrase null SFTP only: Set the private key file passphrase to that the SFTP endpoint can do private key verification.

ciphers null

Camel 2.8.2, 2.9: SFTP only Set a comma separated list of ciphers that will be used in order of
preference. Possible cipher names are defined by JCraft JSCH. Some examples include:
aes128-ctr,aes128-cbc,3des-ctr,3des-cbc,blowfish-cbc,aes192-cbc,aes256-cbc. If not specified the default list
from JSCH will be used.

fastExistsCheck false

Camel 2.8.2, 2.9: If set this option to be true, camel-ftp will use the list file directly to check if the file
exists. Since some FTP server may not support to list the file directly, if the option is false, camel-ftp will use
the old way to list the directory and check if the file exists. Note from Camel 2.10.1 onwards this option
also influences readLock=changed to control whether it performs a fast check to update file information
or not. This can be used to speed up the process if the FTP server has a lot of files.

strictHostKeyChecking no
SFTP only: Camel 2.2: Sets whether to use strict host key checking. Possible values are: no, yes and
ask. ask does not make sense to use as Camel cannot answer the question for you as its meant for human
intervention. Note: The default in Camel 2.1 and below was ask.

maximumReconnectAttempts 3
Specifies the maximum reconnect attempts Camel performs when it tries to connect to the remote FTP
server. Use 0 to disable this behavior.

reconnectDelay 1000 Delay in millis Camel will wait before performing a reconnect attempt.

connectTimeout 10000
Camel 2.4: Is the connect timeout in millis. This corresponds to using ftpClient.connectTimeout
for the FTP/FTPS. For SFTP this option is also used when attempting to connect.

soTimeout null
FTP and FTPS Only: Camel 2.4: Is the SocketOptions.SO_TIMEOUT value in millis. Note SFTP
will automatic use the connectTimeout as the soTimeout.

timeout 30000
FTP and FTPS Only: Camel 2.4: Is the data timeout in millis. This corresponds to using
ftpClient.dataTimeout for the FTP/FTPS. For SFTP there is no data timeout.

throwExceptionOnConnectFailed false
Camel 2.5: Whether or not to thrown an exception if a successful connection and login could not be
establish. This allows a custom pollStrategy to deal with the exception, for example to stop the
consumer or the likes.

654 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://www.jcraft.com/jsch/
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

siteCommand null
FTP and FTPS Only: Camel 2.5: To execute site commands after successful login. Multiple site
commands can be separated using a new line character (\n). Use help site to see which site commands
your FTP server supports.

stepwise true
Camel 2.6: Whether or not stepwise traversing directories should be used or not. Stepwise means that it
will CD one directory at a time. See more details below. You can disable this in case you can't use this
approach.

separator Auto
Camel 2.6: Dictates what path separator char to use when uploading files. Auto = Use the path provided
without altering it. UNIX = Use unix style path separators. Windows = Use Windows style path separators.

chmod null
SFTP Producer Only: Camel 2.9: Allows you to set chmod on the stored file. For example
chmod=640.

compression 0
SFTP Only: Camel 2.8.3/2.9: To use compression. Specify a level from 1 to 10. Important: You must
manually add the needed JSCH zlib JAR to the classpath for compression support.

ftpClient null
FTP and FTPS Only: Camel 2.1: Allows you to use a custom
org.apache.commons.net.ftp.FTPClient instance.

ftpClientConfig null
FTP and FTPS Only: Camel 2.1: Allows you to use a custom
org.apache.commons.net.ftp.FTPClientConfig instance.

serverAliveInterval 0 SFTP Only: Camel 2.8 Allows you to set the serverAliveInterval of the sftp session

serverAliveCountMax 1 SFTP Only: Camel 2.8 Allows you to set the serverAliveCountMax of the sftp session

ftpClient.trustStore.file null FTPS Only: Sets the trust store file, so that the FTPS client can look up for trusted certificates.

ftpClient.trustStore.type JKS FTPS Only: Sets the trust store type.

ftpClient.trustStore.algorithm SunX509 FTPS Only: Sets the trust store algorithm.

ftpClient.trustStore.password null FTPS Only: Sets the trust store password.

ftpClient.keyStore.file null FTPS Only: Sets the key store file, so that the FTPS client can look up for the private certificate.

ftpClient.keyStore.type JKS FTPS Only: Sets the key store type.

ftpClient.keyStore.algorithm SunX509 FTPS Only: Sets the key store algorithm.

ftpClient.keyStore.password null FTPS Only: Sets the key store password.

ftpClient.keyStore.keyPassword null FTPS Only: Sets the private key password.

sslContextParameters null

FTPS Only: Camel 2.9: Reference to a
org.apache.camel.util.jsse.SSLContextParameters in the Registry.Ê This reference
overrides any configured SSL related options on ftpClient as well as the securityProtocol (SSL, TLS, etc.) set
on FtpsConfiguration.Ê See Using the JSSE Configuration Utility.

You can configure additional options on the ftpClient and ftpClientConfig from the
URI directly by using the ftpClient. or ftpClientConfig. prefix.

For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000").to("bean:foo");

You can mix and match and have use both prefixes, for example to configure date format or
timezones.

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.serverLanguageCode=fr").to("bean:foo");

You can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options
and more details.
And as well for Apache Commons FTP FTPClient.

If you do not like having many and long configuration in the url you can refer to the
ftpClient or ftpClientConfig to use by letting Camel lookup in the Registry for it.

For example:

CHAPTER 11 - COMPONENT APPENDIX 655

http://camel.apache.org/registry.html
http://camel.apache.org/camel-configuration-utilities.html
http://commons.apache.org/net/api-2.2/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api-2.2/org/apache/commons/net/ftp/FTPClient.html
http://camel.apache.org/registry.html

FTPS component default trust store
When using the ftpClient. properties related to SSL with the FTPS component,
the trust store accept all certificates. If you only want trust selective certificates,
you have to configure the trust store with the ftpClient.trustStore.xxx
options or by configuring a custom ftpClient.

When using sslContextParameters, the trust store is managed by the configuration of
the provided SSLContextParameters instance.

<bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
<property name="lenientFutureDates" value="true"/>
<property name="serverLanguageCode" value="fr"/>

</bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig").to("bean:foo");

More URI options

Examples

ftp://someone@someftpserver.com/public/upload/images/
holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/
password=secret&binary=false
ftp://publicftpserver.com/download

Default when consuming files

The FTP consumer will by default leave the consumed files untouched on the remote FTP
server. You have to configure it explicitly if you want it to delete the files or move them to
another location. For example you can use delete=true to delete the files, or use
move=.done to move the files into a hidden done sub directory.

The regular File consumer is different as it will by default move files to a .camel sub
directory. The reason Camel does not do this by default for the FTP consumer is that it may
lack permissions by default to be able to move or delete files.

656 CHAPTER 11 - COMPONENT APPENDIX

ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false
ftp://publicftpserver.com/download
http://camel.apache.org/ftp2.html
http://camel.apache.org/file2.html

See File2 as all the options there also applies for this component.

FTP Consumer does not support concurrency
The FTP consumer (with the same endpoint) does not support concurrency (the
backing FTP client is not thread safe).
You can use multiple FTP consumers to poll from different endpoints. It is only a
single endpoint that does not support concurrent consumers.

The FTP producer does not have this issue, it supports concurrency.

More information
This component is an extension of the File component. So there are more samples
and details on the File component page.

limitations

The option readLock can be used to force Camel not to consume files that is currently in
the progress of being written. However, this option is turned off by default, as it requires that
the user has write access. See the options table at File2 for more details about read locks.
There are other solutions to avoid consuming files that are currently being written over FTP;
for instance, you can write to a temporary destination and move the file after it has been
written.

When moving files using move or preMove option the files are restricted to the
FTP_ROOT folder. That prevents you from moving files outside the FTP area. If you want to
move files to another area you can use soft links and move files into a soft linked folder.

Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

CamelFileName
Specifies the output file name (relative to the endpoint directory) to be used for the output message when sending to the endpoint. If this is
not present and no expression either, then a generated message ID is used as the filename instead.

CamelFileNameProduced
The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its purpose is providing end-
users the name of the file that was written.

CamelFileBatchIndex Current index out of total number of files being consumed in this batch.

CamelFileBatchSize Total number of files being consumed in this batch.

CamelFileHost The remote hostname.

CamelFileLocalWorkPath Path to the local work file, if local work directory is used.

CHAPTER 11 - COMPONENT APPENDIX 657

http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

In addition the FTP/FTPS consumer and producer will enrich the Camel Message with the
following headers

Header Description

CamelFtpReplyCode Camel 2.11.1: The FTP client reply code (the type is a integer)

CamelFtpReplyString Camel 2.11.1: The FTP client reply string

About timeouts

The two set of libraries (see top) has different API for setting timeout. You can use the
connectTimeout option for both of them to set a timeout in millis to establish a network
connection. An individual soTimeout can also be set on the FTP/FTPS, which corresponds to
using ftpClient.soTimeout. Notice SFTP will automatically use connectTimeout as
its soTimeout. The timeout option only applies for FTP/FTSP as the data timeout, which
corresponds to the ftpClient.dataTimeout value. All timeout values are in millis.

Using Local Work Directory

Camel supports consuming from remote FTP servers and downloading the files directly into a
local work directory. This avoids reading the entire remote file content into memory as it is
streamed directly into the local file using FileOutputStream.

Camel will store to a local file with the same name as the remote file, though with
.inprogress as extension while the file is being downloaded. Afterwards, the file is renamed
to remove the .inprogress suffix. And finally, when the Exchange is complete the local file
is deleted.

So if you want to download files from a remote FTP server and store it as files then you
need to route to a file endpoint such as:

from("ftp://someone@someserver.com?password=secret&localWorkDirectory=/tmp").to("file://inbox");

Stepwise changing directories

Camel FTP can operate in two modes in terms of traversing directories when consuming files
(eg downloading) or producing files (eg uploading)

▪ stepwise
▪ not stepwise

You may want to pick either one depending on your situation and security issues. Some Camel
end users can only download files if they use stepwise, while others can only download if they
do not. At least you have the choice to pick (from Camel 2.6 onwards).

In Camel 2.0 - 2.5 there is only one mode and it is:
▪ before 2.5 not stepwise
▪ 2.5 stepwise

658 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/ftp2.html

Optimization by renaming work file
The route above is ultra efficient as it avoids reading the entire file content into
memory. It will download the remote file directly to a local file stream. The
java.io.File handle is then used as the Exchange body. The file producer
leverages this fact and can work directly on the work file java.io.File handle
and perform a java.io.File.rename to the target filename. As Camel knows
it's a local work file, it can optimize and use a rename instead of a file copy, as the
work file is meant to be deleted anyway.

From Camel 2.6 onwards there is now an option stepwise you can use to control the
behavior.

Note that stepwise changing of directory will in most cases only work when the user is
confined to it's home directory and when the home directory is reported as "/".

The difference between the two of them is best illustrated with an example. Suppose we
have the following directory structure on the remote FTP server we need to traverse and
download files:

/
/one
/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.

Using stepwise=true (default mode)

TYPE A
200 Type set to A
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,17,94
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CWD sub-a

CHAPTER 11 - COMPONENT APPENDIX 659

http://camel.apache.org/exchange.html

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97
200 Port command successful
RETR foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98
200 Port command successful
RETR a.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-b

660 CHAPTER 11 - COMPONENT APPENDIX

250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99
200 Port command successful
RETR b.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
QUIT
221 Goodbye
disconnected.

As you can see when stepwise is enabled, it will traverse the directory structure using CD xxx.

Using stepwise=false

230 Logged on
TYPE A
200 Type set to A
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,4,122
200 Port command successful
LIST one/two
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,123
200 Port command successful
LIST one/two/sub-a
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,124
200 Port command successful
LIST one/two/sub-b
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,125
200 Port command successful
RETR one/two/foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,126
200 Port command successful
RETR one/two/sub-a/a.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,127
200 Port command successful
RETR one/two/sub-b/b.txt
150 Opening data channel for file transfer.

CHAPTER 11 - COMPONENT APPENDIX 661

226 Transfer OK
QUIT
221 Goodbye
disconnected.

As you can see when not using stepwise, there are no CD operation invoked at all.

Samples

In the sample below we set up Camel to download all the reports from the FTP server once
every hour (60 min) as BINARY content and store it as files on the local file system.

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// we use a delay of 60 minutes (eg. once pr. hour we poll the FTP server
long delay = 60 * 60 * 1000L;

// from the given FTP server we poll (= download) all the files
// from the public/reports folder as BINARY types and store this as files
// in a local directory. Camel will use the filenames from the FTPServer

// notice that the FTPConsumer properties must be prefixed with
"consumer." in the URL

// the delay parameter is from the FileConsumer component so we should use
consumer.delay as

// the URI parameter name. The FTP Component is an extension of the File
Component.

from("ftp://tiger:scott@localhost/public/reports?binary=true&consumer.delay=" + delay).
to("file://target/test-reports");

}
};

}

And the route using Spring DSL:

<route>
<from uri="ftp://scott@localhost/public/

reports?password=tiger&binary=true&delay=60000"/>
<to uri="file://target/test-reports"/>

</route>

662 CHAPTER 11 - COMPONENT APPENDIX

Consuming a remote FTPS server (implicit SSL) and client
authentication

from("ftps://admin@localhost:2222/public/camel?password=admin&securityProtocol=SSL&isImplicit=true
&ftpClient.keyStore.file=./src/test/resources/server.jks
&ftpClient.keyStore.password=password&ftpClient.keyStore.keyPassword=password")

.to("bean:foo");

Consuming a remote FTPS server (explicit TLS) and a custom
trust store configuration

from("ftps://admin@localhost:2222/public/camel?password=admin&ftpClient.trustStore.file=./src/
test/resources/server.jks&ftpClient.trustStore.password=password")

.to("bean:foo");

Filter using org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. This strategy it to use the build in
org.apache.camel.component.file.GenericFileFilter in Java. You can then
configure the endpoint with such a filter to skip certain filters before being processed.

In the sample we have built our own filter that only accepts files starting with report in the
filename.

public class MyFileFilter<T> implements GenericFileFilter<T> {

public boolean accept(GenericFile<T> file) {
// we only want report files
return file.getFileName().startsWith("report");

}
}

And then we can configure our route using the filter attribute to reference our filter (using #
notation) that we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileFilter"/>

<route>
<from uri="ftp://someuser@someftpserver.com?password=secret&filter=#myFilter"/>
<to uri="bean:processInbox"/>

</route>

CHAPTER 11 - COMPONENT APPENDIX 663

Filtering using ANT path matcher

The ANT path matcher is a filter that is shipped out-of-the-box in the camel-spring jar. So
you need to depend on camel-spring if you are using Maven.
The reason is that we leverage Spring's AntPathMatcher to do the actual matching.

The file paths are matched with the following rules:
▪ ? matches one character
▪ * matches zero or more characters
▪ ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
<camelContext xmlns="http://camel.apache.org/schema/spring">

<template id="camelTemplate"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan for
-->

<endpoint id="myFTPEndpoint"
uri="ftp://admin@localhost:${SpringFileAntPathMatcherRemoteFileFilterTest.ftpPort}/antpath?password=admin&recursive=true&delay=10000&initialDelay=2000&filter=#myAntFilter"/>

<route>
<from ref="myFTPEndpoint"/>
<to uri="mock:result"/>

</route>
</camelContext>

<!-- we use the AntPathMatcherRemoteFileFilter to use ant paths for includes and
exclude -->
<bean id="myAntFilter"
class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">

<!-- include any files in the sub folder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to separate

multiple excludes -->
<property name="excludes" value="**/*bad*,**/*.xml"/>

</bean>

Debug logging

This component has log level TRACE that can be helpful if you have problems.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ File2

664 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/file2.html

CAMEL COMPONENTS FOR GOOGLE APP ENGINE

The Camel components for Google App Engine (GAE) are part of the camel-gae project and
provide connectivity to GAE's cloud computing services. They make the GAE cloud computing
environment accessible to applications via Camel interfaces. Following this pattern for other
cloud computing environments could make it easier to port Camel applications from one cloud
computing provider to another. The following table lists the cloud computing services provided
by Google and the supporting Camel components. The documentation of each component can
be found by following the link in the Camel Component column.

GAE
service

Camel
component

Component description

URL fetch
service

ghttp Provides connectivity to the GAE URL fetch service but can also be used to receive messages from servlets.

Task queueing
service

gtask Supports asynchronous message processing on GAE by using the task queueing service as message queue.

Mail service gmail Supports sending of emails via the GAE mail service. Receiving mails is not supported yet but will be added later.

Memcache
service

Ê Not supported yet.

XMPP service Ê Not supported yet.

Images service Ê Not supported yet.

Datastore
service

Ê Not supported yet.

Accounts
service

gauth
glogin

These components interact with the Google Accounts API for authentication and authorization. Google Accounts is not specific to
Google App Engine but is often used by GAE applications for implementing security. The gauth component is used by web
applications to implement a Google-specific OAuth consumer. This component can also be used to OAuth-enable non-GAE web
applications. The glogin component is used by Java clients (outside GAE) for programmatic login to GAE applications. For instructions
how to protect GAE applications against unauthorized access refer to the Security for Camel GAE applications page.

Camel context

Setting up a SpringCamelContext on Google App Engine differs between Camel 2.1 and
higher versions. The problem is that usage of the Camel-specific Spring configuration XML
schema from the http://camel.apache.org/schema/spring namespace requires
JAXB and Camel 2.1 depends on a Google App Engine SDK version that doesn't support JAXB
yet. This limitation has been removed since Camel 2.2.

JMX must be disabled in any case because the javax.management package isn't on the
App Engine JRE whitelist.

Camel 2.1

camel-gae 2.1 comes with the following CamelContext implementations.
• org.apache.camel.component.gae.context.GaeDefaultCamelContext

(extends org.apache.camel.impl.DefaultCamelContext)
• org.apache.camel.component.gae.context.GaeSpringCamelContext

(extends org.apache.camel.spring.SpringCamelContext)
Both disable JMX before startup. The GaeSpringCamelContext additionally provides
setter methods adding route builders as shown in the next example.

CHAPTER 11 - COMPONENT APPENDIX 665

http://code.google.com/appengine/
http://code.google.com/appengine/docs/java/apis.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/ghttp.html
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gtask.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gmail.html
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/xmpp/
http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/
http://camel.apache.org/gauth.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gauth.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gsec.html
http://camel.apache.org/schema/spring

Tutorials
• A good starting point for using Camel on GAE is the Tutorial for Camel

on Google App Engine
• The OAuth tutorial demonstrates how to implement OAuth in web

applications.

Listing 1.Listing 1. appctx.xmlappctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="camelContext"
class="org.apache.camel.component.gae.context.GaeSpringCamelContext">
<property name="routeBuilder" ref="myRouteBuilder" />

</bean>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">

</bean>

</beans>

Alternatively, use the routeBuilders property of the GaeSpringCamelContext for
setting a list of route builders. Using this approach, a SpringCamelContext can be
configured on GAE without the need for JAXB.

Camel 2.2 or higher

With Camel 2.2 or higher, applications can use the http://camel.apache.org/
schema/spring namespace for configuring a SpringCamelContext but still need to
disable JMX. Here's an example.

Listing 1.Listing 1. appctx.xmlappctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camel:camelContext id="camelContext">

666 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/tutorial-oauth.html
http://oauth.net/

<camel:jmxAgent id="agent" disabled="true" />
<camel:routeBuilder ref="myRouteBuilder"/>

</camel:camelContext>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">

</bean>

</beans>

The web.xml

Running Camel on GAE requires usage of the CamelHttpTransportServlet from
camel-servlet. The following example shows how to configure this servlet together with a
Spring application context XML file.

Listing 1.Listing 1. web.xmlweb.xml

<web-app
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<servlet>
<servlet-name>CamelServlet</servlet-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>appctx.xml</param-value>

</init-param>
</servlet>

<!--
Mapping used for external requests

-->
<servlet-mapping>

<servlet-name>CamelServlet</servlet-name>
<url-pattern>/camel/*</url-pattern>

</servlet-mapping>

<!--
Mapping used for web hooks accessed by task queueing service.

-->
<servlet-mapping>

<servlet-name>CamelServlet</servlet-name>
<url-pattern>/worker/*</url-pattern>

</servlet-mapping>

CHAPTER 11 - COMPONENT APPENDIX 667

</web-app>

The location of the Spring application context XML file is given by the
contextConfigLocation init parameter. The appctx.xml file must be on the classpath.
The servlet mapping makes the Camel application accessible under
http://<appname>.appspot.com/camel/... when deployed to Google App Engine
where <appname> must be replaced by a real GAE application name. The second servlet
mapping is used internally by the task queueing service for background processing via web
hooks. This mapping is relevant for the gtask component and is explained there in more detail.

HAZELCAST COMPONENT

Available as of Camel 2.7

The hazelcast: component allows you to work with the Hazelcast distributed data grid /
cache. Hazelcast is a in memory data grid, entirely written in Java (single jar). It offers a great
palette of different data stores like map, multi map (same key, n values), queue, list and atomic
number. The main reason to use Hazelcast is its simple cluster support. If you have enabled
multicast on your network you can run a cluster with hundred nodes with no extra
configuration. Hazelcast can simply configured to add additional features like n copies between
nodes (default is 1), cache persistence, network configuration (if needed), near cache, enviction
and so on. For more information consult the Hazelcast documentation on
http://www.hazelcast.com/docs.jsp.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hazelcast</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

hazelcast:[map | multimap | queue | seda | set | atomicvalue |
instance]:cachename[?options]

Sections

1. Usage of map

668 CHAPTER 11 - COMPONENT APPENDIX

http://www.webhooks.org/
http://www.webhooks.org/
http://camel.apache.org/gtask.html
http://www.hazelcast.com
http://www.hazelcast.com/docs.jsp

You have to use the second prefix to define which type of data store you want to
use.

2. Usage of multimap
3. Usage of queue
4. Usage of list
5. Usage of seda
6. Usage of atomic number
7. Usage of cluster support (instance)

Usage of Map

map cache producer - to("hazelcast:map:foo")

If you want to store a value in a map you can use the map cache producer. The map cache
producer provides 5 operations (put, get, update, delete, query). For the first 4 you have to
provide the operation inside the "hazelcast.operation.type" header variable. In Java DSL you can
use the constants from
org.apache.camel.component.hazelcast.HazelcastConstants.

Header Variables for the request message:

Name Type Description

hazelcast.operation.type String
valid values are: put, delete, get, update,
query

hazelcast.objectId String
the object id to store / find your object
inside the cache (not needed for the query
operation)

Name Type Description

CamelHazelcastOperationType String
valid values are: put, delete, get,
update, query [Version 2.8]

CamelHazelcastObjectId String

the object id to store / find your
object inside the cache (not needed
for the query operation) [Version
2.8]

You can call the samples with:

CHAPTER 11 - COMPONENT APPENDIX 669

Header variables have changed in Camel 2.8

template.sendBodyAndHeader("direct:[put|get|update|delete|query]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

Sample for put:

Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:put" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for get:

Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>

670 CHAPTER 11 - COMPONENT APPENDIX

</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

Sample for update:

Java DSL:

from("direct:update")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.UPDATE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:update" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>update</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for delete:

Java DSL:

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:delete" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

CHAPTER 11 - COMPONENT APPENDIX 671

Sample for query

Java DSL:

from("direct:query")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.QUERY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:query" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>query</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

For the query operation Hazelcast offers a SQL like syntax to query your distributed map.

String q1 = "bar > 1000";
template.sendBodyAndHeader("direct:query", null, HazelcastConstants.QUERY, q1);

map cache consumer - from("hazelcast:map:foo")

Hazelcast provides event listeners on their data grid. If you want to be notified if a cache will be
manipulated, you can use the map consumer. There're 4 events: put, update, delete and
envict. The event type will be stored in the "hazelcast.listener.action" header variable.
The map consumer provides some additional information inside these variables:

Header Variables inside the response message:

Name Type Description

hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String
the map consumer sets here
"cachelistener"

hazelcast.listener.action String
type of event - here added, updated,
envicted and removed

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g. "foo"

672 CHAPTER 11 - COMPONENT APPENDIX

hazelcast.cache.type String the type of the cache - here map

Name Type Description

CamelHazelcastListenerTime Long
time of the event in millis [Version
2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version 2.8]

CamelHazelcastListenerAction String
type of event - here added,
updated, envicted and
removed. [Version 2.8]

CamelHazelcastObjectId String
the oid of the object [Version
2.8]

CamelHazelcastCacheName String
the name of the cache - e.g. "foo"
[Version 2.8]

CamelHazelcastCacheType String
the type of the cache - here map
[Version 2.8]

The object value will be stored within put and update actions inside the message body.

Here's a sample:

fromF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
.log("...envicted")
.to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.UPDATED))
.log("...updated")
.to("mock:updated")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

CHAPTER 11 - COMPONENT APPENDIX 673

Header variables have changed in Camel 2.8

Usage of Multi Map

multimap cache producer - to("hazelcast:multimap:foo")

A multimap is a cache where you can store n values to one key. The multimap producer
provides 4 operations (put, get, removevalue, delete).

Header Variables for the request message:

Name Type Description

hazelcast.operation.type String
valid values are: put, get, removevalue,
delete

hazelcast.objectId String
the object id to store / find your object
inside the cache

Name Type Description

CamelHazelcastOperationType String
valid values are: put, delete, get,
update, query Available as of
Camel 2.8

CamelHazelcastObjectId String

the object id to store / find your
object inside the cache (not needed
for the query operation) [Version
2.8]

You can call the samples with:

template.sendBodyAndHeader("direct:[put|get|update|delete|query]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

Sample for put:

Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

674 CHAPTER 11 - COMPONENT APPENDIX

Header variables have changed in Camel 2.8

Spring DSL:

<route>
<from uri="direct:put" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for get:

Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

Sample for update:

Java DSL:

from("direct:update")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.UPDATE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

CHAPTER 11 - COMPONENT APPENDIX 675

Spring DSL:

<route>
<from uri="direct:update" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>update</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for delete:

Java DSL:

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:delete" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for query

Java DSL:

from("direct:query")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.QUERY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:query" />
<!-- If using version 2.8 and above set headerName to

676 CHAPTER 11 - COMPONENT APPENDIX

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>query</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

For the query operation Hazelcast offers a SQL like syntax to query your distributed map.

String q1 = "bar > 1000";
template.sendBodyAndHeader("direct:query", null, HazelcastConstants.QUERY, q1);

map cache consumer - from("hazelcast:map:foo")

Hazelcast provides event listeners on their data grid. If you want to be notified if a cache will be
manipulated, you can use the map consumer. There're 4 events: put, update, delete and
envict. The event type will be stored in the "hazelcast.listener.action" header variable.
The map consumer provides some additional information inside these variables:

Header Variables inside the response message:

Name Type Description

hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String
the map consumer sets here
"cachelistener"

hazelcast.listener.action String
type of event - here added, updated,
envicted and removed

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g. "foo"

hazelcast.cache.type String the type of the cache - here map

Name Type Description

CamelHazelcastListenerTime Long
time of the event in millis [Version
2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version 2.8]

CamelHazelcastListenerAction String
type of event - here added,
updated, envicted and
removed. [Version 2.8]

CHAPTER 11 - COMPONENT APPENDIX 677

Header variables have changed in Camel 2.8

CamelHazelcastObjectId String
the oid of the object [Version
2.8]

CamelHazelcastCacheName String
the name of the cache - e.g. "foo"
[Version 2.8]

CamelHazelcastCacheType String
the type of the cache - here map
[Version 2.8]

The object value will be stored within put and update actions inside the message body.

Here's a sample:

fromF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
.log("...envicted")
.to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.UPDATED))
.log("...updated")
.to("mock:updated")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of Multi Map

multimap cache producer - to("hazelcast:multimap:foo")

A multimap is a cache where you can store n values to one key. The multimap producer
provides 4 operations (put, get, removevalue, delete).

Header Variables for the request message:

Name Type Description

678 CHAPTER 11 - COMPONENT APPENDIX

hazelcast.operation.type String
valid values are: put, get, removevalue,
delete

hazelcast.objectId String
the object id to store / find your object
inside the cache

Name Type Description

CamelHazelcastOperationType String
valid values are: put, get, removevalue,
delete [Version 2.8]

CamelHazelcastObjectId String
the object id to store / find your
object inside the cache [Version
2.8]

Sample for put:

Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.to(String.format("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX));

Spring DSL:

<route>
<from uri="direct:put" />
<log message="put.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

Sample for removevalue:

Java DSL:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX);

Spring DSL:

CHAPTER 11 - COMPONENT APPENDIX 679

Header variables have changed in Camel 2.8

<route>
<from uri="direct:removevalue" />
<log message="removevalue..."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>removevalue</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

To remove a value you have to provide the value you want to remove inside the message body.
If you have a multimap object {key: "4711" values: { "my-foo", "my-bar"}} you
have to put "my-foo" inside the message body to remove the "my-foo" value.

Sample for get:

Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<log message="get.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />
<to uri="seda:out" />

</route>

Sample for delete:

Java DSL:

680 CHAPTER 11 - COMPONENT APPENDIX

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:delete" />
<log message="delete.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

you can call them in your test class with:

template.sendBodyAndHeader("direct:[put|get|removevalue|delete]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

multimap cache consumer - from("hazelcast:multimap:foo")

For the multimap cache this component provides the same listeners / variables as for the map
cache consumer (except the update and enviction listener). The only difference is the
multimap prefix inside the URI. Here is a sample:

fromF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

//.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
// .log("...envicted")
// .to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Header Variables inside the response message:

CHAPTER 11 - COMPONENT APPENDIX 681

Name Type Description

hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String
the map consumer sets here
"cachelistener"

hazelcast.listener.action String
type of event - here added and
removed (and soon envicted)

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g. "foo"

hazelcast.cache.type String the type of the cache - here multimap

Eviction will be added as feature, soon (this is a Hazelcast issue).

Name Type Description

CamelHazelcastListenerTime Long
time of the event in millis [Version
2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version 2.8]

CamelHazelcastListenerAction String
type of event - here added and
removed (and soon envicted)
[Version 2.8]

CamelHazelcastObjectId String
the oid of the object [Version
2.8]

CamelHazelcastCacheName String
the name of the cache - e.g. "foo"
[Version 2.8]

CamelHazelcastCacheType String
the type of the cache - here
multimap [Version 2.8]

Usage of Queue

Queue producer Ð to(Òhazelcast:queue:fooÓ)

The queue producer provides 6 operations (add, put, poll, peek, offer, removevalue).

682 CHAPTER 11 - COMPONENT APPENDIX

Header variables have changed in Camel 2.8

Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.ADD_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for put:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for poll:

from("direct:poll")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.POLL_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for peek:

from("direct:peek")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PEEK_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for offer:

from("direct:offer")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.OFFER_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

CHAPTER 11 - COMPONENT APPENDIX 683

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Queue consumer Ð from(Òhazelcast:queue:fooÓ)

The queue consumer provides 2 operations (add, remove).

fromF("hazelcast:%smm", HazelcastConstants.QUEUE_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of List

List producer Ð to(Òhazelcast:list:fooÓ)

The list producer provides 4 operations (add, set, get, removevalue).

Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.ADD_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

Sample for get:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))

684 CHAPTER 11 - COMPONENT APPENDIX

.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX)

.to("seda:out");

Sample for setvalue:

from("direct:set")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.SETVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

List consumer Ð from(Òhazelcast:list:fooÓ)

The list consumer provides 2 operations (add, remove).

fromF("hazelcast:%smm", HazelcastConstants.LIST_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of SEDA

SEDA component differs from the rest components provided. It implements a work-queue in
order to support asynchronous SEDA architectures, similar to the core "SEDA" component.

CHAPTER 11 - COMPONENT APPENDIX 685

Please note that set,get and removevalue and not yet supported by hazelcast, will be
added in the future..

SEDA producer Ð to(Òhazelcast:seda:fooÓ)

The SEDA producer provides no operations. You only send data to the specified queue.

Name
default
value

Description

transferExchange false
Camel 2.8.0: if set to true the whole Exchange will
be transfered. If header or body contains not
serializable objects, they will be skipped.

Java DSL :

from("direct:foo")
.to("hazelcast:seda:foo");

Spring DSL :

<route>
<from uri="direct:start" />
<to uri="hazelcast:seda:foo" />

</route>

SEDA consumer Ð from(Òhazelcast:seda:fooÓ)

The SEDA consumer provides no operations. You only retrieve data from the specified queue.

Name
default
value

Description

pollInterval 1000 How frequent to poll from the SEDA queue

concurrentConsumers 1
To use concurrent consumers polling from the
SEDA queue.

transferExchange false
Camel 2.8.0: if set to true the whole Exchange
will be transfered. If header or body contains not
serializable objects, they will be skipped.

686 CHAPTER 11 - COMPONENT APPENDIX

transacted false

Camel 2.10.4: if set to true then the consumer
runs in transaction mode, where the messages in
the seda queue will only be removed if the
transaction commits, which happens when the
processing is complete.

Java DSL :

from("hazelcast:seda:foo")
.to("mock:result");

Spring DSL:

<route>
<from uri="hazelcast:seda:foo" />
<to uri="mock:result" />

</route>

Usage of Atomic Number

atomic number producer - to("hazelcast:atomicnumber:foo")

An atomic number is an object that simply provides a grid wide number (long). The operations
for this producer are setvalue (set the number with a given value), get, increase (+1), decrease
(-1) and destroy.

Header Variables for the request message:

Name Type Description

hazelcast.operation.type String
valid values are: setvalue, get, increase,
decrease, destroy

Name Type Description

CamelHazelcastOperationType String
valid values are: setvalue, get, increase,
decrease, destroy Available as of
Camel version 2.8

Sample for set:

Java DSL:

from("direct:set")
.setHeader(HazelcastConstants.OPERATION,

CHAPTER 11 - COMPONENT APPENDIX 687

There is no consumer for this endpoint!

Header variables have changed in Camel 2.8

constant(HazelcastConstants.SETVALUE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:set" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>setvalue</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

Provide the value to set inside the message body (here the value is 10):
template.sendBody("direct:set", 10);

Sample for get:

Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

688 CHAPTER 11 - COMPONENT APPENDIX

You can get the number with long body =
template.requestBody("direct:get", null, Long.class);.

Sample for increment:

Java DSL:

from("direct:increment")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.INCREMENT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:increment" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>increment</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

The actual value (after increment) will be provided inside the message body.

Sample for decrement:

Java DSL:

from("direct:decrement")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DECREMENT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:decrement" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>decrement</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

The actual value (after decrement) will be provided inside the message body.

CHAPTER 11 - COMPONENT APPENDIX 689

Sample for destroy

Java DSL:

from("direct:destroy")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DESTROY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:destroy" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>destroy</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

cluster support

instance consumer - from("hazelcast:instance:foo")

Hazelcast makes sense in one single "server node", but it's extremly powerful in a clustered
environment. The instance consumer fires if a new cache instance will join or leave the cluster.

Here's a sample:

fromF("hazelcast:%sfoo", HazelcastConstants.INSTANCE_PREFIX)
.log("instance...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.otherwise()
.log("...removed")
.to("mock:removed");

Each event provides the following information inside the message header:

Header Variables inside the response message:

Name Type Description

hazelcast.listener.time Long time of the event in millis

690 CHAPTER 11 - COMPONENT APPENDIX

There's a bug inside Hazelcast. So this feature may not work properly. Will be fixed
in 1.9.3.

This endpoint provides no producer!

hazelcast.listener.type String
the map consumer sets here
"instancelistener"

hazelcast.listener.action String
type of event - here added or
removed

hazelcast.instance.host String host name of the instance

hazelcast.instance.port Integer port number of the instance

Name Type Description

CamelHazelcastListenerTime Long
time of the event in millis
[Version 2.8]

CamelHazelcastListenerType String
the map consumer sets here
"instancelistener" [Version 2.8]

CamelHazelcastListenerActionn String
type of event - here added or
removed. [Version 2.8]

CamelHazelcastInstanceHost String
host name of the instance
[Version 2.8]

CamelHazelcastInstancePort Integer
port number of the instance
[Version 2.8]

HDFS COMPONENT

Available as of Camel 2.8

The hdfs component enables you to read and write messages from/to an HDFS file system.
HDFS is the distributed file system at the heart of Hadoop.

Maven users will need to add the following dependency to their pom.xml for this
component:

CHAPTER 11 - COMPONENT APPENDIX 691

http://hadoop.apache.org

Header variables have changed in Camel 2.8

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hdfs</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

hdfs://hostname[:port][/path][?options]

You can append query options to the URI in the following format,
?option=value&option=value&...
The path is treated in the following way:

1. as a consumer, if it's a file, it just reads the file, otherwise if it represents a directory it
scans all the file under the path satisfying the configured pattern. All the files under
that directory must be of the same type.

2. as a producer, if at least one split strategy is defined, the path is considered a
directory and under that directory the producer creates a different file per split
named seg0, seg1, seg2, etc.

Options

Name
Default
Value

Description

overwrite true The file can be overwritten

append false Append to existing file. Notice that not all HDFS file systems support the append option.

bufferSize 4096 The buffer size used by HDFS

replication 3 The HDFS replication factor

blockSize 67108864 The size of the HDFS blocks

fileType NORMAL_FILE It can be SEQUENCE_FILE, MAP_FILE, ARRAY_FILE, or BLOOMMAP_FILE, see Hadoop

fileSystemType HDFS It can be LOCAL for local filesystem

keyType NULL The type for the key in case of sequence or map files. See below.

valueType TEXT The type for the key in case of sequence or map files. See below.

splitStrategy Ê A string describing the strategy on how to split the file based on different criteria. See below.

openedSuffix opened When a file is opened for reading/writing the file is renamed with this suffix to avoid to read it during the writing phase.

readSuffix read Once the file has been read is renamed with this suffix to avoid to read it again.

initialDelay 0 For the consumer, how much to wait (milliseconds) before to start scanning the directory.

delay 0 The interval (milliseconds) between the directory scans.

692 CHAPTER 11 - COMPONENT APPENDIX

pattern * The pattern used for scanning the directory

chunkSize 4096 When reading a normal file, this is split into chunks producing a message per chunk.

connectOnStartup true
Camel 2.9.3/2.10.1: Whether to connect to the HDFS file system on starting the producer/consumer. If false then the
connection is created on-demand. Notice that HDFS may take up till 15 minutes to establish a connection, as it has hardcoded 45 x
20 sec redelivery. By setting this option to false allows your application to startup, and not block for up till 15 minutes.

KeyType and ValueType

• NULL it means that the key or the value is absent
• BYTE for writing a byte, the java Byte class is mapped into a BYTE
• BYTES for writing a sequence of bytes. It maps the java ByteBuffer class
• INT for writing java integer
• FLOAT for writing java float
• LONG for writing java long
• DOUBLE for writing java double
• TEXT for writing java strings

BYTES is also used with everything else, for example, in Camel a file is sent around as an
InputStream, int this case is written in a sequence file or a map file as a sequence of bytes.

Splitting Strategy

In the current version of Hadoop opening a file in append mode is disabled since it's not enough
reliable. So, for the moment, it's only possible to create new files. The Camel HDFS endpoint
tries to solve this problem in this way:

• If the split strategy option has been defined, the actual file name will become a
directory name and a <file name>/seg0 will be initially created.

• Every time a splitting condition is met a new file is created with name <original file
name>/segN where N is 1, 2, 3, etc.
The splitStrategy option is defined as a string with the following syntax:
splitStrategy=<ST>:<value>,<ST>:<value>,*

where <ST> can be:
• BYTES a new file is created, and the old is closed when the number of written bytes is

more than <value>
• MESSAGES a new file is created, and the old is closed when the number of written

messages is more than <value>
• IDLE a new file is created, and the old is closed when no writing happened in the last

<value> milliseconds
for example:

hdfs://localhost/tmp/simple-file?splitStrategy=IDLE:1000,BYTES:5

it means: a new file is created either when it has been idle for more than 1 second or if more
than 5 bytes have been written. So, running hadoop fs -ls /tmp/simple-file you'll
find the following files seg0, seg1, seg2, etc

CHAPTER 11 - COMPONENT APPENDIX 693

Controlling to close file stream

Available as of Camel 2.10.4

When using the HDFS producer without a split strategy, then the file output stream is by
default closed after the write. However you may want to keep the stream open, and only
explicit close the stream later. For that you can use the header
HdfsConstants.HDFS_CLOSE (value = "CamelHdfsClose") to control this. Setting
this value to a boolean allows you to explicit control whether the stream should be closed or
not.

Notice this does not apply if you use a split strategy, as there is varios strategy that control
when the stream is closed.

Using this component in OSGi

This component is fully functional in an OSGi environment however, it requires some actions
from the user. Hadoop uses the thread context class loader in order to load resources. Usually,
the thread context classloader will be the bundle class loader of the bundle that contains the
routes. So, the default configuration files need to be visible from the bundle class loader. A
typical way to deal with it is to keep a copy of core-default.xml in your bundle root. That file
can be found in the hadoop-common.jar.

HIBERNATE COMPONENT

The hibernate: component allows you to work with databases using Hibernate as the object
relational mapping technology to map POJOs to database tables. The camel-hibernate
library is provided by the Camel Extra project which hosts all *GPL related components for
Camel.

Sending to the endpoint

Sending POJOs to the hibernate endpoint inserts entities into the database. The body of the
message is assumed to be an entity bean that you have mapped to a relational table using the
hibernate .hbm.xml files.

If the body does not contain an entity bean, use a Message Translator in front of the
endpoint to perform the necessary conversion first.

Consuming from the endpoint

Consuming messages removes (or updates) entities in the database. This allows you to use a
database table as a logical queue; consumers take messages from the queue and then delete/
update them to logically remove them from the queue.

If you do not wish to delete the entity when it has been processed, you can specify
consumeDelete=false on the URI. This will result in the entity being processed each poll.

694 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/hdfs.html
http://code.google.com/p/camel-extra/
http://camel.apache.org/message-translator.html

Note that Camel also ships with a JPA component. The JPA component abstracts
from the underlying persistence provider and allows you to work with Hibernate,
OpenJPA or EclipseLink.

If you would rather perform some update on the entity to mark it as processed (such as to
exclude it from a future query) then you can annotate a method with @Consumed which will
be invoked on your entity bean when the entity bean is consumed.

URI format

hibernate:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified it is used to help
use the type conversion to ensure the body is of the correct type.

For consuming the entityClassName is mandatory.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

entityType entityClassName Is the provided entityClassName from the URI.

consumeDelete true Option for HibernateConsumer only. Specifies whether or not the entity is deleted after it is consumed.

consumeLockEntity true
Option for HibernateConsumer only. Specifies whether or not to use exclusive locking of each entity while processing
the results from the pooling.

flushOnSend true Option for HibernateProducer only. Flushes the EntityManager after the entity bean has been persisted.

maximumResults -1 Option for HibernateConsumer only. Set the maximum number of results to retrieve on the Query.

consumer.delay 500 Option for HibernateConsumer only. Delay in millis between each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

consumer.userFixedDelay false
Option for HibernateConsumer only. Set to true to use fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Hibernate Example

CHAPTER 11 - COMPONENT APPENDIX 695

http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/hibernate-example.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jpa.html

HL7 COMPONENT

The hl7 component is used for working with the HL7 MLLP protocol and HL7 v2 messages
using the HAPI library.

This component supports the following:
▪ HL7 MLLP codec for Mina
▪ Agnostic data format using either plain String objects or HAPI HL7 model objects.
▪ Type Converter from/to HAPI and String
▪ HL7 DataFormat using HAPI library
▪ Even more ease-of-use as it's integrated well with the camel-mina (Camel 2.11:

[camel-mina2]) component.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hl7</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

HL7 MLLP protocol

HL7 is often used with the HL7 MLLP protocol that is a text based TCP socket based protocol.
This component ships with a Mina Codec that conforms to the MLLP protocol so you can easily
expose a HL7 listener that accepts HL7 requests over the TCP transport.

To expose a HL7 listener service we reuse the existing mina/mina2 component where we
just use the HL7MLLPCodec as codec.

The HL7 MLLP codec has the following options:

Name Default Value Description

startByte 0x0b The start byte spanning the HL7 payload.

endByte1 0x1c The first end byte spanning the HL7 payload.

endByte2 0x0d The 2nd end byte spanning the HL7 payload.

charset JVM Default
The encoding (is a charset name) to use for the codec. If not provided, Camel will use the JVM default
Charset.

convertLFtoCR true (Camel 2.11:false)
Will convert \n to \r (0x0d, 13 decimal) as HL7 stipulates \r as segment terminators. The HAPI library
requires the use of \r.

validate true Whether HAPI Parser should validate or not.

parser ca.uhn.hl7v2.parser.PipeParser Camel 2.11: To use a custom parser. Must be of type ca.uhn.hl7v2.parser.Parser.

Exposing a HL7 listener

In our Spring XML file, we configure an endpoint to listen for HL7 requests using TCP:

696 CHAPTER 11 - COMPONENT APPENDIX

http://www.hl7.org/
http://hl7api.sourceforge.net
http://mina.apache.org/
http://camel.apache.org/type-converter.html
http://camel.apache.org/mina.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html#defaultCharset()

<endpoint id="hl7listener"
uri="mina:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

<!-- Camel 2.11: uri="mina2:tcp... -->

Notice that we use TCP on localhost on port 8888. We use sync=true to indicate that
this listener is synchronous and therefore will return a HL7 response to the caller. Then we
setup mina to use our HL7 codec with codec=#hl7codec. Notice that hl7codec is just a
Spring bean ID, so we could have named it mygreatcodecforhl7 or whatever. The codec
is also set up in the Spring XML file:

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
<property name="charset" value="iso-8859-1"/>

</bean>

Above we also configure the charset encoding to use (iso-8859-1).

The endpoint hl7listener can then be used in a route as a consumer, as this Java DSL
example illustrates:

from("hl7listener").to("patientLookupService");

This is a very simple route that will listen for HL7 and route it to a service named
patientLookupService that is also a Spring bean ID we have configured in the Spring XML
as:

<bean id="patientLookupService"
class="com.mycompany.healthcare.service.PatientLookupService"/>

Another powerful feature of Camel is that we can have our business logic in POJO classes that
is not tied to Camel as shown here:

import ca.uhn.hl7v2.HL7Exception;
import ca.uhn.hl7v2.model.Message;
import ca.uhn.hl7v2.model.v24.segment.QRD;

public class PatientLookupService {
public Message lookupPatient(Message input) throws HL7Exception {

QRD qrd = (QRD)input.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

// find patient data based on the patient id and create a HL7 model object
with the response

Message response = ... create and set response data
return response

}

CHAPTER 11 - COMPONENT APPENDIX 697

Notice that this class uses just imports from the HAPI library and not from Camel.

HL7 Model using java.lang.String

The HL7MLLP codec uses plain String as its data format. Camel uses its Type Converter to
convert to/from strings to the HAPI HL7 model objects. However, you can use plain String
objects if you prefer, for instance if you wish to parse the data yourself.

See samples for such an example.

HL7v2 Model using HAPI

The HL7v2 model uses Java objects from the HAPI library. Using this library, we can encode
and decode from the EDI format (ER7) that is mostly used with HL7v2.
With this model you can code with Java objects instead of the EDI based HL7 format that can
be hard for humans to read and understand.

The sample below is a request to lookup a patient with the patient ID 0101701234.

MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

Using the HL7 model we can work with the data as a ca.uhn.hl7v2.model.Message
object.
To retrieve the patient ID in the message above, you can do this in Java code:

Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

If you know the message type in advance, you can be more type-safe:

QRY_A19 msg = exchange.getIn().getBody(QRY_A19.class);
String patientId = msg.getQRD().getWhoSubjectFilter(0).getIDNumber().getValue();

Camel has built-in type converters, so when this operation is invoked:

Message msg = exchange.getIn().getBody(Message.class);

Camel will convert the received HL7 data from String to Message. This is powerful when
combined with the HL7 listener, then you as the end-user don't have to work with byte[],
String or any other simple object formats. You can just use the HAPI HL7v2 model objects.

698 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/type-converter.html

HL7 DataFormat

The HL7 component ships with a HL7 data format that can be used to format between
String and HL7 model objects.

▪ marshal = from Message to byte stream (can be used when returning as response
using the HL7 MLLP codec)

▪ unmarshal = from byte stream to Message (can be used when receiving streamed
data from the HL7 MLLP

To use the data format, simply instantiate an instance and invoke the marshal or unmarshal
operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
...
from("direct:hl7in").marshal(hl7).to("jms:queue:hl7out");

In the sample above, the HL7 is marshalled from a HAPI Message object to a byte stream and
put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat();
...
from("jms:queue:hl7out").unmarshal(hl7).to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is passed to our patient
lookup service.
Notice there is a shorthand syntax in Camel for well-known data formats that is commonly
used.
Then you don't need to create an instance of the HL7DataFormat object:

from("direct:hl7in").marshal().hl7().to("jms:queue:hl7out");
from("jms:queue:hl7out").unmarshal().hl7().to("patientLookupService");

Message Headers

The unmarshal operation adds these MSH fields as headers on the Camel message:

Key MSH field Example

CamelHL7SendingApplication MSH-3 MYSERVER

CamelHL7SendingFacility MSH-4 MYSERVERAPP

CamelHL7ReceivingApplication MSH-5 MYCLIENT

CamelHL7ReceivingFacility MSH-6 MYCLIENTAPP

CamelHL7Timestamp MSH-7 20071231235900

CamelHL7Security MSH-8 null

CamelHL7MessageType MSH-9-1 ADT

CamelHL7TriggerEvent MSH-9-2 A01

CHAPTER 11 - COMPONENT APPENDIX 699

http://camel.apache.org/hl7.html

Segment separators
As of Camel 2.11, unmarshal does not automatically fix segment separators
anymore by converting \n to \r. If you
need this conversion,
org.apache.camel.component.hl7.HL7#convertLFToCR provides a
handy Expression for this purpose.

Serializable messages
As of HAPI 2.0 (used by Camel 2.11), the HL7v2 model classes are fully
serializable. So you can put HL7v2 messages directly into a JMS queue (i.e. without
calling marshal() and read them again directly from the queue (i.e. without
calling unmarshal().

CamelHL7MessageControl MSH-10 1234

CamelHL7ProcessingId MSH-11 P

CamelHL7VersionId MSH-12 2.4

All headers are String types. If a header value is missing, its value is null.

Options

The HL7 Data Format supports the following options:

Option Default Description

validate true
Whether the HAPI Parser should validate using the default validation rules. Camel 2.11: better use the
parser option and initialize the parser with the desired HAPI ValidationContext

parser ca.uhn.hl7v2.parser.GenericParser
Camel 2.11: To use a custom parser. Must be of type ca.uhn.hl7v2.parser.Parser. Note that
GenericParser also allows to parse XML-encoded HL7v2 messages.

Dependencies

To use HL7 in your Camel routes you'll need to add a dependency on camel-hl7 listed above,
which implements this data format.

The HAPI library since Version 0.6 has been split into a base library and several structure
libraries, one for each HL7v2 message version:

• v2.1 structures library
• v2.2 structures library
• v2.3 structures library
• v2.3.1 structures library
• v2.4 structures library
• v2.5 structures library

700 CHAPTER 11 - COMPONENT APPENDIX

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v21
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v22
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v23
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v231
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v24
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v25

• v2.5.1 structures library
• v2.6 structures library

By default camel-hl7 only references the HAPI base library. Applications are responsible for
including structure libraries themselves. For example, if a application works with HL7v2
message versions 2.4 and 2.5 then the following dependencies must be added:

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v24</artifactId>
<version>1.2</version>
<!-- use the same version as your hapi-base version -->

</dependency>
<dependency>

<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v25</artifactId>
<version>1.2</version>
<!-- use the same version as your hapi-base version -->

</dependency>

Alternatively, an OSGi bundle containing the base library, all structures libraries and required
dependencies (on the bundle classpath) can be downloaded from the central Maven repository.

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-osgi-base</artifactId>
<version>1.2</version>

</dependency>

Terser language (Camel 2.11)

HAPI provides a Terser class that provides access to fields using a commonly used terse
location specification syntax. The Terser language allows to use this syntax to extract values
from messages and to use them as expressions and predicates for filtering, content-based
routing etc.

Sample:

import static org.apache.camel.component.hl7.HL7.terser;
...

// extract patient ID from field QRD-8 in the QRY_A19 message above and put into
message header

from("direct:test1")
.setHeader("PATIENT_ID",terser("QRD-8(0)-1"))
.to("mock:test1");

// continue processing if extracted field equals a message header
from("direct:test2")

.filter(terser("QRD-8(0)-1")

CHAPTER 11 - COMPONENT APPENDIX 701

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v251
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v26
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-osgi-base
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net/base/apidocs/ca/uhn/hl7v2/util/Terser.html

.isEqualTo(header("PATIENT_ID"))

.to("mock:test2");

HL7 Validation predicate (Camel 2.11)

Often it is preferable to parse a HL7v2 message and validate it against a HAPI
ValidationContext in a separate step afterwards.

Sample:

import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;
...

// Use standard or define your own validation rules
ValidationContext defaultContext = new DefaultValidation();

// Throws PredicateValidationException if message does not validate
from("direct:test1").validate(messageConformsTo(defaultContext)).to("mock:test1");

HL7 Acknowledgement expression (Camel 2.11)

A common task in HL7v2 processing is to generate an acknowledgement message as response
to an incoming HL7v2 message, e.g. based on a validation result. The ack expression lets us
accomplish this very elegantly:

import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import static org.apache.camel.component.hl7.HL7.ack;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;
...

// Use standard or define your own validation rules
ValidationContext defaultContext = new DefaultValidation();

from("direct:test1")
.onException(Exception.class)

.handled(true)

.transform(ack()) // auto-generates negative ack because of exception in
Exchange

.end()
.validate(messageConformsTo(defaultContext))
// do something meaningful here
...
// acknowledgement
.transform(ack())

702 CHAPTER 11 - COMPONENT APPENDIX

http://hl7api.sourceforge.net/base/apidocs/ca/uhn/hl7v2/validation/ValidationContext.html

More Samples

In the following example we send a HL7 request to a HL7 listener and retrieves a response. We
use plain String types in this example:

String line1 =
"MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4";
String line2 = "QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||";

StringBuilder in = new StringBuilder();
in.append(line1);
in.append("\n");
in.append(line2);

String out =
(String)template.requestBody("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec",
in.toString());

In the next sample, we want to route HL7 requests from our HL7 listener to our business logic.
We have our business logic in a plain POJO that we have registered in the registry as
hl7service = for instance using Spring and letting the bean id = hl7service.

Our business logic is a plain POJO only using the HAPI library so we have these operations
defined:

public class MyHL7BusinessLogic {

// This is a plain POJO that has NO imports whatsoever on Apache Camel.
// its a plain POJO only importing the HAPI library so we can much easier work

with the HL7 format.

public Message handleA19(Message msg) throws Exception {
// here you can have your business logic for A19 messages
assertTrue(msg instanceof QRY_A19);
// just return the same dummy response
return createADR19Message();

}

public Message handleA01(Message msg) throws Exception {
// here you can have your business logic for A01 messages
assertTrue(msg instanceof ADT_A01);
// just return the same dummy response
return createADT01Message();

}
}

Then we set up the Camel routes using the RouteBuilder as follows:

DataFormat hl7 = new HL7DataFormat();
// we setup or HL7 listener on port 8888 (using the hl7codec) and in sync mode so we
can return a response

CHAPTER 11 - COMPONENT APPENDIX 703

from("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")
// we use the HL7 data format to unmarshal from HL7 stream to the HAPI Message

model
// this ensures that the camel message has been enriched with hl7 specific headers

to
// make the routing much easier (see below)
.unmarshal(hl7)
// using choice as the content base router
.choice()

// where we choose that A19 queries invoke the handleA19 method on our
hl7service bean

.when(header("CamelHL7TriggerEvent").isEqualTo("A19"))
.beanRef("hl7service", "handleA19")
.to("mock:a19")

// and A01 should invoke the handleA01 method on our hl7service bean
.when(header("CamelHL7TriggerEvent").isEqualTo("A01")).to("mock:a01")

.beanRef("hl7service", "handleA01")

.to("mock:a19")
// other types should go to mock:unknown
.otherwise()

.to("mock:unknown")
// end choice block
.end()
// marshal response back
.marshal(hl7);

Notice that we use the HL7 DataFormat to enrich our Camel Message with the MSH fields
preconfigured on the Camel Message. This lets us much more easily define our routes using the
fluent builders.
If we do not use the HL7 DataFormat, then we do not gains these headers and we must resort
to a different technique for computing the MSH trigger event (= what kind of HL7 message it
is). This is a big advantage of the HL7 DataFormat over the plain HL7 type converters.

Sample using plain String objects

In this sample we use plain String objects as the data format, that we send, process and
receive. As the sample is part of a unit test, there is some code for assertions, but you should
be able to understand what happens. First we send the plain string, Hello World, to the
HL7MLLPCodec and receive the response as a plain string, Bye World.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Bye World");

// send plain hello world as String
Object out =
template.requestBody("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec", "Hello
World");

704 CHAPTER 11 - COMPONENT APPENDIX

assertMockEndpointsSatisfied();

// and the response is also just plain String
assertEquals("Bye World", out);

Here we process the incoming data as plain String and send the response also as plain String:

from("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
// use plain String as message format
String body = exchange.getIn().getBody(String.class);
assertEquals("Hello World", body);

// return the response as plain string
exchange.getOut().setBody("Bye World");

}
})
.to("mock:result");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

HTTP COMPONENT

The http: component provides HTTP based endpoints for consuming external HTTP
resources (as a client to call external servers using HTTP).

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-http</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 705

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/endpoint.html

URI format

http:hostname[:port][/resourceUri][?param1=value1][¶m2=value2]

Will by default use port 80 for HTTP and 443 for HTTPS.

Examples

Call the url with the body using POST and return response as out message. If body is null call
URL using GET and return response as out message

Java DSL Spring DSL

from("direct:start")
.to("http://myhost/mypath");

<from uri="direct:start"/>
<to uri="http://oldhost"/>

You can override the HTTP endpoint URI by adding a header. Camel will call the
http://newhost. This is very handy for e.g. REST urls.

Java DSL

from("direct:start")
.setHeader(Exchange.HTTP_URI, simple("http://myserver/orders/${header.orderId}"))
.to("http://dummyhost");

URI parameters can either be set directly on the endpoint URI or as a header

Java DSL

from("direct:start")
.to("http://oldhost?order=123&detail=short");

from("direct:start")
.setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
.to("http://oldhost");

Set the HTTP request method to POST

Java DSL Spring DSL

706 CHAPTER 11 - COMPONENT APPENDIX

http://newhost

camel-http vs camel-jetty
You can only produce to endpoints generated by the HTTP component. Therefore
it should never be used as input into your camel Routes. To bind/expose an HTTP
endpoint via a HTTP server as input to a camel route, you can use the Jetty
Component or the Servlet Component

from("direct:start")
.setHeader(Exchange.HTTP_METHOD,

constant("POST"))
.to("http://www.google.com");

<from uri="direct:start"/>
<setHeader
headerName="CamelHttpMethod">

<constant>POST</constant>
</setHeader>
<to uri="http://www.google.com"/>
<to uri="mock:results"/>

HttpEndpoint Options

Name
Default
Value

Description

throwExceptionOnFailure true
Option to disable throwing the HttpOperationFailedException in case of failed responses from the remote
server. This allows you to get all responses regardles of the HTTP status code.

bridgeEndpoint false

If the option is true , HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint's URI for request.
You may also set the throwExcpetionOnFailure to be false to let the HttpProducer send all the fault response back.
Camel 2.3: If the option is true, HttpProducer and CamelServlet will skip the gzip processing if the content-encoding is
"gzip".

disableStreamCache false
DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this option is
false to support read it twice, otherwise DefaultHttpBinding will set the request input stream direct into the message
body.

httpBindingRef null
Reference to a org.apache.camel.component.http.HttpBinding in the Registry. From Camel 2.3 onwards
prefer to use the httpBinding option.

httpBinding null Reference to a org.apache.camel.component.http.HttpBinding in the Registry.

httpClientConfigurerRef null
Reference to a org.apache.camel.component.http.HttpClientConfigurer in the Registry. From Camel
2.3 onwards prefer to use the httpClientConfigurer option.

httpClientConfigurer null Reference to a org.apache.camel.component.http.HttpClientConfigurer in the Registry.

httpClient.XXX null
Setting options on the HttpClientParams. For instance httpClient.soTimeout=5000 will set the SO_TIMEOUT to
5 seconds.

clientConnectionManager null To use a custom org.apache.http.conn.ClientConnectionManager.

transferException false

Camel 2.6: If enabled and an Exchange failed processing on the consumer side, and if the caused Exception was send
back serialized in the response as a application/x-java-serialized-object content type (for example using
Jetty or SERVLET Camel components). On the producer side the exception will be deserialized and thrown as is, instead
of the HttpOperationFailedException. The caused exception is required to be serialized.

headerFilterStrategy null
Camel 2.11: Reference to a instance of org.apache.camel.spi.HeaderFilterStrategy in the Registry. It
will be used to apply the custom headerFilterStrategy on the new create HttpEndpoint.

urlRewrite null
Camel 2.11: Producer only Refers to a custom org.apache.camel.component.http.UrlRewrite which
allows you to rewrite urls when you bridge/proxy endpoints. See more details at UrlRewrite and How to use Camel as a
HTTP proxy between a client and server.

CHAPTER 11 - COMPONENT APPENDIX 707

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html
http://camel.apache.org/exchange.html
http://camel.apache.org/jetty.html
http://camel.apache.org/servlet.html
http://camel.apache.org/registry.html
http://camel.apache.org/urlrewrite.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jetty.html
http://camel.apache.org/servlet.html

Authentication and Proxy

The following authentication options can also be set on the HttpEndpoint:

Name Default Value Description

authMethod null Authentication method, either as Basic, Digest or NTLM.

authMethodPriority null Priority of authentication methods. Is a list separated with comma. For example: Basic,Digest to exclude NTLM.

authUsername null Username for authentication

authPassword null Password for authentication

authDomain null Domain for NTML authentication

authHost null Optional host for NTML authentication

proxyHost null The proxy host name

proxyPort null The proxy port number

proxyAuthMethod null Authentication method for proxy, either as Basic, Digest or NTLM.

proxyAuthUsername null Username for proxy authentication

proxyAuthPassword null Password for proxy authentication

proxyAuthDomain null Domain for proxy NTML authentication

proxyAuthHost null Optional host for proxy NTML authentication

When using authentication you must provide the choice of method for the authMethod or
authProxyMethod options.
You can configure the proxy and authentication details on either the HttpComponent or the
HttpEndoint. Values provided on the HttpEndpoint will take precedence over
HttpComponent. Its most likely best to configure this on the HttpComponent which
allows you to do this once.

The HTTP component uses convention over configuration which means that if you have not
explicit set a authMethodPriority then it will fallback and use the select(ed)
authMethod as priority as well. So if you use authMethod.Basic then the
auhtMethodPriority will be Basic only.

HttpComponent Options

Name Default Value Description

httpBinding null To use a custom org.apache.camel.component.http.HttpBinding.

httpClientConfigurer null To use a custom org.apache.camel.component.http.HttpClientConfigurer.

httpConnectionManager null To use a custom org.apache.commons.httpclient.HttpConnectionManager.

httpConfiguration null To use a custom org.apache.camel.component.http.HttpConfiguration

HttpConfiguration contains all the options listed in the table above under the section
HttpConfiguration - Setting Authentication and Proxy.

Message Headers

Name Type Description

Exchange.HTTP_URI String URI to call. Will override existing URI set directly on the endpoint.

Exchange.HTTP_METHOD String HTTP Method / Verb to use (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE)

708 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/http.html

Exchange.HTTP_PATH String
Request URI's path, the header will be used to build the request URI with the HTTP_URI.
Camel 2.3.0: If the path is start with "/", http producer will try to find the relative path based
on the Exchange.HTTP_BASE_URI header or the exchange.getFromEndpoint().getEndpointUri();

Exchange.HTTP_QUERY String URI parameters. Will override existing URI parameters set directly on the endpoint.

Exchange.HTTP_RESPONSE_CODE int The HTTP response code from the external server. Is 200 for OK.

Exchange.HTTP_CHARACTER_ENCODING String Character encoding.

Exchange.CONTENT_TYPE String
The HTTP content type. Is set on both the IN and OUT message to provide a content type, such
as text/html.

Exchange.CONTENT_ENCODING String
The HTTP content encoding. Is set on both the IN and OUT message to provide a content
encoding, such as gzip.

Exchange.HTTP_SERVLET_REQUEST HttpServletRequest The HttpServletRequest object.

Exchange.HTTP_SERVLET_RESPONSE HttpServletResponse The HttpServletResponse object.

Exchange.HTTP_PROTOCOL_VERSION String
Camel 2.5: You can set the http protocol version with this header, eg. "HTTP/1.0". If you didn't
specify the header, HttpProducer will use the default value "HTTP/1.1"

The header name above are constants. For the spring DSL you have to use the value of the
constant instead of the name.

Message Body

Camel will store the HTTP response from the external server on the OUT body. All headers
from the IN message will be copied to the OUT message, so headers are preserved during
routing. Additionally Camel will add the HTTP response headers as well to the OUT message
headers.

Response code

Camel will handle according to the HTTP response code:
▪ Response code is in the range 100..299, Camel regards it as a success response.
▪ Response code is in the range 300..399, Camel regards it as a redirection response

and will throw a HttpOperationFailedException with the information.
▪ Response code is 400+, Camel regards it as an external server failure and will throw a
HttpOperationFailedException with the information.

HttpOperationFailedException

This exception contains the following information:
▪ The HTTP status code
▪ The HTTP status line (text of the status code)
▪ Redirect location, if server returned a redirect
▪ Response body as a java.lang.String, if server provided a body as response

Calling using GET or POST

The following algorithm is used to determine if either GET or POST HTTP method should be
used:
1. Use method provided in header.

CHAPTER 11 - COMPONENT APPENDIX 709

throwExceptionOnFailure
The option, throwExceptionOnFailure, can be set to false to prevent the
HttpOperationFailedException from being thrown for failed response
codes. This allows you to get any response from the remote server.
There is a sample below demonstrating this.

2. GET if query string is provided in header.
3. GET if endpoint is configured with a query string.
4. POST if there is data to send (body is not null).
5. GET otherwise.

How to get access to HttpServletRequest and HttpServletResponse

You can get access to these two using the Camel type converter system using

HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletRequest response = exchange.getIn().getBody(HttpServletResponse.class);

Using client timeout - SO_TIMEOUT

See the unit test in this link

MORE EXAMPLES

Configuring a Proxy

Java DSL

from("direct:start")
.to("http://oldhost?proxyHost=www.myproxy.com&proxyPort=80");

There is also support for proxy authentication via the proxyUsername and
proxyPassword options.

Using proxy settings outside of URI

Java DSL Spring DSL

710 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/viewvc?view=rev&revision=781775

context.getProperties().put("http.proxyHost",
"172.168.18.9");
context.getProperties().put("http.proxyPort"

"8080");

<camelContext>
<properties>

<property
key="http.proxyHost"
value="172.168.18.9"/>

<property
key="http.proxyPort"
value="8080"/>

</properties>
</camelContext>

Options on Endpoint will override options on the context.

Configuring charset

If you are using POST to send data you can configure the charset

setProperty(Exchange.CHARSET_NAME, "iso-8859-1");

Sample with scheduled poll

The sample polls the Google homepage every 10 seconds and write the page to the file
message.html:

from("timer://foo?fixedRate=true&delay=0&period=10000")
.to("http://www.google.com")
.setHeader(FileComponent.HEADER_FILE_NAME, "message.html").to("file:target/

google");

Getting the Response Code

You can get the HTTP response code from the HTTP component by getting the value from the
Out message header with HttpProducer.HTTP_RESPONSE_CODE.

Exchange exchange = template.send("http://www.google.com/search", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().setHeader(Exchange.HTTP_QUERY,
constant("hl=en&q=activemq"));

}
});
Message out = exchange.getOut();
int responseCode = out.getHeader(HttpProducer.HTTP_RESPONSE_CODE, Integer.class);

CHAPTER 11 - COMPONENT APPENDIX 711

Using throwExceptionOnFailure=false to get any response back

In the route below we want to route a message that we enrich with data returned from a
remote HTTP call. As we want any response from the remote server, we set the
throwExceptionOnFailure option to false so we get any response in the
AggregationStrategy. As the code is based on a unit test that simulates a HTTP status
code 404, there is some assertion code etc.

// We set throwExceptionOnFailure to false to let Camel return any response from the
remove HTTP server without thrown
// HttpOperationFailedException in case of failures.
// This allows us to handle all responses in the aggregation strategy where we can
check the HTTP response code
// and decide what to do. As this is based on an unit test we assert the code is 404
from("direct:start").enrich("http://localhost:{{port}}/myserver?throwExceptionOnFailure=false&user=Camel",
new AggregationStrategy() {

public Exchange aggregate(Exchange original, Exchange resource) {
// get the response code
Integer code = resource.getIn().getHeader(Exchange.HTTP_RESPONSE_CODE,

Integer.class);
assertEquals(404, code.intValue());
return resource;

}
}).to("mock:result");

// this is our jetty server where we simulate the 404
from("jetty://http://localhost:{{port}}/myserver")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getOut().setBody("Page not found");
exchange.getOut().setHeader(Exchange.HTTP_RESPONSE_CODE, 404);

}
});

Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
httpClient.cookiePolicy=ignoreCookies

Advanced Usage

If you need more control over the HTTP producer you should use the HttpComponent
where you can set various classes to give you custom behavior.

Setting MaxConnectionsPerHost

The HTTP Component has a
org.apache.commons.httpclient.HttpConnectionManager where you can

712 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/content-enricher.html
http://camel.apache.org/http.html

configure various global configuration for the given component.
By global, we mean that any endpoint the component creates has the same shared
HttpConnectionManager. So, if we want to set a different value for the max connection
per host, we need to define it on the HTTP component and not on the endpoint URI that we
usually use. So here comes:

First, we define the http component in Spring XML. Yes, we use the same scheme name,
http, because otherwise Camel will auto-discover and create the component with default
settings. What we need is to overrule this so we can set our options. In the sample below we
set the max connection to 5 instead of the default of 2.

<bean id="http" class="org.apache.camel.component.http.HttpComponent">
<property name="camelContext" ref="camel"/>
<property name="httpConnectionManager" ref="myHttpConnectionManager"/>

</bean>

<bean id="myHttpConnectionManager"
class="org.apache.commons.httpclient.MultiThreadedHttpConnectionManager">

<property name="params" ref="myHttpConnectionManagerParams"/>
</bean>

<bean id="myHttpConnectionManagerParams"
class="org.apache.commons.httpclient.params.HttpConnectionManagerParams">

<property name="defaultMaxConnectionsPerHost" value="5"/>
</bean>

And then we can just use it as we normally do in our routes:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring" trace="true">
<route>

<from uri="direct:start"/>
<to uri="http://www.google.com"/>
<to uri="mock:result"/>

</route>
</camelContext>

Using preemptive authentication

An end user reported that he had problem with authenticating with HTTPS. The problem was
eventually resolved when he discovered the HTTPS server did not return a HTTP code 401
Authorization Required. The solution was to set the following URI option:
httpClient.authenticationPreemptive=true

CHAPTER 11 - COMPONENT APPENDIX 713

Accepting self signed certificates from remote server

See this link from a mailing list discussion with some code to outline how to do this with the
Apache Commons HTTP API.

Setting up SSL for HTTP Client

Using the JSSE Configuration Utility

As of Camel 2.8, the HTTP4 component supports SSL/TLS configuration through the Camel
JSSE Configuration Utility.Ê This utility greatly decreases the amount of component specific
code you need to write and is configurable at the endpoint and component levels.Ê The
following examples demonstrate how to use the utility with the HTTP4 component.

The version of the Apache HTTP client used in this component resolves SSL/TLS
information from a global "protocol" registry.Ê This component provides an implementation,
org.apache.camel.component.http.SSLContextParametersSecureProtocolSocketFactory,
of the HTTP client's protocol socket factory in order to support the use of the Camel JSSE
Configuration utility.Ê The following example demonstrates how to configure the protocol
registry and use the registered protocol information in a route.

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

ProtocolSocketFactory factory =
new SSLContextParametersSecureProtocolSocketFactory(scp);

Protocol.registerProtocol("https",
new Protocol(

ÊÊÊÊÊÊÊ "https",
ÊÊÊÊÊÊÊ factory,
ÊÊÊÊÊÊÊ 443));

from("direct:start")
.to("https://mail.google.com/mail/").to("mock:results");

714 CHAPTER 11 - COMPONENT APPENDIX

http://www.nabble.com/Using-HTTPS-in-camel-http-when-remote-side-has-self-signed-cert-td25916878.html
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

Configuring Apache HTTP Client Directly

Basically camel-http component is built on the top of Apache HTTP client, and you can
implement a custom
org.apache.camel.component.http.HttpClientConfigurer to do some
configuration on the http client if you need full control of it.

However if you just want to specify the keystore and truststore you can do this with Apache
HTTP HttpClientConfigurer, for example:

Protocol authhttps = new Protocol("https", new AuthSSLProtocolSocketFactory(
new URL("file:my.keystore"), "mypassword",
new URL("file:my.truststore"), "mypassword"), 443);

Protocol.registerProtocol("https", authhttps);

And then you need to create a class that implements HttpClientConfigurer, and
registers https protocol providing a keystore or truststore per example above. Then, from your
camel route builder class you can hook it up like so:

HttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer
using the URI. For example:

<bean id="myHttpClientConfigurer"
class="my.https.HttpClientConfigurer">

</bean>

<to uri="https://myhostname.com:443/
myURL?httpClientConfigurerRef=myHttpClientConfigurer"/>

As long as you implement the HttpClientConfigurer and configure your keystore and truststore
as described above, it will work fine.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Jetty

CHAPTER 11 - COMPONENT APPENDIX 715

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jetty.html

IBATIS

The ibatis: component allows you to query, poll, insert, update and delete data in a relational
database using Apache iBATIS.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ibatis</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ibatis:statementName[?options]

Where statementName is the name in the iBATIS XML configuration file which maps to
the query, insert, update or delete operation you wish to evaluate.

You can append query options to the URI in the following format,
?option=value&option=value&...

This component will by default load the iBatis SqlMapConfig file from the root of the
classpath and expected named as SqlMapConfig.xml.
It uses Spring resource loading so you can define it using classpath, file or http as
prefix to load resources with those schemes.
In Camel 2.2 you can configure this on the iBatisComponent with the
setSqlMapConfig(String) method.

Options

Option Type Default Description

consumer.onConsume String null

Statements to run after consuming. Can be used, for example, to
update rows after they have been consumed and processed in
Camel. See sample later. Multiple statements can be separated with
comma.

consumer.useIterator boolean true
If true each row returned when polling will be processed
individually. If false the entire List of data is set as the IN body.

consumer.routeEmptyResultSet boolean false
Sets whether empty result set should be routed or not. By default,
empty result sets are not routed.

statementType StatementType null

Mandatory to specify for IbatisProducer to control which iBatis
SqlMapClient method to invoke. The enum values are:
QueryForObject, QueryForList, Insert, Update,
Delete.

maxMessagesPerPoll int 0

An integer to define a maximum messages to gather per poll. By
default, no maximum is set. Can be used to set a limit of e.g. 1000 to
avoid when starting up the server that there are thousands of files.
Set a value of 0 or negative to disabled it.

716 CHAPTER 11 - COMPONENT APPENDIX

http://ibatis.apache.org/

Prefer MyBatis
The Apache iBatis project is no longer active. The project is moved outside Apache
and is now know as the MyBatis project.
Therefore we encourage users to use MyBatis instead. This camel-ibatis component
will be removed in Camel 3.0.

isolation String TRANSACTION_REPEATABLE_READ

Camel 2.9: A String the defines the transaction isolation level of
the will be used. Allowed values are TRANSACTION_NONE,
TRANSACTION_READ_UNCOMMITTED,
TRANSACTION_READ_COMMITTED,
TRANSACTION_REPEATABLE_READ,
TRANSACTION_SERIALIZABLE

isolation String TRANSACTION_REPEATABLE_READ

Camel 2.9: A String the defines the transaction isolation level of the will be used. Allowed values are
TRANSACTION_NONE, TRANSACTION_READ_UNCOMMITTED,
TRANSACTION_READ_COMMITTED, TRANSACTION_REPEATABLE_READ,
TRANSACTION_SERIALIZABLE

Message Headers

Camel will populate the result message, either IN or OUT with a header with the
operationName used:

Header Type Description

CamelIBatisStatementName String The statementName used (for example: insertAccount).

CamelIBatisResult Object
The response returned from iBatis in any of the operations. For instance an INSERT could return the auto-generated key,
or number of rows etc.

Message Body

The response from iBatis will only be set as body if it's a SELECT statement. That means, for
example, for INSERT statements Camel will not replace the body. This allows you to continue
routing and keep the original body. The response from iBatis is always stored in the header
with the key CamelIBatisResult.

Samples

For example if you wish to consume beans from a JMS queue and insert them into a database
you could do the following:

from("activemq:queue:newAccount").
to("ibatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Camel which
SqlMapClient operation to invoke.

Where insertAccount is the iBatis ID in the SQL map file:

CHAPTER 11 - COMPONENT APPENDIX 717

http://camel.apache.org/mybatis.html

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterClass="Account">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL

)
values (

#id#, #firstName#, #lastName#, #emailAddress#
)

</insert>

Using StatementType for better control of IBatis

When routing to an iBatis endpoint you want more fine grained control so you can control
whether the SQL statement to be executed is a SELEECT, UPDATE, DELETE or INSERT etc.
So for instance if we want to route to an iBatis endpoint in which the IN body contains
parameters to a SELECT statement we can do:

from("direct:start")
.to("ibatis:selectAccountById?statementType=QueryForObject")
.to("mock:result");

In the code above we can invoke the iBatis statement selectAccountById and the IN body
should contain the account id we want to retrieve, such as an Integer type.

We can do the same for some of the other operations, such as QueryForList:

from("direct:start")
.to("ibatis:selectAllAccounts?statementType=QueryForList")
.to("mock:result");

And the same for UPDATE, where we can send an Account object as IN body to iBatis:

from("direct:start")
.to("ibatis:updateAccount?statementType=Update")
.to("mock:result");

Scheduled polling example

Since this component does not support scheduled polling, you need to use another mechanism
for triggering the scheduled polls, such as the Timer or Quartz components.

718 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html

In the sample below we poll the database, every 30 seconds using the Timer component and
send the data to the JMS queue:

from("timer://pollTheDatabase?delay=30000").to("ibatis:selectAllAccounts?statementType=QueryForList").to("activemq:queue:allAccounts");

And the iBatis SQL map file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

Using onConsume

This component supports executing statements after data have been consumed and processed
by Camel. This allows you to do post updates in the database. Notice all statements must be
UPDATE statements. Camel supports executing multiple statements whose name should be
separated by comma.

The route below illustrates we execute the consumeAccount statement data is
processed. This allows us to change the status of the row in the database to processed, so we
avoid consuming it twice or more.

from("ibatis:selectUnprocessedAccounts?consumer.onConsume=consumeAccount").to("mock:results");

And the statements in the sqlmap file:

<select id="selectUnprocessedAccounts" resultMap="AccountResult">
select * from ACCOUNT where PROCESSED = false

</select>

<update id="consumeAccount" parameterClass="Account">
update ACCOUNT set PROCESSED = true where ACC_ID = #id#

</update>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ MyBatis

CHAPTER 11 - COMPONENT APPENDIX 719

http://camel.apache.org/timer.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/mybatis.html

IRC COMPONENT

The irc component implements an IRC (Internet Relay Chat) transport.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-irc</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

irc:nick@host[:port]/#room[?options]
irc:nick@host[:port]?channels=#channel1,#channel2,#channel3[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Description Example
Default
Value

channels Comma separated list of IRC channels to join. channels=#channel1,#channel2 null

nickname The nickname used in chat.
irc:MyNick@irc.server.org#channel or
irc:irc.server.org#channel?nickname=MyUser

null

username The IRC server user name.
irc:MyUser@irc.server.org#channel or
irc:irc.server.org#channel?username=MyUser

Same as
nickname.

password The IRC server password. password=somepass None

realname The IRC user's actual name. realname=MyName None

colors Whether or not the server supports color codes. true, false true

onReply
Whether or not to handle general responses to commands or
informational messages.

true, false false

onNick Handle nickname change events. true, false true

onQuit Handle user quit events. true, false true

onJoin Handle user join events. true, false true

onKick Handle kick events. true, false true

onMode Handle mode change events. true, false true

onPart Handle user part events. true, false true

onTopic Handle topic change events. true, false true

onPrivmsg Handle message events. true, false true

trustManager The trust manager used to verify the SSL server's certificate. trustManager=#referenceToTrustManagerBean

The default
trust manager,
which accepts
all certificates,
will be used.

720 CHAPTER 11 - COMPONENT APPENDIX

http://en.wikipedia.org/wiki/Internet_Relay_Chat

keys

Camel 2.2: Comma separated list of IRC channel keys. Important
to be listed in same order as channels. When joining multiple
channels with only some needing keys just insert an empty value for
that channel.

irc:MyNick@irc.server.org/#channel?keys=chankey null

sslContextParameters

Camel 2.9: Reference to a
org.apache.camel.util.jsse.SSLContextParameters
in the Registry.Ê This reference overrides any configured
SSLContextParameters at the component level.Ê See Using the JSSE
Configuration Utility.Ê Note that this setting overrides the
trustManager option.

#mySslContextParameters null

SSL Support

Using the JSSE Configuration Utility

As of Camel 2.9, the IRC component supports SSL/TLS configuration through the Camel JSSE
Configuration Utility.Ê This utility greatly decreases the amount of component specific code you
need to write and is configurable at the endpoint and component levels.Ê The following
examples demonstrate how to use the utility with the IRC component.

Programmatic configuration of the endpoint

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);

Registry registry = ...
registry.bind("sslContextParameters", scp);

...

from(...)

.to("ircs://camel-prd-user@server:6669/#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters");

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:trustManagers>

CHAPTER 11 - COMPONENT APPENDIX 721

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

<camel:keyStore
resource="/users/home/server/truststore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to

uri="ircs://camel-prd-user@server:6669/#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters"/>...

Using the legacy basic configuration options

You can also connect to an SSL enabled IRC server, as follows:

ircs:host[:port]/#room?username=user&password=pass

By default, the IRC transport uses SSLDefaultTrustManager. If you need to provide your own
custom trust manager, use the trustManager parameter as follows:

ircs:host[:port]/#room?username=user&password=pass&trustManager=#referenceToMyTrustManagerBean

Using keys

Available as of Camel 2.2

Some irc rooms requires you to provide a key to be able to join that channel. The key is just
a secret word.

For example we join 3 channels where as only channel 1 and 3 uses a key.

irc:nick@irc.server.org?channels=#chan1,#chan2,#chan3&keys=chan1Key,,chan3key

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JASYPT COMPONENT

Available as of Camel 2.5

722 CHAPTER 11 - COMPONENT APPENDIX

http://moepii.sourceforge.net/irclib/javadoc/org/schwering/irc/lib/ssl/SSLDefaultTrustManager.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Jasypt is a simplified encryption library which makes encryption and decryption easy. Camel
integrates with Jasypt to allow sensitive information in Properties files to be encrypted. By
dropping camel-jasypt on the classpath those encrypted values will automatic be decrypted
on-the-fly by Camel. This ensures that human eyes can't easily spot sensitive information such
as usernames and passwords.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jasypt</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Tooling

The Jasypt component provides a little command line tooling to encrypt or decrypt values.

The console output the syntax and which options it provides:

Apache Camel Jasypt takes the following options

-h or -help = Displays the help screen
-c or -command <command> = Command either encrypt or decrypt
-p or -password <password> = Password to use
-i or -input <input> = Text to encrypt or decrypt
-a or -algorithm <algorithm> = Optional algorithm to use

For example to encrypt the value tiger you run with the following parameters. In the apache
camel kit, you cd into the lib folder and run the following java cmd, where <CAMEL_HOME> is
where you have downloaded and extract the Camel distribution.

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result

Encrypted text: qaEEacuW7BUti8LcMgyjKw==

This means the encrypted representation qaEEacuW7BUti8LcMgyjKw== can be decrypted
back to tiger if you know the master password which was secret.
If you run the tool again then the encrypted value will return a different result. But decrypting
the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

CHAPTER 11 - COMPONENT APPENDIX 723

http://www.jasypt.org/
http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c decrypt -p secret -i qaEEacuW7BUti8LcMgyjKw==

Which outputs the following result:

Decrypted text: tiger

The idea is then to use those encrypted values in your Properties files. Notice how the
password value is encrypted and the value has the tokens surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

Tooling dependencies for Camel 2.5 and 2.6

The tooling requires the following JARs in the classpath, which has been enlisted in the
MANIFEST.MF file of camel-jasypt with optional/ as prefix. Hence why the java cmd
above can pickup the needed JARs from the Apache Distribution in the optional directory.

jasypt-1.6.jar commons-lang-2.4.jar commons-codec-1.4.jar icu4j-4.0.1.jar

Tooling dependencies for Camel 2.7 or better

Jasypt 1.7 onwards is now fully standalone so no additional JARs is needed.

URI Options

The options below are exclusive for the Jasypt component.

Name Default Value Type Description

password null String Specifies the master password to use for decrypting. This option is mandatory. See below for more details.

algorithm null String Name of an optional algorithm to use.

Protecting the master password

The master password used by Jasypt must be provided, so its capable of decrypting the values.
However having this master password out in the opening may not be an ideal solution.
Therefore you could for example provided it as a JVM system property or as a OS environment

724 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html
http://camel.apache.org/jasypt.html

Java 1.5 users
The icu4j-4.0.1.jar is only needed when running on JDK 1.5.

This JAR is not distributed by Apache Camel and you have to download it manually and copy
it to the lib/optional directory of the Camel distribution.
You can download it from Apache Central Maven repo.

setting. If you decide to do so then the password option supports prefixes which dictates
this. sysenv: means to lookup the OS system environment with the given key. sys: means
to lookup a JVM system property.

For example you could provided the password before you start the application

$ export CAMEL_ENCRYPTION_PASSWORD=secret

Then start the application, such as running the start script.

When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTION_PASSWORD

The password option is then a matter of defining as follows:
password=sysenv:CAMEL_ENCRYPTION_PASSWORD.

Example with Java DSL

In Java DSL you need to configure Jasypt as a JasyptPropertiesParser instance and set
it on the Properties component as show below:

// create the jasypt properties parser
JasyptPropertiesParser jasypt = new JasyptPropertiesParser();
// and set the master password
jasypt.setPassword("secret");

// create the properties component
PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:org/apache/camel/component/jasypt/myproperties.properties");
// and use the jasypt properties parser so we can decrypt values
pc.setPropertiesParser(jasypt);

// add properties component to camel context
context.addComponent("properties", pc);

CHAPTER 11 - COMPONENT APPENDIX 725

http://camel.apache.org/jasypt.html
http://camel.apache.org/properties.html
http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/

The properties file myproperties.properties then contain the encrypted value, such as
shown below. Notice how the password value is encrypted and the value has the tokens
surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

Example with Spring XML

In Spring XML you need to configure the JasyptPropertiesParser which is shown
below. Then the Camel Properties component is told to use jasypt as the properties parser,
which means Jasypt have its chance to decrypt values looked up in the properties.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">

<property name="password" value="secret"/>
</bean>

<!-- define the camel properties component -->
<bean id="properties"
class="org.apache.camel.component.properties.PropertiesComponent">

<!-- the properties file is in the classpath -->
<property name="location" value="classpath:org/apache/camel/component/jasypt/

myproperties.properties"/>
<!-- and let it leverage the jasypt parser -->
<property name="propertiesParser" ref="jasypt"/>

</bean>

The Properties component can also be inlined inside the <camelContext> tag which is
shown below. Notice how we use the propertiesParserRef attribute to refer to Jasypt.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">

<!-- password is mandatory, you can prefix it with sysenv: or sys: to indicate it
should use

an OS environment or JVM system property value, so you dont have the master
password defined here -->

<property name="password" value="secret"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define the camel properties placeholder, and let it leverage jasypt -->
<propertyPlaceholder id="properties"

location="classpath:org/apache/camel/component/jasypt/
myproperties.properties"

726 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html
http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html

propertiesParserRef="jasypt"/>
<route>

<from uri="direct:start"/>
<to uri="{{cool.result}}"/>

</route>
</camelContext>

See Also

▪ Security
▪ Properties
▪ Encrypted passwords in ActiveMQ - ActiveMQ has a similar feature as this camel-
jasypt component

JAVASPACE COMPONENT

Available as of Camel 2.1

The javaspace component is a transport for working with any JavaSpace compliant
implementation and this component has been tested with both the Blitz implementation and the
GigaSpace implementation .
This component can be used for sending and receiving any object inheriting from the Jini
net.jini.core.entry.Entry class. It is also possible to pass the bean ID of a template
that can be used for reading/taking the entries from the space.
This component can be used for sending/receiving any serializable object acting as a sort of
generic transport. The JavaSpace component contains a special optimization for dealing with the
BeanExchange. It can be used to invoke a POJO remotely, using a JavaSpace as a transport.
This latter feature can provide a simple implementation of the master/worker pattern, where a
POJO provides the business logic for the worker.
Look at the test cases for examples of various use cases for this component.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-javaspace</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 727

http://camel.apache.org/security.html
http://camel.apache.org/properties.html
http://activemq.apache.org/encrypted-passwords.html
http://www.dancres.org/blitz/
http://www.gigaspaces.com/

URI format

javaspace:jini://host[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default Value Description

spaceName null Specifies the JavaSpace name.

verb take Specifies the verb for getting JavaSpace entries. The values can be: take or read.

transactional false If true, sending and receiving entries is performed within a transaction.

transactionalTimeout Long.MAX_VALUE Specifies the transaction timeout.

concurrentConsumers 1 Specifies the number of concurrent consumers getting entries from the JavaSpace.

templateId null If present, this option specifies the Spring bean ID of the template to use for reading/taking entries.

Examples

Sending and Receiving Entries

// sending route
from("direct:input")

.to("javaspace:jini://localhost?spaceName=mySpace");

// receiving Route
from("javaspace:jini://localhost?spaceName=mySpace&templateId=template&verb=take&concurrentConsumers=1")

.to("mock:foo");

In this case the payload can be any object that inherits from the Jini Entry type.

Sending and receiving serializable objects

Using the preceding routes, it is also possible to send and receive any serializable object. The
JavaSpace component detects that the payload is not a Jini Entry and then it automatically
wraps the payload with a Camel Jini Entry. In this way, a JavaSpace can be used as a generic
transport mechanism.

728 CHAPTER 11 - COMPONENT APPENDIX

Using JavaSpace as a remote invocation transport

The JavaSpace component has been tailored to work in combination with the Camel bean
component. It is therefore possible to call a remote POJO using JavaSpace as the transport:

// client side
from("direct:input")

.to("javaspace:jini://localhost?spaceName=mySpace");

// server side
from("javaspace:jini://localhost?concurrentConsumers=10&spaceName=mySpace")

.to("mock:foo");

In the code there are two test cases showing how to use a POJO to realize the master/worker
pattern. The idea is to use the POJO to provide the business logic and rely on Camel for
sending/receiving requests/replies with the proper correlation.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JBI COMPONENT

The jbi component is implemented by the ServiceMix Camel module and provides integration
with a JBI Normalized Message Router, such as the one provided by Apache ServiceMix.
The following code:

from("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

Automatically exposes a new endpoint to the bus, where the service QName is
{http://foo.bar.org}MyService and the endpoint name is MyEndpoint (see URI-
format).

When a JBI endpoint appears at the end of a route, for example:

to("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

The messages sent by this producer endpoint are sent to the already deployed JBI endpoint.

CHAPTER 11 - COMPONENT APPENDIX 729

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/
http://foo.bar.org

See below for information about how to use StreamSource types from
ServiceMix in Camel.

URI format

jbi:service:serviceNamespace[sep]serviceName[?options]
jbi:endpoint:serviceNamespace[sep]serviceName[sep]endpointName[?options]
jbi:name:endpointName[?options]

The separator that should be used in the endpoint URL is:
• / (forward slash), if serviceNamespace starts with http://, or
• : (colon), if serviceNamespace starts with urn:foo:bar.

For more details of valid JBI URIs see the ServiceMix URI Guide.

Using the jbi:service: or jbi:endpoint: URI formats sets the service QName on
the JBI endpoint to the one specified. Otherwise, the default Camel JBI Service QName is used,
which is:

{http://activemq.apache.org/camel/schema/jbi}endpoint

You can append query options to the URI in the following format,
?option=value&option=value&...

Examples

jbi:service:http://foo.bar.org/MyService
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint
jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint
jbi:name:cheese

URI options

Name Default value Description

mep
MEP of the Camel
Exchange

Allows users to override the MEP set on
the Exchange object. Valid values for this
option are in-only, in-out, robust-
in-out and in-optional-out.

730 CHAPTER 11 - COMPONENT APPENDIX

http://servicemix.apache.org/uris.html
http://servicemix.apache.org/

operation
Value of the
jbi.operation
header property

Specifies the JBI operation for the
MessageExchange. If no value is
supplied, the JBI binding will use the value of
the jbi.operation header property.

serialization basic

Default value (basic) will check if headers
are serializable by looking at the type,
setting this option to strict will detect
objects that can not be serialized although
they implement the Serializable
interface. Set to nocheck to disable this
check altogether, note that this should only
be used for in-memory transports like
SEDAFlow, otherwise you can expect to get
NotSerializableException thrown
at runtime.

convertException false

false: send any exceptions thrown from
the Camel route back unmodified
true: convert all exceptions to a JBI
FaultException (can be used to avoid non-
serializable exceptions or to implement
generic error handling

Examples

jbi:service:http://foo.bar.org/MyService?mep=in-out (override the MEP, use InOut
JBI MessageExchanges)
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?mep=in (override the MEP, use
InOnly JBI MessageExchanges)
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?operation={http://www.mycompany.org}AddNumbers
(overide the operation for the JBI Exchange to {http://www.mycompany.org}AddNumbers)

Using Stream bodies

If you are using a stream type as the message body, you should be aware that a stream is only
capable of being read once. So if you enable DEBUG logging, the body is usually logged and thus
read. To deal with this, Camel has a streamCaching option that can cache the stream,
enabling you to read it multiple times.

from("jbi:endpoint:http://foo.bar.org/MyService/
MyEndpoint").streamCaching().to("xslt:transform.xsl", "bean:doSomething");

CHAPTER 11 - COMPONENT APPENDIX 731

The stream caching is default enabled, so it is not necessary to set the streamCaching()
option.
We store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be deleted.

Creating a JBI Service Unit

If you have some Camel routes that you want to deploy inside JBI as a Service Unit, you can use
the JBI Service Unit Archetype to create a new Maven project for the Service Unit.

If you have an existing Maven project that you need to convert into a JBI Service Unit, you
may want to consult ServiceMix Maven JBI Plugins for further help. The key steps are as follows:

• Create a Spring XML file at src/main/resources/camel-context.xml to
bootstrap your routes inside the JBI Service Unit.

• Change the POM file's packaging to jbi-service-unit.
Your pom.xml should look something like this to enable the jbi-service-unit
packaging:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>myGroupId</groupId>
<artifactId>myArtifactId</artifactId>
<packaging>jbi-service-unit</packaging>
<version>1.0-SNAPSHOT</version>

<name>A Camel based JBI Service Unit</name>

<url>http://www.myorganization.org</url>

<properties>
<camel-version>x.x.x</camel-version>
<servicemix-version>3.3</servicemix-version>

</properties>

<dependencies>
<dependency>

<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-camel</artifactId>
<version>${servicemix-version}</version>

</dependency>

<dependency>
<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-core</artifactId>
<version>${servicemix-version}</version>

732 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jbi-service-unit-archetype.html
http://servicemix.apache.org/maven-jbi-plugin.html

<scope>provided</scope>
</dependency>

</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<!-- creates the JBI deployment unit -->
<plugin>

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• ServiceMix Camel module
• Using Camel with ServiceMix
• Cookbook on using Camel with ServiceMix

JCR COMPONENT

The jcr component allows you to add/read nodes to/from a JCR compliant content repository
(for example, Apache Jackrabbit) with its producer, or register an EventListener with the
consumer.

Maven users will need to add the following dependency to their pom.xml for this
component:

CHAPTER 11 - COMPONENT APPENDIX 733

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/order-file-processing.html
http://jackrabbit.apache.org/

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jcr</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jcr://user:password@repository/path/to/node

Usage

The repository element of the URI is used to look up the JCR Repository object in the
Camel context registry.

Producer

Name Default Value Description

CamelJcrOperation CamelJcrInsert CamelJcrInsert or CamelJcrGetById operation to use

CamelJcrNodeName null Used to determine the node name to use.

When a message is sent to a JCR producer endpoint:
• If the operation is CamelJcrInsert: A new node is created in the content repository,

all the message properties of the IN message are transformed to JCR Value
instances and added to the new node and the node's UUID is returned in the OUT
message.

• If the operation is CamelJcrGetById: A new node is retrieved from the repository
using the message body as node identifier.

Consumer

The consumer will connect to JCR periodically and return a List<javax.jcr.observation.Event> in
the message body.

Name
Default
Value

Description

eventTypes 0
A combination of one or more event types encoded as a bit mask value such as
javax.jcr.observation.Event.NODE_ADDED, javax.jcr.observation.Event.NODE_REMOVED, etc.

deep false When it is true, events whose associated parent node is at current path or within its subgraph are received.

uuids null
Only events whose associated parent node has one of the identifiers in the comma separated uuid list will be
received.

nodeTypeNames null
Only events whose associated parent node has one of the node types (or a subtype of one of the node types)
in this list will be received.

734 CHAPTER 11 - COMPONENT APPENDIX

Consumer added
From Camel 2.10 onwards you can use consumer as an EventListener in JCR or a
producer to read a node by identifier.

noLocal false
If noLocal is true, then events generated by the session through which the listener was registered are
ignored. Otherwise, they are not ignored.

sessionLiveCheckInterval 60000 Interval in milliseconds to wait before each session live checking.

sessionLiveCheckIntervalOnStart 3000 Interval in milliseconds to wait before the first session live checking.

Example

The snippet below creates a node named node under the /home/test node in the content
repository. One additional attribute is added to the node as well: my.contents.property
which will contain the body of the message being sent.

from("direct:a").setProperty(JcrConstants.JCR_NODE_NAME, constant("node"))
.setProperty("my.contents.property", body())
.to("jcr://user:pass@repository/home/test");

The following code will register an EventListener under the path import-application/inbox for
Event.NODE_ADDED and Event.NODE_REMOVED events (event types 1 and 2, both masked
as 3) and listening deep for all the children.

<route>
<from uri="jcr://user:pass@repository/import-application/

inbox?eventTypes=3&deep=true" />
<to uri="direct:execute-import-application" />

</route>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JDBC COMPONENT

The jdbc component enables you to access databases through JDBC, where SQL queries and
operations are sent in the message body. This component uses the standard JDBC API, unlike
the SQL Component component, which uses spring-jdbc.

CHAPTER 11 - COMPONENT APPENDIX 735

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/sql-component.html

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jdbc</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jdbc:dataSourceName[?options]

This component only supports producer endpoints.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

readSize 0

The default maximum
number of rows that can be
read by a polling query. The
default value is 0.

statement.<xxx> null

Camel 2.1: Sets additional
options on the
java.sql.Statement
that is used behind the scenes
to execute the queries. For
instance,
statement.maxRows=10.
For detailed documentation,
see the
java.sql.Statement
javadoc documentation.

736 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

This component can only be used to define producer endpoints, which means that
you cannot use the JDBC component in a from() statement.

This component can not be used as a Transactional Client. If you need transaction
support in your route, you should use the SQL component instead.

useJDBC4ColumnNameAndLabelSemantics true

Camel 2.2: Sets whether to
use JDBC 4/3 column label/
name semantics. You can use
this option to turn it false
in case you have issues with
your JDBC driver to select
data. This only applies when
using SQL SELECT using
aliases (e.g. SQL SELECT
id as identifier,
name as given_name
from persons).

resetAutoCommit true

Camel 2.9: Camel will set
the autoCommit on the
JDBC connection to be false,
commit the change after
executed the statement and
reset the autoCommit flag of
the connection at the end, if
the resetAutoCommit is true.
If the JDBC connection
doesn't support to reset the
autoCommit flag, you can set
the resetAutoCommit flag to
be false, and Camel will not
try to reset the autoCommit
flag.

CHAPTER 11 - COMPONENT APPENDIX 737

http://camel.apache.org/transactional-client.html
http://camel.apache.org/sql-component.html

Result

The result is returned in the OUT body as an ArrayList<HashMap<String,
Object>>. The List object contains the list of rows and the Map objects contain each row
with the String key as the column name.

Note: This component fetches ResultSetMetaData to be able to return the column
name as the key in the Map.

Message Headers

Header Description

CamelJdbcRowCount
If the query is a SELECT, query the row count is
returned in this OUT header.

CamelJdbcUpdateCount
If the query is an UPDATE, query the update count
is returned in this OUT header.

CamelGeneratedKeysRows
Camel 2.10: Rows that contains the generated
kets.

CamelGeneratedKeysRowCount
Camel 2.10: The number of rows in the header
that contains generated keys.

Generated keys

Available as of Camel 2.10

If you insert data using SQL INSERT, then the RDBMS may support auto generated keys.
You can instruct the JDBC producer to return the generated keys in headers.
To do that set the header CamelRetrieveGeneratedKeys=true. Then the generated
keys will be provided as headers with the keys listed in the table above.

You can see more details in this unit test.

Samples

In the following example, we fetch the rows from the customer table.

First we register our datasource in the Camel registry as testdb:

JndiRegistry reg = super.createRegistry();
reg.bind("testdb", db);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed.
Note how we refer to the testdb datasource that was bound in the previous step:

738 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jdbc.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jdbc/src/test/java/org/apache/camel/component/jdbc/JdbcGeneratedKeysTest.java

// lets add simple route
public void configure() throws Exception {

from("direct:hello").to("jdbc:testdb?readSize=100");
}

Or you can create a DataSource in Spring like this:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- trigger every second -->
<from uri="timer://kickoff?period=1s"/>
<setBody>

<constant>select * from customer</constant>
</setBody>
<to uri="jdbc:testdb"/>
<to uri="mock:result"/>

</route>
</camelContext>

<!-- Just add a demo to show how to bind a date source for camel in Spring-->
<jdbc:embedded-database id="testdb" type="DERBY">

<jdbc:script location="classpath:sql/init.sql"/>
</jdbc:embedded-database>

We create an endpoint, add the SQL query to the body of the IN message, and then send the
exchange. The result of the query is returned in the OUT body:

// first we create our exchange using the endpoint
Endpoint endpoint = context.getEndpoint("direct:hello");
Exchange exchange = endpoint.createExchange();
// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receives the response from Camel
Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);
assertNotNull(out.getOut());
List<Map<String, Object>> data = out.getOut().getBody(List.class);
assertNotNull(data);
assertEquals(3, data.size());
Map<String, Object> row = data.get(0);
assertEquals("cust1", row.get("ID"));
assertEquals("jstrachan", row.get("NAME"));
row = data.get(1);
assertEquals("cust2", row.get("ID"));
assertEquals("nsandhu", row.get("NAME"));

If you want to work on the rows one by one instead of the entire ResultSet at once you need
to use the Splitter EIP such as:

CHAPTER 11 - COMPONENT APPENDIX 739

http://camel.apache.org/splitter.html

from("direct:hello")
// here we split the data from the testdb into new messages one by one
// so the mock endpoint will receive a message per row in the table

.to("jdbc:testdb").split(body()).to("mock:result");

Sample - Polling the database every minute

If we want to poll a database using the JDBC component, we need to combine it with a polling
scheduler such as the Timer or Quartz etc. In the following example, we retrieve data from the
database every 60 seconds:

from("timer://foo?period=60000").setBody(constant("select * from
customer")).to("jdbc:testdb").to("activemq:queue:customers");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ SQL

JETTY COMPONENT

The jetty component provides HTTP-based endpoints for consuming and producing HTTP
requests. That is, the Jetty component behaves as a simple Web server.
Jetty can also be used as a http client which mean you can also use it with Camel as a producer.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jetty</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jetty:http://hostname[:port][/resourceUri][?options]

740 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/sql.html
http://camel.apache.org/endpoint.html

Stream
Jetty is stream based, which means the input it receives is submitted to Camel as a
stream. That means you will only be able to read the content of the stream once.
If you find a situation where the message body appears to be empty or you need to
access the data multiple times (eg: doing multicasting, or redelivery error handling)
you should use Stream caching or convert the message body to a String which is
safe to be re-read multiple times.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

sessionSupport false Specifies whether to enable the session manager on the server side of Jetty.

httpClient.XXX null
Configuration of Jetty's HttpClient. For example, setting httpClient.idleTimeout=30000 sets the idle timeout to
30 seconds.

httpClient null
To use a shared org.eclipse.jetty.client.HttpClient for all producers created by this endpoint. This
option should only be used in special circumstances.

httpClientMinThreads null
Camel 2.11: Producer only: To set a value for minimum number of threads in HttpClient thread pool. This
setting override any setting configured on component level. Notice that both a min and max size must be configured.

httpClientMaxThreads null
Camel 2.11: Producer only: To set a value for maximum number of threads in HttpClient thread pool. This
setting override any setting configured on component level. Notice that both a min and max size must be configured.

httpBindingRef null
Reference to an org.apache.camel.component.http.HttpBinding in the Registry. HttpBinding can be
used to customize how a response should be written for the consumer.

jettyHttpBindingRef null
Camel 2.6.0+: Reference to an org.apache.camel.component.jetty.JettyHttpBinding in the Registry.
JettyHttpBinding can be used to customize how a response should be written for the producer.

matchOnUriPrefix false
Whether or not the CamelServlet should try to find a target consumer by matching the URI prefix if no exact match
is found. See here How do I let Jetty match wildcards.

handlers null
Specifies a comma-delimited set of org.mortbay.jetty.Handler instances in your Registry (such as your Spring
ApplicationContext). These handlers are added to the Jetty servlet context (for example, to add security).

chunked true
Camel 2.2: If this option is false Jetty servlet will disable the HTTP streaming and set the content-length header on the
response

enableJmx false
Camel 2.3: If this option is true, Jetty JMX support will be enabled for this endpoint. See Jetty JMX support for more
details.

disableStreamCache false

Camel 2.3: Determines whether or not the raw input stream from Jetty is cached or not (Camel will read the stream
into a in memory/overflow to file, Stream caching) cache. By default Camel will cache the Jetty input stream to support
reading it multiple times to ensure it Camel can retrieve all data from the stream. However you can set this option to
true when you for example need to access the raw stream, such as streaming it directly to a file or other persistent
store. DefaultHttpBinding will copy the request input stream into a stream cache and put it into message body if this
option is false to support reading the stream multiple times. If you use Jetty to bridge/proxy an endpoint then consider
enabling this option to improve performance, in case you do not need to read the message payload multiple times.

bridgeEndpoint false

Camel 2.1: If the option is true , HttpProducer will ignore the Exchange.HTTP_URI header, and use the endpoint's URI
for request. You may also set the throwExceptionOnFailure to be false to let the HttpProducer send all the fault
response back.
Camel 2.3: If the option is true, HttpProducer and CamelServlet will skip the gzip processing if the content-encoding is
"gzip". Also consider setting disableStreamCache to true to optimize when bridging.

enableMultipartFilter true
Camel 2.5: Whether Jetty org.eclipse.jetty.servlets.MultiPartFilter is enabled or not. You should
set this value to false when bridging endpoints, to ensure multipart requests is proxied/bridged as well.

multipartFilterRef null
Camel 2.6: Allows using a custom multipart filter. Note: setting multipartFilterRef forces the value of
enableMultipartFilter to true.

filtersRef null Camel 2.9: Allows using a custom filters which is putted into a list and can be find in the Registry

CHAPTER 11 - COMPONENT APPENDIX 741

http://wiki.eclipse.org/Jetty/Tutorial/HttpClient
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/how-do-i-let-jetty-match-wildcards.html
http://camel.apache.org/registry.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/jetty.html
http://camel.apache.org/registry.html
http://camel.apache.org/stream-caching.html

continuationTimeout null
Camel 2.6: Allows to set a timeout in millis when using Jetty as consumer (server). By default Jetty uses 30000. You can
use a value of <= 0 to never expire. If a timeout occurs then the request will be expired and Jetty will return back a http
error 503 to the client. This option is only in use when using Jetty with the Asynchronous Routing Engine.

useContinuation true Camel 2.6: Whether or not to use Jetty continuations for the Jetty Server.

sslContextParametersRef null
Camel 2.8: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry.Ê This
reference overrides any configured SSLContextParameters at the component level.Ê See Using the JSSE Configuration
Utility.

traceEnabled false Specifies whether to enable HTTP TRACE for this Jetty consumer. By default TRACE is turned off.

headerFilterStrategy null
Camel 2.11: Reference to a instance of org.apache.camel.spi.HeaderFilterStrategy in the Registry. It
will be used to apply the custom headerFilterStrategy on the new create HttpJettyEndpoint.

urlRewrite null
Camel 2.11: Producer only Refers to a custom org.apache.camel.component.http.UrlRewrite which
allows you to rewrite urls when you bridge/proxy endpoints. See more details at UrlRewrite and How to use Camel as a
HTTP proxy between a client and server.

Message Headers

Camel uses the same message headers as the HTTP component.
From Camel 2.2, it also uses (Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn
on or turn off the chuched encoding on the camel-jetty consumer.

Camel also populates all request.parameter and request.headers. For example, given a client
request with the URL, http://myserver/myserver?orderid=123, the exchange will
contain a header named orderid with the value 123.

Starting with Camel 2.2.0, you can get the request.parameter from the message header not
only from Get Method, but also other HTTP method.

Usage

The Jetty component supports both consumer and producer endpoints. Another option for
producing to other HTTP endpoints, is to use the HTTP Component

Component Options

The JettyHttpComponent provides the following options:

Name
Default
Value

Description

enableJmx false
Camel 2.3: If this option is true, Jetty JMX support will be enabled for this endpoint. See Jetty JMX support for
more details.

sslKeyPassword null Consumer only: The password for the keystore when using SSL.

sslPassword null Consumer only: The password when using SSL.

sslKeystore null Consumer only: The path to the keystore.

minThreads null
Camel 2.5 Consumer only: To set a value for minimum number of threads in server thread pool. Notice that
both a min and max size must be configured.

maxThreads null
Camel 2.5 Consumer only: To set a value for maximum number of threads in server thread pool. Notice that
both a min and max size must be configured.

threadPool null
Camel 2.5 Consumer only: To use a custom thread pool for the server. This option should only be used in
special circumstances.

sslSocketConnectors null
Camel 2.3 Consumer only: A map which contains per port number specific SSL connectors. See section SSL
support for more details.

socketConnectors null
Camel 2.5 Consumer only: A map which contains per port number specific HTTP connectors. Uses the same
principle as sslSocketConnectors and therefore see section SSL support for more details.

742 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jetty.html
http://camel.apache.org/jetty.html
http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/urlrewrite.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/http.html
http://myserver/myserver?orderid=123
http://camel.apache.org/http.html

sslSocketConnectorProperties null
Camel 2.5 Consumer only. A map which contains general SSL connector properties. See section SSL support
for more details.

socketConnectorProperties null
Camel 2.5 Consumer only. A map which contains general HTTP connector properties. Uses the same
principle as sslSocketConnectorProperties and therefore see section SSL support for more details.

httpClient null
Deprecated: Producer only: To use a custom HttpClient with the jetty producer. This option is removed
from Camel 2.11 onwards, instead you can set the option on the endpoint instead.

httpClientMinThreads null
Producer only: To set a value for minimum number of threads in HttpClient thread pool. Notice that both
a min and max size must be configured.

httpClientMaxThreads null
Producer only: To set a value for maximum number of threads in HttpClient thread pool. Notice that both
a min and max size must be configured.

httpClientThreadPool null
Deprecated: Producer only: To use a custom thread pool for the client. This option is removed from Camel
2.11 onwards.

sslContextParameters null
Camel 2.8: To configure a custom SSL/TLS configuration options at the component level.Ê SeeÊ Using the JSSE
Configuration Utility for more details.

Producer Example

The following is a basic example of how to send an HTTP request to an existing HTTP
endpoint.

in Java DSL

from("direct:start").to("jetty://http://www.google.com");

or in Spring XML

<route>
<from uri="direct:start"/>
<to uri="jetty://http://www.google.com"/>

<route>

Consumer Example

In this sample we define a route that exposes a HTTP service at
http://localhost:8080/myapp/myservice:

from("jetty:http://localhost:{{port}}/myapp/myservice").process(new MyBookService());

Our business logic is implemented in the MyBookService class, which accesses the HTTP
request contents and then returns a response.
Note: The assert call appears in this example, because the code is part of an unit test.

public class MyBookService implements Processor {
public void process(Exchange exchange) throws Exception {

// just get the body as a string
String body = exchange.getIn().getBody(String.class);

// we have access to the HttpServletRequest here and we can grab it if we need

CHAPTER 11 - COMPONENT APPENDIX 743

http://localhost:8080/myapp/myservice

Usage of localhost
When you specify localhost in a URL, Camel exposes the endpoint only on the
local TCP/IP network interface, so it cannot be accessed from outside the machine
it operates on.

If you need to expose a Jetty endpoint on a specific network interface, the numerical IP
address of this interface should be used as the host. If you need to expose a Jetty endpoint
on all network interfaces, the 0.0.0.0 address should be used.

it
HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
assertNotNull(req);

// for unit testing
assertEquals("bookid=123", body);

// send a html response
exchange.getOut().setBody("<html><body>Book 123 is Camel in

Action</body></html>");
}

}

The following sample shows a content-based route that routes all requests containing the URI
parameter, one, to the endpoint, mock:one, and all others to mock:other.

from("jetty:" + serverUri)
.choice()
.when().simple("${header.one}").to("mock:one")
.otherwise()
.to("mock:other");

So if a client sends the HTTP request, http://serverUri?one=hello, the Jetty
component will copy the HTTP request parameter, one to the exchange's in.header. We
can then use the simple language to route exchanges that contain this header to a specific
endpoint and all others to another. If we used a language more powerful than Simple--such as
EL or OGNL--we could also test for the parameter value and do routing based on the header
value as well.

Session Support

The session support option, sessionSupport, can be used to enable a HttpSession
object and access the session object while processing the exchange. For example, the following
route enables sessions:

744 CHAPTER 11 - COMPONENT APPENDIX

http://serverUri?one=hello
http://camel.apache.org/simple.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html

<route>
<from uri="jetty:http://0.0.0.0/myapp/myservice/?sessionSupport=true"/>
<processRef ref="myCode"/>

<route>

The myCode Processor can be instantiated by a Spring bean element:

<bean id="myCode"class="com.mycompany.MyCodeProcessor"/>

Where the processor implementation can access the HttpSession as follows:

public void process(Exchange exchange) throws Exception {
HttpSession session = exchange.getIn(HttpMessage.class).getRequest().getSession();
...

}

SSL Support (HTTPS)

Using the JSSE Configuration Utility

As of Camel 2.8, the Jetty component supports SSL/TLS configuration through the Camel JSSE
Configuration Utility.Ê This utility greatly decreases the amount of component specific code you
need to write and is configurable at the endpoint and component levels.Ê The following
examples demonstrate how to use the utility with the Jetty component.

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

JettyComponent jettyComponent = getContext().getComponent("jetty",
JettyComponent.class);
jettyComponent.setSslContextParameters(scp);

CHAPTER 11 - COMPONENT APPENDIX 745

http://camel.apache.org/processor.html
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to uri="jetty:https://127.0.0.1/

mail/?sslContextParametersRef=sslContextParameters"/>
...

Configuring Jetty Directly

Jetty provides SSL support out of the box. To enable Jetty to run in SSL mode, simply format
the URI with the https:// prefix---for example:

<from uri="jetty:https://0.0.0.0/myapp/myservice/"/>

Jetty also needs to know where to load your keystore from and what passwords to use in
order to load the correct SSL certificate. Set the following JVM System Properties:

until Camel 2.2
• jetty.ssl.keystore specifies the location of the Java keystore file, which

contains the Jetty server's own X.509 certificate in a key entry. A key entry stores the
X.509 certificate (effectively, the public key) and also its associated private key.

• jetty.ssl.password the store password, which is required to access the
keystore file (this is the same password that is supplied to the keystore command's
-storepass option).

• jetty.ssl.keypassword the key password, which is used to access the
certificate's key entry in the keystore (this is the same password that is supplied to
the keystore command's -keypass option).

from Camel 2.3 onwards
• org.eclipse.jetty.ssl.keystore specifies the location of the Java keystore

file, which contains the Jetty server's own X.509 certificate in a key entry. A key entry
stores the X.509 certificate (effectively, the public key) and also its associated private
key.

• org.eclipse.jetty.ssl.password the store password, which is required to
access the keystore file (this is the same password that is supplied to the keystore
command's -storepass option).

746 CHAPTER 11 - COMPONENT APPENDIX

• org.eclipse.jetty.ssl.keypassword the key password, which is used to
access the certificate's key entry in the keystore (this is the same password that is
supplied to the keystore command's -keypass option).

For details of how to configure SSL on a Jetty endpoint, read the following documentation at
the Jetty Site: http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

Some SSL properties aren't exposed directly by Camel, however Camel does expose the
underlying SslSocketConnector, which will allow you to set properties like needClientAuth for
mutual authentication requiring a client certificate or wantClientAuth for mutual authentication
where a client doesn't need a certificate but can have one. There's a slight difference between
the various Camel versions:

Up to Camel 2.2

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.mortbay.jetty.security.SslSocketConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

Camel 2.3, 2.4

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.eclipse.jetty.server.ssl.SslSocketConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

*From Camel 2.5 we switch to use SslSelectChannelConnector *

CHAPTER 11 - COMPONENT APPENDIX 747

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

The value you use as keys in the above map is the port you configure Jetty to listen on.

Configuring general SSL properties

Available as of Camel 2.5

Instead of a per port number specific SSL socket connector (as shown above) you can now
configure general properties which applies for all SSL socket connectors (which is not explicit
configured as above with the port number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectorProperties">

<map>
<entry key="password"value="..."/>
<entry key="keyPassword"value="..."/>
<entry key="keystore"value="..."/>
<entry key="needClientAuth"value="..."/>
<entry key="truststore"value="..."/>

</map>
</property>

</bean>

How to obtain reference to the X509Certificate

Jetty stores a reference to the certificate in the HttpServletRequest which you can access from
code as follows:

HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
X509Certificate cert = (X509Certificate)
req.getAttribute("javax.servlet.request.X509Certificate")

748 CHAPTER 11 - COMPONENT APPENDIX

Configuring general HTTP properties

Available as of Camel 2.5

Instead of a per port number specific HTTP socket connector (as shown above) you can
now configure general properties which applies for all HTTP socket connectors (which is not
explicit configured as above with the port number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="socketConnectorProperties">

<map>
<entry key="acceptors" value="4"/>
<entry key="maxIdleTime" value="300000"/>

</map>
</property>

</bean>

Default behavior for returning HTTP status codes

The default behavior of HTTP status codes is defined by the
org.apache.camel.component.http.DefaultHttpBinding class, which handles
how a response is written and also sets the HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is returned.
If the exchange failed with an exception, the 500 HTTP status code is returned, and the
stacktrace is returned in the body. If you want to specify which HTTP status code to return, set
the code in the HttpProducer.HTTP_RESPONSE_CODE header of the OUT message.

Customizing HttpBinding

By default, Camel uses the
org.apache.camel.component.http.DefaultHttpBinding to handle how a
response is written. If you like, you can customize this behavior either by implementing your
own HttpBinding class or by extending DefaultHttpBinding and overriding the
appropriate methods.

The following example shows how to customize the DefaultHttpBinding in order to
change how exceptions are returned:

public class MyHttpBinding extends DefaultHttpBinding {
public MyHttpBinding(HttpEndpoint ep) {

super(ep);
}
@Override
public void doWriteExceptionResponse(Throwable exception, HttpServletResponse

response) throws IOException {
// we override the doWriteExceptionResponse as we only want to alter the

binding how exceptions is

CHAPTER 11 - COMPONENT APPENDIX 749

// written back to the client.

// we just return HTTP 200 so the client thinks its okay
response.setStatus(200);
// and we return this fixed text
response.getWriter().write("Something went wrong but we dont care");

}
}

We can then create an instance of our binding and register it in the Spring registry as follows:

<bean id="mybinding"class="com.mycompany.MyHttpBinding"/>

And then we can reference this binding when we define the route:

<route><from uri="jetty:http://0.0.0.0:8080/myapp/
myservice?httpBindingRef=mybinding"/><to uri="bean:doSomething"/></route>

Jetty handlers and security configuration

You can configure a list of Jetty handlers on the endpoint, which can be useful for enabling
advanced Jetty security features. These handlers are configured in Spring XML as follows:

<-- Jetty Security handling -->
<bean id="userRealm" class="org.mortbay.jetty.plus.jaas.JAASUserRealm">

<property name="name" value="tracker-users"/>
<property name="loginModuleName" value="ldaploginmodule"/>

</bean>

<bean id="constraint" class="org.mortbay.jetty.security.Constraint">
<property name="name" value="BASIC"/>
<property name="roles" value="tracker-users"/>
<property name="authenticate" value="true"/>

</bean>

<bean id="constraintMapping" class="org.mortbay.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint"/>
<property name="pathSpec" value="/*"/>

</bean>

<bean id="securityHandler" class="org.mortbay.jetty.security.SecurityHandler">
<property name="userRealm" ref="userRealm"/>
<property name="constraintMappings" ref="constraintMapping"/>

</bean>

And from Camel 2.3 onwards you can configure a list of Jetty handlers as follows:

750 CHAPTER 11 - COMPONENT APPENDIX

<-- Jetty Security handling -->
<bean id="constraint" class="org.eclipse.jetty.http.security.Constraint">

<property name="name" value="BASIC"/>
<property name="roles" value="tracker-users"/>
<property name="authenticate" value="true"/>

</bean>

<bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint"/>
<property name="pathSpec" value="/*"/>

</bean>

<bean id="securityHandler"
class="org.eclipse.jetty.security.ConstraintSecurityHandler">

<property name="authenticator">
<bean class="org.eclipse.jetty.security.authentication.BasicAuthenticator"/>

</property>
<property name="constraintMappings">

<list>
<ref bean="constraintMapping"/>

</list>
</property>

</bean>

You can then define the endpoint as:

from("jetty:http://0.0.0.0:9080/myservice?handlers=securityHandler")

If you need more handlers, set the handlers option equal to a comma-separated list of bean
IDs.

How to return a custom HTTP 500 reply message

You may want to return a custom reply message when something goes wrong, instead of the
default reply message Camel Jetty replies with.
You could use a custom HttpBinding to be in control of the message mapping, but often it
may be easier to use Camel's Exception Clause to construct the custom reply message. For
example as show here, where we return Dude something went wrong with HTTP error
code 500:

from("jetty://http://localhost:{{port}}/myserver")
// use onException to catch all exceptions and return a custom reply message
.onException(Exception.class)

.handled(true)
// create a custom failure response
.transform(constant("Dude something went wrong"))
// we must remember to set error code 500 as handled(true)
// otherwise would let Camel thing its a OK response (200)

CHAPTER 11 - COMPONENT APPENDIX 751

http://camel.apache.org/jetty.html
http://camel.apache.org/exception-clause.html

.setHeader(Exchange.HTTP_RESPONSE_CODE, constant(500))
.end()
// now just force an exception immediately
.throwException(new IllegalArgumentException("I cannot do this"));

Multi-part Form support

From Camel 2.3.0, camel-jetty support to multipart form post out of box. The submitted form-
data are mapped into the message header. Camel-jetty creates an attachment for each uploaded
file. The file name is mapped to the name of the attachment. The content type is set as the
content type of the attachment file name. You can find the example here.

Listing 1.Listing 1. Note: getName() functions as shown below in versions 2.5 andNote: getName() functions as shown below in versions 2.5 and
higher. In earlier versions you receive the temporary file name for thehigher. In earlier versions you receive the temporary file name for the
attachment insteadattachment instead

// Set the jetty temp directory which store the file for multi part form
// camel-jetty will clean up the file after it handled the request.
// The option works rightly from Camel 2.4.0
getContext().getProperties().put("CamelJettyTempDir", "target");

from("jetty://http://localhost:{{port}}/test").process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message in = exchange.getIn();
assertEquals("Get a wrong attachement size", 1, in.getAttachments().size());
// The file name is attachment id
DataHandler data = in.getAttachment("NOTICE.txt");

assertNotNull("Should get the DataHandle NOTICE.txt", data);
// This assert is wrong, but the correct content-type (application/

octet-stream)
// will not be returned until Jetty makes it available - currently the

content-type
// returned is just the default for FileDataHandler (for the implentation

being used)
//assertEquals("Get a wrong content type", "text/plain",

data.getContentType());
assertEquals("Got the wrong name", "NOTICE.txt", data.getName());

assertTrue("We should get the data from the DataHandle", data.getDataSource()
.getInputStream().available() > 0);

// The other form date can be get from the message header
exchange.getOut().setBody(in.getHeader("comment"));

}

});

752 CHAPTER 11 - COMPONENT APPENDIX

Jetty JMX support

From Camel 2.3.0, camel-jetty supports the enabling of Jetty's JMX capabilities at the
component and endpoint level with the endpoint configuration taking priority. Note that JMX
must be enabled within the Camel context in order to enable JMX support in this component
as the component provides Jetty with a reference to the MBeanServer registered with the
Camel context. Because the camel-jetty component caches and reuses Jetty resources for a
given protocol/host/port pairing, this configuration option will only be evaluated during the
creation of the first endpoint to use a protocol/host/port pairing. For example, given two
routes created from the following XML fragments, JMX support would remain enabled for all
endpoints listening on "https://0.0.0.0".

<from uri="jetty:https://0.0.0.0/myapp/myservice1/?enableJmx=true"/>

<from uri="jetty:https://0.0.0.0/myapp/myservice2/?enableJmx=false"/>

The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer.
Jetty creates MBean names dynamically. If you are running another instance of Jetty outside of
the Camel context and sharing the same MBeanServer between the instances, you can provide
both instances with a reference to the same MBeanContainer in order to avoid name collisions
when registering Jetty MBeans.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ HTTP

JING COMPONENT

The Jing component uses the Jing Library to perform XML validation of the message body using
either

• RelaxNG XML Syntax
• RelaxNG Compact Syntax

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jing</artifactId>
<version>x.x.x</version>

CHAPTER 11 - COMPONENT APPENDIX 753

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/http.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html

<!-- use the same version as your Camel core version -->
</dependency>

Note that the MSV component can also support RelaxNG XML syntax.

URI format

rng:someLocalOrRemoteResource
rnc:someLocalOrRemoteResource

Where rng means use the RelaxNG XML Syntax whereas rnc means use RelaxNG Compact
Syntax. The following examples show possible URI values

Example Description

rng:foo/bar.rng References the XML file foo/bar.rng on the classpath

rnc: http://foo.com/
bar.rnc

References the RelaxNG Compact Syntax file from the URL,
http://foo.com/bar.rnc

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

useDom false
Specifies whether DOMSource/DOMResult or SaxSource/SaxResult
should be used by the validator.

Example

The following example shows how to configure a route from the endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given RelaxNG Compact Syntax schema (which is supplied on the
classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<doTry>

<to uri="rnc:org/apache/camel/component/validator/jing/schema.rnc"/>
<to uri="mock:valid"/>

<doCatch>

754 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/msv.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html

<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

JMS COMPONENT

The JMS component allows messages to be sent to (or consumed from) a JMS Queue or Topic.
The implementation of the JMS Component uses Spring's JMS support for declarative
transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jms:[queue:|topic:]destinationName[?options]

Where destinationName is a JMS queue or topic name. By default, the
destinationName is interpreted as a queue name. For example, to connect to the queue,
FOO.BAR use:

CHAPTER 11 - COMPONENT APPENDIX 755

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://java.sun.com/products/jms/

Using ActiveMQ
If you are using Apache ActiveMQ, you should prefer the ActiveMQ component as
it has been optimized for ActiveMQ. All of the options and samples on this page are
also valid for the ActiveMQ component.

Transacted and caching
See section Transactions and Cache Levels below if you are using transactions with
JMS as it can impact performance.

Request/Reply over JMS
Make sure to read the section Request-reply over JMS further below on this page for
important notes about request/reply, as Camel offers a number of options to
configure for performance, and clustered environments.

jms:FOO.BAR

You can include the optional queue: prefix, if you prefer:

jms:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to
connect to the topic, Stocks.Prices, use:

jms:topic:Stocks.Prices

You append query options to the URI using the following format,
?option=value&option=value&...

756 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/
http://camel.apache.org/activemq.html
http://camel.apache.org/activemq.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html

Notes

Using ActiveMQ

The JMS component reuses Spring 2's JmsTemplate for sending messages. This is not ideal
for use in a non-J2EE container and typically requires some caching in the JMS provider to avoid
poor performance.

If you intend to use Apache ActiveMQ as your Message Broker - which is a good choice as
ActiveMQ rocks , then we recommend that you either:

• Use the ActiveMQ component, which is already optimized to use ActiveMQ
efficiently

• Use the PoolingConnectionFactory in ActiveMQ.

Transactions and Cache Levels

If you are consuming messages and using transactions (transacted=true) then the default
settings for cache level can impact performance.
If you are using XA transactions then you cannot cache as it can cause the XA transaction to
not work properly.

If you are not using XA, then you should consider caching as it speeds up performance,
such as setting cacheLevelName=CACHE_CONSUMER.

Through Camel 2.7.x, the default setting for cacheLevelName is CACHE_CONSUMER.
You will need to explicitly set cacheLevelName=CACHE_NONE.
In Camel 2.8 onwards, the default setting for cacheLevelName is CACHE_AUTO. This
default auto detects the mode and sets the cache level accordingly to:

▪ CACHE_CONSUMER = if transacted=false
▪ CACHE_NONE = if transacted=true

So you can say the default setting is conservative. Consider using
cacheLevelName=CACHE_CONSUMER if you are using non-XA transactions.

Durable Subscriptions

If you wish to use durable topic subscriptions, you need to specify both clientId and
durableSubscriptionName. The value of the clientId must be unique and can only be
used by a single JMS connection instance in your entire network. You may prefer to use Virtual
Topics instead to avoid this limitation. More background on durable messaging here.

CHAPTER 11 - COMPONENT APPENDIX 757

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://camel.apache.org/activemq.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

Message Header Mapping

When using message headers, the JMS specification states that header names must be valid Java
identifiers. So try to name your headers to be valid Java identifiers. One benefit of doing this is
that you can then use your headers inside a JMS Selector (whose SQL92 syntax mandates Java
identifier syntax for headers).

A simple strategy for mapping header names is used by default. The strategy is to replace any
dots and hyphens in the header name as shown below and to reverse the replacement when
the header name is restored from a JMS message sent over the wire. What does this mean? No
more losing method names to invoke on a bean component, no more losing the filename
header for the File Component, and so on.

The current header name strategy for accepting header names in Camel is as follows:
▪ Dots are replaced by _DOT_ and the replacement is reversed when Camel consume

the message
▪ Hyphen is replaced by _HYPHEN_ and the replacement is reversed when Camel

consumes the message

Options

You can configure many different properties on the JMS endpoint which map to properties on
the JMSConfiguration POJO.
The options are divided into two tables, the first one with the most common options used. The
latter contains the rest.

Most commonly used options

Option
Default
Value

Description

clientId null
Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be used by a single JMS
connection instance. It is typically only required for durable topic subscriptions. You may prefer to use Virtual Topics
instead.

concurrentConsumers 1
Specifies the default number of concurrent consumers. From Camel 2.10.3 onwards this option can also be used when
doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of
threads.

disableReplyTo false

If true, a producer will behave like a InOnly exchange with the exception that JMSReplyTo header is sent out and not
be suppressed like in the case of InOnly. Like InOnly the producer will not wait for a reply. A consumer with this flag
will behave like InOnly. This feature can be used to bridge InOut requests to another queue so that a route on the
other queue will send it«s response directly back to the original JMSReplyTo.

durableSubscriptionName null
The durable subscriber name for specifying durable topic subscriptions. The clientId option must be configured as
well.

maxConcurrentConsumers 1
Specifies the maximum number of concurrent consumers. From Camel 2.10.3 onwards this option can also be used
when doing request/reply over JMS. See also the maxMessagesPerTask option to control dynamic scaling up/down of
threads.

maxMessagesPerTask -1
The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers (eg min < max), then this
option can be used to set a value to eg 100 to control how fast the consumers will shrink when less work is required.

preserveMessageQos false

Set to true, if you want to send message using the QoS settings specified on the message, instead of the QoS settings on
the JMS endpoint. The following three headers are considered JMSPriority, JMSDeliveryMode, and
JMSExpiration. You can provide all or only some of them. If not provided, Camel will fall back to use the values from
the endpoint instead. So, when using this option, the headers override the values from the endpoint. The
explicitQosEnabled option, by contrast, will only use options set on the endpoint, and not values from the message
header.

758 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/virtual-destinations.html

Mapping to Spring JMS
Many of these properties map to properties on Spring JMS, which Camel uses for
sending and receiving messages. So you can get more information about these
properties by consulting the relevant Spring documentation.

replyTo null
Provides an explicit ReplyTo destination, which overrides any incoming value of Message.getJMSReplyTo(). If you
do Request Reply over JMS then make sure to read the section Request-reply over JMS further below for more details,
and the replyToType option as well.

replyToType null

Camel 2.9: Allows for explicitly specifying which kind of strategy to use for replyTo queues when doing request/reply
over JMS. Possible values are: Temporary, Shared, or Exclusive. By default Camel will use temporary queues.
However if replyTo has been configured, then Shared is used by default. This option allows you to use exclusive
queues instead of shared ones. See further below for more details, and especially the notes about the implications if
running in a clustered environment, and the fact that Shared reply queues has lower performance than its alternatives
Temporary and Exclusive.

requestTimeout 20000
Producer only: The timeout for waiting for a reply when using the InOut Exchange Pattern (in milliseconds). The
default is 20 seconds. See below in section About time to live for more details. See also the requestTimeoutCheckerInterval
option.

selector null
Sets the JMS Selector, which is an SQL 92 predicate that is used to filter messages within the broker. You may have to
encode special characters such as = as %3D Before Camel 2.3.0, we don't support this option in
CamelConsumerTemplate

timeToLive null
When sending messages, specifies the time-to-live of the message (in milliseconds). See below in section About time to live
for more details.

transacted false Specifies whether to use transacted mode for sending/receiving messages using the InOnly Exchange Pattern.

testConnectionOnStartup false

Camel 2.1: Specifies whether to test the connection on startup. This ensures that when Camel starts that all the JMS
consumers have a valid connection to the JMS broker. If a connection cannot be granted then Camel throws an exception
on startup. This ensures that Camel is not started with failed connections. From Camel 2.8 onwards also the JMS
producers is tested as well.

All the other options

Option Default Value Description

acceptMessagesWhileStopping false

Specifies whether the consumer accept messages while it is stopping. You may consider
enabling this option, if you start and stop JMS routes at runtime, while there are still messages
enqued on the queue. If this option is false, and you stop the JMS route, then messages may
be rejected, and the JMS broker would have to attempt redeliveries, which yet again may be
rejected, and eventually the message may be moved at a dead letter queue on the JMS broker.
To avoid this its recommended to enable this option.

acknowledgementModeName AUTO_ACKNOWLEDGE
The JMS acknowledgement name, which is one of: SESSION_TRANSACTED,
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE

acknowledgementMode -1
The JMS acknowledgement mode defined as an Integer. Allows you to set vendor-specific
extensions to the acknowledgment mode. For the regular modes, it is preferable to use the
acknowledgementModeName instead.

allowNullBody true
Camel 2.9.3/2.10.1: Whether to allow sending messages with no body. If this option is
false and the message body is null, then an JMSException is thrown.

alwaysCopyMessage false

If true, Camel will always make a JMS message copy of the message when it is passed to the
producer for sending. Copying the message is needed in some situations, such as when a
replyToDestinationSelectorName is set (incidentally, Camel will set the
alwaysCopyMessage option to true, if a replyToDestinationSelectorName is
set)

asyncConsumer false

Camel 2.9: Whether the JmsConsumer processes the Exchange asynchronously. If enabled
then the JmsConsumer may pickup the next message from the JMS queue, while the previous
message is being processed asynchronously (by the Asynchronous Routing Engine). This means
that messages may be processed not 100% strictly in order. If disabled (as default) then the
Exchange is fully processed before the JmsConsumer will pickup the next message from the
JMS queue. Note if transacted has been enabled, then asyncConsumer=true does not
run asynchronously, as transactions must be executed synchronously (Camel 3.0 may support
async transactions).

CHAPTER 11 - COMPONENT APPENDIX 759

http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/exchange.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/exchange.html

asyncStartListener false

Camel 2.10: Whether to startup the JmsConsumer message listener asynchronously, when
starting a route. For example if a JmsConsumer cannot get a connection to a remote JMS
broker, then it may block while retrying and/or failover. This will cause Camel to block while
starting routes. By setting this option to true, you will let routes startup, while the
JmsConsumer connects to the JMS broker using a dedicated thread in asynchronous mode. If
this option is used, then beware that if the connection could not be established, then an
exception is logged at WARN level, and the consumer will not be able to receive messages; You
can then restart the route to retry.

asyncStopListener false
Camel 2.10: Whether to stop the JmsConsumer message listener asynchronously, when
stopping a route.

autoStartup true Specifies whether the consumer container should auto-startup.

cacheLevelName
CACHE_AUTO (Camel >= 2.8.0)
CACHE_CONSUMER (Camel <= 2.7.1)

Sets the cache level by name for the underlying JMS resources. Possible values are:
CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE, and
CACHE_SESSION. The default setting for Camel 2.8 and newer is CACHE_AUTO. For
Camel 2.7.1 and older the default is CACHE_CONSUMER. See the Spring documentation and
Transactions Cache Levels for more information.

cacheLevel Ê
Sets the cache level by ID for the underlying JMS resources. See cacheLevelName option for
more details.

consumerType Default

The consumer type to use, which can be one of: Simple, Default, or Custom. The
consumer type determines which Spring JMS listener to use. Default will use
org.springframework.jms.listener.DefaultMessageListenerContainer,
Simple will use
org.springframework.jms.listener.SimpleMessageListenerContainer.
When Custom is specified, the MessageListenerContainerFactory defined by the
messageListenerContainerFactoryRef option will determine what
org.springframework.jms.listener.AbstractMessageListenerContainer
to use (new option in Camel 2.10.2 onwards). This option was temporary removed in
Camel 2.7 and 2.8. But has been added back from Camel 2.9 onwards.

connectionFactory null
The default JMS connection factory to use for the listenerConnectionFactory and
templateConnectionFactory, if neither is specified.

defaultTaskExecutorType (see description)

Camel 2.10.4: Specifies what default TaskExecutor type to use in the
DefaultMessageListenerContainer, for both consumer endpoints and the ReplyTo consumer of
producer endpoints. Possible values: SimpleAsync (uses Spring's SimpleAsyncTaskExecutor)
or ThreadPool (uses Spring's ThreadPoolTaskExecutor with optimal values - cached
threadpool-like). If not set, it defaults to the previous behaviour, which uses a cached thread
pool for consumer endpoints and SimpleAsync for reply consumers. The use of ThreadPool
is recommended to reduce "thread trash" in elastic configurations with dynamically increasing
and decreasing concurrent consumers.

deliveryPersistent true Specifies whether persistent delivery is used by default.

destination null Specifies the JMS Destination object to use on this endpoint.

destinationName null Specifies the JMS destination name to use on this endpoint.

destinationResolver null

A pluggable
org.springframework.jms.support.destination.DestinationResolver
that allows you to use your own resolver (for example, to lookup the real destination in a JNDI
registry).

disableTimeToLive false

Camel 2.8: Use this option to force disabling time to live. For example when you do request/
reply over JMS, then Camel will by default use the requestTimeout value as time to live on
the message being sent. The problem is that the sender and receiver systems have to have their
clocks synchronized, so they are in sync. This is not always so easy to archive. So you can use
disableTimeToLive=true to not set a time to live value on the sent message. Then the
message will not expire on the receiver system. See below in section About time to live for more
details.

eagerLoadingOfProperties false

Enables eager loading of JMS properties as soon as a message is received, which is generally
inefficient, because the JMS properties might not be required. But this feature can sometimes
catch early any issues with the underlying JMS provider and the use of JMS properties. This
feature can also be used for testing purposes, to ensure JMS properties can be understood and
handled correctly.

exceptionListener null Specifies the JMS Exception Listener that is to be notified of any underlying JMS exceptions.

errorHandler null

Camel 2.8.2, 2.9: Specifies a org.springframework.util.ErrorHandler to be
invoked in case of any uncaught exceptions thrown while processing a Message. By default
these exceptions will be logged at the WARN level, if no errorHandler has been
configured. From Camel 2.9.1: onwards you can configure logging level and whether stack
traces should be logged using the below two options. This makes it much easier to configure,
than having to code a custom errorHandler.

errorHandlerLoggingLevel WARN
Camel 2.9.1: Allows to configure the default errorHandler logging level for logging
uncaught exceptions.

errorHandlerLogStackTrace true
Camel 2.9.1: Allows to control whether stacktraces should be logged or not, by the default
errorHandler.

760 CHAPTER 11 - COMPONENT APPENDIX

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/core/task/SimpleAsyncTaskExecutor.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html

explicitQosEnabled false

Set if the deliveryMode, priority or timeToLive qualities of service should be used
when sending messages. This option is based on Spring's JmsTemplate. The
deliveryMode, priority and timeToLive options are applied to the current endpoint.
This contrasts with the preserveMessageQos option, which operates at message
granularity, reading QoS properties exclusively from the Camel In message headers.

exposeListenerSession true Specifies whether the listener session should be exposed when consuming messages.

forceSendOriginalMessage false
Camel 2.7: When using mapJmsMessage=false Camel will create a new JMS message to
send to a new JMS destination if you touch the headers (get or set) during the route. Set this
option to true to force Camel to send the original JMS message that was received.

idleTaskExecutionLimit 1

Specifies the limit for idle executions of a receive task, not having received any message within
its execution. If this limit is reached, the task will shut down and leave receiving to other
executing tasks (in the case of dynamic scheduling; see the maxConcurrentConsumers
setting).

idleConsumerLimit 1
Camel 2.8.2, 2.9: Specify the limit for the number of consumers that are allowed to be idle
at any given time.

includeSentJMSMessageID false
Camel 2.10.3: Only applicable when sending to JMS destination using InOnly (eg fire and
forget). Enabling this option will enrich the Camel Exchange with the actual JMSMessageID that
was used by the JMS client when the message was sent to the JMS destination.

jmsMessageType null

Allows you to force the use of a specific javax.jms.Message implementation for sending
JMS messages. Possible values are: Bytes, Map, Object, Stream, Text. By default, Camel
would determine which JMS message type to use from the In body type. This option allows you
to specify it.

jmsKeyFormatStrategy default

Pluggable strategy for encoding and decoding JMS keys so they can be compliant with the JMS
specification. Camel provides two implementations out of the box: default and
passthrough. The default strategy will safely marshal dots and hyphens (. and -). The
passthrough strategy leaves the key as is. Can be used for JMS brokers which do not care
whether JMS header keys contain illegal characters. You can provide your own implementation
of the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to
it using the # notation.

jmsOperations null

Allows you to use your own implementation of the
org.springframework.jms.core.JmsOperations interface. Camel uses
JmsTemplate as default. Can be used for testing purpose, but not used much as stated in the
spring API docs.

lazyCreateTransactionManager true
If true, Camel will create a JmsTransactionManager, if there is no
transactionManager injected when option transacted=true.

listenerConnectionFactory null The JMS connection factory used for consuming messages.

mapJmsMessage true
Specifies whether Camel should auto map the received JMS message to an appropiate payload
type, such as javax.jms.TextMessage to a String etc. See section about how mapping
works below for more details.

maximumBrowseSize -1
Limits the number of messages fetched at most, when browsing endpoints using Browse or JMX
API.

messageConverter null
To use a custom Spring
org.springframework.jms.support.converter.MessageConverter so you
can be 100% in control how to map to/from a javax.jms.Message.

messageIdEnabled true When sending, specifies whether message IDs should be added.

messageListenerContainerFactoryRef null

Camel 2.10.2: Registry ID of the MessageListenerContainerFactory used to
determine what
org.springframework.jms.listener.AbstractMessageListenerContainer
to use to consume messages. Setting this will automatically set consumerType to Custom.

messageTimestampEnabled true Specifies whether timestamps should be enabled by default on sending messages.

password null The password for the connector factory.

priority 4
Values greater than 1 specify the message priority when sending (where 0 is the lowest priority
and 9 is the highest). The explicitQosEnabled option must also be enabled in order for
this option to have any effect.

pubSubNoLocal false Specifies whether to inhibit the delivery of messages published by its own connection.

receiveTimeout None The timeout for receiving messages (in milliseconds).

recoveryInterval 5000
Specifies the interval between recovery attempts, i.e. when a connection is being refreshed, in
milliseconds. The default is 5000 ms, that is, 5 seconds.

replyToCacheLevelName CACHE_CONSUMER

Camel 2.9.1: Sets the cache level by name for the reply consumer when doing request/reply
over JMS. This option only applies when using fixed reply queues (not temporary). Camel will
by default use: CACHE_CONSUMER for exclusive or shared w/ replyToSelectorName.
And CACHE_SESSION for shared without replyToSelectorName. Some JMS brokers
such as IBM WebSphere may require to set the replyToCacheLevelName=CACHE_NONE
to work.

CHAPTER 11 - COMPONENT APPENDIX 761

http://camel.apache.org/exchange.html
http://camel.apache.org/browse.html

replyToDestinationSelectorName null
Sets the JMS Selector using the fixed name to be used so you can filter out your own replies
from the others when using a shared queue (that is, if you are not using a temporary reply
queue).

replyToDeliveryPersistent true Specifies whether to use persistent delivery by default for replies.

requestTimeoutCheckerInterval 1000

Camel 2.9.2: Configures how often Camel should check for timed out Exchanges when doing
request/reply over JMS.By default Camel checks once per second. But if you must react faster
when a timeout occurs, then you can lower this interval, to check more frequently. The
timeout is determined by the option requestTimeout.

subscriptionDurable false
@deprecated: Enabled by default, if you specify a durableSubscriberName and a
clientId.

taskExecutor null Allows you to specify a custom task executor for consuming messages.

taskExecutorSpring2 null
Camel 2.6: To use when using Spring 2.x with Camel. Allows you to specify a custom task
executor for consuming messages.

templateConnectionFactory null The JMS connection factory used for sending messages.

transactedInOut false
@deprecated: Specifies whether to use transacted mode for sending messages using the
InOut Exchange Pattern. Applies only to producer endpoints. See section Enabling Transacted
Consumption for more details.

transactionManager null The Spring transaction manager to use.

transactionName "JmsConsumer[destinationName]" The name of the transaction to use.

transactionTimeout null The timeout value of the transaction (in seconds), if using transacted mode.

transferException false

If enabled and you are using Request Reply messaging (InOut) and an Exchange failed on the
consumer side, then the caused Exception will be send back in response as a
javax.jms.ObjectMessage. If the client is Camel, the returned Exception is
rethrown. This allows you to use Camel JMS as a bridge in your routing - for example, using
persistent queues to enable robust routing. Notice that if you also have transferExchange
enabled, this option takes precedence. The caught exception is required to be serializable. The
original Exception on the consumer side can be wrapped in an outer exception such as
org.apache.camel.RuntimeCamelException when returned to the producer.

transferExchange false

You can transfer the exchange over the wire instead of just the body and headers. The
following fields are transferred: In body, Out body, Fault body, In headers, Out headers, Fault
headers, exchange properties, exchange exception. This requires that the objects are
serializable. Camel will exclude any non-serializable objects and log it at WARN level. You must
enable this option on both the producer and consumer side, so Camel knows the payloads is an
Exchange and not a regular payload.

username null The username for the connector factory.

useMessageIDAsCorrelationID false
Specifies whether JMSMessageID should always be used as JMSCorrelationID for
InOut messages.

useVersion102 false
@deprecated (removed from Camel 2.5 onwards): Specifies whether the old JMS
API should be used.

Message Mapping between JMS and Camel

Camel automatically maps messages between javax.jms.Message and
org.apache.camel.Message.

When sending a JMS message, Camel converts the message body to the following JMS
message types:

Body Type JMS Message Comment

String javax.jms.TextMessage Ê

org.w3c.dom.Node javax.jms.TextMessage The DOM will be converted to String.

Map javax.jms.MapMessage Ê

java.io.Serializable javax.jms.ObjectMessage Ê

byte[] javax.jms.BytesMessage Ê

java.io.File javax.jms.BytesMessage Ê

java.io.Reader javax.jms.BytesMessage Ê

java.io.InputStream javax.jms.BytesMessage Ê

java.nio.ByteBuffer javax.jms.BytesMessage Ê

762 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html
http://camel.apache.org/jms.html

When receiving a JMS message, Camel converts the JMS message to the following body type:

JMS Message Body Type

javax.jms.TextMessage String

javax.jms.BytesMessage byte[]

javax.jms.MapMessage Map<String, Object>

javax.jms.ObjectMessage Object

Disabling auto-mapping of JMS messages

You can use the mapJmsMessage option to disable the auto-mapping above. If disabled,
Camel will not try to map the received JMS message, but instead uses it directly as the payload.
This allows you to avoid the overhead of mapping and let Camel just pass through the JMS
message. For instance, it even allows you to route javax.jms.ObjectMessage JMS
messages with classes you do not have on the classpath.

Using a custom MessageConverter

You can use the messageConverter option to do the mapping yourself in a Spring
org.springframework.jms.support.converter.MessageConverter class.

For example, in the route below we use a custom message converter when sending a
message to the JMS order queue:

from("file://inbox/
order").to("jms:queue:order?messageConverter=#myMessageConverter");

You can also use a custom message converter when consuming from a JMS destination.

Controlling the mapping strategy selected

You can use the jmsMessageType option on the endpoint URL to force a specific message
type for all messages.
In the route below, we poll files from a folder and send them as javax.jms.TextMessage
as we have forced the JMS producer endpoint to use text messages:

from("file://inbox/order").to("jms:queue:order?jmsMessageType=Text");

You can also specify the message type to use for each messabe by setting the header with the
key CamelJmsMessageType. For example:

CHAPTER 11 - COMPONENT APPENDIX 763

from("file://inbox/order").setHeader("CamelJmsMessageType",
JmsMessageType.Text).to("jms:queue:order");

The possible values are defined in the enum class,
org.apache.camel.jms.JmsMessageType.

Message format when sending

The exchange that is sent over the JMS wire must conform to the JMS Message spec.

For the exchange.in.header the following rules apply for the header keys:
▪ Keys starting with JMS or JMSX are reserved.
▪ exchange.in.headers keys must be literals and all be valid Java identifiers (do

not use dots in the key name).
▪ Camel replaces dots & hyphens and the reverse when when consuming JMS messages:
. is replaced by _DOT_ and the reverse replacement when Camel consumes the
message.
- is replaced by _HYPHEN_ and the reverse replacement when Camel consumes the
message.

▪ See also the option jmsKeyFormatStrategy, which allows use of your own
custom strategy for formatting keys.

For the exchange.in.header, the following rules apply for the header values:
▪ The values must be primitives or their counter objects (such as Integer, Long,
Character). The types, String, CharSequence, Date, BigDecimal and
BigInteger are all converted to their toString() representation. All other
types are dropped.

Camel will log with category org.apache.camel.component.jms.JmsBinding at
DEBUG level if it drops a given header value. For example:

2008-07-09 06:43:04,046 [main] DEBUG JmsBinding
- Ignoring non primitive header: order of class:

org.apache.camel.component.jms.issues.DummyOrder with value: DummyOrder{orderId=333,
itemId=4444, quantity=2}

Message format when receiving

Camel adds the following properties to the Exchange when it receives a message:

Property Type Description

org.apache.camel.jms.replyDestination javax.jms.Destination The reply destination.

Camel adds the following JMS properties to the In message headers when it receives a JMS
message:

Header Type Description

764 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

JMSCorrelationID String The JMS correlation ID.

JMSDeliveryMode int The JMS delivery mode.

JMSDestination javax.jms.Destination The JMS destination.

JMSExpiration long The JMS expiration.

JMSMessageID String The JMS unique message ID.

JMSPriority int The JMS priority (with 0 as the lowest priority and 9 as the highest).

JMSRedelivered boolean Is the JMS message redelivered.

JMSReplyTo javax.jms.Destination The JMS reply-to destination.

JMSTimestamp long The JMS timestamp.

JMSType String The JMS type.

JMSXGroupID String The JMS group ID.

As all the above information is standard JMS you can check the JMS documentation for further
details.

About using Camel to send and receive messages and JMSReplyTo

The JMS component is complex and you have to pay close attention to how it works in some
cases. So this is a short summary of some of the areas/pitfalls to look for.

When Camel sends a message using its JMSProducer, it checks the following conditions:
▪ The message exchange pattern,
▪ Whether a JMSReplyTo was set in the endpoint or in the message headers,
▪ Whether any of the following options have been set on the JMS endpoint:
disableReplyTo, preserveMessageQos, explicitQosEnabled.

All this can be a tad complex to understand and configure to support your use case.

JmsProducer

The JmsProducer behaves as follows, depending on configuration:

Exchange
Pattern

Other
options

Description

InOut -
Camel will expect a reply, set a temporary JMSReplyTo, and after sending the message, it will start to listen for the reply message on
the temporary queue.

InOut
JMSReplyTo
is set

Camel will expect a reply and, after sending the message, it will start to listen for the reply message on the specified JMSReplyTo
queue.

InOnly - Camel will send the message and not expect a reply.

InOnly
JMSReplyTo
is set

By default, Camel discards the JMSReplyTo destination and clears the JMSReplyTo header before sending the message. Camel then
sends the message and does not expect a reply. Camel logs this in the log at WARN level (changed to DEBUG level from Camel 2.6
onwards. You can use preserveMessageQuo=true to instruct Camel to keep the JMSReplyTo. In all situations the
JmsProducer does not expect any reply and thus continue after sending the message.

JmsConsumer

The JmsConsumer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will send the reply back to the JMSReplyTo queue.

CHAPTER 11 - COMPONENT APPENDIX 765

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

InOnly - Camel will not send a reply back, as the pattern is InOnly.

- disableReplyTo=true This option suppresses replies.

So pay attention to the message exchange pattern set on your exchanges.

If you send a message to a JMS destination in the middle of your route you can specify the
exchange pattern to use, see more at Request Reply.
This is useful if you want to send an InOnly message to a JMS topic:

from("activemq:queue:in")
.to("bean:validateOrder")
.to(ExchangePattern.InOnly, "activemq:topic:order")
.to("bean:handleOrder");

Reuse endpoint and send to different destinations computed at runtime

If you need to send messages to a lot of different JMS destinations, it makes sense to reuse a
JMS endpoint and specify the real destination in a message header. This allows Camel to reuse
the same endpoint, but send to different destinations. This greatly reduces the number of
endpoints created and economizes on memory and thread resources.

You can specify the destination in the following headers:

Header Type Description

CamelJmsDestination javax.jms.Destination A destination object.

CamelJmsDestinationName String The destination name.

For example, the following route shows how you can compute a destination at run time and
use it to override the destination appearing in the JMS URL:

from("file://inbox")
.to("bean:computeDestination")
.to("activemq:queue:dummy");

The queue name, dummy, is just a placeholder. It must be provided as part of the JMS endpoint
URL, but it will be ignored in this example.

In the computeDestination bean, specify the real destination by setting the
CamelJmsDestinationName header as follows:

public void setJmsHeader(Exchange exchange) {
String id =
exchange.getIn().setHeader("CamelJmsDestinationName", "order:" + id");

}

Then Camel will read this header and use it as the destination instead of the one configured on
the endpoint. So, in this example Camel sends the message to activemq:queue:order:2,
assuming the id value was 2.

766 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html

If both the CamelJmsDestination and the CamelJmsDestinationName headers
are set, CamelJmsDestination takes priority.

Configuring different JMS providers

You can configure your JMS provider in Spring XML as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="true"/>

</camelContext>

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

</property>
</bean>

Basically, you can configure as many JMS component instances as you wish and give them a
unique name using the id attribute. The preceding example configures an activemq
component. You could do the same to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints within that
component using URIs. For example for the component name, activemq, you can then refer
to destinations using the URI format, activemq:[queue:|topic:]destinationName.
You can use the same approach for all other JMS providers.

This works by the SpringCamelContext lazily fetching components from the spring context
for the scheme name you use for Endpoint URIs and having the Component resolve the
endpoint URIs.

Using JNDI to find the ConnectionFactory

If you are using a J2EE container, you might need to look up JNDI to find the JMS
ConnectionFactory rather than use the usual <bean> mechanism in Spring. You can do
this using Spring's factory bean or the new Spring XML namespace. For example:

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="myConnectionFactory"/>

</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="jms/connectionFactory"/>

See The jee schema in the Spring reference documentation for more details about JNDI lookup.

CHAPTER 11 - COMPONENT APPENDIX 767

http://camel.apache.org/spring.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/component.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-jee

Concurrent Consuming

A common requirement with JMS is to consume messages concurrently in multiple threads in
order to make an application more responsive. You can set the concurrentConsumers
option to specify the number of threads servicing the JMS endpoint, as follows:

from("jms:SomeQueue?concurrentConsumers=20").
bean(MyClass.class);

You can configure this option in one of the following ways:
• On the JmsComponent,
• On the endpoint URI or,
• By invoking setConcurrentConsumers() directly on the JmsEndpoint.

Request-reply over JMS

Camel supports Request Reply over JMS. In essence the MEP of the Exchange should be InOut
when you send a message to a JMS queue.

Camel offers a number of options to configure request/reply over JMS that influence
performance and clustered environments. The table below summaries the options.

Option Performance Cluster Description

Temporary Fast Yes
A temporary queue is used as reply queue, and automatic created by Camel. To use this do
not specify a replyTo queue name. And you can optionally configure
replyToType=Temporary to make it stand out that temporary queues are in use.

Shared Slow Yes

A shared persistent queue is used as reply queue. The queue must be created beforehand,
although some brokers can create them on the fly such as Apache ActiveMQ. To use this you
must specify the replyTo queue name. And you can optionally configure
replyToType=Shared to make it stand out that shared queues are in use. A shared queue
can be used in a clustered environment with multiple nodes running this Camel application at
the same time. All using the same shared reply queue. This is possible because JMS Message
selectors are used to correlate expected reply messages; this impacts performance though.
JMS Message selectors is slower, and therefore not as fast as Temporary or Exclusive
queues. See further below how to tweak this for better performance.

Exclusive Fast No (*Yes)

An exclusive persistent queue is used as reply queue. The queue must be created beforehand,
although some brokers can create them on the fly such as Apache ActiveMQ. To use this you
must specify the replyTo queue name. And you must configure
replyToType=Exclusive to instruct Camel to use exclusive queues, as Shared is used
by default, if a replyTo queue name was configured. When using exclusive reply queues,
then JMS Message selectors are not in use, and therefore other applications must not use this
queue as well. An exclusive queue cannot be used in a clustered environment with multiple
nodes running this Camel application at the same time; as we do not have control if the reply
queue comes back to the same node that sent the request message; that is why shared queues
use JMS Message selectors to make sure of this. Though if you configure each Exclusive
reply queue with an unique name per node, then you can run this in a clustered environment.
As then the reply message will be sent back to that queue for the given node, that awaits the
reply message.

concurrentConsumers Fast Yes

Camel 2.10.3: Allows to process reply messages concurrently using concurrent message
listeners in use. You can specify a range using the concurrentConsumers and
maxConcurrentConsumers options. Notice: That using Shared reply queues may not
work as well with concurrent listeners, so use this option with care.

maxConcurrentConsumers Fast Yes

Camel 2.10.3: Allows to process reply messages concurrently using concurrent message
listeners in use. You can specify a range using the concurrentConsumers and
maxConcurrentConsumers options. Notice: That using Shared reply queues may not
work as well with concurrent listeners, so use this option with care.

The JmsProducer detects the InOut and provides a JMSReplyTo header with the reply
destination to be used. By default Camel uses a temporary queue, but you can use the

768 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html

replyTo option on the endpoint to specify a fixed reply queue (see more below about fixed
reply queue).

Camel will automatic setup a consumer which listen on the reply queue, so you should not
do anything.
This consumer is a Spring DefaultMessageListenerContainer which listen for replies.
However it's fixed to 1 concurrent consumer.
That means replies will be processed in sequence as there are only 1 thread to process the
replies. If you want to process replies faster, then we need to use concurrency. But not using
the concurrentConsumer option. We should use the threads from the Camel DSL
instead, as shown in the route below:

from(xxx)
.inOut().to("activemq:queue:foo")
.threads(5)
.to(yyy)
.to(zzz);

In this route we instruct Camel to route replies asynchronously using a thread pool with 5
threads.

From Camel 2.10.3 onwards you can now configure the listener to use concurrent threads
using the concurrentConsumers and maxConcurrentConsumers options. This allows
you to easier configure this in Camel as shown below:

from(xxx)
.inOut().to("activemq:queue:foo?concurrentConsumers=5")
.to(yyy)
.to(zzz);

Request-reply over JMS and using a shared fixed reply queue

If you use a fixed reply queue when doing Request Reply over JMS as shown in the example
below, then pay attention.

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar")
.to(yyy)

In this example the fixed reply queue named "bar" is used. By default Camel assumes the queue
is shared when using fixed reply queues, and therefore it uses a JMSSelector to only pickup
the expected reply messages (eg based on the JMSCorrelationID). See next section for
exclusive fixed reply queues. That means its not as fast as temporary queues. You can speedup
how often Camel will pull for reply messages using the receiveTimeout option. By default

CHAPTER 11 - COMPONENT APPENDIX 769

http://camel.apache.org/async.html
http://camel.apache.org/request-reply.html

its 1000 millis. So to make it faster you can set it to 250 millis to pull 4 times per second as
shown:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&receiveTimeout=250")
.to(yyy)

Notice this will cause the Camel to send pull requests to the message broker more frequent,
and thus require more network traffic.
It is generally recommended to use temporary queues if possible.

Request-reply over JMS and using an exclusive fixed reply
queue

Available as of Camel 2.9

In the previous example, Camel would anticipate the fixed reply queue named "bar" was
shared, and thus it uses a JMSSelector to only consume reply messages which it expects.
However there is a drawback doing this as JMS selectos is slower. Also the consumer on the
reply queue is slower to update with new JMS selector ids. In fact it only updates when the
receiveTimeout option times out, which by default is 1 second. So in theory the reply
messages could take up till about 1 sec to be detected. On the other hand if the fixed reply
queue is exclusive to the Camel reply consumer, then we can avoid using the JMS selectors, and
thus be more performant. In fact as fast as using temporary queues. So in Camel 2.9 onwards
we introduced the ReplyToType option which you can configure to Exclusive
to tell Camel that the reply queue is exclusive as shown in the example below:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

Mind that the queue must be exclusive to each and every endpoint. So if you have two routes,
then they each need an unique reply queue as shown in the next example:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

from(aaa)
.inOut().to("activemq:queue:order?replyTo=order.reply&replyToType=Exclusive")
.to(bbb)

The same applies if you run in a clustered environment. Then each node in the cluster must use
an unique reply queue name. As otherwise each node in the cluster may pickup messages which

770 CHAPTER 11 - COMPONENT APPENDIX

was intended as a reply on another node. For clustered environments its recommended to use
shared reply queues instead.

Synchronizing clocks between senders and receivers

When doing messaging between systems, its desirable that the systems have synchronized
clocks. For example when sending a JMS message, then you can set a time to live value on the
message. Then the receiver can inspect this value, and determine if the message is already
expired, and thus drop the message instead of consume and process it. However this requires
that both sender and receiver have synchronized clocks. If you are using ActiveMQ then you
can use the timestamp plugin to synchronize clocks.

About time to live

Read first above about synchronized clocks.

When you do request/reply (InOut) over JMS with Camel then Camel uses a timeout on the
sender side, which is default 20 seconds from the requestTimeout option. You can control
this by setting a higher/lower value. However the time to live value is still set on the JMS
message being send. So that requires the clocks to be synchronized between the systems. If
they are not, then you may want to disable the time to live value being set. This is now possible
using the disableTimeToLive option from Camel 2.8 onwards. So if you set this option
to disableTimeToLive=true, then Camel does not set any time to live value when
sending JMS messages. But the request timeout is still active. So for example if you do request/
reply over JMS and have disabled time to live, then Camel will still use a timeout by 20 seconds
(the requestTimeout option). That option can of course also be configured. So the two
options requestTimeout and disableTimeToLive gives you fine grained control when
doing request/reply.

When you do fire and forget (InOut) over JMS with Camel then Camel by default does not
set any time to live value on the message. You can configure a value by using the timeToLive
option. For example to indicate a 5 sec., you set timeToLive=5000. The option
disableTimeToLive can be used to force disabling the time to live, also for InOnly
messaging. The requestTimeout option is not being used for InOnly messaging.

Enabling Transacted Consumption

A common requirement is to consume from a queue in a transaction and then process the
message using the Camel route. To do this, just ensure that you set the following properties on
the component/endpoint:

• transacted = true
• transactionManager = a Transsaction Manager - typically the
JmsTransactionManager

See the Transactional Client EIP pattern for further details.

CHAPTER 11 - COMPONENT APPENDIX 771

http://camel.apache.org/jms.html
http://activemq.apache.org/
http://activemq.apache.org/timestampplugin.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/transactional-client.html

Transactions and Request Reply over JMS
When using Request Reply over JMS you cannot use a single transaction; JMS will
not send any messages until a commit is performed, so the server side won't
receive anything at all until the transaction commits. Therefore to use Request
Reply you must commit a transaction after sending the request and then use a
separate transaction for receiving the response.

To address this issue the JMS component uses different properties to specify transaction use
for oneway messaging and request reply messaging:

The transacted property applies only to the InOnly message Exchange Pattern
(MEP).

The transactedInOut property applies to the InOut(Request Reply) message
Exchange Pattern (MEP).

If you want to use transactions for Request Reply(InOut MEP), you must set
transactedInOut=true.

Available as of Camel 2.10

You can leverage the DMLC transacted session API using the following properties on
component/endpoint:

• transacted = true
• lazyCreateTransactionManager = false

The benefit of doing so is that the cacheLevel setting will be honored when using local
transactions without a configured TransactionManager. When a TransactionManager is
configured, no caching happens at DMLC level and its necessary to rely on a pooled connection
factory. For more details about this kind of setup see here and here.

Using JMSReplyTo for late replies

When using Camel as a JMS listener, it sets an Exchange property with the value of the ReplyTo
javax.jms.Destination object, having the key ReplyTo. You can obtain this
Destination as follows:

Destination replyDestination =
exchange.getIn().getHeader(JmsConstants.JMS_REPLY_DESTINATION, Destination.class);

And then later use it to send a reply using regular JMS or Camel.

// we need to pass in the JMS component, and in this sample we use ActiveMQ
JmsEndpoint endpoint = JmsEndpoint.newInstance(replyDestination,

772 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/jms/listener/AbstractPollingMessageListenerContainer.html#setSessionTransacted(boolean)
http://tmielke.blogspot.com/2012/03/camel-jms-with-transactions-lessons.html
http://forum.springsource.org/showthread.php?123631-JMS-DMLC-not-caching connection-when-using-TX-despite-cacheLevel-CACHE_CONSUMER&p=403530&posted=1#post403530
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/request-reply.html

activeMQComponent);
// now we have the endpoint we can use regular Camel API to send a message to it
template.sendBody(endpoint, "Here is the late reply.");

A different solution to sending a reply is to provide the replyDestination object in the
same Exchange property when sending. Camel will then pick up this property and use it for the
real destination. The endpoint URI must include a dummy destination, however. For example:

// we pretend to send it to some non existing dummy queue
template.send("activemq:queue:dummy, new Processor() {

public void process(Exchange exchange) throws Exception {
// and here we override the destination with the ReplyTo destination

object so the message is sent to there instead of dummy
exchange.getIn().setHeader(JmsConstants.JMS_DESTINATION, replyDestination);
exchange.getIn().setBody("Here is the late reply.");

}
}

Using a request timeout

In the sample below we send a Request Reply style message Exchange (we use the
requestBody method = InOut) to the slow queue for further processing in Camel and we
wait for a return reply:

// send a in-out with a timeout for 5 sec
Object out = template.requestBody("activemq:queue:slow?requestTimeout=5000", "Hello
World");

Samples

JMS is used in many examples for other components as well. But we provide a few samples
below to get started.

Receiving from JMS

In the following sample we configure a route that receives JMS messages and routes the
message to a POJO:

from("jms:queue:foo").
to("bean:myBusinessLogic");

You can of course use any of the EIP patterns so the route can be context based. For example,
here's how to filter an order topic for the big spenders:

CHAPTER 11 - COMPONENT APPENDIX 773

http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html

from("jms:topic:OrdersTopic").
filter().method("myBean", "isGoldCustomer").

to("jms:queue:BigSpendersQueue");

Sending to a JMS

In the sample below we poll a file folder and send the file content to a JMS topic. As we want
the content of the file as a TextMessage instead of a BytesMessage, we need to convert
the body to a String:

from("file://orders").
convertBodyTo(String.class).
to("jms:topic:OrdersTopic");

Using Annotations

Camel also has annotations so you can use POJO Consuming and POJO Producing.

Spring DSL sample

The preceding examples use the Java DSL. Camel also supports Spring XML DSL. Here is the
big spender sample using Spring DSL:

<route>
<from uri="jms:topic:OrdersTopic"/>
<filter>

<method bean="myBean" method="isGoldCustomer"/>
<to uri="jms:queue:BigSpendersQueue"/>

</filter>
</route>

Other samples

JMS appears in many of the examples for other components and EIP patterns, as well in this
Camel documentation. So feel free to browse the documentation. If you have time, check out
the this tutorial that uses JMS but focuses on how well Spring Remoting and Camel works
together Tutorial-JmsRemoting.

774 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/tutorial-jmsremoting.html

Using JMS as a Dead Letter Queue storing Exchange

Normally, when using JMS as the transport, it only transfers the body and headers as the
payload. If you want to use JMS with a Dead Letter Channel, using a JMS queue as the Dead
Letter Queue, then normally the caused Exception is not stored in the JMS message. You can,
however, use the transferExchange option on the JMS dead letter queue to instruct Camel
to store the entire Exchange in the queue as a javax.jms.ObjectMessage that holds a
org.apache.camel.impl.DefaultExchangeHolder. This allows you to consume
from the Dead Letter Queue and retrieve the caused exception from the Exchange property
with the key Exchange.EXCEPTION_CAUGHT. The demo below illustrates this:

// setup error handler to use JMS as queue and store the entire Exchange
errorHandler(deadLetterChannel("jms:queue:dead?transferExchange=true"));

Then you can consume from the JMS queue and analyze the problem:

from("jms:queue:dead").to("bean:myErrorAnalyzer");

// and in our bean
String body = exchange.getIn().getBody();
Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class);
// the cause message is
String problem = cause.getMessage();

Using JMS as a Dead Letter Channel storing error only

You can use JMS to store the cause error message or to store a custom body, which you can
initialize yourself. The following example uses the Message Translator EIP to do a
transformation on the failed exchange before it is moved to the JMS dead letter queue:

// we sent it to a seda dead queue first
errorHandler(deadLetterChannel("seda:dead"));

// and on the seda dead queue we can do the custom transformation before its sent to
the JMS queue
from("seda:dead").transform(exceptionMessage()).to("jms:queue:dead");

Here we only store the original cause error message in the transform. You can, however, use
any Expression to send whatever you like. For example, you can invoke a method on a Bean or
use a custom processor.

Sending an InOnly message and keeping the JMSReplyTo header

When sending to a JMS destination using camel-jms the producer will use the MEP to detect
if its InOnly or InOut messaging. However there can be times where you want to send an

CHAPTER 11 - COMPONENT APPENDIX 775

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/jms.html
http://camel.apache.org/expression.html
http://camel.apache.org/jms.html

InOnly message but keeping the JMSReplyTo header. To do so you have to instruct Camel to
keep it, otherwise the JMSReplyTo header will be dropped.

For example to send an InOnly message to the foo queue, but with a JMSReplyTo with bar
queue you can do as follows:

template.send("activemq:queue:foo?preserveMessageQos=true", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().setBody("World");
exchange.getIn().setHeader("JMSReplyTo", "bar");

}
});

Notice we use preserveMessageQos=true to instruct Camel to keep the JMSReplyTo
header.

Setting JMS provider options on the destination

Some JMS providers, like IBM's WebSphere MQ need options to be set on the JMS destination.
For example, you may need to specify the targetClient option. Since targetClient is a
WebSphere MQ option and not a Camel URI option, you need to set that on the JMS
destination name like so:

...

.setHeader("CamelJmsDestinationName", constant("queue:///MY_QUEUE?targetClient=1"))

.to("wmq:queue:MY_QUEUE?useMessageIDAsCorrelationID=true");

Some versions of WMQ won't accept this option on the destination name and you will get an
exception like:

com.ibm.msg.client.jms.DetailedJMSException: JMSCC0005: The specified value
'MY_QUEUE?targetClient=1' is not allowed for 'XMSC_DESTINATION_NAME'

A workaround is to use a custom DestinationResolver:

JmsComponent wmq = new JmsComponent(connectionFactory);

wmq.setDestinationResolver(new DestinationResolver(){
public Destination resolveDestinationName(Session session, String destinationName,

boolean pubSubDomain) throws JMSException {
MQQueueSession wmqSession = (MQQueueSession) session;
return wmqSession.createQueue("queue:///" + destinationName +

"?targetClient=1");
}

});

776 CHAPTER 11 - COMPONENT APPENDIX

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Transactional Client
▪ Bean Integration
▪ Tutorial-JmsRemoting
▪ JMSTemplate gotchas

JMX COMPONENT

Available as of Camel 2.6

Standard JMX Consumer Configuration

Component allows consumers to subscribe to an mbean's Notifications. The component
supports passing the Notification object directly through the Exchange or serializing it to XML
according to the schema provided within this project. This is a consumer only component.
Exceptions are thrown if you attempt to create a producer for it.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jmx</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI Format

The component can connect to the local platform mbean server with the following URI:

jmx://platform?options

A remote mbean server url can be provided following the initial JMX scheme like so:

jmx:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi?options

You can append query options to the URI in the following format,
?options=value&option2=value&...

CHAPTER 11 - COMPONENT APPENDIX 777

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/tutorial-jmsremoting.html
http://activemq.apache.org/jmstemplate-gotchas.html

URI Options

Property Required Default Description

format Ê xml
Format for the message body. Either "xml" or "raw". If xml, the notification is serialized to xml. If raw,
then the raw java object is set as the body.

user Ê Ê Credentials for making a remote connection.

password Ê Ê Credentials for making a remote connection.

objectDomain yes Ê The domain for the mbean you're connecting to.

objectName Ê Ê
The name key for the mbean you're connecting to. This value is mutually exclusive with the object
properties that get passed. (see below)

notificationFilter Ê Ê
Reference to a bean that implements the NotificationFilter. The #ref syntax should be used
to reference the bean via the Registry.

handback Ê Ê
Value to handback to the listener when a notification is received. This value will be put in the message
header with the key "jmx.handback"

testConnectionOnStartup Ê true
Camel 2.11 If true, the consumer will throw an exception when unable to establish the JMX
connection upon startup. If false, the consumer will attempt to establish the JMX connection every 'x'
seconds until the connection is made Ð where 'x' is the configured reconnectDelay.

reconnectOnConnectionFailure Ê false
Camel 2.11 If true, the consumer will attempt to reconnect to the JMX server when any connection
failure occurs. The consumer will attempt to re-establish the JMX connection every 'x' seconds until
the connection is made-- where 'x' is the configured reconnectDelay.

reconnectDelay Ê 10 seconds
Camel 2.11 The number of seconds to wait before retrying creation of the initial connection or
before reconnecting a lost connection.

ObjectName Construction

The URI must always have the objectDomain property. In addition, the URI must contain either
objectName or one or more properties that start with "key."

Domain with Name property

When the objectName property is provided, the following constructor is used to build the
ObjectName? for the mbean:

ObjectName(String domain, String key, String value)

The key value in the above will be "name" and the value will be the value of the objectName
property.

Domain with Hashtable

ObjectName(String domain, Hashtable<String,String> table)

The Hashtable is constructed by extracting properties that start with "key." The properties will
have the "key." prefixed stripped prior to building the Hashtable. This allows the URI to contain
a variable number of properties to identify the mbean.

778 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html

Example

from("jmx:platform?objectDomain=jmxExample&key.name=simpleBean").
to("log:jmxEvent");

Full example

Monitor Type Consumer

Available as of Camel 2.8
One popular use case for JMX is creating a monitor bean to monitor an attribute on a deployed
bean. This requires writing a few lines of Java code to create the JMX monitor and deploy it. As
shown below:

CounterMonitor monitor = new CounterMonitor();
monitor.addObservedObject(makeObjectName("simpleBean"));
monitor.setObservedAttribute("MonitorNumber");
monitor.setNotify(true);
monitor.setInitThreshold(1);
monitor.setGranularityPeriod(500);
registerBean(monitor, makeObjectName("counter"));
monitor.start();

The 2.8 version introduces a new type of consumer that automatically creates and registers a
monitor bean for the specified objectName and attribute. Additional endpoint attributes allow
the user to specify the attribute to monitor, type of monitor to create, and any other required
properties. The code snippet above is condensed into a set of endpoint properties. The
consumer uses these properties to create the CounterMonitor, register it, and then subscribe
to its changes. All of the JMX monitor types are supported.

Example

from("jmx:platform?objectDomain=myDomain&objectName=simpleBean&" +
"monitorType=counter&observedAttribute=MonitorNumber&initThreshold=1&" +
"granularityPeriod=500").to("mock:sink");

The example above will cause a new Monitor Bean to be created and depoyed to the local
mbean server that monitors the "MonitorNumber" attribute on the "simpleBean." Additional
types of monitor beans and options are detailed below. The newly deployed monitor bean is
automatically undeployed when the consumer is stopped.

CHAPTER 11 - COMPONENT APPENDIX 779

http://camel.apache.org/jmx-component-example.html

URI Options for Monitor Type

property type
applies
to

description

monitorType enum all one of counter, guage, string

observedAttribute string all the attribute being observed

granualityPeriod long all
granularity period (in millis) for the attribute
being observed. As per JMX, default is 10
seconds

initThreshold number counter initial threshold value

offset number counter offset value

modulus number counter modulus value

differenceMode boolean
counter,
gauge

true if difference should be reported, false for
actual value

notifyHigh boolean gauge high notification on/off switch

notifyLow boolean gauge low notification on/off switch

highThreshold number gauge threshold for reporting high notification

lowThreshold number gauge threshold for reporting low notificaton

notifyDiffer boolean string true to fire notification when string differs

notifyMatch boolean string true to fire notification when string matches

stringToCompare string string string to compare against the attribute value

The monitor style consumer is only supported for the local mbean server. JMX does not
currently support remote deployment of mbeans without either having the classes already
remotely deployed or an adapter library on both the client and server to facilitate a proxy
deployment.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Camel JMX

780 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/camel-jmx.html

JPA COMPONENT

The jpa component enables you to store and retrieve Java objects from persistent storage
using EJB 3's Java Persistence Architecture (JPA), which is a standard interface layer that wraps
Object/Relational Mapping (ORM) products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jpa</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The
body of the In message is assumed to be an entity bean (that is, a POJO with an @Entity
annotation on it) or a collection or array of entity beans.

If the body does not contain one of the previous listed types, put a Message Translator in
front of the endpoint to perform the necessary conversion first.

Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the
database. This allows you to use a database table as a logical queue: consumers take messages
from the queue and then delete/update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed (and when routing
is done), you can specify consumeDelete=false on the URI. This will result in the entity
being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to
exclude it from a future query) then you can annotate a method with @Consumed which will
be invoked on your entity bean when the entity bean when it has been processed (and when
routing is done).

URI format

jpa:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type
Converter to ensure the body is of the correct type.

CHAPTER 11 - COMPONENT APPENDIX 781

http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/type-converter.html

For consuming, the entityClassName is mandatory.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

entityType entityClassName Overrides the entityClassName from the URI.

persistenceUnit camel The JPA persistence unit used by default.

consumeDelete true JPA consumer only: If true, the entity is deleted after it is consumed; if false, the entity is not deleted.

consumeLockEntity true
JPA consumer only: Specifies whether or not to set an exclusive lock on each entity bean while processing the results
from polling.

flushOnSend true JPA producer only: Flushes the EntityManager after the entity bean has been persisted.

maximumResults -1 JPA consumer only: Set the maximum number of results to retrieve on the Query.

transactionManager null

This option is Registry based which requires the # notation so that the given transactionManager being specified can
be looked up properly, e.g. transactionManager=#myTransactionManager. It specifies the transaction manager
to use. If none provided, Camel will use a JpaTransactionManager by default. Can be used to set a JTA transaction
manager (for integration with an EJB container).

consumer.delay 500 JPA consumer only: Delay in milliseconds between each poll.

consumer.initialDelay 1000 JPA consumer only: Milliseconds before polling starts.

consumer.useFixedDelay false
JPA consumer only: Set to true to use fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

maxMessagesPerPoll 0
JPA consumer only: An integer value to define the maximum number of messages to gather per poll. By default, no
maximum is set. Can be used to avoid polling many thousands of messages when starting up the server. Set a value of 0 or
negative to disable.

consumer.query Ê JPA consumer only: To use a custom query when consuming data.

consumer.namedQuery Ê JPA consumer only: To use a named query when consuming data.

consumer.nativeQuery Ê
JPA consumer only: To use a custom native query when consuming data. You may want to use the option
consumer.resultClass also when using native queries.

consumer.resultClass Ê

Camel 2.7: JPA consumer only: Defines the type of the returned payload (we will call
entityManager.createNativeQuery(nativeQuery, resultClass) instead of
entityManager.createNativeQuery(nativeQuery)). Without this option, we will return an object array. Only
has an affect when using in conjunction with native query when consuming data.

consumer.transacted false
Camel 2.7.5/2.8.3/2.9: JPA consumer only: Whether to run the consumer in transacted mode, by which all
messages will either commit or rollback, when the entire batch has been processed. The default behavior (false) is to
commit all the previously successfully processed messages, and only rollback the last failed message.

usePersist false
Camel 2.5: JPA producer only: Indicates to use entityManager.persist(entity) instead of
entityManager.merge(entity). Note: entityManager.persist(entity) doesn't work for detached
entities (where the EntityManager has to execute an UPDATE instead of an INSERT query)!

Message Headers

Camel adds the following message headers to the exchange:

Header Type Description

CamelJpaTemplate JpaTemplate
The JpaTemplate object that is used to access the entity bean. You need this object in some situations, for instance in a type
converter or when you are doing some custom processing.

782 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Configuring EntityManagerFactory

Its strongly advised to configure the JPA component to use a specific
EntityManagerFactory instance. If failed to do so each JpaEndpoint will auto create
their own instance of EntityManagerFactory which most often is not what you want.

For example, you can instantiate a JPA component that references the myEMFactory
entity manager factory, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>

</bean>

In Camel 2.3 the JpaComponent will auto lookup the EntityManagerFactory from
the Registry which means you do not need to configure this on the JpaComponent as shown
above. You only need to do so if there is ambiguity, in which case Camel will log a WARN.

Configuring TransactionManager

Its strongly advised to configure the TransactionManager instance used by the JPA
component. If failed to do so each JpaEndpoint will auto create their own instance of
TransactionManager which most often is not what you want.

For example, you can instantiate a JPA component that references the
myTransactionManager transaction manager, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>
<property name="transactionManager" ref="myTransactionManager"/>

</bean>

In Camel 2.3 the JpaComponent will auto lookup the TransactionManager from the
Registry which means you do not need to configure this on the JpaComponent as shown
above. You only need to do so if there is ambiguity, in which case Camel will log a WARN.

Using a consumer with a named query

For consuming only selected entities, you can use the consumer.namedQuery URI query
option. First, you have to define the named query in the JPA Entity class:

@Entity
@NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {

...
}

After that you can define a consumer uri like this one:

CHAPTER 11 - COMPONENT APPENDIX 783

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=step1")
.to("bean:myBusinessLogic");

Using a consumer with a query

For consuming only selected entities, you can use the consumer.query URI query option.
You only have to define the query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=select o from
org.apache.camel.examples.MultiSteps o where o.step = 1")
.to("bean:myBusinessLogic");

Using a consumer with a native query

For consuming only selected entities, you can use the consumer.nativeQuery URI query
option. You only have to define the native query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=select * from
MultiSteps where step = 1")
.to("bean:myBusinessLogic");

If you use the native query option, you will receive an object array in the message body.

Example

See Tracer Example for an example using JPA to store traced messages into a database.

Using the JPA based idempotent repository

In this section we will use the JPA based idempotent repository.

First we need to setup a persistence-unit in the persistence.xml file:

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/

idempotentTest;create=true"/>
<property name="openjpa.ConnectionDriverName"

value="org.apache.derby.jdbc.EmbeddedDriver"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>

784 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/tracer-example.html
http://camel.apache.org/jpa.html

</properties>
</persistence-unit>

Second we have to setup a org.springframework.orm.jpa.JpaTemplate which is
used by the
org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:

<!-- this is standard spring JPA configuration -->
<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<!-- we use idempotentDB as the persitence unit name defined in the
persistence.xml file -->

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

Afterwards we can configure our
org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:

<!-- we define our jpa based idempotent repository we want to use in the file consumer
-->
<bean id="jpaStore"
class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplate -->
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name).

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>

</bean>

And finally we can create our JPA idempotent repository in the spring XML file as well:

<camel:camelContext>
<camel:route id="JpaMessageIdRepositoryTest">

<camel:from uri="direct:start" />
<camel:idempotentConsumer messageIdRepositoryRef="jpaStore">

<camel:header>messageId</camel:header>
<camel:to uri="mock:result" />

</camel:idempotentConsumer>
</camel:route>

</camel:camelContext>

See Also

• Configuring Camel

CHAPTER 11 - COMPONENT APPENDIX 785

http://camel.apache.org/configuring-camel.html

When running this Camel component tests inside your IDE
In case you run the tests of this component directly inside your IDE (and not necessarily through Maven itself) then you could spot exceptions
like:

org.springframework.transaction.CannotCreateTransactionException: Could not open JPA EntityManager for transaction; nested exception
is
<openjpa-2.2.1-r422266:1396819 nonfatal user error> org.apache.openjpa.persistence.ArgumentException: This configuration disallows
runtime optimization,
but the following listed types were not enhanced at build time or at class load time with a javaagent:
"org.apache.camel.examples.SendEmail".

at org.springframework.orm.jpa.JpaTransactionManager.doBegin(JpaTransactionManager.java:427)
at

org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:371)
at org.springframework.transaction.support.TransactionTemplate.execute(TransactionTemplate.java:127)
at org.apache.camel.processor.jpa.JpaRouteTest.cleanupRepository(JpaRouteTest.java:96)
at org.apache.camel.processor.jpa.JpaRouteTest.createCamelContext(JpaRouteTest.java:67)
at org.apache.camel.test.junit4.CamelTestSupport.doSetUp(CamelTestSupport.java:238)
at org.apache.camel.test.junit4.CamelTestSupport.setUp(CamelTestSupport.java:208)

The problem here is that the source has been compiled/recompiled through your IDE and not through Maven itself which would enhance the byte-code at build
time. To overcome this you would need to enable dynamic byte-code enhancement of OpenJPA. As an example assuming the current OpenJPA version being
used in Camel itself is 2.2.1, then as running the tests inside your favorite IDE you would need to pass the following argument to the JVM:

-javaagent:<path_to_your_local_m2_cache>/org/apache/openjpa/openjpa/2.2.1/openjpa-2.2.1.jar

Then it will all become green again

• Component
• Endpoint
• Getting Started
▪ Tracer Example

JT/400 COMPONENT

The jt400 component allows you to exchanges messages with an AS/400 system using data
queues.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>

786 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/tracer-example.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/pom.xml
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/pom.xml
http://openjpa.apache.org/entity-enhancement.html#dynamic-enhancement

<artifactId>camel-jt400</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/QUEUE.DTAQ[?options]

To call remote program (Camel 2.7)

jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/program.PGM[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

URI options

For the data queue message exchange:

Name Default value Description

ccsid default system CCSID Specifies the CCSID to use for the connection with the AS/400 system.

format text
Specifies the data format for sending messages
valid options are: text (represented by String) and binary (represented by byte[])

consumer.delay 500 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Milliseconds before polling starts.

consumer.userFixedDelay false
true to use fixed delay between polls, otherwise fixed rate is used. See ScheduledExecutorService in JDK for
details.

guiAvailable false Camel 2.8: Specifies whether AS/400 prompting is enabled in the environment running Camel.

keyed false Camel 2.10: Whether to use keyed or non-keyed data queues.

searchKey null Camel 2.10: Search key for keyed data queues.

searchType EQ Camel 2.10: Search type which can be a value of EQ, NE, LT, LE, GT, or GE.

connectionPool
AS400ConnectionPool
instance

Camel 2.10: Reference to an com.ibm.as400.access.AS400ConnectionPool instance in the Registry. This is
used for obtaining connections to the AS/400 system. The look up notation ('#' character) should be used.

For the remote program call (Camel 2.7)

Name Default value Description

outputFieldsIdx Ê Specifies which fields (program parameters) are output parameters.

fieldsLength Ê Specifies the fields (program parameters) length as in the AS/400 program definition.

format text
Camel 2.10: Specifies the data format for sending messages
valid options are: text (represented by String) and binary (represented by byte[])

guiAvailable false Camel 2.8: Specifies whether AS/400 prompting is enabled in the environment running Camel.

connectionPool
AS400ConnectionPool
instance

Camel 2.10: Reference to an com.ibm.as400.access.AS400ConnectionPool instance in the Registry. This is used for
obtaining connections to the AS/400 system. The look up notation ('#' character) should be used.

CHAPTER 11 - COMPONENT APPENDIX 787

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Usage

When configured as a consumer endpoint, the endpoint will poll a data queue on a remote
system. For every entry on the data queue, a new Exchange is sent with the entry's data in
the In message's body, formatted either as a String or a byte[], depending on the format.
For a provider endpoint, the In message body contents will be put on the data queue as either
raw bytes or text.

Connection pool

Available as of Camel 2.10

Connection pooling is in use from Camel 2.10 onwards. You can explicit configure a
connection pool on the Jt400Component, or as an uri option on the endpoint.

Remote program call (Camel 2.7)

This endpoint expects the input to be either a String array or byte[] array (depending on
format) and handles all the CCSID handling through the native jt400 library mechanisms. A
parameter can be omitted by passing null as the value in its position (the remote program has to
support it). After the program execution the endpoint returns either a String array or byte[]
array with the values as they were returned by the program (the input only parameters will
contain the same data as the beginning of the invocation)
This endpoint does not implement a provider endpoint!

Example

In the snippet below, the data for an exchange sent to the direct:george endpoint will be
put in the data queue PENNYLANE in library BEATLES on a system named LIVERPOOL.
Another user connects to the same data queue to receive the information from the data queue
and forward it to the mock:ringo endpoint.

public class Jt400RouteBuilder extends RouteBuilder {
@Override
public void configure() throws Exception {

from("direct:george").to("jt400://GEORGE:EGROEG@LIVERPOOL/QSYS.LIB/BEATLES.LIB/
PENNYLANE.DTAQ");

from("jt400://RINGO:OGNIR@LIVERPOOL/QSYS.LIB/BEATLES.LIB/
PENNYLANE.DTAQ").to("mock:ringo");

}
}

788 CHAPTER 11 - COMPONENT APPENDIX

Remote program call example (Camel 2.7)

In the snippet below, the data Exchange sent to the direct:work endpoint will contain three
string that will be used as the arguments for the program ÒcomputeÓ in the library ÒassetsÓ.
This program will write the output values in the 2nd and 3rd parameters. All the parameters
will be sent to the direct:play endpoint.

public class Jt400RouteBuilder extends RouteBuilder {
@Override
public void configure() throws Exception {

from("direct:work").to("jt400://GRUPO:ATWORK@server/QSYS.LIB/assets.LIB/
compute.PGM?fieldsLength=10,10,512&ouputFieldsIdx=2,3").to(Òdirect:playÓ);

}
}

Writing to keyed data queues

from("jms:queue:input")
.to("jt400://username:password@system/lib.lib/MSGINDQ.DTAQ?keyed=true");

Reading from keyed data queues

from("jt400://username:password@system/lib.lib/
MSGOUTDQ.DTAQ?keyed=true&searchKey=MYKEY&searchType=GE")
.to("jms:queue:output");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

LANGUAGE

Available as of Camel 2.5

The language component allows you to send Exchange to an endpoint which executes a
script by any of the supported Languages in Camel.
By having a component to execute language scripts, it allows more dynamic routing capabilities.

CHAPTER 11 - COMPONENT APPENDIX 789

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/exchange.html
http://camel.apache.org/languages.html

For example by using the Routing Slip or Dynamic Router EIPs you can send messages to
language endpoints where the script is dynamic defined as well.

This component is provided out of the box in camel-core and hence no additional JARs
is needed. You only have to include additional Camel components if the language of choice
mandates it, such as using Groovy or JavaScript languages.

URI format

language://languageName[:script][?options]

And from Camel 2.11 onwards you can refer to an external resource for the script using same
notation as supported by the other Languages in Camel

language://languageName:resource:scheme:location][?options]

URI Options

The component supports the following options.

Name
Default
Value

Type Description

languageName null String The name of the Language to use, such as simple, groovy, javascript etc. This option is mandatory.

script null String The script to execute.

transform true boolean
Whether or not the result of the script should be used as the new message body. By setting to false the script is
executed but the result of the script is discarded.

contentCache true boolean
Camel 2.9: Whether to cache the script if loaded from a resource.
Note: from Camel 2.10.3 a cached script can be forced to reload at runtime via JMX using the clearContentCache
operation.

Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

CamelLanguageScript The script to execute provided in the header. Takes precedence over script configured on the endpoint.

Examples

For example you can use the Simple language to Message Translator a message:

String script = URLEncoder.encode("Hello ${body}", "UTF-8");
from("direct:start").to("language:simple:" + script).to("mock:result");

In case you want to convert the message body type you can do this as well:

790 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/groovy.html
http://camel.apache.org/javascript.html
http://camel.apache.org/language.html
http://camel.apache.org/languages.html
http://camel.apache.org/simple.html
http://camel.apache.org/message-translator.html

String script = URLEncoder.encode("${mandatoryBodyAs(String)}", "UTF-8");
from("direct:start").to("language:simple:" + script).to("mock:result");

You can also use the Groovy language, such as this example where the input message will by
multiplied with 2:

String script = URLEncoder.encode("request.body * 2", "UTF-8");
from("direct:start").to("language:groovy:" + script).to("mock:result");

You can also provide the script as a header as shown below. Here we use XPath language to
extract the text from the <foo> tag.

Object out = producer.requestBodyAndHeader("language:xpath", "<foo>Hello World</foo>",
Exchange.LANGUAGE_SCRIPT, "/foo/text()");
assertEquals("Hello World", out);

Loading scripts from resources

Available as of Camel 2.9

You can specify a resource uri for a script to load in either the endpoint uri, or in the
Exchange.LANGUAGE_SCRIPT header.
The uri must start with one of the following schemes: file:, classpath:, or http:

For example to load a script from the classpath:

from("direct:start")
// load the script from the classpath
.to("language:simple:classpath:org/apache/camel/component/language/

mysimplescript.txt")
.to("mock:result");

By default the script is loaded once and cached. However you can disable the contentCache
option and have the script loaded on each evaluation.
For example if the file myscript.txt is changed on disk, then the updated script is used:

from("direct:start")
// the script will be loaded on each message, as we disabled cache
.to("language:simple:file:target/script/myscript.txt?contentCache=false")
.to("mock:result");

From Camel 2.11 onwards you can refer to the resource similar to the other Languages in
Camel by prefixing with "resource:" as shown below:

CHAPTER 11 - COMPONENT APPENDIX 791

http://camel.apache.org/groovy.html
http://camel.apache.org/xpath.html
http://camel.apache.org/language.html

from("direct:start")
// load the script from the classpath
.to("language:simple:resource:classpath:org/apache/camel/component/language/

mysimplescript.txt")
.to("mock:result");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Languages
▪ Routing Slip
▪ Dynamic Router

LDAP COMPONENT

The ldap component allows you to perform searches in LDAP servers using filters as the
message payload.
This component uses standard JNDI (javax.naming package) to access the server.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ldap</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ldap:ldapServerBean[?options]

The ldapServerBean portion of the URI refers to a DirContext bean in the registry. The LDAP
component only supports producer endpoints, which means that an ldap URI cannot appear
in the from at the start of a route.

You can append query options to the URI in the following format,
?option=value&option=value&...

792 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/languages.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html

Options

Name
Default
Value

Description

base ou=system The base DN for searches.

scope subtree Specifies how deeply to search the tree of entries, starting at the base DN. Value can be object, onelevel, or subtree.

pageSize no paging used
Camel 2.6: When specified the ldap module uses paging to retrieve all results (most LDAP Servers throw an exception when trying
to retrieve more than 1000 entries in one query). To be able to use this a LdapContext (subclass of DirContext) has to be passed in
as ldapServerBean (otherwise an exception is thrown)

returnedAttributes
depends on LDAP
Server (could be
all or none)

Camel 2.6: Comma-separated list of attributes that should be set in each entry of the result

Result

The result is returned in the Out body as a
ArrayList<javax.naming.directory.SearchResult> object.

DirContext

The URI, ldap:ldapserver, references a Spring bean with the ID, ldapserver. The
ldapserver bean may be defined as follows:

<bean id="ldapserver" class="javax.naming.directory.InitialDirContext"
scope="prototype">

<constructor-arg>
<props>

<prop key="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</prop>
<prop key="java.naming.provider.url">ldap://localhost:10389</prop>
<prop key="java.naming.security.authentication">none</prop>

</props>
</constructor-arg>

</bean>

The preceding example declares a regular Sun based LDAP DirContext that connects
anonymously to a locally hosted LDAP server.

Samples

Following on from the Spring configuration above, the code sample below sends an LDAP
request to filter search a group for a member. The Common Name is then extracted from the
response.

ProducerTemplate<Exchange> template = exchange
.getContext().createProducerTemplate();

Collection<?> results = (Collection<?>) (template
.sendBody(

CHAPTER 11 - COMPONENT APPENDIX 793

DirContext objects are not required to support concurrency by contract. It is
therefore important that the directory context is declared with the setting,
scope="prototype", in the bean definition or that the context supports
concurrency. In the Spring framework, prototype scoped objects are instantiated
each time they are looked up.

"ldap:ldapserver?base=ou=mygroup,ou=groups,ou=system",
"(member=uid=huntc,ou=users,ou=system)"));

if (results.size() > 0) {
// Extract what we need from the device's profile

Iterator<?> resultIter = results.iterator();
SearchResult searchResult = (SearchResult) resultIter

.next();
Attributes attributes = searchResult

.getAttributes();
Attribute deviceCNAttr = attributes.get("cn");
String deviceCN = (String) deviceCNAttr.get();

...

If no specific filter is required - for example, you just need to look up a single entry - specify a
wildcard filter expression. For example, if the LDAP entry has a Common Name, use a filter
expression like:

(cn=*)

Binding using credentials

A Camel end user donated this sample code he used to bind to the ldap server using
credentials.

Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
props.setProperty(Context.PROVIDER_URL, "ldap://localhost:389");
props.setProperty(Context.URL_PKG_PREFIXES, "com.sun.jndi.url");
props.setProperty(Context.REFERRAL, "ignore");
props.setProperty(Context.SECURITY_AUTHENTICATION, "simple");
props.setProperty(Context.SECURITY_PRINCIPAL, "cn=Manager");
props.setProperty(Context.SECURITY_CREDENTIALS, "secret");

SimpleRegistry reg = new SimpleRegistry();

794 CHAPTER 11 - COMPONENT APPENDIX

reg.put("myldap", new InitialLdapContext(props, null));

CamelContext context = new DefaultCamelContext(reg);
context.addRoutes(

new RouteBuilder() {
public void configure() throws Exception {

from("direct:start").to("ldap:myldap?base=ou=test");
}

}
);
context.start();

ProducerTemplate template = context.createProducerTemplate();

Endpoint endpoint = context.getEndpoint("direct:start");
Exchange exchange = endpoint.createExchange();
exchange.getIn().setBody("(uid=test)");
Exchange out = template.send(endpoint, exchange);

Collection<SearchResult> data = out.getOut().getBody(Collection.class);
assert data != null;
assert !data.isEmpty();

System.out.println(out.getOut().getBody());

context.stop();

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

LOG COMPONENT

The log: component logs message exchanges to the underlying logging mechanism.
Camel 2.7 or better uses sfl4j which allows you to configure logging via, among others:

• Log4j
• Logback
• JDK Util Logging logging

Camel 2.6 or lower uses commons-logging which allows you to configure logging via, among
others:

• Log4j
• JDK Util Logging logging
• SimpleLog - a simple provider in commons-logging

CHAPTER 11 - COMPONENT APPENDIX 795

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.slf4j.org/
http://logging.apache.org/log4j/
http://logback.qos.ch/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html

Refer to the commons-logging user guide for a more complete overview of how to use and
configure commons-logging.

URI format

log:loggingCategory[?options]

Where loggingCategory is the name of the logging category to use. You can append query
options to the URI in the following format, ?option=value&option=value&...

For example, a log endpoint typically specifies the logging level using the level option, as
follows:

log:org.apache.camel.example?level=DEBUG

The default logger logs every exchange (regular logging). But Camel also ships with the
Throughput logger, which is used whenever the groupSize option is specified.

Options

Option Default Type Description

level INFO String Logging level to use. Possible values: ERROR, WARN, INFO, DEBUG, TRACE, OFF

marker null String Camel 2.9: An optional Marker name to use.

groupSize null Integer An integer that specifies a group size for throughput logging.

groupInterval null Integer Camel 2.6: If specified will group message stats by this time interval (in millis)

groupDelay 0 Integer Camel 2.6: Set the initial delay for stats (in millis)

groupActiveOnly true boolean
Camel 2.6: If true, will hide stats when no new messages have been received for a time interval, if false, show stats
regardless of message traffic

note: groupDelay and groupActiveOnly are only applicable when using groupInterval

Formatting

The log formats the execution of exchanges to log lines.
By default, the log uses LogFormatter to format the log output, where LogFormatter
has the following options:

Option Default Description

showAll false Quick option for turning all options on. (multiline, maxChars has to be manually set if to be used)

showExchangeId false Show the unique exchange ID.

showExchangePattern true Camel 2.3: Shows the Message Exchange Pattern (or MEP for short).

showProperties false Show the exchange properties.

showHeaders false Show the In message headers.

showBodyType true Show the In body Java type.

showBody true Show the In body.

showOut false If the exchange has an Out message, show the Out message.

796 CHAPTER 11 - COMPONENT APPENDIX

http://commons.apache.org/logging/commons-logging-1.1.1/guide.html
http://www.slf4j.org/api/org/slf4j/Marker.html

Also a log in the DSL
In Camel 2.2 onwards there is a log directly in the DSL, but it has a different
purpose. Its meant for lightweight and human logs. See more details at LogEIP.

showException false If the exchange has an exception, show the exception message (no stack trace).

showCaughtException false
If the exchange has a caught exception, show the exception message (no stack trace). A caught exception is stored as a property
on the exchange (using the key Exchange.EXCEPTION_CAUGHT) and for instance a doCatch can catch exceptions. See
Try Catch Finally.

showStackTrace false
Show the stack trace, if an exchange has an exception. Only effective if one of showAll, showException or
showCaughtException are enabled.

showFiles false Camel 2.9: Whether Camel should show file bodies or not (eg such as java.io.File).

showFuture false
Camel 2.1: Whether Camel should show java.util.concurrent.Future bodies or not. If enabled Camel could
potentially wait until the Future task is done. Will by default not wait.

showStreams false
Camel 2.8: Whether Camel should show stream bodies or not (eg such as java.io.InputStream). Beware if you enable this
option then you may not be able later to access the message body as the stream have already been read by this logger. To
remedy this you will have to use Stream caching.

multiline false If true, each piece of information is logged on a new line.

maxChars Ê Limits the number of characters logged per line. The default value is 10000 from Camel 2.9 onwards.

Regular logger sample

In the route below we log the incoming orders at DEBUG level before the order is processed:

from("activemq:orders").to("log:com.mycompany.order?level=DEBUG").to("bean:processOrder");

Or using Spring XML to define the route:

<route>
<from uri="activemq:orders"/>
<to uri="log:com.mycompany.order?level=DEBUG"/>
<to uri="bean:processOrder"/>

</route>

Regular logger with formatter sample

In the route below we log the incoming orders at INFO level before the order is processed.

from("activemq:orders").
to("log:com.mycompany.order?showAll=true&multiline=true").to("bean:processOrder");

Throughput logger with groupSize sample

In the route below we log the throughput of the incoming orders at DEBUG level grouped by
10 messages.

CHAPTER 11 - COMPONENT APPENDIX 797

http://camel.apache.org/try-catch-finally.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/logeip.html

Logging stream bodies
For older versions of Camel that do not support the showFiles or showStreams
properties above, you can set the following property instead on the CamelContext
to log both stream and file bodies:

camelContext.getProperties().put(Exchange.LOG_DEBUG_BODY_STREAMS, true);

from("activemq:orders").
to("log:com.mycompany.order?level=DEBUG&groupSize=10").to("bean:processOrder");

Throughput logger with groupInterval sample

This route will result in message stats logged every 10s, with an initial 60s delay and stats should
be displayed even if there isn't any message traffic.

from("activemq:orders").
to("log:com.mycompany.order?level=DEBUG&groupInterval=10000&groupDelay=60000&groupActiveOnly=false").to("bean:processOrder");

The following will be logged:

"Received: 1000 new messages, with total 2000 so far. Last group took: 10000 millis
which is: 100 messages per second. average: 100"

Full customization of the logging output

Available as of Camel 2.11

With the options outlined in the Formatting section, you can control much of the output of
the logger. However, log lines will always follow this structure:

Exchange[Id:ID-machine-local-50656-1234567901234-1-2, ExchangePattern:InOut,
Properties:{CamelToEndpoint=log://org.apache.camel.component.log.TEST?showAll=true,
CamelCreatedTimestamp=Thu Mar 28 00:00:00 WET 2013},
Headers:{breadcrumbId=ID-machine-local-50656-1234567901234-1-1}, BodyType:String,
Body:Hello World, Out: null]

This format is unsuitable in some cases, perhaps because you need to...
• ... filter the headers and properties that are printed, to strike a balance between

insight and verbosity.
• ... adjust the log message to whatever you deem most readable.

798 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/camelcontext.html

• ... tailor log messages for digestion by log mining systems, e.g. Splunk.
• ... print specific body types differently.
• ... etc.

Whenever you require absolute customization, you can create a class that implements the
ExchangeFormatter interface. Within the format(Exchange) method you have access
to the full Exchange, so you can select and extract the precise information you need, format it
in a custom manner and return it. The return value will become the final log message.

You can have the Log component pick up your custom ExchangeFormatter in either of
two ways:

Explicitly instantiating the LogComponent in your Registry:

<bean name="log" class="org.apache.camel.component.log.LogComponent">
<property name="exchangeFormatter" ref="myCustomFormatter" />

</bean>

Convention over configuration:

Simply by registering a bean with the name logFormatter; the Log Component is
intelligent enough to pick it up automatically.

<bean name="logFormatter" class="com.xyz.MyCustomExchangeFormatter" />

NOTE: the ExchangeFormatter gets applied to all Log endpoints within that
Camel Context. If you need different ExchangeFormatters for different endpoints, just
instantiate the LogComponent as many times as needed, and use the relevant bean name as the
endpoint prefix.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Tracer
• How do I use log4j
• How do I use Java 1.4 logging
• LogEIP for using log directly in the DSL for human logs.

LUCENE (INDEXER AND SEARCH) COMPONENT

Available as of Camel 2.2

CHAPTER 11 - COMPONENT APPENDIX 799

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/ExchangeFormatter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/ExchangeFormatter.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/tracer.html
http://camel.apache.org/how-do-i-use-log4j.html
http://camel.apache.org/how-do-i-use-java-14-logging.html
http://camel.apache.org/logeip.html

The lucene component is based on the Apache Lucene project. Apache Lucene is a
powerful high-performance, full-featured text search engine library written entirely in Java. For
more details about Lucene, please see the following links

• http://lucene.apache.org/java/docs/
• http://lucene.apache.org/java/docs/features.html

The lucene component in camel facilitates integration and utilization of Lucene endpoints in
enterprise integration patterns and scenarios. The lucene component does the following

• builds a searchable index of documents when payloads are sent to the Lucene
Endpoint

• facilitates performing of indexed searches in Camel
This component only supports producer endpoints.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-lucene</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

lucene:searcherName:insert[?options]
lucene:searcherName:query[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Insert Options

Name
Default
Value

Description

analyzer StandardAnalyzer
An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting index terms from text. The value for
analyzer can be any class that extends the abstract class org.apache.lucene.analysis.Analyzer. Lucene also offers a rich set of analyzers
out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the document by the specified analyzer

srcDir null An optional directory containing files to be used to be analyzed and added to the index at producer startup.

Query Options

Name
Default
Value

Description

800 CHAPTER 11 - COMPONENT APPENDIX

http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/features.html

analyzer StandardAnalyzer
An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting index terms from text. The value for
analyzer can be any class that extends the abstract class org.apache.lucene.analysis.Analyzer. Lucene also offers a rich set of analyzers
out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the document by the specified analyzer

maxHits 10 An integer value that limits the result set of the search operation

Sending/Receiving Messages to/from the cache

Message Headers

Header Description

QUERY The Lucene Query to performed on the index. The query may include wildcards and phrases

Lucene Producers

This component supports 2 producer endpoints.
• insert - The insert producer builds a searchable index by analyzing the body in

incoming exchanges and associating it with a token ("content").
• query - The query producer performs searches on a pre-created index. The query

uses the searchable index to perform score & relevance based searches. Queries are
sent via the incoming exchange contains a header property name called 'QUERY'. The
value of the header property 'QUERY' is a Lucene Query. For more details on how to
create Lucene Queries check out http://lucene.apache.org/java/3_0_0/
queryparsersyntax.html

Lucene Processor

There is a processor called LuceneQueryProcessor available to perform queries against lucene
without the need to create a producer.

Lucene Usage Samples

Example 1: Creating a Lucene index

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").
to("lucene:whitespaceQuotesIndex:insert?

analyzer=#whitespaceAnalyzer&indexDir=#whitespace&srcDir=#load_dir").
to("mock:result");

CHAPTER 11 - COMPONENT APPENDIX 801

http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html

}
};

Example 2: Loading properties into the JNDI registry in the
Camel Context

@Override
protected JndiRegistry createRegistry() throws Exception {

JndiRegistry registry =
new JndiRegistry(createJndiContext());

registry.bind("whitespace", new File("./whitespaceIndexDir"));
registry.bind("load_dir",

new File("src/test/resources/sources"));
registry.bind("whitespaceAnalyzer",

new WhitespaceAnalyzer());
return registry;

}
...
CamelContext context = new DefaultCamelContext(createRegistry());

Example 2: Performing searches using a Query Producer

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").
setHeader("QUERY", constant("Seinfeld")).
to("lucene:searchIndex:query?

analyzer=#whitespaceAnalyzer&indexDir=#whitespace&maxHits=20").
to("direct:next");

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {
LOG.debug("Number of hits: " + hits.getNumberOfHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {

LOG.debug("Hit " + i + " Index Location:" +
hits.getHit().get(i).getHitLocation());

LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());

}
}

}).to("mock:searchResult");

802 CHAPTER 11 - COMPONENT APPENDIX

}
};

Example 3: Performing searches using a Query Processor

RouteBuilder builder = new RouteBuilder() {
public void configure() {

try {
from("direct:start").

setHeader("QUERY", constant("Rodney Dangerfield")).
process(new LuceneQueryProcessor("target/stdindexDir", analyzer, null,

20)).
to("direct:next");

} catch (Exception e) {
e.printStackTrace();

}

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {
LOG.debug("Number of hits: " + hits.getNumberOfHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {

LOG.debug("Hit " + i + " Index Location:" +
hits.getHit().get(i).getHitLocation());

LOG.debug("Hit " + i + " Score:" +
hits.getHit().get(i).getScore());

LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());
}

}
}).to("mock:searchResult");

}
};

MAIL COMPONENT

The mail component provides access to Email via Spring's Mail support and the underlying
JavaMail system.

Maven users will need to add the following dependency to their pom.xml for this
component:

CHAPTER 11 - COMPONENT APPENDIX 803

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mail</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or
IMAP, respectively):

smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

The mail component also supports secure variants of these protocols (layered over SSL). You
can enable the secure protocols by adding s to the scheme:

smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

804 CHAPTER 11 - COMPONENT APPENDIX

Geronimo mail .jar
We have discovered that the geronimo mail .jar (v1.6) has a bug when polling
mails with attachments. It cannot correctly identify the Content-Type. So, if you
attach a .jpeg file to a mail and you poll it, the Content-Type is resolved as
text/plain and not as image/jpeg. For that reason, we have added an
org.apache.camel.component.ContentTypeResolver SPI interface
which enables you to provide your own implementation and fix this bug by
returning the correct Mime type based on the file name. So if the file name ends
with jpeg/jpg, you can return image/jpeg.

You can set your custom resolver on the MailComponent instance or on the
MailEndpoint instance.

POP3 or IMAP
POP3 has some limitations and end users are encouraged to use IMAP if possible.

Using mock-mail for testing
You can use a mock framework for unit testing, which allows you to test without
the need for a real mail server. However you should remember to not include the
mock-mail when you go into production or other environments where you need to
send mails to a real mail server. Just the presence of the mock-javamail.jar on the
classpath means that it will kick in and avoid sending the mails.

Default ports

Default port numbers are supported. If the port number is omitted, Camel determines the port
number to use based on the protocol.

Protocol Default Port Number

SMTP 25

SMTPS 465

POP3 110

POP3S 995

IMAP 143

IMAPS 993

CHAPTER 11 - COMPONENT APPENDIX 805

Options

Property Default Description

host Ê The host name or IP address to connect to.

port See DefaultPorts The TCP port number to connect on.

username Ê The user name on the email server.

password null The password on the email server.

ignoreUriScheme false If false, Camel uses the scheme to determine the transport protocol (POP, IMAP, SMTP etc.)

defaultEncoding null The default encoding to use for Mime Messages.

contentType text/plain The mail message content type. Use text/html for HTML mails.

folderName INBOX The folder to poll.

destination username@host @deprecated Use the to option instead. The TO recipients (receivers of the email).

to username@host The TO recipients (the receivers of the mail). Separate multiple email addresses with a comma.

replyTo alias@host
As of Camel 2.8.4, 2.9.1+, the Reply-To recipients (the receivers of the response mail). Separate
multiple email addresses with a comma.

CC null The CC recipients (the receivers of the mail). Separate multiple email addresses with a comma.

BCC null The BCC recipients (the receivers of the mail). Separate multiple email addresses with a comma.

from camel@localhost The FROM email address.

subject Ê
As of Camel 2.3, the Subject of the message being sent. Note: Setting the subject in the header
takes precedence over this option.

delete false

Deletes the messages after they have been processed. This is done by setting the DELETED flag on
the mail message. If false, the SEEN flag is set instead. As of Camel 2.10 you can override this
configuration option by setting a header with the key delete to determine if the mail should be
deleted or not.

unseen true

It is possible to configure a consumer endpoint so that it processes only unseen messages (that is,
new messages) or all messages. Note that Camel always skips deleted messages. The default option of
true will filter to only unseen messages. POP3 does not support the SEEN flag, so this option is not
supported in POP3; use IMAP instead.

copyTo null
Camel 2.10: Consumer only. After processing a mail message, it can be copied to a mail folder with
the given name. You can override this configuration value, with a header with the key copyTo,
allowing you to copy messages to folder names configured at runtime.

fetchSize -1

Sets the maximum number of messages to consume during a poll. This can be used to avoid
overloading a mail server, if a mailbox folder contains a lot of messages. Default value of -1 means no
fetch size and all messages will be consumed. Setting the value to 0 is a special corner case, where
Camel will not consume any messages at all.

alternativeBodyHeader CamelMailAlternativeBody
Specifies the key to an IN message header that contains an alternative email body. For example, if you
send emails in text/html format and want to provide an alternative mail body for non-HTML email
clients, set the alternative mail body with this key as a header.

debugMode false
Enable debug mode on the underlying mail framework. The SUN Mail framework logs the debug
messages to System.out by default.

connectionTimeout 30000 The connection timeout in milliseconds. Default is 30 seconds.

consumer.initialDelay 1000 Milliseconds before the polling starts.

consumer.delay 60000 Camel will poll the mailbox only once a minute by default to avoid overloading the mail server.

consumer.useFixedDelay false
Set to true to use a fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

disconnect false
Camel 2.8.3/2.9: Whether the consumer should disconnect after polling. If enabled this forces
Camel to connect on each poll.

closeFolder true
Camel 2.10.4: Whether the consumer should close the folder after polling. Setting this option to
false and having disconnect=false as well, then the consumer keep the folder open between
polls.

mail.XXX null

Set any additional java mail properties. For instance if you want to set a special property when using
POP3 you can now provide the option directly in the URI such as:
mail.pop3.forgettopheaders=true. You can set multiple such options, for example:
mail.pop3.forgettopheaders=true&mail.mime.encodefilename=true.

mapMailMessage true

Camel 2.8: Specifies whether Camel should map the received mail message to Camel body/headers.
If set to true, the body of the mail message is mapped to the body of the Camel IN message and the
mail headers are mapped to IN headers. If this option is set to false then the IN message contains a
raw javax.mail.Message. You can retrieve this raw message by calling
exchange.getIn().getBody(javax.mail.Message.class).

806 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html

maxMessagesPerPoll 0
Specifies the maximum number of messages to gather per poll. By default, no maximum is set. Can be
used to set a limit of e.g. 1000 to avoid downloading thousands of files when the server starts up. Set
a value of 0 or negative to disable this option.

javaMailSender null
Specifies a pluggable org.springframework.mail.javamail.JavaMailSender instance
in order to use a custom email implementation. If none provided, Camel uses the default
org.springframework.mail.javamail.JavaMailSenderImpl.

ignoreUnsupportedCharset false
Option to let Camel ignore unsupported charset in the local JVM when sending mails. If the charset is
unsupported then charset=XXX (where XXX represents the unsupported charset) is removed
from the content-type and it relies on the platform default instead.

sslContextParameters null
Camel 2.10: Reference to a org.apache.camel.util.jsse.SSLContextParameters
in the Registry.Ê This reference overrides any configured SSLContextParameters at the component
level.Ê See Using the JSSE Configuration Utility.

searchTerm null
Camel 2.11: Refers to a javax.mail.search.SearchTerm which allows to filter mails based
on search criteria such as subject, body, from, sent after a certain date etc. See further below for
examples.

searchTerm.xxx null

Camel 2.11: To configure search terms directly from the endpoint uri, which supports a limited
number of terms defined by the
org.apache.camel.component.mail.SimpleSearchTerm class. See further below for
examples.

SSL support

The underlying mail framework is responsible for providing SSL support. ÊYou may either
configure SSL/TLS support by completely specifying the necessary Java Mail API configuration
options, or you may provide a configured SSLContextParameters through the component or
endpoint configuration.

Using the JSSE Configuration Utility

As of Camel 2.10, the mail component supports SSL/TLS configuration through the Camel
JSSE Configuration Utility.Ê This utility greatly decreases the amount of component specific
code you need to write and is configurable at the endpoint and component levels.Ê The
following examples demonstrate how to use the utility with the mail component.

Programmatic configuration of the endpoint

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");
TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);
SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);
Registry registry = ...
registry.bind("sslContextParameters", scp);
...
from(...)

.to("smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters");

CHAPTER 11 - COMPONENT APPENDIX 807

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters id="sslContextParameters">

<camel:trustManagers>
<camel:keyStore resource="/users/home/server/truststore.jks"

password="keystorePassword"/>
</camel:trustManagers>

</camel:sslContextParameters>...
...
<to
uri="smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters"/>...

Configuring JavaMail Directly

Camel uses SUN JavaMail, which only trusts certificates issued by well known Certificate
Authorities (the default JVM trust configuration). If you issue your own certificates, you have to
import the CA certificates into the JVM's Java trust/key store files, override the default JVM
trust/key store files (see SSLNOTES.txt in JavaMail for details).

Mail Message Content

Camel uses the message exchange's IN body as the MimeMessage text content. The body is
converted to String.class.

Camel copies all of the exchange's IN headers to the MimeMessage headers.

The subject of the MimeMessage can be configured using a header property on the IN
message. The code below demonstrates this:

from("direct:a").setHeader("subject", constant(subject)).to("smtp://james2@localhost");

The same applies for other MimeMessage headers such as recipients, so you can use a header
property as To:

Map<String, Object> map = new HashMap<String, Object>();
map.put("To", "davsclaus@apache.org");
map.put("From", "jstrachan@apache.org");
map.put("Subject", "Camel rocks");

String body = "Hello Claus.\nYes it does.\n\nRegards James.";
template.sendBodyAndHeaders("smtp://davsclaus@apache.org", body, map);

Since Camel 2.11 When using the MailProducer the send the mail to server, you should be
able to get the message id of the MimeMessage with the key CamelMailMessageId from
the Camel message header.

808 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

Headers take precedence over pre-configured recipients

The recipients specified in the message headers always take precedence over recipients pre-
configured in the endpoint URI. The idea is that if you provide any recipients in the message
headers, that is what you get. The recipients pre-configured in the endpoint URI are treated as
a fallback.

In the sample code below, the email message is sent to davsclaus@apache.org,
because it takes precedence over the pre-configured recipient, info@mycompany.com. Any
CC and BCC settings in the endpoint URI are also ignored and those recipients will not receive
any mail. The choice between headers and pre-configured settings is all or nothing: the mail
component either takes the recipients exclusively from the headers or exclusively from the pre-
configured settings. It is not possible to mix and match headers and pre-configured settings.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org");

template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com",
"Hello World", headers);

Multiple recipients for easier configuration

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list.
This applies both to header settings and to settings in an endpoint URI. For example:

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ;

ningjiang@apache.org");

The preceding example uses a semicolon, ;, as the separator character.

Setting sender name and email

You can specify recipients in the format, name <email>, to include both the name and the
email address of the recipient.

For example, you define the following headers on the a Message:

Map headers = new HashMap();
map.put("To", "Claus Ibsen <davsclaus@apache.org>");
map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

CHAPTER 11 - COMPONENT APPENDIX 809

http://camel.apache.org/message.html

SUN JavaMail

SUN JavaMail is used under the hood for consuming and producing mails.
We encourage end-users to consult these references when using either POP3 or IMAP
protocol. Note particularly that POP3 has a much more limited set of features than IMAP.

▪ SUN POP3 API
▪ SUN IMAP API
▪ And generally about the MAIL Flags

Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The
email account is the admin account on mymailserver.com.

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

In the next sample, we poll a mailbox for new emails once every minute. Notice that we use
the special consumer option for setting the poll interval, consumer.delay, as 60000
milliseconds = 60 seconds.

from("imap://admin@mymailserver.com
password=secret&unseen=true&consumer.delay=60000")

.to("seda://mails");

In this sample we want to send a mail to multiple recipients:

// all the recipients of this mail are:
// To: camel@riders.org , easy@riders.org
// CC: me@you.org
// BCC: someone@somewhere.org
String recipients =
"&To=camel@riders.org,easy@riders.org&CC=me@you.org&BCC=someone@somewhere.org";

from("direct:a").to("smtp://you@mymailserver.com?password=secret&From=you@apache.org"
+ recipients);

Sending mail with attachment sample

The mail component supports attachments. In the sample below, we send a mail message
containing a plain text message with a logo file attachment.

// create an exchange with a normal body and attachment to be produced as email
Endpoint endpoint =
context.getEndpoint("smtp://james@mymailserver.com?password=secret");

810 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

Attachments are not support by all Camel components
The Attachments API is based on the Java Activation Framework and is generally only
used by the Mail API. Since many of the other Camel components do not support
attachments, the attachments could potentially be lost as they propagate along the
route. The rule of thumb, therefore, is to add attachments just before sending a
message to the mail endpoint.

// create the exchange with the mail message that is multipart with a file and a Hello
World text/plain message.
Exchange exchange = endpoint.createExchange();
Message in = exchange.getIn();
in.setBody("Hello World");
in.addAttachment("logo.jpeg", new DataHandler(new FileDataSource("src/test/data/
logo.jpeg")));

// create a producer that can produce the exchange (= send the mail)
Producer producer = endpoint.createProducer();
// start the producer
producer.start();
// and let it go (processes the exchange by sending the email)
producer.process(exchange);

SSL sample

In this sample, we want to poll our Google mail inbox for mails. To download mail onto a local
mail client, Google mail requires you to enable and configure SSL. This is done by logging into
your Google mail account and changing your settings to allow IMAP access. Google have
extensive documentation on how to do this.

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&delete=false&unseen=true&consumer.delay=60000").to("log:newmail");

The preceding route polls the Google mail inbox for new mails once every minute and logs the
received messages to the newmail logger category.
Running the sample with DEBUG logging enabled, we can monitor the progress in the logs:

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder:
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1 messages.
2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=[332],

CHAPTER 11 - COMPONENT APPENDIX 811

from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...
2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage: messageNumber=[332],
from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

Consuming mails with attachment sample

In this sample we poll a mailbox and store all attachments from the mails as files. First, we
define a route to poll the mailbox. As this sample is based on google mail, it uses the same
route as shown in the SSL sample:

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&delete=false&unseen=true&consumer.delay=60000").process(new MyMailProcessor());

Instead of logging the mail we use a processor where we can process the mail from java code:

public void process(Exchange exchange) throws Exception {
// the API is a bit clunky so we need to loop
Map<String, DataHandler> attachments = exchange.getIn().getAttachments();
if (attachments.size() > 0) {

for (String name : attachments.keySet()) {
DataHandler dh = attachments.get(name);
// get the file name
String filename = dh.getName();

// get the content and convert it to byte[]
byte[] data = exchange.getContext().getTypeConverter()

.convertTo(byte[].class, dh.getInputStream());

// write the data to a file
FileOutputStream out = new FileOutputStream(filename);
out.write(data);
out.flush();
out.close();

}
}

}

As you can see the API to handle attachments is a bit clunky but it's there so you can get the
javax.activation.DataHandler so you can handle the attachments using standard
API.

How to split a mail message with attachments

In this example we consume mail messages which may have a number of attachments. What we
want to do is to use the Splitter EIP per individual attachment, to process the attachments
separately. For example if the mail message has 5 attachments, we want the Splitter to process
five messages, each having a single attachment. To do this we need to provide a custom

812 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html

Expression to the Splitter where we provide a List<Message> that contains the five messages
with the single attachment.

The code is provided out of the box in Camel 2.10 onwards in the camel-mail
component. The code is in the class:
org.apache.camel.component.mail.SplitAttachmentsExpression, which
you can find the source code here

In the Camel route you then need to use this Expression in the route as shown below:

from("pop3://james@mymailserver.com?password=secret&consumer.delay=1000")
.to("log:email")
// use the SplitAttachmentsExpression which will split the message per attachment
.split(new SplitAttachmentsExpression())

// each message going to this mock has a single attachment
.to("mock:split")

.end();

If you use XML DSL then you need to declare a method call expression in the Splitter as shown
below

<split>
<method beanType="org.apache.camel.component.mail.SplitAttachmentsExpression"/>
<to uri="mock:split"/>

</split>

Using custom SearchTerm

Available as of Camel 2.11

You can configure a searchTerm on the MailEndpoint which allows you to filter out
unwanted mails.

For example to filter mails to contain Camel in either Subject or Text you can do as follows:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subjectOrBody=Camel"/>
<to uri="bean:myBean"/>

</route>

Notice we use the "searchTerm.subjectOrBody" as parameter key to indicate that we
want to search on mail subject or body, to contain the word "Camel".
The class org.apache.camel.component.mail.SimpleSearchTerm has a number
of options you can configure:

Or to get the new unseen emails going 24 hours back in time you can do. Notice the
"now-24h" syntax. See the table below for more details.

CHAPTER 11 - COMPONENT APPENDIX 813

http://camel.apache.org/expression.html
http://camel.apache.org/splitter.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-mail/src/main/java/org/apache/camel/component/mail/SplitAttachmentsExpression.java
http://camel.apache.org/expression.html
http://camel.apache.org/splitter.html

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.fromSentDate=now-24h"/>
<to uri="bean:myBean"/>

</route>

You can have multiple searchTerm in the endpoint uri configuration. They would then be
combined together using AND operator, eg so both conditions must match. For example to get
the last unseen emails going back 24 hours which has Camel in the mail subject you can do:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subject=Camel&searchTerm.fromSentDate=now-24h"/>
<to uri="bean:myBean"/>

</route>

Option Default Description

unseen true Whether to limit by unseen mails only.

subjectOrBody null To limit by subject or body to contain the word.

subject null The subject must contain the word.

body null The body must contain the word.

from null The mail must be from a given email pattern.

to null The mail must be to a given email pattern.

fromSentDate null

The mail must be sent after or equals (GE) a given date. The date pattern is yyyy-MM-dd HH:mm:SS, eg use "2012-01-01
00:00:00" to be from the year 2012 onwards. You can use "now" for current timestamp. The "now" syntax supports an optional offset,
that can be specified as either + or - with a numeric value. For example for last 24 hours, you can use "now - 24h" or without spaces
"now-24h". Notice that Camel supports shorthands for hours, minutes, and seconds.

toSentDate null

The mail must be sent before or equals (BE) a given date. The date pattern is yyyy-MM-dd HH:mm:SS, eg use "2012-01-01
00:00:00" to be before the year 2012. You can use "now" for current timestamp. The "now" syntax supports an optional offset, that can
be specified as either + or - with a numeric value. For example for last 24 hours, you can use "now - 24h" or without spaces
"now-24h". Notice that Camel supports shorthands for hours, minutes, and seconds.

The SimpleSearchTerm is designed to be easily configurable from a POJO, so you can also
configure it using a <bean> style in XML

<bean id="mySearchTerm" class="org.apache.camel.component.mail.SimpleSearchTerm">
<property name="subject" value="Order"/>
<property name="to" value="acme-order@acme.com"/>
<property name="fromSentDate" value="now"/>

</bean>

You can then refer to this bean, using #beanId in your Camel route as shown:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm=#mySearchTerm"/>
<to uri="bean:myBean"/>

</route>

814 CHAPTER 11 - COMPONENT APPENDIX

In Java there is a builder class to build compound SearchTerm}}s using the
{{org.apache.camel.component.mail.SearchTermBuilder class.
This allows you to build complex terms such as:

// we just want the unseen mails which is not spam
SearchTermBuilder builder = new SearchTermBuilder();

builder.unseen().body(Op.not, "Spam").subject(Op.not, "Spam")
// which was sent from either foo or bar
.from("foo@somewhere.com").from(Op.or, "bar@somewhere.com");
// .. and we could continue building the terms

SearchTerm term = builder.build();

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

MINA COMPONENT

The mina: component is a transport for working with Apache MINA

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mina</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

mina:tcp://hostname[:port][?options]
mina:udp://hostname[:port][?options]
mina:vm://hostname[:port][?options]

You can specify a codec in the Registry using the codec option. If you are using TCP and no
codec is specified then the textline flag is used to determine if text line based codec or
object serialization should be used instead. By default the object serialization is used.

CHAPTER 11 - COMPONENT APPENDIX 815

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://mina.apache.org/
http://camel.apache.org/registry.html

For UDP if no codec is specified the default uses a basic ByteBuffer based codec.

The VM protocol is used as a direct forwarding mechanism in the same JVM. See the MINA
VM-Pipe API documentation for details.

A Mina producer has a default timeout value of 30 seconds, while it waits for a response
from the remote server.

In normal use, camel-mina only supports marshalling the body contentÑmessage headers
and exchange properties are not sent.
However, the option, transferExchange, does allow you to transfer the exchange itself over
the wire. See options below.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option
Default
Value

Description

codec null
You can refer to a named ProtocolCodecFactory instance in your Registry such as your Spring
ApplicationContext, which is then used for the marshalling.

codec null
You must use the # notation to look up your codec in the Registry. For example, use #myCodec to look up a bean with the
id value, myCodec.

disconnect false
Camel 2.3: Whether or not to disconnect(close) from Mina session right after use. Can be used for both consumer and
producer.

textline false
Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if not specified or the value
is false, then Object Serialization is assumed over TCP.

textlineDelimiter DEFAULT
Only used for TCP and if textline=true. Sets the text line delimiter to use. Possible values are: DEFAULT, AUTO,
WINDOWS, UNIX or MAC. If none provided, Camel will use DEFAULT. This delimiter is used to mark the end of text.

sync true
You can configure the exchange pattern to be either InOnly (default) or InOut. Setting sync=true means a synchronous
exchange (InOut), where the client can read the response from MINA (the exchange Out message).

lazySessionCreation true
Sessions can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel producer is
started.

timeout 3000
You can configure the timeout that specifies how long to wait for a response from a remote server. The timeout unit is in
milliseconds, so 60000 is 60 seconds. The timeout is only used for Mina producer.

encoding JVM Default
You can configure the encoding (a charset name) to use for the TCP textline codec and the UDP protocol. If not provided,
Camel will use the JVM default Charset.

transferExchange false
Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are transferred:
In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange exception. This requires
that the objects are serializable. Camel will exclude any non-serializable objects and log it at WARN level.

minaLogger false You can enable the Apache MINA logging filter. Apache MINA uses slf4j logging at INFO level to log all input and output.

filters null

You can set a list of Mina IoFilters to register. The filters value must be one of the following:
• Camel 2.2: comma-separated list of bean references (e.g. #filterBean1,#filterBean2) where

each bean must be of type org.apache.mina.common.IoFilter.
• before Camel 2.2: a reference to a bean of type List<org.apache.mina.common.IoFilter>.

encoderMaxLineLength -1
As of 2.1, you can set the textline protocol encoder max line length. By default the default value of Mina itself is used which are
Integer.MAX_VALUE.

decoderMaxLineLength -1
As of 2.1, you can set the textline protocol decoder max line length. By default the default value of Mina itself is used which are
1024.

producerPoolSize 16
The TCP producer is thread safe and supports concurrency much better. This option allows you to configure the number of
threads in its thread pool for concurrent producers. Note: Camel has a pooled service which ensured it was already thread
safe and supported concurrency already.

allowDefaultCodec true
The mina component installs a default codec if both, codec is null and textline is false. Setting
allowDefaultCodec to false prevents the mina component from installing a default codec as the first element in the
filter chain. This is useful in scenarios where another filter must be the first in the filter chain, like the SSL filter.

disconnectOnNoReply true
Camel 2.3: If sync is enabled then this option dictates MinaConsumer if it should disconnect where there is no reply to send
back.

816 CHAPTER 11 - COMPONENT APPENDIX

http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://mina.apache.org/iofilter.html

noReplyLogLevel WARN
Camel 2.3: If sync is enabled this option dictates MinaConsumer which logging level to use when logging a there is no reply
to send back. Values are: FATAL, ERROR, INFO, DEBUG, OFF.

Using a custom codec

See the Mina documentation how to write your own codec. To use your custom codec with
camel-mina, you should register your codec in the Registry; for example, by creating a bean
in the Spring XML file. Then use the codec option to specify the bean ID of your codec. See
HL7 that has a custom codec.

Sample with sync=false

In this sample, Camel exposes a service that listens for TCP connections on port 6200. We use
the textline codec. In our route, we create a Mina consumer endpoint that listens on port
6200:

from("mina:tcp://localhost:" + port1 + "?textline=true&sync=false").to("mock:result");

As the sample is part of a unit test, we test it by sending some data to it on port 6200.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Hello World");

template.sendBody("mina:tcp://localhost:" + port1 + "?textline=true&sync=false",
"Hello World");

assertMockEndpointsSatisfied();

Sample with sync=true

In the next sample, we have a more common use case where we expose a TCP service on port
6201 also use the textline codec. However, this time we want to return a response, so we set
the sync option to true on the consumer.

from("mina:tcp://localhost:" + port2 + "?textline=true&sync=true").process(new
Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);

}
});

Then we test the sample by sending some data and retrieving the response using the
template.requestBody() method. As we know the response is a String, we cast it to

CHAPTER 11 - COMPONENT APPENDIX 817

http://mina.apache.org/tutorial-on-protocolcodecfilter.html
http://camel.apache.org/registry.html
http://camel.apache.org/hl7.html

String and can assert that the response is, in fact, something we have dynamically set in our
processor code logic.

String response = (String)template.requestBody("mina:tcp://localhost:" + port2 +
"?textline=true&sync=true", "World");
assertEquals("Bye World", response);

Sample with Spring DSL

Spring DSL can, of course, also be used for MINA. In the sample below we expose a TCP
server on port 5555:

<route>
<from uri="mina:tcp://localhost:5555?textline=true"/>
<to uri="bean:myTCPOrderHandler"/>

</route>

In the route above, we expose a TCP server on port 5555 using the textline codec. We let the
Spring bean with ID, myTCPOrderHandler, handle the request and return a reply. For
instance, the handler bean could be implemented as follows:

public String handleOrder(String payload) {
...
return "Order: OK"

}

Configuring Mina endpoints using Spring bean style

Configuration of Mina endpoints is possible using regular Spring bean style configuration in the
Spring DSL.

However, in the underlying Apache Mina toolkit, it is relatively difficult to set up the
acceptor and the connector, because you can not use simple setters. To resolve this difficulty,
we leverage the MinaComponent as a Spring factory bean to configure this for us. If you
really need to configure this yourself, there are setters on the MinaEndpoint to set these
when needed.

The sample below shows the factory approach:

<!-- Creating mina endpoints is a bit complex so we reuse MinaComponnet
as a factory bean to create our endpoint, this is the easiest to do -->

<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">
<!-- we must provide a camel context so we refer to it by its id -->
<constructor-arg index="0" ref="myCamel"/>

</bean>

818 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mina.html

<!-- This is our mina endpoint configured with spring, we will use the factory above
to create it for us. The goal is to invoke the createEndpoint method with the
mina configuration parameter we defined using the constructor-arg option -->

<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">

<!-- and here we can pass it our configuration -->
<constructor-arg index="0" ref="myMinaConfig"/>

</bean>

<!-- this is our mina configuration with plain properties -->
<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">

<property name="protocol" value="tcp"/>
<property name="host" value="localhost"/>
<property name="port" value="1234"/>
<property name="sync" value="false"/>

</bean>

And then we can refer to our endpoint directly in the route, as follows:

<route>
<!-- here we route from or mina endpoint we have defined above -->
<from ref="myMinaEndpoint"/>
<to uri="mock:result"/>

</route>

Closing Session When Complete

When acting as a server you sometimes want to close the session when, for example, a client
conversion is finished. To instruct Camel to close the session, you should add a header with the
key CamelMinaCloseSessionWhenComplete set to a boolean true value.

For instance, the example below will close the session after it has written the bye message
back to the client:

from("mina:tcp://localhost:8080?sync=true&textline=true").process(new
Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);

exchange.getOut().setHeader(MinaConstants.MINA_CLOSE_SESSION_WHEN_COMPLETE, true);
}

});

CHAPTER 11 - COMPONENT APPENDIX 819

Get the IoSession for message

Available since Camel 2.1
You can get the IoSession from the message header with this key
MinaEndpoint.HEADER_MINA_IOSESSION, and also get the local host address with the key
MinaEndpoint.HEADER_LOCAL_ADDRESS and remote host address with the key
MinaEndpoint.HEADER_REMOTE_ADDRESS.

Configuring Mina filters

Filters permit you to use some Mina Filters, such as SslFilter. You can also implement
some customized filters. Please note that codec and logger are also implemented as Mina
filters of type, IoFilter. Any filters you may define are appended to the end of the filter
chain; that is, after codec and logger.
For instance, the example below will send a keep-alive message after 10 seconds of inactivity:

public class KeepAliveFilter extends IoFilterAdapter {
@Override
public void sessionCreated(NextFilter nextFilter, IoSession session)

throws Exception {
session.setIdleTime(IdleStatus.BOTH_IDLE, 10);

nextFilter.sessionCreated(session);
}

@Override
public void sessionIdle(NextFilter nextFilter, IoSession session,

IdleStatus status) throws Exception {
session.write("NOOP"); // NOOP is a FTP command for keep alive
nextFilter.sessionIdle(session, status);

}
}

As Camel Mina may use a request-reply scheme, the endpoint as a client would like to drop
some message, such as greeting when the connection is established. For example, when you
connect to an FTP server, you will get a 220 message with a greeting (220 Welcome to
Pure-FTPd). If you don't drop the message, your request-reply scheme will be broken.

public class DropGreetingFilter extends IoFilterAdapter {

@Override
public void messageReceived(NextFilter nextFilter, IoSession session,

Object message) throws Exception {
if (message instanceof String) {

String ftpMessage = (String) message;
// "220" is given as greeting. "200 Zzz" is given as a response to "NOOP"

(keep alive)
if (ftpMessage.startsWith("220") || or ftpMessage.startsWith("200 Zzz")) {

820 CHAPTER 11 - COMPONENT APPENDIX

If using the SslFilter you need to add the mina-filter-ssl JAR to the
classpath.

// Dropping greeting
return;

}
}
nextFilter.messageReceived(session, message);

}
}

Then, you can configure your endpoint using Spring DSL:

<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">
<constructor-arg index="0" ref="camelContext" />

</bean>

<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">

<constructor-arg index="0" ref="myMinaConfig"/>
</bean>

<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">
<property name="protocol" value="tcp" />
<property name="host" value="localhost" />
<property name="port" value="2121" />
<property name="sync" value="true" />
<property name="minaLogger" value="true" />
<property name="filters" ref="listFilters"/>

</bean>

<bean id="listFilters" class="java.util.ArrayList" >
<constructor-arg>

<list value-type="org.apache.mina.common.IoFilter">
<bean class="com.example.KeepAliveFilter"/>
<bean class="com.example.DropGreetingFilter"/>

</list>
</constructor-arg>

</bean>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 11 - COMPONENT APPENDIX 821

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

▪ Camel Netty

MOCK COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.
The Mock component provides a powerful declarative testing mechanism, which is similar to
jMock in that it allows declarative expectations to be created on any Mock endpoint before a
test begins. Then the test is run, which typically fires messages to one or more endpoints, and
finally the expectations can be asserted in a test case to ensure the system worked as expected.

This allows you to test various things like:
• The correct number of messages are received on each endpoint,
• The correct payloads are received, in the right order,
• Messages arrive on an endpoint in order, using some Expression to create an order

testing function,
• Messages arrive match some kind of Predicate such as that specific headers have

certain values, or that parts of the messages match some predicate, such as by
evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second
endpoint to provide the list of expected message bodies and automatically sets up the Mock
endpoint assertions. In other words, it's a Mock endpoint that automatically sets up its
assertions from some sample messages in a File or database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

reportGroup null A size to use a throughput logger for reporting

822 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/netty.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/log.html

Mock endpoints keep received Exchanges in memory indefinitely
Remember that Mock is designed for testing. When you add Mock endpoints to a
route, each Exchange sent to the endpoint will be stored (to allow for later
validation) in memory until explicitly reset or the JVM is restarted. If you are
sending high volume and/or large messages, this may cause excessive memory use. If
your goal is to test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new options retainFirst, and retainLast
that can be used to limit the number of messages the Mock endpoints keep in memory.

Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the
context. Then we set an expectation, and then, after the test has run, we assert that our
expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations were met
after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is invoked. This
can be configured by setting the setResultWaitTime(millis) method.

Using assertPeriod

Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue from the
assertIsSatisfied method. That means if a new message arrives on the mock endpoint,
just a bit later, that arrival will not affect the outcome of the assertion. Suppose you do want to
test that no new messages arrives after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

CHAPTER 11 - COMPONENT APPENDIX 823

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set
expectations. The main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare messages.

expectsNoDuplicates(Expression)
To add an expectation that no duplicate messages are received; using an Expression to calculate a unique identifier for each message. This
could be something like the JMSMessageID if using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages

In addition, you can use the message(int messageIndex) method to add assertions about a
specific message that is received.

For example, to add expectations of the headers or body of the first message (using zero-
based indexing like java.util.List), you can use the following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests.

Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

824 CHAPTER 11 - COMPONENT APPENDIX

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

How it works
Important: The endpoints are still in action. What happens differently is that a
Mock endpoint is injected and receives the message first and then delegates the
message to the target endpoint. You can view this as a kind of intercept and
delegate or endpoint listener.

Suppose you have the given route below:

Listing 1.Listing 1. RouteRoute

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

You can then use the adviceWith feature in Camel to mock all the endpoints in a given
route from your unit test, as shown below:

Listing 1.Listing 1. adviceWith mocking all endpointsadviceWith mocking all endpoints

public void testAdvisedMockEndpoints() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock all endpoints
mockEndpoints();

}
});

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));

CHAPTER 11 - COMPONENT APPENDIX 825

http://camel.apache.org/mock.html

assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

Notice that the mock endpoints is given the uri mock:<endpoint>, for example
mock:direct:foo. Camel logs at INFO level the endpoints being mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example to mock all log
endpoints you do as shown:

Listing 1.Listing 1. adviceWith mocking only log endpoints using a patternadviceWith mocking only log endpoints using a pattern

public void testAdvisedMockEndpointsWithPattern() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock only log endpoints
mockEndpoints("log*");

}
});

// now we can refer to log:foo as a mock and set our expectations
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull(context.hasEndpoint("mock:log:foo"));
assertNull(context.hasEndpoint("mock:direct:start"));
assertNull(context.hasEndpoint("mock:direct:foo"));

}

826 CHAPTER 11 - COMPONENT APPENDIX

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off. For example
the endpoint "log:foo?showAll=true" will be mocked to the following endpoint
"mock:log:foo". Notice the parameters have been removed.

The pattern supported can be a wildcard or a regular expression. See more details about this at
Intercept as its the same matching function used by Camel.

Mocking existing endpoints using the camel-test component

Instead of using the adviceWith to instruct Camel to mock endpoints, you can easily enable
this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the
isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

Listing 1.Listing 1. isMockEndpoints using camel-test kitisMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpoints() {

// override this method and return the pattern for which endpoints to mock.
// use * to indicate all
return "*";

}

@Test
public void testMockAllEndpoints() throws Exception {

// notice we have automatic mocked all endpoints and the name of the endpoints
is "mock:uri"

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));

CHAPTER 11 - COMPONENT APPENDIX 827

http://camel.apache.org/intercept.html

Mind that mocking endpoints causes the messages to be copied when they arrive on
the mock.
That means Camel will use more memory. This may not be suitable when you send
in a lot of messages.

assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

}

Mocking existing endpoints with XML DSL

If you do not use the camel-test component for unit testing (as shown above) you can use a
different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then include the intended
XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:

Listing 1.Listing 1. camel-route.xmlcamel-route.xml

<!-- this camel route is in the camel-route.xml file -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<transform>

<constant>Bye World</constant>

828 CHAPTER 11 - COMPONENT APPENDIX

</transform>
</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-route.xml file and
define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which tells
Camel to mock all endpoints:

Listing 1.Listing 1. test-camel-route.xmltest-camel-route.xml

<!-- the Camel route is defined in another XML file -->
<import resource="camel-route.xml"/>

<!-- bean which enables mocking all endpoints -->
<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml) instead of
camel-route.xml.

To only mock all Log endpoints you can define the pattern in the constructor for the bean:

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">

<constructor-arg index="0" value="log*"/>
</bean>

Mocking endpoints and skip sending to original endpoint

Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain endpoints. So the message
is detoured and send to the mock endpoint only. From Camel 2.10 onwards you can now use
the mockEndpointsAndSkip method using AdviceWith or the [Test Kit]. The example
below will skip sending to the two endpoints "direct:foo", and "direct:bar".

Listing 1.Listing 1. adviceWith mock and skip sending to endpointsadviceWith mock and skip sending to endpoints

public void testAdvisedMockEndpointsWithSkip() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock sending to direct:foo and direct:bar and skip send to it

CHAPTER 11 - COMPONENT APPENDIX 829

http://camel.apache.org/log.html
http://camel.apache.org/advicewith.html

mockEndpointsAndSkip("direct:foo", "direct:bar");
}

});

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);
getMockEndpoint("mock:direct:bar").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the seda
endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

The same example using the Test Kit

Listing 1.Listing 1. isMockEndpointsAndSkip using camel-test kitisMockEndpointsAndSkip using camel-test kit

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpointsAndSkip() {

// override this method and return the pattern for which endpoints to mock,
// and skip sending to the original endpoint.
return "direct:foo";

}

@Test
public void testMockEndpointAndSkip() throws Exception {

// notice we have automatic mocked the direct:foo endpoints and the name of
the endpoints is "mock:uri"

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the
seda endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("mock:result");

830 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/testing.html

from("direct:foo").transform(constant("Bye World")).to("seda:foo");
}

};
}

}

Limiting the number of messages to keep

Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you
test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and
retainLast that can be used to specify to only keep N'th of the first and/or last Exchanges.

For example in the code below, we only want to retain a copy of the first 5 and last 5
Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data");
mock.setRetainFirst(5);
mock.setRetainLast(5);
mock.expectedMessageCount(2000);

...

mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges()
methods on the MockEndpoint will return only the retained copies of the Exchanges. So in
the example above, the list will contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedXXX methods that work on message bodies,
headers, etc. will only operate on the retained messages. In the example above they can test
only the expectations on the 10 retained messages.

Testing with arrival times

Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock. But it also
provides foundation to know the time interval between the previous and next message arrived

CHAPTER 11 - COMPONENT APPENDIX 831

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html

on the mock. You can use this to set expectations using the arrives DSL on the Mock
endpoint.

For example to say that the first message should arrive between 0-2 seconds before the
next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive no later than 0-2
seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it should be
between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the gap between them
should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing
• Testing

MSV COMPONENT

The MSV component performs XML validation of the message body using the MSV Library and
any of the supported XML schema languages, such as XML Schema or RelaxNG XML Syntax.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-msv</artifactId>

832 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://relaxng.org/

time units
In the example above we use seconds as the time unit, but Camel offers
milliseconds, and minutes as well.

<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Note that the Jing component also supports RelaxNG Compact Syntax

URI format

msv:someLocalOrRemoteResource[?options]

Where someLocalOrRemoteResource is some URL to a local resource on the classpath
or a full URL to a remote resource or resource on the file system. For example

msv:org/foo/bar.rng
msv:file:../foo/bar.rng
msv:http://acme.com/cheese.rng

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

useDom true
Whether DOMSource/DOMResult or SaxSource/SaxResult should be used by the validator. Note: DOM must be used by the MSV
component.

Example

The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given RelaxNG XML Schema (which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<doTry>

CHAPTER 11 - COMPONENT APPENDIX 833

http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html
http://camel.apache.org/msv.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/

<to uri="msv:org/apache/camel/component/validator/msv/schema.rng"/>
<to uri="mock:valid"/>

<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

MYBATIS

Available as of Camel 2.7

The mybatis: component allows you to query, poll, insert, update and delete data in a
relational database using MyBatis.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mybatis</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

mybatis:statementName[?options]

Where statementName is the statement name in the MyBatis XML mapping file which
maps to the query, insert, update or delete operation you wish to evaluate.

834 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://mybatis.org/

You can append query options to the URI in the following format,
?option=value&option=value&...

This component will by default load the MyBatis SqlMapConfig file from the root of the
classpath with the expected name of SqlMapConfig.xml.
If the file is located in another location, you will need to configure the configurationUri
option on the MyBatisComponent component.

Options

Option Type Default Description

consumer.onConsume String null
Statements to run after consuming. Can be used, for example, to update rows after they
have been consumed and processed in Camel. See sample later. Multiple statements can be
separated with commas.

consumer.useIterator boolean true
If true each row returned when polling will be processed individually. If false the entire
List of data is set as the IN body.

consumer.routeEmptyResultSet boolean false Sets whether empty result sets should be routed.

statementType StatementType null

Mandatory to specify for the producer to control which kind of operation to invoke. The
enum values are: SelectOne, SelectList, Insert, InsertList, Update,
UpdateList, Delete, and DeleteList. Notice: InsertList is available as of
Camel 2.10, and UpdateList, DeleteList is available as of Camel 2.11.

maxMessagesPerPoll int 0
An integer to define the maximum messages to gather per poll. By default, no maximum is
set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that there
are thousands of files. Set a value of 0 or negative to disable it.

executorType String null

Camel 2.11: The executor type to be used while executing statements. The supported
values are: simple, reuse, batch. By default, the value is not specified and is equal to what
MyBatis uses, i.e. simple.
simple executor does nothing special.
reuse executor reuses prepared statements.
batch executor reuses statements and batches updates.

Message Headers

Camel will populate the result message, either IN or OUT with a header with the statement
used:

Header Type Description

CamelMyBatisStatementName String The statementName used (for example: insertAccount).

CamelMyBatisResult Object
The response returned from MtBatis in any of the operations. For instance an INSERT could return the auto-generated
key, or number of rows etc.

Message Body

The response from MyBatis will only be set as the body if it's a SELECT statement. That means,
for example, for INSERT statements Camel will not replace the body. This allows you to
continue routing and keep the original body. The response from MyBatis is always stored in the
header with the key CamelMyBatisResult.

Samples

For example if you wish to consume beans from a JMS queue and insert them into a database
you could do the following:

CHAPTER 11 - COMPONENT APPENDIX 835

from("activemq:queue:newAccount").
to("mybatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Camel which kind of
operation to invoke.

Where insertAccount is the MyBatis ID in the SQL mapping file:

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterType="Account">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL

)
values (

#{id}, #{firstName}, #{lastName}, #{emailAddress}
)

</insert>

Using StatementType for better control of MyBatis

When routing to an MyBatis endpoint you will want more fine grained control so you can
control whether the SQL statement to be executed is a SELECT, UPDATE, DELETE or
INSERT etc. So for instance if we want to route to an MyBatis endpoint in which the IN body
contains parameters to a SELECT statement we can do:

from("direct:start")
.to("mybatis:selectAccountById?statementType=SelectOne")
.to("mock:result");

In the code above we can invoke the MyBatis statement selectAccountById and the IN
body should contain the account id we want to retrieve, such as an Integer type.

We can do the same for some of the other operations, such as SelectList:

from("direct:start")
.to("mybatis:selectAllAccounts?statementType=SelectList")
.to("mock:result");

And the same for UPDATE, where we can send an Account object as the IN body to MyBatis:

from("direct:start")
.to("mybatis:updateAccount?statementType=Update")
.to("mock:result");

836 CHAPTER 11 - COMPONENT APPENDIX

Using InsertList StatementType

Available as of Camel 2.10

MyBatis allows you to insert multiple rows using its for-each batch driver. To use this, you
need to use the <foreach> in the mapper XML file. For example as shown below:

<!-- Batch Insert example, using the Account parameter class -->
<insert id="batchInsertAccount" parameterType="java.util.List">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL
)
values (
<foreach item="Account" collection="list" open="" close="" separator="),(">

#{Account.id}, #{Account.firstName}, #{Account.lastName},
#{Account.emailAddress}

</foreach>
)

</insert>

Then you can insert multiple rows, by sending a Camel message to the mybatis endpoint
which uses the InsertList statement type, as shown below:

from("direct:start")
.to("mybatis:batchInsertAccount?statementType=InsertList")
.to("mock:result");

Using UpdateList StatementType

Available as of Camel 2.11

MyBatis allows you to update multiple rows using its for-each batch driver. To use this, you
need to use the <foreach> in the mapper XML file. For example as shown below:

<update id="batchUpdateAccount" parameterType="java.util.Map">
update ACCOUNT set
ACC_EMAIL = #{emailAddress}
where
ACC_ID in
<foreach item="Account" collection="list" open="(" close=")" separator=",">

#{Account.id}
</foreach>

</update>

Then you can update multiple rows, by sending a Camel message to the mybatis endpoint which
uses the UpdateList statement type, as shown below:

CHAPTER 11 - COMPONENT APPENDIX 837

from("direct:start")
.to("mybatis:batchUpdateAccount?statementType=UpdateList")
.to("mock:result");

Using DeleteList StatementType

Available as of Camel 2.11

MyBatis allows you to delete multiple rows using its for-each batch driver. To use this, you
need to use the <foreach> in the mapper XML file. For example as shown below:

<delete id="batchDeleteAccountById" parameterType="java.util.List">
delete from ACCOUNT
where
ACC_ID in
<foreach item="AccountID" collection="list" open="(" close=")" separator=",">

#{AccountID}
</foreach>

</delete>

Then you can delete multiple rows, by sending a Camel message to the mybatis endpoint which
uses the DeleteList statement type, as shown below:

from("direct:start")
.to("mybatis:batchDeleteAccount?statementType=DeleteList")
.to("mock:result");

Notice on InsertList, UpdateList and DeleteList
StatementTypes

Parameter of any type (List, Map, etc.) can be passed to mybatis and an end user is responsible
for handling it as required
with the help of mybatis dynamic queries capabilities.

Scheduled polling example

Since this component does not support scheduled polling, you need to use another mechanism
for triggering the scheduled polls, such as the Timer or Quartz components.

In the sample below we poll the database, every 30 seconds using the Timer component and
send the data to the JMS queue:

838 CHAPTER 11 - COMPONENT APPENDIX

http://www.mybatis.org/core/dynamic-sql.html
http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/timer.html

from("timer://pollTheDatabase?delay=30000").to("mbatis:selectAllAccounts").to("activemq:queue:allAccounts");

And the MyBatis SQL mapping file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

Using onConsume

This component supports executing statements after data have been consumed and processed
by Camel. This allows you to do post updates in the database. Notice all statements must be
UPDATE statements. Camel supports executing multiple statements whose names should be
separated by commas.

The route below illustrates we execute the consumeAccount statement data is
processed. This allows us to change the status of the row in the database to processed, so we
avoid consuming it twice or more.

from("mybatis:selectUnprocessedAccounts?consumer.onConsume=consumeAccount").to("mock:results");

And the statements in the sqlmap file:

<select id="selectUnprocessedAccounts" resultMap="AccountResult">
select * from ACCOUNT where PROCESSED = false

</select>

<update id="consumeAccount" parameterType="Account">
update ACCOUNT set PROCESSED = true where ACC_ID = #{id}

</update>

Participating in transactions

Setting up a transaction manager under camel-mybatis can be a little bit fiddly, as it involves
externalising the database configuration outside the standard MyBatis SqlMapConfig.xml
file.

The first part requires the setup of a DataSource. This is typically a pool (either DBCP,
or c3p0), which needs to be wrapped in a Spring proxy. This proxy enables non-Spring use of
the DataSource to participate in Spring transactions (the MyBatis SqlSessionFactory
does just this).

CHAPTER 11 - COMPONENT APPENDIX 839

<bean id="dataSource"
class="org.springframework.jdbc.datasource.TransactionAwareDataSourceProxy">

<constructor-arg>
<bean class="com.mchange.v2.c3p0.ComboPooledDataSource">

<property name="driverClass" value="org.postgresql.Driver"/>
<property name="jdbcUrl" value="jdbc:postgresql://localhost:5432/

myDatabase"/>
<property name="user" value="myUser"/>
<property name="password" value="myPassword"/>

</bean>
</constructor-arg>

</bean>

This has the additional benefit of enabling the database configuration to be externalised using
property placeholders.

A transaction manager is then configured to manage the outermost DataSource:

<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

A mybatis-spring SqlSessionFactoryBean then wraps that same DataSource:

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="dataSource"/>
<!-- standard mybatis config file -->
<property name="configLocation" value="/META-INF/SqlMapConfig.xml"/>
<!-- externalised mappers -->
<property name="mapperLocations" value="classpath*:META-INF/mappers/**/*.xml"/>

</bean>

The camel-mybatis component is then configured with that factory:

<bean id="mybatis" class="org.apache.camel.component.mybatis.MyBatisComponent">
<property name="sqlSessionFactory" ref="sqlSessionFactory"/>

</bean>

Finally, a transaction policy is defined over the top of the transaction manager, which can then
be used as usual:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

840 CHAPTER 11 - COMPONENT APPENDIX

http://www.mybatis.org/spring/index.html
http://www.mybatis.org/spring/factorybean.html
http://www.mybatis.org/spring/factorybean.html
http://camel.apache.org/transactional-client.html

<camelContext id="my-model-context" xmlns="http://camel.apache.org/schema/spring">
<route id="insertModel">

<from uri="direct:insert"/>
<transacted ref="PROPAGATION_REQUIRED"/>
<to uri="mybatis:myModel.insert?statementType=Insert"/>

</route>
</camelContext>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

NAGIOS

Available as of Camel 2.3

The Nagios component allows you to send passive checks to Nagios.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-nagios</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

nagios://host[:port][?Options]

Camel provides two abilities with the Nagios component. You can send passive check messages
by sending a message to its endpoint.
Camel also provides a EventNotifer which allows you to send notifications to Nagios.

Options

Name
Default
Value

Description

host none This is the address of the Nagios host where checks should be send.

CHAPTER 11 - COMPONENT APPENDIX 841

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/nagios.html
http://nagios.org
http://camel.apache.org/nagios.html
http://camel.apache.org/camel-jmx.html
http://camel.apache.org/nagios.html

port Ê The port number of the host.

password Ê Password to be authenticated when sending checks to Nagios.

connectionTimeout 5000 Connection timeout in millis.

timeout 5000 Sending timeout in millis.

nagiosSettings Ê
To use an already configured com.googlecode.jsendnsca.core.NagiosSettings object. Then any of the other
options are not in use, if using this.

sendSync true
Whether or not to use synchronous when sending a passive check. Setting it to false will allow Camel to continue routing the
message and the passive check message will be send asynchronously.

encryptionMethod No Camel 2.9: To specify an encryption method. Possible values: No, Xor, or TripleDes.

Headers

Name Description

CamelNagiosHostName
This is the address of the Nagios host where checks should be send. This header will override any existing hostname configured on the
endpoint.

CamelNagiosLevel This is the severity level. You can use values CRITICAL, WARNING, OK. Camel will by default use OK.

CamelNagiosServiceName The servie name. Will default use the CamelContext name.

Sending message examples

You can send a message to Nagios where the message payload contains the message. By default
it will be OK level and use the CamelContext name as the service name. You can overrule these
values using headers as shown above.

For example we send the Hello Nagios message to Nagios as follows:

template.sendBody("direct:start", "Hello Nagios");

from("direct:start").to("nagios:127.0.0.1:5667?password=secret").to("mock:result");

To send a CRITICAL message you can send the headers such as:

Map headers = new HashMap();
headers.put(NagiosConstants.LEVEL, "CRITICAL");
headers.put(NagiosConstants.HOST_NAME, "myHost");
headers.put(NagiosConstants.SERVICE_NAME, "myService");
template.sendBodyAndHeaders("direct:start", "Hello Nagios", headers);

Using NagiosEventNotifer

The Nagios component also provides an EventNotifer which you can use to send events to
Nagios. For example we can enable this from Java as follows:

NagiosEventNotifier notifier = new NagiosEventNotifier();
notifier.getConfiguration().setHost("localhost");
notifier.getConfiguration().setPort(5667);

842 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/nagios.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/nagios.html
http://camel.apache.org/camel-jmx.html

notifier.getConfiguration().setPassword("password");

CamelContext context = ...
context.getManagementStrategy().addEventNotifier(notifier);
return context;

In Spring XML its just a matter of defining a Spring bean with the type EventNotifier and
Camel will pick it up as documented here: Advanced configuration of CamelContext using
Spring.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

NETTY COMPONENT

Available as of Camel 2.3

The netty component in Camel is a socket communication component, based on the Netty
project.
Netty is a NIO client server framework which enables quick and easy development of network
applications such as protocol servers and clients.
Netty greatly simplifies and streamlines network programming such as TCP and UDP socket
server.

This camel component supports both producer and consumer endpoints.

The Netty component has several options and allows fine-grained control of a number of
TCP/UDP communication parameters (buffer sizes, keepAlives, tcpNoDelay etc) and facilitates
both In-Only and In-Out communication on a Camel route.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-netty</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 843

http://camel.apache.org/advanced-configuration-of-camelcontext-using-spring.html
http://camel.apache.org/advanced-configuration-of-camelcontext-using-spring.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://netty.io/

URI format

The URI scheme for a netty component is as follows

netty:tcp://localhost:99999[?options]
netty:udp://remotehost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

keepAlive true Setting to ensure socket is not closed due to inactivity

tcpNoDelay true Setting to improve TCP protocol performance

backlog Ê
Camel 2.9.6/2.10.4/2.11: Allows to configure a backlog for netty consumer (server). Note the backlog is just a
best effort depending on the OS. Setting this option to a value such as 200, 500 or 1000, tells the TCP stack how
long the "accept" queue can be. If this option is not configured, then the backlog depends on OS setting.

broadcast false Setting to choose Multicast over UDP

connectTimeout 10000 Time to wait for a socket connection to be available. Value is in millis.

reuseAddress true Setting to facilitate socket multiplexing

sync true Setting to set endpoint as one-way or request-response

synchronous false
Camel 2.10: Whether Asynchronous Routing Engine is not in use. false then the Asynchronous Routing
Engine is used, true to force processing synchronous.

ssl false Setting to specify whether SSL encryption is applied to this endpoint

sendBufferSize
65536
bytes

The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.

receiveBufferSize
65536
bytes

The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.

option.XXX null
Camel 2.11/2.10.4: Allows to configure additional netty options using "option." as prefix. For example
"option.child.keepAlive=false" to set the netty option "child.keepAlive=false". See the Netty documentation for
possible options that can be used.

corePoolSize 10
The number of allocated threads at component startup. Defaults to 10. Note: This option is removed from Camel
2.9.2 onwards. As we rely on Nettys default settings.

maxPoolSize 100
The maximum number of threads that may be allocated to this endpoint. Defaults to 100. Note: This option is
removed from Camel 2.9.2 onwards. As we rely on Nettys default settings.

disconnect false
Whether or not to disconnect(close) from Netty Channel right after use. Can be used for both consumer and
producer.

lazyChannelCreation true
Channels can be lazily created to avoid exceptions, if the remote server is not up and running when the Camel
producer is started.

transferExchange false

Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following fields are
transferred: In body, Out body, fault body, In headers, Out headers, fault headers, exchange properties, exchange
exception. This requires that the objects are serializable. Camel will exclude any non-serializable objects and log it
at WARN level.

disconnectOnNoReply true
If sync is enabled then this option dictates NettyConsumer if it should disconnect where there is no reply to send
back.

noReplyLogLevel WARN
If sync is enabled this option dictates NettyConsumer which logging level to use when logging a there is no reply to
send back. Values are: FATAL, ERROR, INFO, DEBUG, OFF.

allowDefaultCodec true
Camel 2.4: The netty component installs a default codec if both, encoder/deocder is null and textline is false.
Setting allowDefaultCodec to false prevents the netty component from installing a default codec as the first
element in the filter chain.

textline false
Camel 2.4: Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if
not specified or the value is false, then Object Serialization is assumed over TCP.

844 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html

delimiter LINE Camel 2.4: The delimiter to use for the textline codec. Possible values are LINE and NULL.

decoderMaxLineLength 1024 Camel 2.4: The max line length to use for the textline codec.

autoAppendDelimiter true Camel 2.4: Whether or not to auto append missing end delimiter when sending using the textline codec.

encoding null
Camel 2.4: The encoding (a charset name) to use for the textline codec. If not provided, Camel will use the JVM
default Charset.

workerCount null
Camel 2.9: When netty works on nio mode, it uses default workerCount parameter from Netty, which is
cpu_core_threads*2. User can use this operation to override the default workerCount from Netty

sslContextParametersRef null
Camel 2.9: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry.Ê
This reference overrides any configured SSLContextParameters at the component level.Ê See Using the JSSE
Configuration Utility.

receiveBufferSizePredictor null Camel 2.9: Configures the buffer size predictor. See details at Jetty documentation and this mail thread.

needClientAuth false Camel 2.11: Configures whether the server needs client authentication when using SSL.

orderedThreadPoolExecutor true

Camel 2.10.2: Whether to use ordered thread pool, to ensure events are processed orderly on the same
channel. See details at the netty javadoc of
org.jboss.netty.handler.execution.OrderedMemoryAwareThreadPoolExecutor for more
details.

maximumPoolSize 16 Camel 2.10.2: The core pool size for the ordered thread pool, if its in use.

producerPoolEnabled true Camel 2.10.4/Camel 2.11: Producer only. Whether producer pool is enabled or not.

producerPoolMaxActive -1
Camel 2.10.3: Producer only. Sets the cap on the number of objects that can be allocated by the pool (checked
out to clients, or idle awaiting checkout) at a given time. Use a negative value for no limit.

producerPoolMinIdle 0
Camel 2.10.3: Producer only. Sets the minimum number of instances allowed in the producer pool before the
evictor thread (if active) spawns new objects.

producerPoolMaxIdle 100 Camel 2.10.3: Producer only. Sets the cap on the number of "idle" instances in the pool.

producerPoolMinEvictableIdle 30000
Camel 2.10.3: Producer only. Sets the minimum amount of time (value in millis) an object may sit idle in the pool
before it is eligible for eviction by the idle object evictor.

Registry based Options

Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in the Spring XML
file.
The values that could be passed in, are the following:

Name Description

passphrase password setting to use in order to encrypt/decrypt payloads sent using SSH

keyStoreFormat keystore format to be used for payload encryption. Defaults to "JKS" if not set

securityProvider Security provider to be used for payload encryption. Defaults to "SunX509" if not set.

keyStoreFile Client side certificate keystore to be used for encryption

trustStoreFile Server side certificate keystore to be used for encryption

sslHandler Reference to a class that could be used to return an SSL Handler

encoder
A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads. Must override
org.jboss.netty.channel.ChannelDownStreamHandler.

encorders
A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just
remember to prefix the value with # so Camel knows it should lookup.

decoder
A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads. Must override
org.jboss.netty.channel.ChannelUpStreamHandler.

decoders
A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked up in the Registry. Just
remember to prefix the value with # so Camel knows it should lookup.

Important: Read below about using non shareable encoders/decoders.

Using non shareable encoders or decoders

If your encoders or decoders is not shareable (eg they have the @Shareable class annotation),
then your encoder/decoder must implement the

CHAPTER 11 - COMPONENT APPENDIX 845

http://camel.apache.org/registry.html
http://lists.jboss.org/pipermail/netty-users/2010-January/001958.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

org.apache.camel.component.netty.ChannelHandlerFactory interface, and
return a new instance in the newChannelHandler method. This is to ensure the encoder/
decoder can safely be used. If this is not the case, then the Netty component will log a WARN
when
an endpoint is created.

The Netty component offers a
org.apache.camel.component.netty.ChannelHandlerFactories factory
class, that has a number of commonly used methods.

Sending Messages to/from a Netty endpoint

Netty Producer

In Producer mode, the component provides the ability to send payloads to a socket endpoint
using either TCP or UDP protocols (with optional SSL support).

The producer mode supports both one-way and request-response based operations.

Netty Consumer

In Consumer mode, the component provides the ability to:
▪ listen on a specified socket using either TCP or UDP protocols (with optional SSL

support),
▪ receive requests on the socket using text/xml, binary and serialized object based

payloads and
▪ send them along on a route as message exchanges.

The consumer mode supports both one-way and request-response based operations.

Usage Samples

A UDP Netty endpoint using Request-Reply and serialized
object payload

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("netty:udp://localhost:5155?sync=true")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
Poetry poetry = (Poetry) exchange.getIn().getBody();
poetry.setPoet("Dr. Sarojini Naidu");
exchange.getOut().setBody(poetry);

846 CHAPTER 11 - COMPONENT APPENDIX

}
}

}
};

A TCP based Netty consumer endpoint using One-way
communication

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("netty:tcp://localhost:5150")
.to("mock:result");

}
};

An SSL/TCP based Netty consumer endpoint using Request-
Reply communication

Using the JSSE Configuration Utility

As of Camel 2.9, the Netty component supports SSL/TLS configuration through the Camel JSSE
Configuration Utility.Ê This utility greatly decreases the amount of component specific code you
need to write and is configurable at the endpoint and component levels.Ê The following
examples demonstrate how to use the utility with the Netty component.

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

NettyComponent nettyComponent = getContext().getComponent("netty",
NettyComponent.class);
nettyComponent.setSslContextParameters(scp);

CHAPTER 11 - COMPONENT APPENDIX 847

http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to

uri="netty:tcp://localhost:5150?sync=true&ssl=true&sslContextParameters=#sslContextParameters"/>
...

Using Basic SSL/TLS configuration on the Jetty Component

JndiRegistry registry = new JndiRegistry(createJndiContext());
registry.bind("password", "changeit");
registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.createRegistry(registry);
context.addRoutes(new RouteBuilder() {

public void configure() {
String netty_ssl_endpoint =

"netty:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password"
+ "&keyStoreFile=#ksf&trustStoreFile=#tsf";

String return_string =
"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

from(netty_ssl_endpoint)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);

}
}

}
});

Using Multiple Codecs

In certain cases it may be necessary to add chains of encoders and decoders to the netty
pipeline. To add multpile codecs to a camel netty endpoint the 'encoders' and 'decoders' uri
parameters should be used. Like the 'encoder' and 'decoder' parameters they are used to supply
references (to lists of ChannelUpstreamHandlers and ChannelDownstreamHandlers) that

848 CHAPTER 11 - COMPONENT APPENDIX

should be added to the pipeline. Note that if encoders is specified then the encoder param will
be ignored, similarly for decoders and the decoder param.
The lists of codecs need to be added to the Camel's registry so they can be resolved when the
endpoint is created.

ChannelHandlerFactory lengthDecoder =
ChannelHandlerFactories.newLengthFieldBasedFrameDecoder(1048576, 0, 4, 0, 4);

StringDecoder stringDecoder = new StringDecoder();
registry.bind("length-decoder", lengthDecoder);
registry.bind("string-decoder", stringDecoder);

LengthFieldPrepender lengthEncoder = new LengthFieldPrepender(4);
StringEncoder stringEncoder = new StringEncoder();
registry.bind("length-encoder", lengthEncoder);
registry.bind("string-encoder", stringEncoder);

List<ChannelHandler> decoders = new ArrayList<ChannelHandler>();
decoders.add(lengthDecoder);
decoders.add(stringDecoder);

List<ChannelHandler> encoders = new ArrayList<ChannelHandler>();
encoders.add(lengthEncoder);
encoders.add(stringEncoder);

registry.bind("encoders", encoders);
registry.bind("decoders", decoders);

Spring's native collections support can be used to specify the codec lists in an application
context

<util:list id="decoders" list-class="java.util.LinkedList">
<bean class="org.apache.camel.component.netty.ChannelHandlerFactories"

factory-method="newLengthFieldBasedFrameDecoder">
<constructor-arg value="1048576"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>

</bean>
<bean class="org.jboss.netty.handler.codec.string.StringDecoder"/>

</util:list>

<util:list id="encoders" list-class="java.util.LinkedList">
<bean class="org.jboss.netty.handler.codec.frame.LengthFieldPrepender">

<constructor-arg value="4"/>
</bean>
<bean class="org.jboss.netty.handler.codec.string.StringEncoder"/>

</util:list>

<bean id="length-encoder"
class="org.jboss.netty.handler.codec.frame.LengthFieldPrepender">

CHAPTER 11 - COMPONENT APPENDIX 849

Read further above about using non shareable encoders/decoders.

<constructor-arg value="4"/>
</bean>
<bean id="string-encoder"

class="org.jboss.netty.handler.codec.string.StringEncoder"/>

<bean id="length-decoder"
class="org.apache.camel.component.netty.ChannelHandlerFactories"
factory-method="newLengthFieldBasedFrameDecoder">

<constructor-arg value="1048576"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>

</bean>
<bean id="string-decoder"

class="org.jboss.netty.handler.codec.string.StringDecoder"/>

</beans>

The bean names can then be used in netty endpoint definitions either as a comma separated list
or contained in a List e.g.

from("direct:multiple-codec").to("netty:tcp://localhost:{{port}}?encoders=#encoders&sync=false");

from("netty:tcp://localhost:{{port}}?decoders=#length-decoder,#string-decoder&sync=false").to("mock:multiple-codec");
}

};
}

}

or via spring.

<camelContext id="multiple-netty-codecs-context" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:multiple-codec"/>
<to uri="netty:tcp://localhost:5150?encoders=#encoders&sync=false"/>

</route>
<route>

<from
uri="netty:tcp://localhost:5150?decoders=#length-decoder,#string-decoder&sync=false"/>

<to uri="mock:multiple-codec"/>

850 CHAPTER 11 - COMPONENT APPENDIX

</route>
</camelContext>

Closing Channel When Complete

When acting as a server you sometimes want to close the channel when, for example, a client
conversion is finished.
You can do this by simply setting the endpoint option disconnect=true.

However you can also instruct Camel on a per message basis as follows.
To instruct Camel to close the channel, you should add a header with the key
CamelNettyCloseChannelWhenComplete set to a boolean true value.
For instance, the example below will close the channel after it has written the bye message back
to the client:

from("netty:tcp://localhost:8080").process(new Processor() {
public void process(Exchange exchange) throws Exception {

String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);
// some condition which determines if we should close
if (close) {

exchange.getOut().setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE, true);
}

}
});

Adding custom channel pipeline factories to gain complete control over a
created pipeline

Available as of Camel 2.5

Custom channel pipelines provide complete control to the user over the handler/
interceptor chain by inserting custom handler(s), encoder(s) & decoders without having to
specify them in the Netty Endpoint URL in a very simple way.

In order to add a custom pipeline, a custom channel pipeline factory must be created and
registered with the context via the context registry (JNDIRegistry,or the camel-spring
ApplicationContextRegistry etc).

A custom pipeline factory must be constructed as follows
• A Producer linked channel pipeline factory must extend the abstract class
ClientPipelineFactory.

• A Consumer linked channel pipeline factory must extend the abstract class
ServerPipelineFactory.

CHAPTER 11 - COMPONENT APPENDIX 851

• The classes should override the getPipeline() method in order to insert custom
handler(s), encoder(s) and decoder(s). Not overriding the getPipeline() method
creates a pipeline with no handlers, encoders or decoders wired to the pipeline.

The example below shows how ServerChannel Pipeline factory may be created

Listing 1.Listing 1. Using custom pipeline factoryUsing custom pipeline factory

public class SampleServerChannelPipelineFactory extends ServerPipelineFactory {
private int maxLineSize = 1024;

public ChannelPipeline getPipeline() throws Exception {
ChannelPipeline channelPipeline = Channels.pipeline();

channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
channelPipeline.addLast("decoder-DELIM", new

DelimiterBasedFrameDecoder(maxLineSize, true, Delimiters.lineDelimiter()));
channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
// here we add the default Camel ServerChannelHandler for the consumer, to

allow Camel to route the message etc.
channelPipeline.addLast("handler", new ServerChannelHandler(consumer));

return channelPipeline;
}

}

The custom channel pipeline factory can then be added to the registry and instantiated/utilized
on a camel route in the following way

Registry registry = camelContext.getRegistry();
serverPipelineFactory = new TestServerChannelPipelineFactory();
registry.bind("spf", serverPipelineFactory);
context.addRoutes(new RouteBuilder() {

public void configure() {
String netty_ssl_endpoint =

"netty:tcp://localhost:5150?serverPipelineFactory=#spf"
String return_string =

"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

from(netty_ssl_endpoint)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);

}
}

}
});

See Also

• Configuring Camel

852 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html

• Component
• Endpoint
• Getting Started
▪ MINA

NMR COMPONENT

The nmr component is an adapter to the Normalized Message Router (NMR) in ServiceMix,
which is intended for use by Camel applications deployed directly into the OSGi container. You
can exchange objects with NMR and not only XML like this is the case with the JBI specification.
The interest of this component is that you can interconnect camel routes deployed in different
OSGI bundles.

By contrast, the JBI component is intended for use by Camel applications deployed into the
ServiceMix JBI container.

Installing in Apache Servicemix

The NMR component is provided with Apache ServiceMix. It is not distributed with Camel. To
install the NMR component in ServiceMix, enter the following command in the ServiceMix
console window:

features:install nmr camel-nmr

Installing in plain Apache Karaf

In plain Karaf the nmr component can also be installed using the servicemix artifacts:

features:chooseurl camel <version>
features:addurl mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.5.0/xml/features
features:install camel-blueprint nmr camel-nmr
install -s mvn:org.apache.servicemix.camel/org.apache.servicemix.camel.component/4.4.2

Configuration

You also need to instantiate the NMR component. You can do this by editing your Spring
configuration file, META-INF/spring/*.xml, and adding the following bean instance:

<beans xmlns:osgi="http://www.springframework.org/schema/osgi" ... >
...
<bean id="nmr" class="org.apache.servicemix.camel.nmr.ServiceMixComponent">

<property name="nmr">
<osgi:reference interface="org.apache.servicemix.nmr.api.NMR" />

CHAPTER 11 - COMPONENT APPENDIX 853

http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/mina.html
http://servicemix.apache.org/home.html
http://camel.apache.org/jbi.html

</property>
</bean>
...

</beans>

NMR consumer and producer endpoints

The following code:

from("nmr:MyServiceEndpoint")

Automatically exposes a new endpoint to the bus with endpoint name MyServiceEndpoint
(see URI-format).

When an NMR endpoint appears at the end of a route, for example:

to("nmr:MyServiceEndpoint")

The messages sent by this producer endpoint are sent to the already deployed NMR endpoint.

URI format

nmr:endpointName

URI Options

Option
Default
Value

Description

runAsSubject false
Apache ServiceMix 4.4: When this is set to true on a consumer endpoint, the endpoint will be invoked on behalf of the Subject
that is set on the Exchange (i.e. the call to Subject.getSubject(AccessControlContext) will return the Subject
instance)

synchronous false
When this is set to true on a consumer endpoint, an incoming, synchronous NMR Exchange will be handled on the sender's thread
instead of being handled on a new thread of the NMR endpoint's thread pool

timeout 0
Apache ServiceMix 4.4: When this is set to a value greater than 0, the producer endpoint will timeout if it doesn't receive a response
from the NMR within the given timeout period (in milliseconds). Configuring a timeout value will switch to using synchronous interactions
with the NMR instead of the usual asynchronous messaging.

Examples

Consumer

854 CHAPTER 11 - COMPONENT APPENDIX

from("nmr:MyServiceEndpoint") // consume nmr exchanges asynchronously
from("nmr:MyServiceEndpoint?synchronous=true").to() // consume nmr exchanges
synchronously and use the same thread as defined by NMR ThreadPool

Producer

from()...to("nmr:MyServiceEndpoint") // produce nmr exchanges asynchronously
from()...to("nmr:MyServiceEndpoint?timeout=10000") // produce nmr exchanges
synchronously and wait till 10s to receive response

Using Stream bodies

If you are using a stream type as the message body, you should be aware that a stream is only
capable of being read once. So if you enable DEBUG logging, the body is usually logged and thus
read. To deal with this, Camel has a streamCaching option that can cache the stream,
enabling you to read it multiple times.

from("nmr:MyEndpoint").streamCaching().to("xslt:transform.xsl", "bean:doSomething");

The stream caching is default enabled, so it is not necessary to set the streamCaching()
option.
We store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be deleted.

Testing

NMR camel routes can be tested using the camel unit test approach even if they will be
deployed next in different bundles on an OSGI runtime. With this aim in view, you will extend
the ServiceMixNMR Mock class
org.apache.servicemix.camel.nmr.AbstractComponentTest which will create
a NMR bus, register the Camel NMR Component and the endpoints defined into the Camel
routes.

public class ExchangeUsingNMRTest extends AbstractComponentTest {

@Test
public void testProcessing() throws InterruptedException {

MockEndpoint mock = getMockEndpoint("mock:simple");
mock.expectedBodiesReceived("Simple message body");

template.sendBody("direct:simple", "Simple message body");

assertMockEndpointsSatisfied();

CHAPTER 11 - COMPONENT APPENDIX 855

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {

@Override
public void configure() throws Exception {

from("direct:simple").to("nmr:simple");
from("nmr:simple?synchronous=true").to("mock:simple");

}
};

}
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

QUARTZ COMPONENT

The quartz: component provides a scheduled delivery of messages using the Quartz
scheduler.
Each endpoint represents a different timer (in Quartz terms, a Trigger and JobDetail).

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-quartz</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

quartz://timerName?options
quartz://groupName/timerName?options
quartz://groupName/timerName?cron=expression
quartz://timerName?cron=expression

856 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

The component uses either a CronTrigger or a SimpleTrigger. If no cron expression is
provided, the component uses a simple trigger. If no groupName is provided, the quartz
component uses the Camel group name.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Parameter Default Description

cron None Specifies a cron expression (not compatible with the trigger.* or job.* options).

trigger.repeatCount 0 SimpleTrigger: How many times should the timer repeat?

trigger.repeatInterval 0 SimpleTrigger: The amount of time in milliseconds between repeated triggers.

job.name null Sets the job name.

job.XXX null Sets the job option with the XXX setter name.

trigger.XXX null Sets the trigger option with the XXX setter name.

stateful false Uses a Quartz StatefulJob instead of the default job.

fireNow false New to Camel 2.2.0, if it is true will fire the trigger when the route is start when using SimpleTrigger.

For example, the following routing rule will fire two timer events to the mock:results
endpoint:

from("quartz://myGroup/
myTimerName?trigger.repeatInterval=2&trigger.repeatCount=1").routeId("myRoute").to("mock:result");

When using a StatefulJob, the JobDataMap is re-persisted after every execution of the job, thus
preserving state for the next execution.

Configuring quartz.properties file

By default Quartz will look for a quartz.properties file in the root of the classpath. If you
are using WAR deployments this means just drop the quartz.properties in WEB-INF/
classes.

However the Camel Quartz component also allows you to configure properties:

Parameter Default Type Description

properties null Properties Camel 2.4: You can configure a java.util.Properties instance.

propertiesFile null String Camel 2.4: File name of the properties to load from the classpath

To do this you can configure this in Spring XML as follows

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
<property name="propertiesFile" value="com/mycompany/myquartz.properties"/>

</bean>

CHAPTER 11 - COMPONENT APPENDIX 857

http://quartz-scheduler.org/api/2.0.0/org/quartz/StatefulJob.html
http://quartz-scheduler.org/api/2.0.0/org/quartz/JobDataMap.html
http://camel.apache.org/quartz.html

Running in OSGi and having multiple bundles with quartz routes
If you run in OSGi such as Apache ServiceMix, or Apache Karaf, and have multiple
bundles with Camel routes that start from Quartz endpoints, then make sure if you
assign
an id to the <camelContext> that this id is unique, as this is required by the
QuartzScheduler in the OSGi container. If you do not set any id on
<camelContext> then
a unique id is auto assigned, and there is no problem.

Starting the Quartz scheduler

Available as of Camel 2.4

The Quartz component offers an option to let the Quartz scheduler be started delayed, or
not auto started at all.

Parameter Default Type Description

startDelayedSeconds 0 int Camel 2.4: Seconds to wait before starting the quartz scheduler.

autoStartScheduler true boolean Camel 2.4: Whether or not the scheduler should be auto started.

To do this you can configure this in Spring XML as follows

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
<property name="startDelayedSeconds" value="5"/>

</bean>

Clustering

Available as of Camel 2.4

If you use Quartz in clustered mode, e.g. the JobStore is clustered. Then from Camel 2.4
onwards the Quartz component will not pause/remove triggers when a node is being stopped/
shutdown. This allows the trigger to keep running on the other nodes in the cluster.

Note: When running in clustered node no checking is done to ensure unique job name/
group for endpoints.

Message Headers

Camel adds the getters from the Quartz Execution Context as header values. The following
headers are added:
calendar, fireTime, jobDetail, jobInstance, jobRuntTime,
mergedJobDataMap, nextFireTime, previousFireTime, refireCount, result,
scheduledFireTime, scheduler, trigger, triggerName, triggerGroup.

The fireTime header contains the java.util.Date of when the exchange was fired.

858 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html

Using Cron Triggers

Quartz supports Cron-like expressions for specifying timers in a handy format. You can use
these expressions in the cron URI parameter; though to preserve valid URI encoding we allow
+ to be used instead of spaces. Quartz provides a little tutorial on how to use cron
expressions.

For example, the following will fire a message every five minutes starting at 12pm (noon) to
6pm on weekdays:

from("quartz://myGroup/myTimerName?cron=0+0/
5+12-18+?+*+MON-FRI").to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve valid URI syntax:

URI Character Cron character

+ Space

Specifying time zone

Available as of Camel 2.8.1
The Quartz Scheduler allows you to configure time zone per trigger. For example to use a
timezone of your country, then you can do as follows:

quartz://groupName/timerName?cron=0+0/5+12-18+?+*+MON-FRI&trigger.timeZone=Europe/
Stockholm

The timeZone value is the values accepted by java.util.TimeZone.

In Camel 2.8.0 or older versions you would have to provide your custom String to
java.util.TimeZone Type Converter to be able configure this from the endpoint uri.
From Camel 2.8.1 onwards we have included such a Type Converter in the camel-core.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Timer

CHAPTER 11 - COMPONENT APPENDIX 859

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/timer.html

QUICKFIX/J COMPONENT

The quickfix component adapts the QuickFIX/J FIX engine for using in Camel . This
component uses the standard Financial Interchange (FIX) protocol for message transport.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-quickfix</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

quickfix:configFile[?sessionID=sessionID]

The configFile is the name of the QuickFIX/J configuration to use for the FIX engine (located
as a resource found in your classpath). The optional sessionID identifies a specific FIX session.
The format of the sessionID is:

(BeginString):(SenderCompID)[/(SenderSubID)[/(SenderLocationID)]]->(TargetCompID)[/(TargetSubID)[/(TargetLocationID)]]

Example URIs:

quickfix:config.cfg

quickfix:config.cfg?sessionID=FIX.4.2:MyTradingCompany->SomeExchange

ENDPOINTS

FIX sessions are endpoints for the quickfix component. An endpoint URI may specify a single
session or all sessions managed by a specific QuickFIX/J engine. Typical applications will use only
one FIX engine but advanced users may create multiple FIX engines by referencing different
configuration files in quickfix component endpoint URIs.

When a consumer does not include a session ID in the endpoint URI, it will receive
exchanges for all sessions managed by the FIX engine associated with the configuration file
specified in the URI. If a producer does not specify a session in the endpoint URI then it must
include the session-related fields in the FIX message being sent. If a session is specified in the
URI then the component will automatically inject the session-related fields into the FIX
message.

860 CHAPTER 11 - COMPONENT APPENDIX

http://www.quickfixj.org/
http://www.fixprotocol.org/

Previous Versions
The quickfix component was rewritten for Camel 2.5. For information about
using the quickfix component prior to 2.5 see the documentation section below.

Exchange Format

The exchange headers include information to help with exchange filtering, routing and other
processing. The following headers are available:

Header
Name

Description

EventCategory
One of AppMessageReceived, AppMessageSent, AdminMessageReceived, AdminMessageSent, SessionCreated, SessionLogon,
SessionLogoff. See the QuickfixjEventCategory enum.

SessionID The FIX message SessionID

MessageType The FIX MsgType tag value

DataDictionary
Specifies a data dictionary to used for parsing an incoming message. Can be an instance of a data dictionary or a resource path for a QuickFIX/J data
dictionary file

The DataDictionary header is useful if string messages are being received and need to be parsed
in a route. QuickFIX/J requires a data dictionary to parse certain types of messages (with
repeating groups, for example). By injecting a DataDictionary header in the route after receiving
a message string, the FIX engine can properly parse the data.

QuickFIX/J Configuration Extensions

When using QuickFIX/J directly, one typically writes code to create instances of logging
adapters, message stores and communication connectors. The quickfix component will
automatically create instances of these classes based on information in the configuration file. It
also provides defaults for many of the common required settings and adds additional capabilities
(like the ability to activate JMX support).

The following sections describe how the quickfix component processes the QuickFIX/J
configuration. For comprehensive information about QuickFIX/J configuration, see the QFJ user
manual.

Communication Connectors

When the component detects an initiator or acceptor session setting in the QuickFIX/J
configuration file it will automatically create the corresponding initiator and/or acceptor
connector. These settings can be in the default or in a specific session section of the
configuration file.

Session Setting Component Action

ConnectionType=initiator Create an initiator connector

ConnectionType=acceptor Create an acceptor connector

CHAPTER 11 - COMPONENT APPENDIX 861

http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html
http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html

The threading model for the QuickFIX/J session connectors can also be specified. These settings
affect all sessions in the configuration file and must be placed in the settings default section.

Default/Global Setting Component Action

ThreadModel=ThreadPerConnector Use SocketInitiator or SocketAcceptor (default)

ThreadModel=ThreadPerSession Use ThreadedSocketInitiator or ThreadedSocketAcceptor

Logging

The QuickFIX/J logger implementation can be specified by including the following settings in the
default section of the configuration file. The ScreenLog is the default if none of the following
settings are present in the configuration. It's an error to include settings that imply more than
one log implementation. The log factory implementation can also be set directly on the Quickfix
component. This will override any related values in the QuickFIX/J settings file.

Default/Global Setting Component Action

ScreenLogShowEvents Use a ScreenLog

ScreenLogShowIncoming Use a ScreenLog

ScreenLogShowOutgoing Use a ScreenLog

SLF4J* Camel 2.6+. Use a SLF4JLog. Any of the SLF4J settings will cause this log to be used.

FileLogPath Use a FileLog

JdbcDriver Use a JdbcLog

Message Store

The QuickFIX/J message store implementation can be specified by including the following
settings in the default section of the configuration file. The MemoryStore is the default if none
of the following settings are present in the configuration. It's an error to include settings that
imply more than one message store implementation. The message store factory implementation
can also be set directly on the Quickfix component. This will override any related values in the
QuickFIX/J settings file.

Default/Global Setting Component Action

JdbcDriver Use a JdbcStore

FileStorePath Use a FileStore

SleepycatDatabaseDir Use a SleepcatStore

Message Factory

A message factory is used to construct domain objects from raw FIX messages. The default
message factory is DefaultMessageFactory. However, advanced applications may require
a custom message factory. This can be set on the QuickFIX/J component.

862 CHAPTER 11 - COMPONENT APPENDIX

JMX

Default/Global Setting Component Action

UseJmx if Y, then enable QuickFIX/J JMX

Other Defaults

The component provides some default settings for what are normally required settings in
QuickFIX/J configuration files. SessionStartTime and SessionEndTime default to
"00:00:00", meaning the session will not be automatically started and stopped. The
HeartBtInt (heartbeat interval) defaults to 30 seconds.

Minimal Initiator Configuration Example

[SESSION]
ConnectionType=initiator
BeginString=FIX.4.4
SenderCompID=YOUR_SENDER
TargetCompID=YOUR_TARGET

Using the InOut Message Exchange Pattern

Camel 2.8+

Although the FIX protocol is event-driven and asynchronous, there are specific pairs of
messages
that represent a request-reply message exchange. To use an InOut exchange pattern, there
should
be a single request message and single reply message to the request. Examples include an
OrderStatusRequest message and UserRequest.

Implementing InOut Exchanges for Consumers

Add "exchangePattern=InOut" to the QuickFIX/J enpoint URI. The
MessageOrderStatusService in
the example below is a bean with a synchronous service method. The method returns the
response
to the request (an ExecutionReport in this case) which is then sent back to the requestor
session.

CHAPTER 11 - COMPONENT APPENDIX 863

from("quickfix:examples/
inprocess.cfg?sessionID=FIX.4.2:MARKET->TRADER&exchangePattern=InOut")

.filter(header(QuickfixjEndpoint.MESSAGE_TYPE_KEY).isEqualTo(MsgType.ORDER_STATUS_REQUEST))
.bean(new MarketOrderStatusService());

Implementing InOut Exchanges for Producers

For producers, sending a message will block until a reply is received or a timeout occurs. There
is no standard way to correlate reply messages in FIX. Therefore, a correlation criteria must be
defined for each type of InOut exchange. The correlation criteria and timeout can be specified
using Exchange properties.

Description Key String Key Constant Default

Correlation
Criteria

"CorrelationCriteria" QuickfixjProducer.CORRELATION_CRITERIA_KEY None

Correlation
Timeout in
Milliseconds

"CorrelationTimeout" QuickfixjProducer.CORRELATION_TIMEOUT_KEY 1000

The correlation criteria is defined with a MessagePredicate object. The following example
will treat
a FIX ExecutionReport from the specified session where the transaction type is STATUS and
the Order ID
matches our request. The session ID should be for the requestor, the sender and target CompID
fields
will be reversed when looking for the reply.

exchange.setProperty(QuickfixjProducer.CORRELATION_CRITERIA_KEY,
new MessagePredicate(new SessionID(sessionID), MsgType.EXECUTION_REPORT)

.withField(ExecTransType.FIELD, Integer.toString(ExecTransType.STATUS))

.withField(OrderID.FIELD, request.getString(OrderID.FIELD)));

Example

The source code contains an example called RequestReplyExample that demonstrates the
InOut exchanges
for a consumer and producer. This example creates a simple HTTP server endpoint that
accepts order
status requests. The HTTP request is converted to a FIX OrderStatusRequestMessage, is
augmented with a
correlation criteria, and is then routed to a quickfix endpoint. The response is then converted

864 CHAPTER 11 - COMPONENT APPENDIX

to a
JSON-formatted string and sent back to the HTTP server endpoint to be provided as the web
response.

The Spring configuration have changed from Camel 2.9 onwards. See further below for
example.

Spring Configuration

Camel 2.6 - 2.8.x

The QuickFIX/J component includes a Spring FactoryBean for configuring the session
settings within a Spring context. A type converter for QuickFIX/J session ID strings is also
included. The following example shows a simple configuration of an acceptor and initiator
session with default settings for both sessions.

<!-- camel route -->
<camelContext id="quickfixjContext" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="quickfix:example"/>
<filter>

<simple>${in.header.EventCategory} == 'AppMessageReceived'</simple>
<to uri="log:test"/>

</filter>
</route>

</camelContext>

<!-- quickfix component -->
<bean id="quickfix" class="org.apache.camel.component.quickfixj.QuickfixjComponent">

<property name="engineSettings">
<util:map>

<entry key="quickfix:example" value-ref="quickfixjSettings"/>
</util:map>

</property>
<property name="messageFactory">

<bean
class="org.apache.camel.component.quickfixj.QuickfixjSpringTest.CustomMessageFactory"/>

</property>
</bean>

<!-- quickfix settings -->
<bean id="quickfixjSettings"

class="org.apache.camel.component.quickfixj.QuickfixjSettingsFactory">
<property name="defaultSettings">

<util:map>
<entry key="SocketConnectProtocol" value="VM_PIPE"/>
<entry key="SocketAcceptProtocol" value="VM_PIPE"/>
<entry key="UseDataDictionary" value="N"/>

</util:map>
</property>
<property name="sessionSettings">

<util:map>

CHAPTER 11 - COMPONENT APPENDIX 865

<entry key="FIX.4.2:INITIATOR->ACCEPTOR">
<util:map>

<entry key="ConnectionType" value="initiator"/>
<entry key="SocketConnectHost" value="localhost"/>
<entry key="SocketConnectPort" value="5000"/>

</util:map>
</entry>
<entry key="FIX.4.2:ACCEPTOR->INITIATOR">

<util:map>
<entry key="ConnectionType" value="acceptor"/>
<entry key="SocketAcceptPort" value="5000"/>

</util:map>
</entry>

</util:map>
</property>

</bean>

Camel 2.9 onwards

The QuickFIX/J component includes a QuickfixjConfiguration class for configuring
the session settings. A type converter for QuickFIX/J session ID strings is also included. The
following example shows a simple configuration of an acceptor and initiator session with default
settings for both sessions.

<!-- camel route -->
<camelContext id="quickfixjContext" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="quickfix:example"/>
<filter>

<simple>${in.header.EventCategory} == 'AppMessageReceived'</simple>
<to uri="log:test"/>

</filter>
</route>

</camelContext>

<!-- quickfix component -->
<bean id="quickfix" class="org.apache.camel.component.quickfixj.QuickfixjComponent">

<property name="configurations">
<util:map>

<entry key="example" value-ref="quickfixjConfiguration"/>
</util:map>

</property>
<property name="messageFactory">

<bean
class="org.apache.camel.component.quickfixj.QuickfixjSpringTest.CustomMessageFactory"/>

</property>
</bean>

<!-- quickfix settings -->
<bean id="quickfixjConfiguration"
class="org.apache.camel.component.quickfixj.QuickfixjConfiguration">

<property name="defaultSettings">

866 CHAPTER 11 - COMPONENT APPENDIX

<util:map>
<entry key="SocketConnectProtocol" value="VM_PIPE"/>
<entry key="SocketAcceptProtocol" value="VM_PIPE"/>
<entry key="UseDataDictionary" value="N"/>

</util:map>
</property>
<property name="sessionSettings">

<util:map>
<entry key="FIX.4.2:INITIATOR->ACCEPTOR">

<util:map>
<entry key="ConnectionType" value="initiator"/>
<entry key="SocketConnectHost" value="localhost"/>
<entry key="SocketConnectPort" value="5000"/>

</util:map>
</entry>
<entry key="FIX.4.2:ACCEPTOR->INITIATOR">

<util:map>
<entry key="ConnectionType" value="acceptor"/>
<entry key="SocketAcceptPort" value="5000"/>

</util:map>
</entry>

</util:map>
</property>

</bean>

Exception handling

QuickFIX/J behavior can be modified if certain exceptions are thrown during processing of a
message. If a RejectLogon exception is thrown while processing an incoming logon
administrative message, then the logon will be rejected.

Normally, QuickFIX/J handles the logon process automatically. However, sometimes an
outgoing logon message must be modified to include credentials required by a FIX
counterparty. If the FIX logon message body is modified when sending a logon message
(EventCategory=AdminMessageSent the modified message will be sent to the counterparty.
It is important that the outgoing logon message is being processed synchronously. If it is
processed asynchronously (on another thread), the FIX engine will immediately send the
unmodified outgoing message when it's callback method returns.

FIX Sequence Number Management

If an application exception is thrown during synchronous exchange processing, this will cause
QuickFIX/J to not increment incoming FIX message sequence numbers and will cause a resend
of the counterparty message. This FIX protocol behavior is primarily intended to handle
transport errors rather than application errors. There are risks associated with using this
mechanism to handle application errors. The primary risk is that the message will repeatedly
cause application errors each time it's re-received. A better solution is to persist the incoming

CHAPTER 11 - COMPONENT APPENDIX 867

message (database, JMS queue) immediately before processing it. This also allows the application
to process messages asynchronously without losing messages when errors occur.

Although it's possible to send messages to a FIX session before it's logged on (the messages
will be sent at logon time), it is usually a better practice to wait until the session is logged on.
This eliminates the required sequence number resynchronization steps at logon. Waiting for
session logon can be done by setting up a route that processes the SessionLogon event
category and signals the application to start sending messages.

See the FIX protocol specifications and the QuickFIX/J documentation for more details
about FIX sequence number management.

Route Examples

Several examples are included in the QuickFIX/J component source code (test subdirectories).
One of these examples implements a trival trade excecution simulation. The example defines an
application component that uses the URI scheme "trade-executor".

The following route receives messages for the trade executor session and passes application
messages to the trade executor component.

from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:MARKET->TRADER").

filter(header(QuickfixjEndpoint.EVENT_CATEGORY_KEY).isEqualTo(QuickfixjEventCategory.AppMessageReceived)).
to("trade-executor:market");

The trade executor component generates messages that are routed back to the trade session.
The session ID must be set in the FIX message itself since no session ID is specified in the
endpoint URI.

from("trade-executor:market").to("quickfix:examples/inprocess.cfg");

The trader session consumes execution report messages from the market and processes them.

from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:TRADER->MARKET").

filter(header(QuickfixjEndpoint.MESSAGE_TYPE_KEY).isEqualTo(MsgType.EXECUTION_REPORT)).
bean(new MyTradeExecutionProcessor());

QUICKFIX/J COMPONENT PRIOR TO CAMEL 2.5

The quickfix component is an implementation of the QuickFIX/J engine for Java . This engine
allows to connect to a FIX server which is used to exchange financial messages according to FIX
protocol standard.

Note: The component can be used to send/receives messages to a FIX server.

868 CHAPTER 11 - COMPONENT APPENDIX

http://www.quickfixj.org/
http://www.fixprotocol.org/
http://www.fixprotocol.org/

URI format

quickfix-server:config file
quickfix-client:config file

Where config file is the location (in your classpath) of the quickfix configuration file used to
configure the engine at the startup.

Note: Information about parameters available for quickfix can be found on QuickFIX/J web
site.

The quickfix-server endpoint must be used to receive from FIX server FIX messages and
quickfix-client endpoint in the case that you want to send messages to a FIX gateway.

Exchange data format

The QuickFIX/J engine is like CXF component a messaging bus using MINA as protocol layer to
create the socket connection with the FIX engine gateway.

When QuickFIX/J engine receives a message, then it create a QuickFix.Message instance
which is next received by the camel endpoint. This object is a 'mapping object' created from a
FIX message formatted initially as a collection of key value pairs data. You can use this object or
you can use the method 'toString' to retrieve the original FIX message.

Note: Alternatively, you can use camel bindy dataformat to transform the FIX message into
your own java POJO

When a message must be send to QuickFix, then you must create a QuickFix.Message
instance.

Samples

Direction : to FIX gateway

<route>
<from uri="activemq:queue:fix"/>
<bean ref="fixService" method="createFixMessage"/> // bean method in charge to

transform message into a QuickFix.Message
<to uri="quickfix-client:META-INF/quickfix/client.cfg"/> // Quickfix engine who will

send the FIX messages to the gateway
</route>

Direction : from FIX gateway

<route>
<from uri="quickfix-server:META-INF/quickfix/server.cfg"/> // QuickFix engine who

will receive the message from FIX gateway
<bean ref="fixService" method="parseFixMessage"/> // bean method parsing the

QuickFix.Message

CHAPTER 11 - COMPONENT APPENDIX 869

http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html
http://camel.apache.org/bindy.html

<to uri="uri="activemq:queue:fix"/>"
</route>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

PRINTER COMPONENT

Available as of Camel 2.1

The printer component provides a way to direct payloads on a route to a printer.
Obviously the payload has to be a formatted piece of payload in order for the component to
appropriately print it. The objective is to be able to direct specific payloads as jobs to a line
printer in a camel flow.

This component only supports a camel producer endpoint.

The functionality allows for the payload to be printed on a default printer, named local,
remote or wirelessly linked printer using the javax printing API under the covers.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-printer</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

Since the URI scheme for a printer has not been standardized (the nearest thing to a standard
being the IETF print standard) and therefore not uniformly applied by vendors, we have chosen
"lpr" as the scheme.

lpr://localhost/default[?options]
lpr://remotehost:port/path/to/printer[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

870 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Options

Name Default Value Description

mediaSize MediaSizeName.NA_LETTER
Sets the stationary as defined by enumeration settings in the javax.print.attribute.standard.MediaSizeName API. The
default setting is to use North American Letter sized stationary

copies 1 Sets number of copies based on the javax.print.attribute.standard.Copies API

sides Sides.ONE_SIDED Sets one sided or two sided printing based on the javax.print.attribute.standard.Sides API

flavor DocFlavor.BYTE_ARRAY Sets DocFlavor based on the javax.print.DocFlavor API

mimeType AUTOSENSE Sets mimeTypes supported by the javax.print.DocFlavor API

mediaTray AUTOSENSE Since Camel 2.11.x sets MediaTray supported by the javax.print.DocFlavor API

printerPrefix null
Since Camel 2.11.x sets the prefix name of the printer, it is useful when the printer name is not start with
//hostname/printer

sendToPrinter true Setting this option to false prevents sending of the print data to the printer

Sending Messages to a Printer

Printer Producer

Sending data to the printer is very straightforward and involves creating a producer endpoint
that can be sent message exchanges on in route.

Usage Samples

Example 1: Printing text based payloads on a Default printer
using letter stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)
.to("lpr://localhost/default?copies=2" +

"&flavor=DocFlavor.INPUT_STREAM&" +
"&mimeType=AUTOSENSE" +
"&mediaSize=na-letter" +
"&sides=one-sided")

}};

Example 2: Printing GIF based payloads on a Remote printer
using A4 stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

CHAPTER 11 - COMPONENT APPENDIX 871

http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/MediaSizeName.html
http://docs.oracle.com/javase/6/docs/api/javax/print/Doc.html

from(file://inputdir/?delete=true)
.to("lpr://remotehost/sales/salesprinter" +

"?copies=2&sides=one-sided" +
"&mimeType=GIF&mediaSize=iso-a4" +
"&flavor=DocFlavor.INPUT_STREAM")

}};

Example 3: Printing JPEG based payloads on a Remote printer
using Japanese Postcard stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)
.to("lpr://remotehost/sales/salesprinter" +

"?copies=2&sides=one-sided" +
"&mimeType=JPEG" +
"&mediaSize=japanese-postcard" +
"&flavor=DocFlavor.INPUT_STREAM")

}};

PROPERTIES COMPONENT

Available as of Camel 2.3

URI format

properties:key[?options]

Where key is the key for the property to lookup

Options

Name Type Default Description

cache boolean true Whether or not to cache loaded properties.

locations String null
A list of locations to load properties. You can use comma to separate multiple locations. This
option will override any default locations and only use the locations from this option.

ignoreMissingLocation boolean false
Camel 2.10: Whether to silently ignore if a location cannot be located, such as a properties file
not found.

propertyPrefix String null Camel 2.9 Optional prefix prepended to property names before resolution.

propertySuffix String null Camel 2.9 Optional suffix appended to property names before resolution.

fallbackToUnaugmentedProperty boolean true
Camel 2.9 If true, first attempt resolution of property name augmented with
propertyPrefix and propertySuffix before falling back the plain property name specified.
If false, only the augmented property name is searched.

872 CHAPTER 11 - COMPONENT APPENDIX

prefixToken String {{ Camel 2.9 The token to indicate the beginning of a property token.

suffixToken String }} Camel 2.9 The token to indicate the end of a property token.

USING PROPERTYPLACEHOLDER

Available as of Camel 2.3

Camel now provides a new PropertiesComponent in camel-core which allows you
to use property placeholders when defining Camel Endpoint URIs.
This works much like you would do if using Spring's <property-placeholder> tag.
However Spring have a limitation which prevents 3rd party frameworks to leverage Spring
property placeholders to the fullest. See more at How do I use Spring Property Placeholder
with Camel XML.
The property placeholder is generally in use when doing:

▪ lookup or creating endpoints
▪ lookup of beans in the Registry
▪ additional supported in Spring XML (see below in examples)
▪ using Blueprint PropertyPlaceholder with Camel Properties component

Syntax

The syntax to use Camel's property placeholder is to use {{key}} for example {{file.uri}}
where file.uri is the property key.
You can use property placeholders in parts of the endpoint URI's which for example you can
use placeholders for parameters in the URIs.

PropertyResolver

Camel provides a pluggable mechanism which allows 3rd part to provide their own resolver to
lookup properties. Camel provides a default implementation
org.apache.camel.component.properties.DefaultPropertiesResolver
which is capable of loading properties from the file system, classpath or Registry. You can prefix
the locations with either:

▪ ref: Camel 2.4: to lookup in the Registry
▪ file: to load the from file system
▪ classpath: to load from classpath (this is also the default if no prefix is provided)
▪ blueprint: Camel 2.7: to use a specific OSGi blueprint placeholder service

Defining location

The PropertiesResolver need to know a location(s) where to resolve the properties.
You can define 1 to many locations. If you define the location in a single String property you can
separate multiple locations with comma such as:

CHAPTER 11 - COMPONENT APPENDIX 873

http://camel.apache.org/endpoint.html
http://camel.apache.org/how-do-i-use-spring-property-placeholder-with-camel-xml.html
http://camel.apache.org/how-do-i-use-spring-property-placeholder-with-camel-xml.html
http://camel.apache.org/registry.html
http://camel.apache.org/properties.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Resolving property from Java code
You can use the method resolvePropertyPlaceholders on the
CamelContext to resolve a property from any Java code.

Bridging Spring and Camel property placeholders
From Camel 2.10 onwards, you can bridge the Spring property placeholder with
Camel, see further below for more details.

pc.setLocation("com/mycompany/myprop.properties,com/mycompany/other.properties");

Using system and environment variables in locations

Available as of Camel 2.7

The location now supports using placeholders for JVM system properties and OS
environments variables.

For example:

location=file:${karaf.home}/etc/foo.properties

In the location above we defined a location using the file scheme using the JVM system property
with key karaf.home.

To use an OS environment variable instead you would have to prefix with env:

location=file:${env:APP_HOME}/etc/foo.properties

Where APP_HOME is an OS environment.

You can have multiple placeholders in the same location, such as:

location=file:${env:APP_HOME}/etc/${prop.name}.properties

Configuring in Java DSL

You have to create and register the PropertiesComponent under the name
properties such as:

874 CHAPTER 11 - COMPONENT APPENDIX

PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:com/mycompany/myprop.properties");
context.addComponent("properties", pc);

Configuring in Spring XML

Spring XML offers two variations to configure. You can define a spring bean as a
PropertiesComponent which resembles the way done in Java DSL. Or you can use the
<propertyPlaceholder> tag.

<bean id="properties"
class="org.apache.camel.component.properties.PropertiesComponent">

<property name="location" value="classpath:com/mycompany/myprop.properties"/>
</bean>

Using the <propertyPlaceholder> tag makes the configuration a bit more fresh such as:

<camelContext ...>
<propertyPlaceholder id="properties" location="com/mycompany/myprop.properties"/>

</camelContext>

Using a Properties from the Registry

Available as of Camel 2.4
For example in OSGi you may want to expose a service which returns the properties as a
java.util.Properties object.

Then you could setup the Properties component as follows:

<propertyPlaceholder id="properties" location="ref:myProperties"/>

Where myProperties is the id to use for lookup in the OSGi registry. Notice we use the
ref: prefix to tell Camel that it should lookup the properties for the Registry.

Examples using properties component

When using property placeholders in the endpoint URIs you can either use the properties:
component or define the placeholders directly in the URI. We will show example of both cases,
starting with the former.

// properties
cool.end=mock:result

CHAPTER 11 - COMPONENT APPENDIX 875

http://camel.apache.org/registry.html
http://camel.apache.org/properties.html
http://camel.apache.org/registry.html

Specifying the cache option inside XML
Camel 2.10 onwards supports specifying a value for the cache option both inside the
Spring as well as the Blueprint XML.

// route
from("direct:start").to("properties:{{cool.end}}");

You can also use placeholders as a part of the endpoint uri:

// properties
cool.foo=result

// route
from("direct:start").to("properties:mock:{{cool.foo}}");

In the example above the to endpoint will be resolved to mock:result.

You can also have properties with refer to each other such as:

// properties
cool.foo=result
cool.concat=mock:{{cool.foo}}

// route
from("direct:start").to("properties:mock:{{cool.concat}}");

Notice how cool.concat refer to another property.

The properties: component also offers you to override and provide a location in the
given uri using the locations option:

from("direct:start").to("properties:bar.end?locations=com/mycompany/
bar.properties");

Examples

You can also use property placeholders directly in the endpoint uris without having to use
properties:.

// properties
cool.foo=result

876 CHAPTER 11 - COMPONENT APPENDIX

// route
from("direct:start").to("mock:{{cool.foo}}");

And you can use them in multiple wherever you want them:

// properties
cool.start=direct:start
cool.showid=true
cool.result=result

// route
from("{{cool.start}}")

.to("log:{{cool.start}}?showBodyType=false&showExchangeId={{cool.showid}}")

.to("mock:{{cool.result}}");

You can also your property placeholders when using ProducerTemplate for example:

template.sendBody("{{cool.start}}", "Hello World");

Example with Simple language

The Simple language now also support using property placeholders, for example in the route
below:

// properties
cheese.quote=Camel rocks

// route
from("direct:start")

.transform().simple("Hi ${body} do you think ${properties:cheese.quote}?");

You can also specify the location in the Simple language for example:

// bar.properties
bar.quote=Beer tastes good

// route
from("direct:start")

.transform().simple("Hi ${body}. ${properties:com/mycompany/
bar.properties:bar.quote}.");

CHAPTER 11 - COMPONENT APPENDIX 877

http://camel.apache.org/producertemplate.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Additional property placeholder supported in Spring XML

The property placeholders is also supported in many of the Camel Spring XML tags such as
<package>, <packageScan>, <contextScan>, <jmxAgent>, <endpoint>,
<routeBuilder>, <proxy> and the others.

The example below has property placeholder in the <jmxAgent> tag:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties" location="org/apache/camel/spring/

jmx.properties"/>

<!-- we can use propery placeholders when we define the JMX agent -->
<jmxAgent id="agent" registryPort="{{myjmx.port}}" disabled="{{myjmx.disabled}}"

usePlatformMBeanServer="{{myjmx.usePlatform}}"
createConnector="true"
statisticsLevel="RoutesOnly"/>

<route id="foo" autoStartup="false">
<from uri="seda:start"/>
<to uri="mock:result"/>

</route>

</camelContext>

You can also define property placeholders in the various attributes on the <camelContext> tag
such as trace as shown here:

<camelContext trace="{{foo.trace}}" xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties" location="org/apache/camel/spring/processor/

myprop.properties"/>

<template id="camelTemplate" defaultEndpoint="{{foo.cool}}"/>

<route>
<from uri="direct:start"/>
<setHeader headerName="{{foo.header}}">

<simple>${in.body} World!</simple>
</setHeader>
<to uri="mock:result"/>

</route>
</camelContext>

Overriding a property setting using a JVM System Property

Available as of Camel 2.5
It is possible to override a property value at runtime using a JVM System property without the
need to restart the application to pick up the change. This may also be accomplished from the
command line by creating a JVM System property of the same name as the property it replaces
with a new value. An example of this is given below

878 CHAPTER 11 - COMPONENT APPENDIX

PropertiesComponent pc = context.getComponent("properties", PropertiesComponent.class);
pc.setCache(false);

System.setProperty("cool.end", "mock:override");
System.setProperty("cool.result", "override");

context.addRoutes(new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("properties:cool.end");
from("direct:foo").to("properties:mock:{{cool.result}}");

}
});
context.start();

getMockEndpoint("mock:override").expectedMessageCount(2);

template.sendBody("direct:start", "Hello World");
template.sendBody("direct:foo", "Hello Foo");

System.clearProperty("cool.end");
System.clearProperty("cool.result");

assertMockEndpointsSatisfied();

Using property placeholders for any kind of attribute in the XML DSL

Available as of Camel 2.7

Previously it was only the xs:string type attributes in the XML DSL that support
placeholders. For example often a timeout attribute would be a xs:int type and thus you
cannot set a string value as the placeholder key. This is now possible from Camel 2.7 onwards
using a special placeholder namespace.

In the example below we use the prop prefix for the namespace
http://camel.apache.org/schema/placeholder by which we can use the prop
prefix in the attributes in the XML DSLs. Notice how we use that in the Multicast to indicate
that the option stopOnException should be the value of the placeholder with the key
"stop".

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:prop="http://camel.apache.org/schema/placeholder"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

CHAPTER 11 - COMPONENT APPENDIX 879

http://camel.apache.org/schema/placeholder
http://camel.apache.org/multicast.html

<!-- Notice in the declaration above, we have defined the prop prefix as the Camel
placeholder namespace -->

<bean id="damn" class="java.lang.IllegalArgumentException">
<constructor-arg index="0" value="Damn"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<propertyPlaceholder id="properties"
location="classpath:org/apache/camel/component/properties/

myprop.properties"
xmlns="http://camel.apache.org/schema/spring"/>

<route>
<from uri="direct:start"/>
<!-- use prop namespace, to define a property placeholder, which maps to

option stopOnException={{stop}} -->
<multicast prop:stopOnException="stop">

<to uri="mock:a"/>
<throwException ref="damn"/>
<to uri="mock:b"/>

</multicast>
</route>

</camelContext>

</beans>

In our properties file we have the value defined as

stop=true

Using property placeholder in the Java DSL

Available as of Camel 2.7

Likewise we have added support for defining placeholders in the Java DSL using the new
placeholder DSL as shown in the following equivalent example:

from("direct:start")
// use a property placeholder for the option stopOnException on the Multicast EIP
// which should have the value of {{stop}} key being looked up in the properties

file
.multicast().placeholder("stopOnException", "stop")

.to("mock:a").throwException(new IllegalAccessException("Damn")).to("mock:b");

880 CHAPTER 11 - COMPONENT APPENDIX

Using Blueprint property placeholder with Camel routes

Available as of Camel 2.7

Camel supports Blueprint which also offers a property placeholder service. Camel supports
convention over configuration, so all you have to do is to define the OSGi Blueprint property
placeholder in the XML file as shown below:

Listing 1.Listing 1. Using OSGi blueprint property placeholders in Camel routesUsing OSGi blueprint property placeholders in Camel routes

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/

blueprint/v1.0.0/blueprint.xsd">

<!-- OSGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder"

persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>

<cm:property name="result" value="mock:result"/>
</cm:default-properties>

</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<!-- in the route we can use {{ }} placeholders which will lookup in blueprint
as Camel will auto detect the OSGi blueprint property placeholder and use

it -->
<route>

<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="{{result}}"/>

</route>

</camelContext>

</blueprint>

By default Camel detects and uses OSGi blueprint property placeholder service. You can
disable this by setting the attribute useBlueprintPropertyResolver to false on the
<camelContext> definition.
You can also explicit refer to a specific OSGi blueprint property placeholder by its id. For that
you need to use the Camel's <propertyPlaceholder> as shown in the example below:

Listing 1.Listing 1. Explicit referring to a OSGi blueprint placeholder in CamelExplicit referring to a OSGi blueprint placeholder in Camel

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/

CHAPTER 11 - COMPONENT APPENDIX 881

http://camel.apache.org/using-osgi-blueprint-with-camel.html

About placeholder syntaxes
Notice how we can use the Camel syntax for placeholders {{ }} in the Camel route,
which will lookup the value from OSGi blueprint.
The blueprint syntax for placeholders is ${ }. So outside the <camelContext> you
must use the ${ } syntax. Where as inside <camelContext> you must use {{ }}
syntax.
OSGi blueprint allows you to configure the syntax, so you can actually align those if
you want.

blueprint/v1.0.0/blueprint.xsd">

<!-- OSGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder"

persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>

<cm:property name="prefix.result" value="mock:result"/>
</cm:default-properties>

</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<!-- using Camel properties component and refer to the blueprint property
placeholder by its id -->

<propertyPlaceholder id="properties"
location="blueprint:myblueprint.placeholder"

prefixToken="[[" suffixToken="]]"
propertyPrefix="prefix."/>

<!-- in the route we can use {{ }} placeholders which will lookup in blueprint
-->

<route>
<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="[[result]]"/>

</route>

</camelContext>

</blueprint>

Notice how we use the blueprint scheme to refer to the OSGi blueprint placeholder by its
id. This allows you to mix and match, for example you can also have additional schemes in the
location. For example to load a file from the classpath you can do:

location="blueprint:myblueprint.placeholder,classpath:myproperties.properties"

882 CHAPTER 11 - COMPONENT APPENDIX

Each location is separated by comma.

Overriding Blueprint property placeholders outside
CamelContext

Available as of Camel 2.10.4

When using Blueprint property placeholder in the Blueprint XML file, you can declare the
properties directly in the XML file as shown below:

<!-- blueprint property placeholders -->
<cm:property-placeholder persistent-id="my-placeholders">

<cm:default-properties>
<cm:property name="greeting" value="Hello"/>
<cm:property name="destination" value="mock:result"/>

</cm:default-properties>
</cm:property-placeholder>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="{{destination}}"/>

</route>

</camelContext>

Notice that we have a <bean> which refers to one of the properties. And in the Camel route
we refer to the other using the {{ }} notation.

Now if you want to override these Blueprint properties from an unit test, you can do this as
shown below:

@Override
protected String useOverridePropertiesWithConfigAdmin(Dictionary props) {

// add the properties we want to override
props.put("greeting", "Bye");

// return the PID of the config-admin we are using in the blueprint xml file
return "my-placeholders";

}

To do this we override and implement the
useOverridePropertiesWithConfigAdmin method. We can then put the properties

CHAPTER 11 - COMPONENT APPENDIX 883

we want to override on the given props parameter. And the return value must be the
persistence-id of the <cm:property-placeholder> tag, which you define in the blueprint XML
file.

Using .cfg or .properties file for Blueprint property
placeholders

Available as of Camel 2.10.4

When using Blueprint property placeholder in the Blueprint XML file, you can declare the
properties in a .properties or .cfg file. If you use Apache ServieMix / Karaf then this container
has a convention that it loads the properties from a file in the etc directory with the naming
etc/pid.cfg, where pid is the persistence-id.

For example in the blueprint XML file we have the persistence-id="stuff", which mean it will
load the configuration file as etc/stuff.cfg.

<!-- blueprint property placeholders, that will use etc/stuff.cfg as the properties
file -->
<cm:property-placeholder persistent-id="stuff"/>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="mock:result"/>

</route>

</camelContext>

Now if you want to unit test this blueprint XML file, then you can override the
loadConfigAdminConfigurationFile and tell Camel which file to load as shown
below:

@Override
protected String[] loadConfigAdminConfigurationFile() {

// String[0] = tell Camel the path of the .cfg file to use for OSGi ConfigAdmin in
the blueprint XML file

// String[1] = tell Camel the persistence-id of the cm:property-placeholder in the
blueprint XML file

return new String[]{"src/test/resources/etc/stuff.cfg", "stuff"};
}

884 CHAPTER 11 - COMPONENT APPENDIX

Notice that this method requires to return a String[] with 2 values. The 1st value is the path for
the configuration file to load.
The 2nd value is the persistence-id of the <cm:property-placeholder> tag.

The stuff.cfg file is just a plain properties file with the property placeholders such as:

this is a comment
greeting=Bye

Using .cfg file and overriding properties for Blueprint property
placeholders

You can do both as well. Here is a complete example. First we have the Blueprint XML file:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="

http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0
http://aries.apache.org/schemas/blueprint-cm/blueprint-cm-1.0.0.xsd

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<!-- blueprint property placeholders, that will use etc/stuff.cfg as the properties
file -->

<cm:property-placeholder persistent-id="stuff"/>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
<property name="echo" value="${echo}"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="{{destination}}"/>
<bean ref="myCoolBean" method="echoSomething"/>
<to uri="{{destination}}"/>

</route>

</camelContext>

</blueprint>

And in the unit test class we do as follows:

CHAPTER 11 - COMPONENT APPENDIX 885

/**
* This example will load a Blueprint .cfdg file, and also override its property

placeholders from this unit test
* source code directly.
*/

public class ConfigAdminLoadConfigurationFileAndOverrideTest extends
CamelBlueprintTestSupport {

@Override
protected String getBlueprintDescriptor() {

// which blueprint XML file to use for this test
return "org/apache/camel/test/blueprint/configadmin-loadfileoverride.xml";

}

@Override
protected String[] loadConfigAdminConfigurationFile() {

// which .cfg file to use, and the name of the persistence-id
return new String[]{"src/test/resources/etc/stuff.cfg", "stuff"};

}

@Override
protected String useOverridePropertiesWithConfigAdmin(Dictionary props) throws

Exception {
// override / add extra properties
props.put("destination", "mock:extra");

// return the persistence-id to use
return "stuff";

}

@Test
public void testConfigAdmin() throws Exception {

// regular unit test method
getMockEndpoint("mock:extra").expectedBodiesReceived("Bye World", "Yay Bye

WorldYay Bye World");

template.sendBody("direct:start", "World");

assertMockEndpointsSatisfied();
}

}

And the etc/stuff.cfg configuration file contains

greeting=Bye
echo=Yay
destination=mock:result

886 CHAPTER 11 - COMPONENT APPENDIX

Bridging Spring and Camel property placeholders

Available as of Camel 2.10

The Spring Framework does not allow 3rd party frameworks such as Apache Camel to
seamless hook into the Spring property placeholder mechanism. However you can easily bridge
Spring and Camel by declaring a Spring bean with the type
org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer,
which is a Spring
org.springframework.beans.factory.config.PropertyPlaceholderConfigurer
type.

To bridge Spring and Camel you must define a single bean as shown below:

Listing 1.Listing 1. Bridging Spring and Camel property placeholdersBridging Spring and Camel property placeholders

<!-- bridge spring property placeholder with Camel -->
<!-- you must NOT use the <context:property-placeholder at the same time, only this
bridge bean -->
<bean id="bridgePropertyPlaceholder"
class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer">

<property name="location" value="classpath:org/apache/camel/component/properties/
cheese.properties"/>
</bean>

You must not use the spring <context:property-placeholder> namespace at the same time;
this is not possible.

After declaring this bean, you can define property placeholders using both the Spring style,
and the Camel style within the <camelContext> tag as shown below:

Listing 1.Listing 1. Using bridge property placeholdersUsing bridge property placeholders

<!-- a bean that uses Spring property placeholder -->
<!-- the ${hi} is a spring property placeholder -->
<bean id="hello" class="org.apache.camel.component.properties.HelloBean">

<property name="greeting" value="${hi}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- in this route we use Camels property placeholder {{ }} style -->
<route>

<from uri="direct:{{cool.bar}}"/>
<bean ref="hello"/>
<to uri="{{cool.end}}"/>

</route>
</camelContext>

Notice how the hello bean is using pure Spring property placeholders using the ${ } notation.
And in the Camel routes we use the Camel placeholder notation with {{ }}.

CHAPTER 11 - COMPONENT APPENDIX 887

Overriding properties from Camel test kit

Available as of Camel 2.10

When Testing with Camel and using the Properties component, you may want to be able to
provide the properties to be used from directly within the unit test source code.
This is now possible from Camel 2.10 onwards, as the Camel test kits, eg
CamelTestSupport class offers the following methods

▪ useOverridePropertiesWithPropertiesComponent
▪ ignoreMissingLocationWithPropertiesComponent

So for example in your unit test classes, you can override the
useOverridePropertiesWithPropertiesComponent method and return a
java.util.Properties that contains the properties which should be preferred to be
used.

Listing 1.Listing 1. Providing properties from within unit test sourceProviding properties from within unit test source

// override this method to provide our custom properties we use in this unit test
@Override
protected Properties useOverridePropertiesWithPropertiesComponent() {

Properties extra = new Properties();
extra.put("destination", "mock:extra");
extra.put("greeting", "Bye");
return extra;

}

This can be done from any of the Camel Test kits, such as camel-test, camel-test-spring, and
camel-test-blueprint.

The ignoreMissingLocationWithPropertiesComponent can be used to
instruct Camel to ignore any locations which was not discoverable, for example if you run the
unit test, in an environment that does not have access to the location of the properties.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Jasypt for using encrypted values (eg passwords) in the properties

REF COMPONENT

The ref: component is used for lookup of existing endpoints bound in the Registry.

888 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/testing.html
http://camel.apache.org/properties.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jasypt.html
http://camel.apache.org/registry.html

URI format

ref:someName

Where someName is the name of an endpoint in the Registry (usually, but not always, the
Spring registry). If you are using the Spring registry, someName would be the bean ID of an
endpoint in the Spring registry.

Runtime lookup

This component can be used when you need dynamic discovery of endpoints in the Registry
where you can compute the URI at runtime. Then you can look up the endpoint using the
following code:

// lookup the endpoint
String myEndpointRef = "bigspenderOrder";
Endpoint endpoint = context.getEndpoint("ref:" + myEndpointRef);

Producer producer = endpoint.createProducer();
Exchange exchange = producer.createExchange();
exchange.getIn().setBody(payloadToSend);
// send the exchange
producer.process(exchange);
...

And you could have a list of endpoints defined in the Registry such as:

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<endpoint id="normalOrder" uri="activemq:order.slow"/>
<endpoint id="bigspenderOrder" uri="activemq:order.high"/>
...

</camelContext>

Sample

In the sample below we use the ref: in the URI to reference the endpoint with the spring ID,
endpoint2:

<bean id="mybean" class="org.apache.camel.spring.example.DummyBean">
<property name="endpoint" ref="endpoint1"/>

</bean>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="true"/>
<endpoint id="endpoint1" uri="direct:start"/>
<endpoint id="endpoint2" uri="mock:end"/>

CHAPTER 11 - COMPONENT APPENDIX 889

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

<route>
<from ref="endpoint1"/>
<to uri="ref:endpoint2"/>

</route>
</camelContext>

You could, of course, have used the ref attribute instead:

<to ref="endpoint2"/>

Which is the more common way to write it.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

RESTLET COMPONENT

The Restlet component provides Restlet based endpoints for consuming and producing
RESTful resources.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-restlet</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

restlet:restletUrl[?options]

Format of restletUrl:

protocol://hostname[:port][/resourcePattern]

890 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.restlet.org
http://camel.apache.org/endpoint.html

Restlet promotes decoupling of protocol and application concerns. The reference
implementation of Restlet Engine supports a number of protocols. However, we have tested
the HTTP protocol only. The default port is port 80. We do not automatically switch default
port based on the protocol yet.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default Value Description

headerFilterStrategy=#refName
An instance of
RestletHeaderFilterStrategy

Use the # notation (headerFilterStrategy=#refName) to reference a header filter
strategy in the Camel Registry. The strategy will be plugged into the restlet binding if it is
HeaderFilterStrategyAware.

restletBinding=#refName
An instance of
DefaultRestletBinding

The bean ID of a RestletBinding object in the Camel Registry.

restletMethod GET
On a producer endpoint, specifies the request method to use. On a consumer endpoint,
specifies that the endpoint consumes only restletMethod requests. The string value is
converted to org.restlet.data.Method by the Method.valueOf(String) method.

restletMethods None

Consumer only Specify one or more methods separated by commas (e.g.
restletMethods=post,put) to be serviced by a restlet consumer endpoint. If both
restletMethod and restletMethods options are specified, the restletMethod
setting is ignored.

restletRealm=#refName null The bean ID of the Realm Map in the Camel Registry.

restletUriPatterns=#refName None

Consumer only Specify one ore more URI templates to be serviced by a restlet
consumer endpoint, using the # notation to reference a List<String> in the Camel
Registry. If a URI pattern has been defined in the endpoint URI, both the URI pattern
defined in the endpoint and the restletUriPatterns option will be honored.

throwExceptionOnFailure (2.6
or later)

true *Producer only * Throws exception on a producer failure.

Component Options

The Restlet component can be configured with the following options

Name
Default
Value

Description

controllerDaemon true Camel 2.10: Indicates if the controller thread should be a daemon (not blocking JVM exit).

controllerSleepTimeMs 100 Camel 2.10: Time for the controller thread to sleep between each control.

inboundBufferSize 8192 Camel 2.10: The size of the buffer when reading messages.

minThreads 1 Camel 2.10: Minimum threads waiting to service requests.

maxThreads 10 Camel 2.10: Maximum threads that will service requests.

maxConnectionsPerHost -1 Camel 2.10: Maximum number of concurrent connections per host (IP address).

maxTotalConnections -1 Camel 2.10: Maximum number of concurrent connections in total.

outboundBufferSize 8192 Camel 2.10: The size of the buffer when writing messages.

persistingConnections true Camel 2.10: Indicates if connections should be kept alive after a call.

pipeliningConnections false Camel 2.10: Indicates if pipelining connections are supported.

threadMaxIdleTimeMs 60000 Camel 2.10: Time for an idle thread to wait for an operation before being collected.

useForwardedForHeader false

Camel 2.10: Lookup the "X-Forwarded-For" header supported by popular proxies and caches and uses it to populate the
Request.getClientAddresses() method result. This information is only safe for intermediary components within your local
network. Other addresses could easily be changed by setting a fake header and should not be trusted for serious security
checks.

CHAPTER 11 - COMPONENT APPENDIX 891

http://www.noelios.com/products/restlet-engine
http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html

Message Headers

Name Type Description

Content-Type String

Specifies the content type, which can be set on the OUT message by the application/processor. The value is
the content-type of the response message. If this header is not set, the content type is based on the
object type of the OUT message body. In Camel 2.3 onward, if the Content-Type header is specified in the
Camel IN message, the value of the header determine the content type for the Restlet request message.ÊÊ
Otherwise, it is defaulted to "application/x-www-form-urlencoded'. Prior to release 2.3, it is not possible to
change the request content type default.

CamelAcceptContentType String Since Camel 2.9.3, 2.10.0: The HTTP Accept request header.

CamelHttpMethod String The HTTP request method. This is set in the IN message header.

CamelHttpQuery String
The query string of the request URI. It is set on the IN message by DefaultRestletBinding when the
restlet component receives a request.

CamelHttpResponseCode String or Integer
The response code can be set on the OUT message by the application/processor. The value is the response
code of the response message. If this header is not set, the response code is set by the restlet runtime engine.

CamelHttpUri String The HTTP request URI. This is set in the IN message header.

CamelRestletLogin String
Login name for basic authentication. It is set on the IN message by the application and gets filtered before the
restlet request header by Camel.

CamelRestletPassword String
Password name for basic authentication. It is set on the IN message by the application and gets filtered before
the restlet request header by Camel.

CamelRestletRequest Request Camel 2.8: The org.restlet.Request object which holds all request details.

CamelRestletResponse Response
Camel 2.8: The org.restlet.Response object. You can use this to create responses using the API
from Restlet. See examples below.

org.restlet.* Ê Attributes of a Restlet message that get propagated to Camel IN headers.

cache-control
String or
List<CacheDirective>

Camel 2.11: User can set the cache-control with the String value or the List of CacheDirective of Restlet
from the camel message header.

Message Body

Camel will store the restlet response from the external server on the OUT body. All headers
from the IN message will be copied to the OUT message, so that headers are preserved during
routing.

Samples

Restlet Endpoint with Authentication

The following route starts a restlet consumer endpoint that listens for POST requests on
http://localhost:8080. The processor creates a response that echoes the request body and the
value of the id header.

from("restlet:http://localhost:" + port +
"/securedOrders?restletMethod=post&restletRealm=#realm").process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(

"received [" + exchange.getIn().getBody()
+ "] as an order id = "
+ exchange.getIn().getHeader("id"));

}
});

892 CHAPTER 11 - COMPONENT APPENDIX

http://localhost:8080

The restletRealm setting in the URI query is used to look up a Realm Map in the registry. If
this option is specified, the restlet consumer uses the information to authenticate user logins.
Only authenticated requests can access the resources. In this sample, we create a Spring
application context that serves as a registry. The bean ID of the Realm Map should match the
restletRealmRef.

<util:map id="realm">
<entry key="admin" value="foo" />
<entry key="bar" value="foo" />

</util:map>

The following sample starts a direct endpoint that sends requests to the server on
http://localhost:8080 (that is, our restlet consumer endpoint).

// Note: restletMethod and restletRealmRef are stripped
// from the query before a request is sent as they are
// only processed by Camel.
from("direct:start-auth").to("restlet:http://localhost:" + port +
"/securedOrders?restletMethod=post");

That is all we need. We are ready to send a request and try out the restlet component:

final String id = "89531";

Map<String, Object> headers = new HashMap<String, Object>();
headers.put(RestletConstants.RESTLET_LOGIN, "admin");
headers.put(RestletConstants.RESTLET_PASSWORD, "foo");
headers.put("id", id);

String response = (String)template.requestBodyAndHeaders(
"direct:start-auth", "<order foo='1'/>", headers);

The sample client sends a request to the direct:start-auth endpoint with the following
headers:

• CamelRestletLogin (used internally by Camel)
• CamelRestletPassword (used internally by Camel)
• id (application header)

The sample client gets a response like the following:

received [<order foo='1'/>] as an order id = 89531

CHAPTER 11 - COMPONENT APPENDIX 893

http://localhost:8080

Note
org.apache.camel.restlet.auth.login and
org.apache.camel.restlet.auth.password will not be propagated as
Restlet header.

Single restlet endpoint to service multiple methods and URI
templates

It is possible to create a single route to service multiple HTTP methods using the
restletMethods option. This snippet also shows how to retrieve the request method from
the header:

from("restlet:http://localhost:" + portNum +
"/users/{username}?restletMethods=post,get,put")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

// echo the method
exchange.getOut().setBody(exchange.getIn().getHeader(Exchange.HTTP_METHOD,

String.class));
}

});

In addition to servicing multiple methods, the next snippet shows how to create an endpoint
that supports multiple URI templates using the restletUriPatterns option. The request
URI is available in the header of the IN message as well. If a URI pattern has been defined in the
endpoint URI (which is not the case in this sample), both the URI pattern defined in the
endpoint and the restletUriPatterns option will be honored.

from("restlet:http://localhost:" + portNum +
"?restletMethods=post,get&restletUriPatterns=#uriTemplates")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

// echo the method
String uri = exchange.getIn().getHeader(Exchange.HTTP_URI, String.class);
String out = exchange.getIn().getHeader(Exchange.HTTP_METHOD,

String.class);
if (("http://localhost:" + portNum + "/users/homer").equals(uri)) {

exchange.getOut().setBody(out + " " +
exchange.getIn().getHeader("username", String.class));

} else if (("http://localhost:" + portNum + "/atom/collection/foo/
component/bar").equals(uri)) {

exchange.getOut().setBody(out + " " + exchange.getIn().getHeader("id",
String.class)

+ " " + exchange.getIn().getHeader("cid",
String.class));

}

894 CHAPTER 11 - COMPONENT APPENDIX

}
});

The restletUriPatterns=#uriTemplates option references the List<String>
bean defined in the Spring XML configuration.

<util:list id="uriTemplates">
<value>/users/{username}</value>
<value>/atom/collection/{id}/component/{cid}</value>

</util:list>

Using Restlet API to populate response

Available as of Camel 2.8

You may want to use the org.restlet.Response API to populate the response. This
gives you full access to the Restlet API and fine grained control of the response. See the route
snippet below where we generate the response from an inlined Camel Processor:

Listing 1.Listing 1. Generating response using Restlet Response APIGenerating response using Restlet Response API

from("restlet:http://localhost:" + portNum + "/users/{id}/like/{beer}")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
// the Restlet request should be available if neeeded
Request request =

exchange.getIn().getHeader(RestletConstants.RESTLET_REQUEST, Request.class);
assertNotNull("Restlet Request", request);

// use Restlet API to create the response
Response response =

exchange.getIn().getHeader(RestletConstants.RESTLET_RESPONSE, Response.class);
assertNotNull("Restlet Response", response);
response.setStatus(Status.SUCCESS_OK);
response.setEntity("<response>Beer is Good</response>",

MediaType.TEXT_XML);
exchange.getOut().setBody(response);

}
});

Using the Restlet servlet within a webapp

Available as of Camel 2.8
There are three possible ways to configure a Restlet application within a servlet container and
using the subclassed SpringServerServlet enables configuration within Camel by injecting the
Restlet Component.

CHAPTER 11 - COMPONENT APPENDIX 895

http://camel.apache.org/processor.html
http://www.restlet.org/documentation/2.0/jee/ext/org/restlet/ext/servlet/ServerServlet.html

Use of the Restlet servlet within a servlet container enables routes to be configured with
relative paths in URIs (removing the restrictions of hard-coded absolute URIs) and for the
hosting servlet container to handle incoming requests (rather than have to spawn a separate
server process on a new port).

To configure, add the following to your camel-context.xml;

<camelContext>
<route id="RS_RestletDemo">

<from uri="restlet:/demo/{id}" />
<transform>

<simple>Request type : ${header.CamelHttpMethod} and ID : ${header.id}</simple>
</transform>

</route>
</camelContext>

<bean id="RestletComponent" class="org.restlet.Component" />

<bean id="RestletComponentService"
class="org.apache.camel.component.restlet.RestletComponent">

<constructor-arg index="0">
<ref bean="RestletComponent" />

</constructor-arg>
</bean>

And add this to your web.xml;

<!-- Restlet Servlet -->
<servlet>

<servlet-name>RestletServlet</servlet-name>
<servlet-class>org.restlet.ext.spring.SpringServerServlet</servlet-class>
<init-param>

<param-name>org.restlet.component</param-name>
<param-value>RestletComponent</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>RestletServlet</servlet-name>
<url-pattern>/rs/*</url-pattern>

</servlet-mapping>

You will then be able to access the deployed route at http://localhost:8080/mywebapp/rs/demo/
1234 where;

localhost:8080 is the server and port of your servlet container
mywebapp is the name of your deployed webapp
Your browser will then show the following content;

"Request type : GET and ID : 1234"

896 CHAPTER 11 - COMPONENT APPENDIX

http://localhost:8080/mywebapp/rs/demo/1234
http://localhost:8080/mywebapp/rs/demo/1234

You will need to add dependency on the Spring extension to restlet which you can do in your
Maven pom.xml file:

<dependency>
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.spring</artifactId>
<version>${restlet-version}</version>

</dependency>

And you would need to add dependency on the restlet maven repository as well:

<repository>
<id>maven-restlet</id>
<name>Public online Restlet repository</name>
<url>http://maven.restlet.org</url>

</repository>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

RMI COMPONENT

The rmi: component binds PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply regarding what methods can
be invoked. This component supports only PojoExchanges that carry a method invocation from
an interface that extends the Remote interface. All parameters in the method should be either
Serializable or Remote objects.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-rmi</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 897

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path[?options]

For example:

rmi://localhost:1099/path/to/service

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

method null You can set the name of the method to invoke.

remoteInterfaces null
Its now possible to use this option from Camel 2.7: in the XML DSL. It can be a list of interface names separated by
comma.

Using

To call out to an existing RMI service registered in an RMI registry, create a route similar to the
following:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing camel processor or service in an RMI registry, define an RMI endpoint as
follows:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Note that when binding an RMI consumer endpoint, you must specify the Remote interfaces
exposed.

In XML DSL you can do as follows from Camel 2.7 onwards:

<camel:route>
<from uri="rmi://localhost:37541/

helloServiceBean?remoteInterfaces=org.apache.camel.example.osgi.HelloService"/>
<to uri="bean:helloServiceBean"/>

</camel:route>

898 CHAPTER 11 - COMPONENT APPENDIX

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

RSS COMPONENT

The rss: component is used for polling RSS feeds. Camel will default poll the feed every 60th
seconds.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-rss</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Note: The component currently only supports polling (consuming) feeds.

URI format

rss:rssUri

Where rssUri is the URI to the RSS feed to poll.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Property Default Description

splitEntries true

If true, Camel splits a feed into its individual entries and returns each entry, poll by poll. For example, if a feed contains
seven entries, Camel returns the first entry on the first poll, the second entry on the second poll, and so on. When no
more entries are left in the feed, Camel contacts the remote RSS URI to obtain a new feed. If false, Camel obtains a
fresh feed on every poll and returns all of the feed's entries.

filter true
Use in combination with the splitEntries option in order to filter returned entries. By default, Camel applies the
UpdateDateFilter filter, which returns only new entries from the feed, ensuring that the consumer endpoint never
receives an entry more than once. The filter orders the entries chronologically, with the newest returned last.

throttleEntries true
Camel 2.5: Sets whether all entries identified in a single feed poll should be delivered immediately. If true, only one entry
is processed per consumer.delay. Only applicable when splitEntries is set to true.

lastUpdate null
Use in combination with the filter option to block entries earlier than a specific date/time (uses the
entry.updated timestamp). The format is: yyyy-MM-ddTHH:MM:ss. Example: 2007-12-24T17:45:59.

feedHeader true Specifies whether to add the ROME SyndFeed object as a header.

sortEntries false If splitEntries is true, this specifies whether to sort the entries by updated date.

CHAPTER 11 - COMPONENT APPENDIX 899

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Camel-rss internally uses a patched version of ROME hosted on ServiceMix to solve
some OSGi class loading issues.

consumer.delay 60000 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Milliseconds before polling starts.

consumer.userFixedDelay false
Set to true to use fixed delay between pools, otherwise fixed rate is used. See ScheduledExecutorService in JDK for
details.

Exchange data types

Camel initializes the In body on the Exchange with a ROME SyndFeed. Depending on the
value of the splitEntries flag, Camel returns either a SyndFeed with one SyndEntry
or a java.util.List of SyndEntrys.

Option Value Behavior

splitEntries true A single entry from the current feed is set in the exchange.

splitEntries false The entire list of entries from the current feed is set in the exchange.

Message Headers

Header Description

CamelRssFeed The entire SyncFeed object.

RSS Dataformat

The RSS component ships with an RSS dataformat that can be used to convert between String
(as XML) and ROME RSS model objects.

• marshal = from ROME SyndFeed to XML String
• unmarshal = from XML String to ROME SyndFeed

A route using this would look something like this:

from("rss:file:src/test/data/
rss20.xml?splitEntries=false&consumer.delay=1000").marshal().rss().to("mock:marshal");

The purpose of this feature is to make it possible to use Camel's lovely built-in expressions for
manipulating RSS messages. As shown below, an XPath expression can be used to filter the RSS
message:

// only entries with Camel in the title will get through the filter
from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100")

.marshal().rss().filter().xpath("//item/
title[contains(.,'Camel')]").to("mock:result");

900 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://svn.apache.org/repos/asf/servicemix/smx4/bundles/trunk/rome-1.0/
http://rometools.org/
https://issues.apache.org/jira/browse/SMX4-510

Query parameters
If the URL for the RSS feed uses query parameters, this component will understand them as well, for
example if the feed uses alt=rss, then you can for example do
from("rss:http://someserver.com/feeds/posts/
default?alt=rss&splitEntries=false&consumer.delay=1000").to("bean:rss");

Filtering entries

You can filter out entries quite easily using XPath, as shown in the data format section above.
You can also exploit Camel's Bean Integration to implement your own conditions. For instance,
a filter equivalent to the XPath example above would be:

// only entries with Camel in the title will get through the filter
from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100").

filter().method("myFilterBean", "titleContainsCamel").to("mock:result");

The custom bean for this would be:

public static class FilterBean {
public boolean titleContainsCamel(@Body SyndFeed feed) {

SyndEntry firstEntry = (SyndEntry) feed.getEntries().get(0);
return firstEntry.getTitle().contains("Camel");

}
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Atom

Unable to render {include} Couldn't find a page to include called: Scalate

SEDA COMPONENT

The seda: component provides asynchronous SEDA behavior, so that messages are exchanged
on a BlockingQueue and consumers are invoked in a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate
across CamelContext instances (for example, communicating between Web applications),
see the VM component.

CHAPTER 11 - COMPONENT APPENDIX 901

http://camel.apache.org/bean-integration.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/atom.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/vm.html
http://someserver.com/feeds/posts/default?alt=rss&splitEntries=false&consumer.delay=1000
http://someserver.com/feeds/posts/default?alt=rss&splitEntries=false&consumer.delay=1000

This component does not implement any kind of persistence or recovery, if the VM
terminates while messages are yet to be processed. If you need persistence, reliability or
distributed SEDA, try using either JMS or ActiveMQ.

URI format

seda:someName[?options]

Where someName can be any string that uniquely identifies the endpoint within the current
CamelContext.

You can append query options to the URI in the following format:
?option=value&option=value&É

Options

Name Since Default Description

size Ê Ê

The maximum capacity of the SEDA queue (i.e., the number of messages it can hold). The default
value in Camel 2.2 or older is 1000. From Camel 2.3 onwards, the size is unbounded by default.
Notice: Mind if you use this option, then its the first endpoint being created with the queue name,
that determines the size. To make sure all endpoints use same size, then configure the size option
on all of them, or the first endpoint being created. From Camel 2.11 onwards, a validation is
taken place to ensure if using mixed queue sizes for the same queue name, Camel would detect this
and fail creating the endpoint.

concurrentConsumers Ê 1 Number of concurrent threads processing exchanges.

waitForTaskToComplete Ê IfReplyExpected

Option to specify whether the caller should wait for the async task to complete or not before
continuing. The following three options are supported: Always, Never or IfReplyExpected.
The first two values are self-explanatory. The last value, IfReplyExpected, will only wait if the
message is Request Reply based. The default option is IfReplyExpected. See more information
about Async messaging.

timeout Ê 30000
Timeout (in milliseconds) before a SEDA producer will stop waiting for an asynchronous task to
complete. See waitForTaskToComplete and Async for more details. In Camel 2.2 you can
now disable timeout by using 0 or a negative value.

multipleConsumers 2.2 false

Specifies whether multiple consumers are allowed. If enabled, you can use SEDA for Publish-
Subscribe messaging. That is, you can send a message to the SEDA queue and have each consumer
receive a copy of the message. When enabled, this option should be specified on every consumer
endpoint.

limitConcurrentConsumers 2.3 true
Whether to limit the number of concurrentConsumers to the maximum of 500. By default, an
exception will be thrown if a SEDA endpoint is configured with a greater number. You can disable
that check by turning this option off.

blockWhenFull 2.9 false
Whether a thread that sends messages to a full SEDA queue will block until the queue's capacity is
no longer exhausted. By default, an exception will be thrown stating that the queue is full. By
enabling this option, the calling thread will instead block and wait until the message can be accepted.

queueSize 2.9 Ê
Component only: The maximum default size (capacity of the number of messages it can hold) of
the SEDA queue. This option is used if size is not in use.

pollTimeout 2.9.3 1000
Consumer only Ð The timeout used when polling. When a timeout occurs, the consumer can check
whether it is allowed to continue running. Setting a lower value allows the consumer to react more
quickly upon shutdown.

Use of Request Reply

The SEDA component supports using Request Reply, where the caller will wait for the Async
route to complete. For instance:

902 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/async.html
http://camel.apache.org/async.html
http://camel.apache.org/seda.html
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://camel.apache.org/seda.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/async.html

Synchronous
The Direct component provides synchronous invocation of any consumers when a
producer sends a message exchange.

from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input").to("bean:processInput").to("bean:createResponse");

In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The
request is routed to the seda:input queue. As it is a Request Reply message, we wait for
the response. When the consumer on the seda:input queue is complete, it copies the
response to the original message response.

Concurrent consumers

By default, the SEDA endpoint uses a single consumer thread, but you can configure it to use
concurrent consumer threads. So instead of thread pools you can use:

from("seda:stageName?concurrentConsumers=5").process(...)

As for the difference between the two, note a thread pool can increase/shrink dynamically at
runtime depending on load, whereas the number of concurrent consumers is always fixed.

Thread pools

Be aware that adding a thread pool to a SEDA endpoint by doing something like:

from("seda:stageName").thread(5).process(...)

Can wind up with two BlockQueues: one from the SEDA endpoint, and one from the
workqueue of the thread pool, which may not be what you want. Instead, you might wish to
configure a Direct endpoint with a thread pool, which can process messages both
synchronously and asynchronously. For example:

from("direct:stageName").thread(5).process(...)

You can also directly configure number of threads that process messages on a SEDA endpoint
using the concurrentConsumers option.

CHAPTER 11 - COMPONENT APPENDIX 903

http://camel.apache.org/request-reply.html
http://camel.apache.org/direct.html
http://camel.apache.org/direct.html

until 2.2: Works only with 2 endpoints
Using Request Reply over SEDA or VM only works with 2 endpoints. You cannot
chain endpoints by sending to A -> B -> C etc. Only between A -> B. The reason is
the implementation logic is fairly simple. To support 3+ endpoints makes the logic
much more complex to handle ordering and notification between the waiting
threads properly.

This has been improved in Camel 2.3 onwards, which allows you to chain as many
endpoints as you like.

Sample

In the route below we use the SEDA queue to send the request to this async queue to be able
to send a fire-and-forget message for further processing in another thread, and return a
constant reply in this thread to the original caller.

public void configure() throws Exception {
from("direct:start")

// send it to the seda queue that is async
.to("seda:next")
// return a constant response
.transform(constant("OK"));

from("seda:next").to("mock:result");
}

Here we send a Hello World message and expects the reply to be OK.

Object out = template.requestBody("direct:start", "Hello World");
assertEquals("OK", out);

The "Hello World" message will be consumed from the SEDA queue from another thread for
further processing. Since this is from a unit test, it will be sent to a mock endpoint where we
can do assertions in the unit test.

Using multipleConsumers

Available as of Camel 2.2

In this example we have defined two consumers and registered them as spring beans.

<!-- define the consumers as spring beans -->
<bean id="consumer1" class="org.apache.camel.spring.example.FooEventConsumer"/>

<bean id="consumer2" class="org.apache.camel.spring.example.AnotherFooEventConsumer"/>

904 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define a shared endpoint which the consumers can refer to instead of using

url -->
<endpoint id="foo" uri="seda:foo?multipleConsumers=true"/>

</camelContext>

Since we have specified multipleConsumers=true on the seda foo endpoint we can have
those two consumers receive their own copy of the message as a kind of pub-sub style
messaging.

As the beans are part of an unit test they simply send the message to a mock endpoint, but
notice how we can use @Consume to consume from the seda queue.

public class FooEventConsumer {

@EndpointInject(uri = "mock:result")
private ProducerTemplate destination;

@Consume(ref = "foo")
public void doSomething(String body) {

destination.sendBody("foo" + body);
}

}

Extracting queue information.

If needed, information such as queue size, etc. can be obtained without using JMX in this
fashion:

SedaEndpoint seda = context.getEndpoint("seda:xxxx");
int size = seda.getExchanges().size();

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ VM
▪ Direct
▪ Async

CHAPTER 11 - COMPONENT APPENDIX 905

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/vm.html
http://camel.apache.org/direct.html
http://camel.apache.org/async.html

SERVLET COMPONENT

The servlet: component provides HTTP based endpoints for consuming HTTP requests that
arrive at a HTTP endpoint that is bound to a published Servlet.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-servlet</artifactId>
<version>x.x.x</version>
<\!-\- use the same version as your Camel core version \-->

</dependency>

URI format

servlet://relative_path[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

httpBindingRef null
Reference to an org.apache.camel.component.http.HttpBinding in the Registry. A HttpBinding
implementation can be used to customize how to write a response.

matchOnUriPrefix false
Whether or not the CamelServlet should try to find a target consumer by matching the URI prefix, if no exact match is
found.

servletName CamelServlet Specifies the servlet name that the servlet endpoint will bind to. This name should match the name you define in web.xml file.

Message Headers

Camel will apply the same Message Headers as the HTTP component.

Camel will also populate all request.parameter and request.headers. For
example, if a client request has the URL, http://myserver/myserver?orderid=123,
the exchange will contain a header named orderid with the value 123.

Usage

You can consume only from endpoints generated by the Servlet component. Therefore, it
should be used only as input into your Camel routes. To issue HTTP requests against other
HTTP endpoints, use the HTTP Component

906 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://camel.apache.org/http.html
http://myserver/myserver?orderid=123
http://camel.apache.org/http.html

Stream
Servlet is stream based, which means the input it receives is submitted to Camel as
a stream. That means you will only be able to read the content of the stream once.
If you find a situation where the message body appears to be empty or you need to
access the data multiple times (eg: doing multicasting, or redelivery error handling)
you should use Stream caching or convert the message body to a String which is
safe to be read multiple times.

Putting Camel JARs in the app server boot classpath

If you put the Camel JARs such as camel-core, camel-servlet, etc. in the boot classpath
of your application server (eg usually in its lib directory), then mind that the servlet mapping list
is now shared between multiple deployed Camel application in the app server.

Mind that putting Camel JARs in the boot classpath of the application server is generally not
best practice!

So in those situations you must define a custom and unique servlet name in each of your
Camel application, eg in the web.xml define:

<servlet>
<servlet-name>MySerlvet</servlet-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>MyServlet</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

And in your Camel endpoints then include the servlet name as well

<route>
<from uri="servlet://foo?servletName=MyServlet"/>
...

</route>

From Camel 2.11 onwards Camel will detect this duplicate and fail to start the application.
You can control to ignore this duplicate by setting the servlet init-parameter
ignoreDuplicateServletName to true as follows:

<servlet>
<servlet-name>CamelServlet</servlet-name>
<display-name>Camel Http Transport Servlet</display-name>

CHAPTER 11 - COMPONENT APPENDIX 907

http://camel.apache.org/stream-caching.html

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<init-param>

<param-name>ignoreDuplicateServletName</param-name>
<param-value>true</param-value>

</init-param>
</servlet>

But its strongly advised to use unique servlet-name for each Camel application to avoid this
duplication clash, as well any unforeseen side-effects.

Sample

In this sample, we define a route that exposes a HTTP service at
http://localhost:8080/camel/services/hello.
First, you need to publish the CamelHttpTransportServlet through the normal Web Container,
or OSGi Service.
Use the Web.xml file to publish the CamelHttpTransportServlet as follows:

<web-app>

<servlet>
<servlet-name>CamelServlet</servlet-name>
<display-name>Camel Http Transport Servlet</display-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

</web-app>

Then you can define your route as follows:

from("servlet:///hello?matchOnUriPrefix=true").process(new Processor() {
public void process(Exchange exchange) throws Exception {

String contentType = exchange.getIn().getHeader(Exchange.CONTENT_TYPE,
String.class);

String path = exchange.getIn().getHeader(Exchange.HTTP_URI, String.class);
path = path.substring(path.lastIndexOf("/"));

assertEquals("Get a wrong content type", CONTENT_TYPE, contentType);
// assert camel http header
String charsetEncoding =

exchange.getIn().getHeader(Exchange.HTTP_CHARACTER_ENCODING, String.class);

908 CHAPTER 11 - COMPONENT APPENDIX

http://localhost:8080/camel/services/hello
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

From Camel 2.7 onwards it's easier to use Servlet in Spring web applications. See
Servlet Tomcat Example for details.

assertEquals("Get a wrong charset name from the message heaer", "UTF-8",
charsetEncoding);

// assert exchange charset
assertEquals("Get a wrong charset naem from the exchange property", "UTF-8",

exchange.getProperty(Exchange.CHARSET_NAME));
exchange.getOut().setHeader(Exchange.CONTENT_TYPE, contentType + ";

charset=UTF-8");
exchange.getOut().setHeader("PATH", path);
exchange.getOut().setBody("Hello World");

}
});

Sample when using Spring 3.x

See Servlet Tomcat Example

Sample when using Spring 2.x

When using the Servlet component in a Camel/Spring application it's often required to load the
Spring ApplicationContext after the Servlet component has started. This can be accomplished
by using Spring's ContextLoaderServlet instead of ContextLoaderListener. In
that case you'll need to start ContextLoaderServlet after CamelHttpTransportServlet
like this:

<web-app>
<servlet>

<servlet-name>CamelServlet</servlet-name>
<servlet-class>

org.apache.camel.component.servlet.CamelHttpTransportServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>SpringApplicationContext</servlet-name>
<servlet-class>

org.springframework.web.context.ContextLoaderServlet
</servlet-class>
<load-on-startup>2</load-on-startup>

CHAPTER 11 - COMPONENT APPENDIX 909

http://camel.apache.org/servlet-tomcat-example.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://camel.apache.org/servlet.html
http://camel.apache.org/servlet-tomcat-example.html

Specify the relative path for camel-servlet endpoint
Since we are binding the Http transport with a published servlet, and we don't
know the servlet's application context path, the camel-servlet endpoint uses
the relative path to specify the endpoint's URL. A client can access the camel-
servlet endpoint through the servlet publish address:
("http://localhost:8080/camel/services") +
RELATIVE_PATH("/hello").

</servlet>
<web-app>

Sample when using OSGi

From Camel 2.6.0, you can publish the CamelHttpTransportServlet as an OSGi service with
help of SpringDM like this.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframework.org/

schema/osgi/spring-osgi.xsd">

<bean id="camelServlet"
class="org.apache.camel.component.servlet.CamelHttpTransportServlet">

</bean>

<!--
Enlist it in OSGi service registry
This will cause two things:
1) As the pax web whiteboard extender is running the CamelServlet will

be registered with the OSGi HTTP Service
2) It will trigger the HttpRegistry in other bundles so the servlet is

made known there too
-->
<osgi:service ref="camelServlet">

<osgi:interfaces>
<value>javax.servlet.Servlet</value>
<value>org.apache.camel.component.http.CamelServlet</value>

</osgi:interfaces>
<osgi:service-properties>

<entry key="alias" value="/camel/services" />

910 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

<entry key="matchOnUriPrefix" value="true" />
<entry key="servlet-name" value="CamelServlet"/>

</osgi:service-properties>
</osgi:service>

</beans>

Then use this service in your camel route like this:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframework.org/

schema/osgi/spring-osgi.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<osgi:reference id="servletref"
interface="org.apache.camel.component.http.CamelServlet">

<osgi:listener bind-method="register" unbind-method="unregister">
<ref bean="httpRegistry"/>

</osgi:listener>
</osgi:reference>

<bean id="httpRegistry"
class="org.apache.camel.component.servlet.DefaultHttpRegistry"/>

<bean id="servlet" class="org.apache.camel.component.servlet.ServletComponent">
<property name="httpRegistry" ref="httpRegistry" />

</bean>

<bean id="servletProcessor"
class="org.apache.camel.itest.osgi.servlet.ServletProcessor" />

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- notice how we can use the servlet scheme which is that osgi:reference
above -->

<from uri="servlet:///hello"/>
<process ref="servletProcessor"/>

</route>
</camelContext>

</beans>

For versions prior to Camel 2.6 you can use an Activator to publish the
CamelHttpTransportServlet on the OSGi platform

CHAPTER 11 - COMPONENT APPENDIX 911

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

import java.util.Dictionary;
import java.util.Hashtable;

import org.apache.camel.component.servlet.CamelHttpTransportServlet;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.service.http.HttpContext;
import org.osgi.service.http.HttpService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.osgi.context.BundleContextAware;

public final class ServletActivator implements BundleActivator, BundleContextAware {
private static final transient Logger LOG =

LoggerFactory.getLogger(ServletActivator.class);
private static boolean registerService;

/**
* HttpService reference.
*/

private ServiceReference httpServiceRef;

/**
* Called when the OSGi framework starts our bundle
*/

public void start(BundleContext bc) throws Exception {
registerServlet(bc);

}

/**
* Called when the OSGi framework stops our bundle
*/

public void stop(BundleContext bc) throws Exception {
if (httpServiceRef != null) {

bc.ungetService(httpServiceRef);
httpServiceRef = null;

}
}

protected void registerServlet(BundleContext bundleContext) throws Exception {
httpServiceRef =

bundleContext.getServiceReference(HttpService.class.getName());

if (httpServiceRef != null && !registerService) {
LOG.info("Register the servlet service");
final HttpService httpService =

(HttpService)bundleContext.getService(httpServiceRef);
if (httpService != null) {

// create a default context to share between registrations
final HttpContext httpContext = httpService.createDefaultHttpContext();
// register the hello world servlet
final Dictionary<String, String> initParams = new Hashtable<String,

String>();

912 CHAPTER 11 - COMPONENT APPENDIX

initParams.put("matchOnUriPrefix", "false");
initParams.put("servlet-name", "CamelServlet");
httpService.registerServlet("/camel/services", // alias

new CamelHttpTransportServlet(), // register servlet
initParams, // init params
httpContext // http context

);
registerService = true;

}
}

}

public void setBundleContext(BundleContext bc) {
try {

registerServlet(bc);
} catch (Exception e) {

LOG.error("Cannot register the servlet, the reason is " + e);
}

}

}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Servlet Tomcat Example
▪ Servlet Tomcat No Spring Example
▪ HTTP
▪ Jetty

SHIRO SECURITY COMPONENT

Available as of Camel 2.5

The shiro-security component in Camel is a security focused component, based on the
Apache Shiro security project.

Apache Shiro is a powerful and flexible open-source security framework that cleanly handles
authentication, authorization, enterprise session management and cryptography. The objective
of the Apache Shiro project is to provide the most robust and comprehensive application
security framework available while also being very easy to understand and extremely simple to
use.

This camel shiro-security component allows authentication and authorization support to be
applied to different segments of a camel route.

CHAPTER 11 - COMPONENT APPENDIX 913

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/servlet-tomcat-example.html
http://camel.apache.org/servlet-tomcat-no-spring-example.html
http://camel.apache.org/http.html
http://camel.apache.org/jetty.html

Shiro security is applied on a route using a Camel Policy. A Policy in Camel utilizes a strategy
pattern for applying interceptors on Camel Processors. It offering the ability to apply cross-
cutting concerns (for example. security, transactions etc) on sections/segments of a camel
route.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-shiro</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Shiro Security Basics

To employ Shiro security on a camel route, a ShiroSecurityPolicy object must be instantiated
with security configuration details (including users, passwords, roles etc). This object must then
be applied to a camel route. This ShiroSecurityPolicy Object may also be registered in the
Camel registry (JNDI or ApplicationContextRegistry) and then utilized on other routes in the
Camel Context.

Configuration details are provided to the ShiroSecurityPolicy using an Ini file (properties file)
or an Ini object. The Ini file is a standard Shiro configuration file containing user/role details as
shown below

[users]
user 'ringo' with password 'starr' and the 'sec-level1' role
ringo = starr, sec-level1
george = harrison, sec-level2
john = lennon, sec-level3
paul = mccartney, sec-level3

[roles]
'sec-level3' role has all permissions, indicated by the
wildcard '*'
sec-level3 = *

The 'sec-level2' role can do anything with access of permission
readonly (*) to help
sec-level2 = zone1:*

The 'sec-level1' role can do anything with access of permission
readonly
sec-level1 = zone1:readonly:*

914 CHAPTER 11 - COMPONENT APPENDIX

Instantiating a ShiroSecurityPolicy Object

A ShiroSecurityPolicy object is instantiated as follows

private final String iniResourcePath = "classpath:shiro.ini";
private final byte[] passPhrase = {

(byte) 0x08, (byte) 0x09, (byte) 0x0A, (byte) 0x0B,
(byte) 0x0C, (byte) 0x0D, (byte) 0x0E, (byte) 0x0F,
(byte) 0x10, (byte) 0x11, (byte) 0x12, (byte) 0x13,
(byte) 0x14, (byte) 0x15, (byte) 0x16, (byte) 0x17};

List<permission> permissionsList = new ArrayList<permission>();
Permission permission = new WildcardPermission("zone1:readwrite:*");
permissionsList.add(permission);

final ShiroSecurityPolicy securityPolicy =
new ShiroSecurityPolicy(iniResourcePath, passPhrase, true,

permissionsList);

ShiroSecurityPolicy Options

Name
Default
Value

Type Description

iniResourcePath or
ini

none Resource String or Ini Object

A mandatory Resource String for the iniResourcePath or an instance of an Ini object
must be passed to the security policy. Resources can be acquired from the file system,
classpath, or URLs when prefixed with "file:, classpath:, or url:" respectively. For e.g
"classpath:shiro.ini"

passPhrase
An AES 128
based key

byte[] A passPhrase to decrypt ShiroSecurityToken(s) sent along with Message Exchanges

alwaysReauthenticate true boolean
Setting to ensure re-authentication on every individual request. If set to false, the user
is authenticated and locked such than only requests from the same user going forward
are authenticated.

permissionsList none List<Permission>

A List of permissions required in order for an authenticated user to be authorized to
perform further action i.e continue further on the route. If no Permissions list is
provided to the ShiroSecurityPolicy object, then authorization is deemed as not
required

cipherService AES org.apache.shiro.crypto.CipherService
Shiro ships with AES & Blowfish based CipherServices. You may use one these or
pass in your own Cipher implementation

Applying Shiro Authentication on a Camel Route

The ShiroSecurityPolicy, tests and permits incoming message exchanges containing a encrypted
SecurityToken in the Message Header to proceed further following proper authentication. The
SecurityToken object contains a Username/Password details that are used to determine where
the user is a valid user.

protected RouteBuilder createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =

new ShiroSecurityPolicy("classpath:shiro.ini", passPhrase);

return new RouteBuilder() {
public void configure() {

onException(UnknownAccountException.class).

CHAPTER 11 - COMPONENT APPENDIX 915

to("mock:authenticationException");
onException(IncorrectCredentialsException.class).

to("mock:authenticationException");
onException(LockedAccountException.class).

to("mock:authenticationException");
onException(AuthenticationException.class).

to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

}
};

}

Applying Shiro Authorization on a Camel Route

Authorization can be applied on a camel route by associating a Permissions List with the
ShiroSecurityPolicy. The Permissions List specifies the permissions necessary for the user to
proceed with the execution of the route segment. If the user does not have the proper
permission set, the request is not authorized to continue any further.

protected RouteBuilder createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =

new ShiroSecurityPolicy("./src/test/resources/securityconfig.ini",
passPhrase);

return new RouteBuilder() {
public void configure() {

onException(UnknownAccountException.class).
to("mock:authenticationException");

onException(IncorrectCredentialsException.class).
to("mock:authenticationException");

onException(LockedAccountException.class).
to("mock:authenticationException");

onException(AuthenticationException.class).
to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

}
};

}

916 CHAPTER 11 - COMPONENT APPENDIX

Creating a ShiroSecurityToken and injecting it into a Message Exchange

A ShiroSecurityToken object may be created and injected into a Message Exchange using a
Shiro Processor called ShiroSecurityTokenInjector. An example of injecting a
ShiroSecurityToken using a ShiroSecurityTokenInjector in the client is shown below

ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo", "starr");
ShiroSecurityTokenInjector shiroSecurityTokenInjector =

new ShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

from("direct:client").
process(shiroSecurityTokenInjector).
to("direct:secureEndpoint");

Sending Messages to routes secured by a ShiroSecurityPolicy

Messages and Message Exchanges sent along the camel route where the security policy is
applied need to be accompanied by a SecurityToken in the Exchange Header. The
SecurityToken is an encrypted object that holds a Username and Password. The SecurityToken
is encrypted using AES 128 bit security by default and can be changed to any cipher of your
choice.

Given below is an example of how a request may be sent using a ProducerTemplate in
Camel along with a SecurityToken

@Test
public void testSuccessfulShiroAuthenticationWithNoAuthorization() throws

Exception {
//Incorrect password
ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo",

"stirr");

// TestShiroSecurityTokenInjector extends ShiroSecurityTokenInjector
TestShiroSecurityTokenInjector shiroSecurityTokenInjector =

new TestShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

successEndpoint.expectedMessageCount(1);
failureEndpoint.expectedMessageCount(0);

template.send("direct:secureEndpoint", shiroSecurityTokenInjector);

successEndpoint.assertIsSatisfied();
failureEndpoint.assertIsSatisfied();

}

CHAPTER 11 - COMPONENT APPENDIX 917

SIP COMPONENT

Available as of Camel 2.5

The sip component in Camel is a communication component, based on the Jain SIP
implementation (available under the JCP license).

Session Initiation Protocol (SIP) is an IETF-defined signaling protocol, widely used for
controlling multimedia communication sessions such as voice and video calls over Internet
Protocol (IP).The SIP protocol is an Application Layer protocol designed to be independent of
the underlying transport layer; it can run on Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) or Stream Control Transmission Protocol (SCTP).

The Jain SIP implementation supports TCP and UDP only.

The Camel SIP component only supports the SIP Publish and Subscribe capability as
described in the RFC3903 - Session Initiation Protocol (SIP) Extension for Event

This camel component supports both producer and consumer endpoints.

Camel SIP Producers (Event Publishers) and SIP Consumers (Event Subscribers)
communicate event & state information to each other using an intermediary entity called a SIP
Presence Agent (a stateful brokering entity).

For SIP based communication, a SIP Stack with a listener must be instantiated on both the
SIP Producer and Consumer (using separate ports if using localhost). This is necessary in order
to support the handshakes & acknowledgements exchanged between the SIP Stacks during
communication.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-sip</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

The URI scheme for a sip endpoint is as follows:

sip://johndoe@localhost:99999[?options]
sips://johndoe@localhost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and UDP.

You can append query options to the URI in the following format,
?option=value&option=value&...

918 CHAPTER 11 - COMPONENT APPENDIX

http://www.ietf.org/rfc/rfc3903.txt

Options

The SIP Component offers an extensive set of configuration options & capability to create
custom stateful headers needed to propagate state via the SIP protocol.

Name
Default
Value

Description

stackName NAME_NOT_SET Name of the SIP Stack instance associated with an SIP Endpoint.

transport tcp Setting for choice of transport potocol. Valid choices are "tcp" or "udp".

fromUser Ê
Username of the message originator. Mandatory setting unless a registry based custom FromHeader is
specified.

fromHost Ê Hostname of the message originator. Mandatory setting unless a registry based FromHeader is specified

fromPort Ê Port of the message originator. Mandatory setting unless a registry based FromHeader is specified

toUser Ê
Username of the message receiver. Mandatory setting unless a registry based custom ToHeader is
specified.

toHost Ê Hostname of the message receiver. Mandatory setting unless a registry based ToHeader is specified

toPort Ê Portname of the message receiver. Mandatory setting unless a registry based ToHeader is specified

maxforwards 0
the number of intermediaries that may forward the message to the message receiver. Optional setting. May
alternatively be set using as registry based MaxForwardsHeader

eventId Ê Setting for a String based event Id. Mandatory setting unless a registry based FromHeader is specified

eventHeaderName Ê Setting for a String based event Id. Mandatory setting unless a registry based FromHeader is specified

maxMessageSize 1048576 Setting for maximum allowed Message size in bytes.

cacheConnections false
Should connections be cached by the SipStack to reduce cost of connection creation. This is useful if the connection is
used for long running conversations.

consumer false
This setting is used to determine whether the kind of header (FromHeader,ToHeader etc) that needs to be created for
this endpoint

automaticDialogSupport off Setting to specify whether every communication should be associated with a dialog.

contentType text Setting for contentType can be set to any valid MimeType.

contentSubType xml Setting for contentSubType can be set to any valid MimeSubType.

receiveTimeoutMillis 10000
Setting for specifying amount of time to wait for a Response and/or Acknowledgement can be received from another SIP
stack

useRouterForAllUris false This setting is used when requests are sent to the Presence Agent via a proxy.

msgExpiration 3600 The amount of time a message received at an endpoint is considered valid

presenceAgent false
This setting is used to distingish between a Presence Agent & a consumer. This is due to the fact that the SIP Camel
component ships with a basic Presence Agent (for testing purposes only). Consumers have to set this flag to true.

Registry based Options

SIP requires a number of headers to be sent/received as part of a request. These SIP header can
be enlisted in the Registry, such as in the Spring XML file.

The values that could be passed in, are the following:

Name Description

fromHeader a custom Header object containing message originator settings. Must implement the type javax.sip.header.FromHeader

toHeader a custom Header object containing message receiver settings. Must implement the type javax.sip.header.ToHeader

viaHeaders
List of custom Header objects of the type javax.sip.header.ViaHeader. Each ViaHeader containing a proxy address for request forwarding. (Note this
header is automatically updated by each proxy when the request arrives at its listener)

contentTypeHeader a custom Header object containing message content details. Must implement the type javax.sip.header.ContentTypeHeader

callIdHeader a custom Header object containing call details. Must implement the type javax.sip.header.CallIdHeader

maxForwardsHeader
a custom Header object containing details on maximum proxy forwards. This header places a limit on the viaHeaders possible. Must implement the
type javax.sip.header.MaxForwardsHeader

eventHeader a custom Header object containing event details. Must implement the type javax.sip.header.EventHeader

CHAPTER 11 - COMPONENT APPENDIX 919

http://camel.apache.org/registry.html

contactHeader
an optional custom Header object containing verbose contact details (email, phone number etc). Must implement the type
javax.sip.header.ContactHeader

expiresHeader a custom Header object containing message expiration details. Must implement the type javax.sip.header.ExpiresHeader

extensionHeader a custom Header object containing user/application specific details. Must implement the type javax.sip.header.ExtensionHeader

Sending Messages to/from a SIP endpoint

Creating a Camel SIP Publisher

In the example below, a SIP Publisher is created to send SIP Event publications to
a user "agent@localhost:5152". This is the address of the SIP Presence Agent which acts as a
broker between the SIP Publisher and Subscriber

• using a SIP Stack named client
• using a registry based eventHeader called evtHdrName
• using a registry based eventId called evtId
• from a SIP Stack with Listener set up as user2@localhost:3534
• The Event being published is EVENT_A
• A Mandatory Header called REQUEST_METHOD is set to Request.Publish thereby

setting up the endpoint as a Event publisher"

producerTemplate.sendBodyAndHeader(

"sip://agent@localhost:5152?stackName=client&eventHeaderName=evtHdrName&eventId=evtid&fromUser=user2&fromHost=localhost&fromPort=3534",
"EVENT_A",
"REQUEST_METHOD",
Request.PUBLISH);

Creating a Camel SIP Subscriber

In the example below, a SIP Subscriber is created to receive SIP Event publications sent to
a user "johndoe@localhost:5154"

• using a SIP Stack named Subscriber
• registering with a Presence Agent user called agent@localhost:5152
• using a registry based eventHeader called evtHdrName. The evtHdrName contains

the Event which is se to "Event_A"
• using a registry based eventId called evtId

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// Create PresenceAgent

920 CHAPTER 11 - COMPONENT APPENDIX

from("sip://agent@localhost:5152?stackName=PresenceAgent&presenceAgent=true&eventHeaderName=evtHdrName&eventId=evtid")
.to("mock:neverland");

// Create Sip Consumer(Event Subscriber)

from("sip://johndoe@localhost:5154?stackName=Subscriber&toUser=agent&toHost=localhost&toPort=5152&eventHeaderName=evtHdrName&eventId=evtid")
.to("log:ReceivedEvent?level=DEBUG")
.to("mock:notification");

}
};

}

The Camel SIP component also ships with a Presence Agent that is meant to
be used for Testing and Demo purposes only. An example of instantiating a Presence
Agent is given above.

Note that the Presence Agent is set up as a user agent@localhost:5152 and is capable of
communicating with both Publisher as well as Subscriber. It has a separate SIP stackName
distinct from Publisher as well as Subscriber. While it is set up as a Camel Consumer, it does
not actually send any messages along the route to the endpoint "mock:neverland".

SMPP COMPONENT

Available as of Camel 2.2

This component provides access to an SMSC (Short Message Service Center) over the SMPP
protocol to send and receive SMS. The JSMPP is used.

Starting with Camel 2.9, you are also able to execute ReplaceSm, QuerySm,
SubmitMulti, CancelSm and DataSm.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-smpp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

smpp://[username@]hostname[:port][?options]
smpps://[username@]hostname[:port][?options]

CHAPTER 11 - COMPONENT APPENDIX 921

http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/

If no username is provided, then Camel will provide the default value smppclient.
If no port number is provided, then Camel will provide the default value 2775.
Camel 2.3: If the protocol name is "smpps", camel-smpp with try to use SSLSocket to init a
connection to the server.

You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options

Name
Default
Value

Description

password password Specifies the password to use to log in to the SMSC.

systemType cp
This parameter is used to categorize the type of ESME (External Short Message Entity) that is binding to the SMSC (max. 13
characters).

dataCoding 0

Camel 2.11 Defines the data coding according the SMPP 3.4 specification, section 5.2.19. (Prior to Camel 2.9, this
option is also supported.) Example data encodings are:
0: SMSC Default Alphabet
3: Latin 1 (ISO-8859-1)
4: Octet unspecified (8-bit binary)
8: UCS2 (ISO/IEC-10646)
13: Extended Kanji JIS(X 0212-1990)

alphabet 0

Camel 2.5 Defines encoding of data according the SMPP 3.4 specification, section 5.2.19. This option is mapped to
Alphabet.java and used to create the byte[] which is send to the SMSC. Example alphabets are:
0: SMSC Default Alphabet
4: 8 bit Alphabet
8: UCS2 Alphabet

encoding ISO-8859-1 only for SubmitSm, ReplaceSm and SubmitMulti Defines the encoding scheme of the short message user data.

enquireLinkTimer 5000
Defines the interval in milliseconds between the confidence checks. The confidence check is used to test the communication
path between an ESME and an SMSC.

transactionTimer 10000
Defines the maximum period of inactivity allowed after a transaction, after which an SMPP entity may assume that the
session is no longer active. This timer may be active on either communicating SMPP entity (i.e. SMSC or ESME).

initialReconnectDelay 5000
Defines the initial delay in milliseconds after the consumer/producer tries to reconnect to the SMSC, after the connection
was lost.

reconnectDelay 5000
Defines the interval in milliseconds between the reconnect attempts, if the connection to the SMSC was lost and the
previous was not succeed.

registeredDelivery 1

only for SubmitSm, ReplaceSm, SubmitMulti and DataSm Is used to request an SMSC delivery receipt and/or
SME originated acknowledgements. The following values are defined:
0: No SMSC delivery receipt requested.
1: SMSC delivery receipt requested where final delivery outcome is success or failure.
2: SMSC delivery receipt requested where the final delivery outcome is delivery failure.

serviceType CMT

The service type parameter can be used to indicate the SMS Application service associated with the message. The following
generic service_types are defined:
CMT: Cellular Messaging
CPT: Cellular Paging
VMN: Voice Mail Notification
VMA: Voice Mail Alerting
WAP: Wireless Application Protocol
USSD: Unstructured Supplementary Services Data

sourceAddr 1616 Defines the address of SME (Short Message Entity) which originated this message.

destAddr 1717
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the destination SME address. For mobile
terminated messages, this is the directory number of the recipient MS.

sourceAddrTon 0

Defines the type of number (TON) to be used in the SME originator address parameters. The following TON values are
defined:
0: Unknown
1: International
2: National
3: Network Specific
4: Subscriber Number
5: Alphanumeric
6: Abbreviated

922 CHAPTER 11 - COMPONENT APPENDIX

http://code.google.com/p/jsmpp/source/browse/tags/2.1.0/src/java/main/org/jsmpp/bean/Alphabet.java
http://code.google.com/p/jsmpp/source/browse/tags/2.1.0/src/java/main/org/jsmpp/bean/Alphabet.java

destAddrTon 0
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the type of number (TON) to be used in the
SME destination address parameters. Same as the sourceAddrTon values defined above.

sourceAddrNpi 0

Defines the numeric plan indicator (NPI) to be used in the SME originator address parameters. The following NPI values are
defined:
0: Unknown
1: ISDN (E163/E164)
2: Data (X.121)
3: Telex (F.69)
6: Land Mobile (E.212)
8: National
9: Private
10: ERMES
13: Internet (IP)
18: WAP Client Id (to be defined by WAP Forum)

destAddrNpi 0
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the numeric plan indicator (NPI) to be used
in the SME destination address parameters. Same as the sourceAddrNpi values defined above.

priorityFlag 1

only for SubmitSm and SubmitMulti Allows the originating SME to assign a priority level to the short message.
Four Priority Levels are supported:
0: Level 0 (lowest) priority
1: Level 1 priority
2: Level 2 priority
3: Level 3 (highest) priority

replaceIfPresentFlag 0

only for SubmitSm and SubmitMulti Used to request the SMSC to replace a previously submitted message, that is
still pending delivery. The SMSC will replace an existing message provided that the source address, destination address and
service type match the same fields in the new message. The following replace if present flag values are defined:
0: Don't replace
1: Replace

typeOfNumber 0 Defines the type of number (TON) to be used in the SME. Use the sourceAddrTon values defined above.

numberingPlanIndicator 0 Defines the numeric plan indicator (NPI) to be used in the SME. Use the sourceAddrNpi values defined above.

lazySessionCreation false

Camel 2.8 onwards Sessions can be lazily created to avoid exceptions, if the SMSC is not available when the Camel
producer is started.
Camel 2.11 onwards Camel will check the in message headers 'CamelSmppSystemId' and 'CamelSmppPassword' of the
first exchange. If they are present, Camel will use these data to connect to the SMSC.

httpProxyHost null
Camel 2.9.1: If you need to tunnel SMPP through a HTTP proxy, set this attribute to the hostname or ip address of your
HTTP proxy.

httpProxyPort 3128 Camel 2.9.1: If you need to tunnel SMPP through a HTTP proxy, set this attribute to the port of your HTTP proxy.

httpProxyUsername null
Camel 2.9.1: If your HTTP proxy requires basic authentication, set this attribute to the username required for your
HTTP proxy.

httpProxyPassword null
Camel 2.9.1: If your HTTP proxy requires basic authentication, set this attribute to the password required for your
HTTP proxy.

sessionStateListener null
Camel 2.9.3: You can refer to a org.jsmpp.session.SessionStateListener in the Registry to receive
callbacks when the session state changed.

addressRange ""
Camel 2.11: You can specify the address range for the SmppConsumer as defined in section 5.2.7 of the SMPP 3.4
specification. The SmppConsumer will receive messages only from SMSC's which target an address (MSISDN or IP
address) within this range.

You can have as many of these options as you like.

smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer

Producer Message Headers

The following message headers can be used to affect the behavior of the SMPP producer

Header Type Description

CamelSmppDestAddr List/String
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the destination SME address(es).
For mobile terminated messages, this is the directory number of the recipient MS. Is must be a List<String>
for SubmitMulti and a String otherwise.

CamelSmppDestAddrTon Byte
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the type of number (TON) to be
used in the SME destination address parameters. Use the sourceAddrTon URI option values defined above.

CamelSmppDestAddrNpi Byte
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the numeric plan indicator (NPI) to
be used in the SME destination address parameters. Use the URI option sourceAddrNpi values defined above.

CHAPTER 11 - COMPONENT APPENDIX 923

CamelSmppSourceAddr String Defines the address of SME (Short Message Entity) which originated this message.

CamelSmppSourceAddrTon Byte
Defines the type of number (TON) to be used in the SME originator address parameters. Use the
sourceAddrTon URI option values defined above.

CamelSmppSourceAddrNpi Byte
Defines the numeric plan indicator (NPI) to be used in the SME originator address parameters. Use the URI
option sourceAddrNpi values defined above.

CamelSmppServiceType String
The service type parameter can be used to indicate the SMS Application service associated with the message. Use
the URI option serviceType settings above.

CamelSmppRegisteredDelivery Byte
only for SubmitSm, ReplaceSm, SubmitMulti and DataSm Is used to request an SMSC delivery
receipt and/or SME originated acknowledgements. Use the URI option registeredDelivery settings above.

CamelSmppPriorityFlag Byte
only for SubmitSm and SubmitMulti Allows the originating SME to assign a priority level to the short
message. Use the URI option priorityFlag settings above.

CamelSmppScheduleDeliveryTime Date

only for SubmitSm, SubmitMulti and ReplaceSm This parameter specifies the scheduled time at which
the message delivery should be first attempted. It defines either the absolute date and time or relative time from
the current SMSC time at which delivery of this message will be attempted by the SMSC. It can be specified in
either absolute time format or relative time format. The encoding of a time format is specified in chapter 7.1.1. in
the smpp specification v3.4.

CamelSmppValidityPeriod String/Date

only for SubmitSm, SubmitMulti and ReplaceSm The validity period parameter indicates the SMSC
expiration time, after which the message should be discarded if not delivered to the destination. If it's provided as
Date, it's interpreted as absolute time. Camel 2.9.1 onwards: It can be defined in absolute time format or
relative time format if you provide it as String as specified in chapter 7.1.1 in the smpp specification v3.4.

CamelSmppReplaceIfPresentFlag Byte

only for SubmitSm and SubmitMulti The replace if present flag parameter is used to request the SMSC to
replace a previously submitted message, that is still pending delivery. The SMSC will replace an existing message
provided that the source address, destination address and service type match the same fields in the new message.
The following values are defined:
0: Don't replace
1: Replace

CamelSmppAlphabet /
CamelSmppDataCoding

Byte
Camel 2.5 For SubmitSm, SubmitMulti and ReplaceSm (Prior to Camel 2.9 use
CamelSmppDataCoding instead of CamelSmppAlphabet.) The data coding according to the SMPP 3.4
specification, section 5.2.19. Use the URI option alphabet settings above.

The following message headers are used by the SMPP producer to set the response from the
SMSC in the message header

Header Type Description

CamelSmppId List<String>/String
The id to identify the submitted short message(s) for later use. From Camel 2.9.0: In case of a
ReplaceSm, QuerySm, CancelSm and DataSm this header vaule is a String. In case of a SubmitSm or
SubmitMultiSm this header vaule is a List<String>.

CamelSmppSentMessageCount Integer
From Camel 2.9 onwards only for SubmitSm and SubmitMultiSm The total number of
messages which has been sent.

CamelSmppError
Map<String,
List<Map<String,
Object>>>

From Camel 2.9 onwards only for SubmitMultiSm The errors which occurred by sending the
short message(s) the form Map<String, List<Map<String, Object>>> (messageID : (destAddr :
address, error : errorCode)).

Consumer Message Headers

The following message headers are used by the SMPP consumer to set the request data from
the SMSC in the message header

Header Type Description

CamelSmppSequenceNumber Integer
only for AlertNotification, DeliverSm and DataSm A sequence number allows a
response PDU to be correlated with a request PDU. The associated SMPP response PDU must
preserve this field.

CamelSmppCommandId Integer
only for AlertNotification, DeliverSm and DataSm The command id field identifies the
particular SMPP PDU. For the complete list of defined values see chapter 5.1.2.1 in the smpp
specification v3.4.

CamelSmppSourceAddr String
only for AlertNotification, DeliverSm and DataSm Defines the address of SME (Short
Message Entity) which originated this message.

CamelSmppSourceAddrNpi Byte
only for AlertNotification and DataSm Defines the numeric plan indicator (NPI) to be
used in the SME originator address parameters. Use the URI option sourceAddrNpi values
defined above.

CamelSmppSourceAddrTon Byte
only for AlertNotification and DataSm Defines the type of number (TON) to be used in
the SME originator address parameters. Use the sourceAddrTon URI option values defined
above.

924 CHAPTER 11 - COMPONENT APPENDIX

CamelSmppEsmeAddr String
only for AlertNotification Defines the destination ESME address. For mobile terminated
messages, this is the directory number of the recipient MS.

CamelSmppEsmeAddrNpi Byte
only for AlertNotification Defines the numeric plan indicator (NPI) to be used in the ESME
originator address parameters. Use the URI option sourceAddrNpi values defined above.

CamelSmppEsmeAddrTon Byte
only for AlertNotification Defines the type of number (TON) to be used in the ESME
originator address parameters. Use the sourceAddrTon URI option values defined above.

CamelSmppId String
only for smsc DeliveryReceipt and DataSm The message ID allocated to the message by
the SMSC when originally submitted.

CamelSmppDelivered Integer
only for smsc DeliveryReceipt Number of short messages delivered. This is only relevant
where the original message was submitted to a distribution list.The value is padded with leading
zeros if necessary.

CamelSmppDoneDate Date
only for smsc DeliveryReceipt The time and date at which the short message reached it's
final state. The format is as follows: YYMMDDhhmm.

CamelSmppFinalStatus DeliveryReceiptState

only for smsc DeliveryReceipt: The final status of the message. The following values are
defined:
DELIVRD: Message is delivered to destination
EXPIRED: Message validity period has expired.
DELETED: Message has been deleted.
UNDELIV: Message is undeliverable
ACCEPTD: Message is in accepted state (i.e. has been manually read on behalf of the subscriber by
customer service)
UNKNOWN: Message is in invalid state
REJECTD: Message is in a rejected state

CamelSmppCommandStatus Integer only for DataSm The Command status of the message.

CamelSmppError String
only for smsc DeliveryReceipt Where appropriate this may hold a Network specific error
code or an SMSC error code for the attempted delivery of the message. These errors are Network
or SMSC specific and are not included here.

CamelSmppSubmitDate Date
only for smsc DeliveryReceipt The time and date at which the short message was submitted.
In the case of a message which has been replaced, this is the date that the original message was
replaced. The format is as follows: YYMMDDhhmm.

CamelSmppSubmitted Integer
only for smsc DeliveryReceipt Number of short messages originally submitted. This is only
relevant when the original message was submitted to a distribution list.The value is padded with
leading zeros if necessary.

CamelSmppDestAddr String
only for DeliverSm and DataSm: Defines the destination SME address. For mobile
terminated messages, this is the directory number of the recipient MS.

CamelSmppScheduleDeliveryTime String

only for DeliverSm: This parameter specifies the scheduled time at which the message delivery
should be first attempted. It defines either the absolute date and time or relative time from the
current SMSC time at which delivery of this message will be attempted by the SMSC. It can be
specified in either absolute time format or relative time format. The encoding of a time format is
specified in Section 7.1.1. in the smpp specification v3.4.

CamelSmppValidityPeriod String

only for DeliverSm The validity period parameter indicates the SMSC expiration time, after
which the message should be discarded if not delivered to the destination. It can be defined in
absolute time format or relative time format. The encoding of absolute and relative time format is
specified in Section 7.1.1 in the smpp specification v3.4.

CamelSmppServiceType String
only for DeliverSm and DataSm The service type parameter indicates the SMS Application
service associated with the message.

CamelSmppRegisteredDelivery Byte
only for DataSm Is used to request an delivery receipt and/or SME originated
acknowledgements. Same values as in Producer header list above.

CamelSmppDestAddrNpi Byte
only for DataSm Defines the numeric plan indicator (NPI) in the destination address parameters.
Use the URI option sourceAddrNpi values defined above.

CamelSmppDestAddrTon Byte
only for DataSm Defines the type of number (TON) in the destination address parameters. Use
the sourceAddrTon URI option values defined above.

CamelSmppMessageType String

Camel 2.6 onwards: Identifies the type of an incoming message:
AlertNotification: an SMSC alert notification
DataSm: an SMSC data short message
DeliveryReceipt: an SMSC delivery receipt
DeliverSm: an SMSC deliver short message

CamelSmppOptionalParameters Map<String, Object>
Camel 2.10.5 onwards and only for DeliverSm The optional parameters send back by the
SMSC.

Exception handling

This component supports the general Camel exception handling capabilities.
Camel 2.8 onwards: When the SMPP consumer receives a DeliverSm or DataSm short

CHAPTER 11 - COMPONENT APPENDIX 925

JSMPP library
See the documentation of the JSMPP Library for more details about the underlying
library.

message and the processing of these messages fails, you can also throw a
ProcessRequestException instead of handle the failure. In this case, this exception is
forwarded to the underlying JSMPP library which will return the included error code to the
SMSC. This feature is useful to e.g. instruct the SMSC to resend the short message at a later
time. This could be done with the following lines of code:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer")
.doTry()

.to("bean:dao?method=updateSmsState")
.doCatch(Exception.class)

.throwException(new ProcessRequestException("update of sms state failed", 100))
.end();

Please refer to the SMPP specification for the complete list of error codes and their meanings.

Samples

A route which sends an SMS using the Java DSL:

from("direct:start")
.to("smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=producer");

A route which sends an SMS using the Spring XML DSL:

<route>
<from uri="direct:start"/>
<to uri="smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=producer"/>
</route>

A route which receives an SMS using the Java DSL:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer")
.to("bean:foo");

A route which receives an SMS using the Spring XML DSL:

926 CHAPTER 11 - COMPONENT APPENDIX

http://code.google.com/p/jsmpp/
http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/

<route>
<from uri="smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer"/>
<to uri="bean:foo"/>

</route>

Debug logging

This component has log level DEBUG, which can be helpful in debugging problems. If you use
log4j, you can add the following line to your configuration:

log4j.logger.org.apache.camel.component.smpp=DEBUG

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

SNMP COMPONENT

Available as of Camel 2.1

The snmp: component gives you the ability to poll SNMP capable devices or receiving
traps.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-snmp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

snmp://hostname[:port][?Options]

The component supports polling OID values from an SNMP enabled device and receiving traps.

CHAPTER 11 - COMPONENT APPENDIX 927

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

SMSC simulator
If you need an SMSC simulator for your test, you can use the simulator provided by
Logica.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

type none
The type of action you want to perform. Actually you can enter here POLL or TRAP. The value POLL will instruct the endpoint to poll a
given host for the supplied OID keys. If you put in TRAP you will setup a listener for SNMP Trap Events.

protocol udp Here you can select which protocol to use. You can use either udp or tcp.

retries 2 Defines how often a retry is made before canceling the request.

timeout 1500 Sets the timeout value for the request in millis.

snmpVersion
0 (which means
SNMPv1)

Sets the snmp version for the request.

snmpCommunity public Sets the community octet string for the snmp request.

delay 60 seconds Defines the delay in seconds between to poll cycles.

oids none
Defines which values you are interested in. Please have a look at the Wikipedia to get a better understanding. You may provide a single
OID or a coma separated list of OIDs. Example:
oids="1.3.6.1.2.1.1.3.0,1.3.6.1.2.1.25.3.2.1.5.1,1.3.6.1.2.1.25.3.5.1.1.1,1.3.6.1.2.1.43.5.1.1.11.1"

The result of a poll

Given the situation, that I poll for the following OIDs:

Listing 1.Listing 1. OIDsOIDs

1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.25.3.2.1.5.1
1.3.6.1.2.1.25.3.5.1.1.1
1.3.6.1.2.1.43.5.1.1.11.1

The result will be the following:

Listing 1.Listing 1. Result of toString conversionResult of toString conversion

<?xml version="1.0" encoding="UTF-8"?>
<snmp>

<entry>
<oid>1.3.6.1.2.1.1.3.0</oid>
<value>6 days, 21:14:28.00</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.25.3.2.1.5.1</oid>
<value>2</value>

928 CHAPTER 11 - COMPONENT APPENDIX

http://en.wikipedia.org/wiki/Object_identifier
http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator

</entry>
<entry>

<oid>1.3.6.1.2.1.25.3.5.1.1.1</oid>
<value>3</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.43.5.1.1.11.1</oid>
<value>6</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.1.1.0</oid>
<value>My Very Special Printer Of Brand Unknown</value>

</entry>
</snmp>

As you maybe recognized there is one more result than requested....1.3.6.1.2.1.1.1.0.
This one is filled in by the device automatically in this special case. So it may absolutely happen,
that you receive more than you requested...be prepared.

Examples

Polling a remote device:

snmp:192.168.178.23:161?protocol=udp&type=POLL&oids=1.3.6.1.2.1.1.5.0

Setting up a trap receiver (Note that no OID info is needed here!):

snmp:127.0.0.1:162?protocol=udp&type=TRAP

From Camel 2.10.0, you can get the community of SNMP TRAP with message header
'securityName',
peer address of the SNMP TRAP with message header 'peerAddress'.

Routing example in Java: (converts the SNMP PDU to XML String)

from("snmp:192.168.178.23:161?protocol=udp&type=POLL&oids=1.3.6.1.2.1.1.5.0").
convertBodyTo(String.class).
to("activemq:snmp.states");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 11 - COMPONENT APPENDIX 929

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

SPRING INTEGRATION COMPONENT

The spring-integration: component provides a bridge for Camel components to talk to
spring integration endpoints.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-integration</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

spring-integration:defaultChannelName[?options]

Where defaultChannelName represents the default channel name which is used by the
Spring Integration Spring context. It will equal to the inputChannel name for the Spring
Integration consumer and the outputChannel name for the Spring Integration provider.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Type Description

inputChannel String
The Spring integration input channel name that this endpoint wants to consume from, where the specified channel name is defined in the
Spring context.

outputChannel String The Spring integration output channel name that is used to send messages to the Spring integration context.

inOut String
The exchange pattern that the Spring integration endpoint should use. If inOut=true then a reply channel is expected, either from the
Spring Integration Message header or configured on the endpoint.

Usage

The Spring integration component is a bridge that connects Camel endpoints with Spring
integration endpoints through the Spring integration's input channels and output channels. Using
this component, we can send Camel messages to Spring Integration endpoints or receive
messages from Spring integration endpoints in a Camel routing context.

930 CHAPTER 11 - COMPONENT APPENDIX

http://www.springsource.org/spring-integration

Examples

Using the Spring integration endpoint

You can set up a Spring integration endpoint using a URI, as follows:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">

<!-- spring integration channels -->
<channel id="inputChannel"/>
<channel id="outputChannel"/>
<channel id="onewayChannel"/>

<!-- spring integration service activators -->
<service-activator input-channel="inputChannel" ref="helloService"

method="sayHello"/>
<service-activator input-channel="onewayChannel" ref="helloService"

method="greet"/>

<!-- custom bean -->
<beans:bean id="helloService"

class="org.apache.camel.component.spring.integration.HelloWorldService"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:twowayMessage"/>
<to

uri="spring-integration:inputChannel?inOut=true&inputChannel=outputChannel"/>
</route>
<route>

<from uri="direct:onewayMessage"/>
<to uri="spring-integration:onewayChannel?inOut=false"/>

</route>
</camelContext>

<!-- spring integration channels -->
<channel id="requestChannel"/>
<channel id="responseChannel"/>

<!-- cusom Camel processor -->
<beans:bean id="myProcessor"
class="org.apache.camel.component.spring.integration.MyProcessor"/>

CHAPTER 11 - COMPONENT APPENDIX 931

<!-- Camel route -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from

uri="spring-integration://requestChannel?outputChannel=responseChannel&inOut=true"/>
<process ref="myProcessor"/>

</route>
</camelContext>

Or directly using a Spring integration channel name:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">

<!-- spring integration channel -->
<channel id="outputChannel"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="outputChannel"/>
<to uri="mock:result"/>

</route>
</camelContext>

The Source and Target adapter

Spring integration also provides the Spring integration's source and target adapters, which can
route messages from a Spring integration channel to a Camel endpoint or from a Camel
endpoint to a Spring integration channel.

This example uses the following namespaces:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel-si="http://camel.apache.org/schema/spring/integration"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

932 CHAPTER 11 - COMPONENT APPENDIX

http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring/integration http://camel.apache.org/

schema/spring/integration/camel-spring-integration.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

You can bind your source or target to a Camel endpoint as follows:

<!-- Create the camel context here -->
<camelContext id="camelTargetContext" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:EndpointA" />
<to uri="mock:result" />

</route>
<route>

<from uri="direct:EndpointC"/>
<process ref="myProcessor"/>

</route>
</camelContext>

<!-- We can bind the camelTarget to the camel context's endpoint by specifying the
camelEndpointUri attribute -->
<camel-si:camelTarget id="camelTargetA" camelEndpointUri="direct:EndpointA"
expectReply="false">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetB" camelEndpointUri="direct:EndpointC"
replyChannel="channelC" expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetD" camelEndpointUri="direct:EndpointC"
expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<beans:bean id="myProcessor"
class="org.apache.camel.component.spring.integration.MyProcessor"/>

<!-- spring integration channels -->
<channel id="channelA"/>
<channel id="channelB"/>
<channel id="channelC"/>

<!-- spring integration service activator -->
<service-activator input-channel="channelB" output-channel="channelC"
ref="helloService" method="sayHello"/>

<!-- custom bean -->

CHAPTER 11 - COMPONENT APPENDIX 933

<beans:bean id="helloService"
class="org.apache.camel.component.spring.integration.HelloWorldService"/>

<camelContext id="camelSourceContext" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:OneWay"/>
<to uri="direct:EndpointB"/>

</route>
<route>

<from uri="direct:TwoWay"/>
<to uri="direct:EndpointC"/>

</route>
</camelContext>

<!-- camelSource will redirect the message coming for direct:EndpointB to the spring
requestChannel channelA -->
<camel-si:camelSource id="camelSourceA" camelEndpointUri="direct:EndpointB"

requestChannel="channelA" expectReply="false">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>

</camel-si:camelSource>

<!-- camelSource will redirect the message coming for direct:EndpointC to the spring
requestChannel channelB

then it will pull the response from channelC and put the response message back to
direct:EndpointC -->

<camel-si:camelSource id="camelSourceB" camelEndpointUri="direct:EndpointC"
requestChannel="channelB" replyChannel="channelC"

expectReply="true">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>

</camel-si:camelSource>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

SPRING LDAP COMPONENT

Available since Camel 2.11

The spring-ldap: component provides a Camel wrapper for Spring LDAP.

Maven users will need to add the following dependency to their pom.xml for this
component:

934 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.springsource.org/ldap

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-ldap</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

spring-ldap:springLdapTemplate[?options]

Where springLdapTemplate is the name of the Spring LDAP Template bean. In this bean,
you configure the URL and the credentials for your LDAP access.

Options

Name Type Description

operation String The LDAP operation to be performed. Must be one of search, bind, or unbind.

scope String
The scope of the search operation. Must be one of object, onelevel, or subtree, see also http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol#Search_and_Compare

If an unsupported value is specified for some option, the component throws an
UnsupportedOperationException.

Usage

The component supports producer endpoint only. An attempt to create a consumer endpoint
will result in an UnsupportedOperationException.
The body of the message must be a map (an instance of java.util.Map). This map must
contain at least an entry with the key dn that specifies the root node for the LDAP operation
to be performed. Other entries of the map are operation-specific (see below).

The body of the message remains unchanged for the bind and unbind operations. For the
search operation, the body is set to the result of the search, see
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/
LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29.

Search

The message body must have an entry with the key filter. The value must be a String
representing a valid LDAP filter, see http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol#Search_and_Compare.

CHAPTER 11 - COMPONENT APPENDIX 935

http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare

Bind

The message body must have an entry with the key attributes. The value must be an
instance of javax.naming.directory.Attributes This entry specifies the LDAP node to be created.

Unbind

No further entries necessary, the node with the specified dn is deleted.

Key definitions

In order to avoid spelling errors, the following constants are defined in
org.apache.camel.springldap.SpringLdapProducer:

• public static final String DN = "dn"
• public static final String FILTER = "filter"
• public static final String ATTRIBUTES = "attributes"

SPRING WEB SERVICES COMPONENT

Available as of Camel 2.6

The spring-ws: component allows you to integrate with Spring Web Services. It offers
both client-side support, for accessing web services, and server-side support for creating your
own contract-first web services.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-ws</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

The URI scheme for this component is as follows

spring-ws:[mapping-type:]address[?options]

To expose a web service mapping-type needs to be set to any of the following:

Mapping
type

Description

rootqname Offers the option to map web service requests based on the qualified name of the root element contained in the message.

soapaction Used to map web service requests based on the SOAP action specified in the header of the message.

936 CHAPTER 11 - COMPONENT APPENDIX

http://docs.oracle.com/javase/6/docs/api/javax/naming/directory/Attributes.html
http://static.springsource.org/spring-ws/sites/1.5/

Dependencies
As of Camel 2.8 this component ships with Spring-WS 2.0.x which (like the rest of
Camel) requires Spring 3.0.x.

Earlier Camel versions shipped Spring-WS 1.5.9 which is compatible with Spring 2.5.x and
3.0.x. In order to run earlier versions of camel-spring-ws on Spring 2.5.x you need to
add the spring-webmvc module from Spring 2.5.x. In order to run Spring-WS 1.5.9 on
Spring 3.0.x you need to exclude the OXM module from Spring 3.0.x as this module is also
included in Spring-WS 1.5.9 (see this post)

uri In order to map web service requests that target a specific URI.

xpathresult
Used to map web service requests based on the evaluation of an XPath expression against the incoming message. The result of the evaluation should
match the XPath result specified in the endpoint URI.

beanname
Allows you to reference an org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher object in order to integrate with
existing (legacy) endpoint mappings like PayloadRootQNameEndpointMapping, SoapActionEndpointMapping, etc

As a consumer the address should contain a value relevant to the specified mapping-type (e.g.
a SOAP action, XPath expression). As a producer the address should be set to the URI of the
web service your calling upon.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Required? Description

soapAction No SOAP action to include inside a SOAP request when accessing remote web services

wsAddressingAction No
WS-Addressing 1.0 action header to include when accessing web services. The To header is set to the address of the web
service as specified in the endpoint URI (default Spring-WS behavior).

expression
Only when mapping-
type is
xpathresult

XPath expression to use in the process of mapping web service requests, should match the result specified by
xpathresult

timeout No

Camel 2.10: Sets the socket read timeout (in milliseconds) while invoking a webservice using the producer, see
URLConnection.setReadTimeout() and CommonsHttpMessageSender.setReadTimeout(). ÊThis option works when using
the built-in message sender implementations:ÊCommonsHttpMessageSenderÊandÊHttpUrlConnectionMessageSender. ÊOne of
these implementations will be used by default for HTTP based services unless you customize the Spring WS configuration
options supplied to the component. ÊIf you are using a non-standard sender, it is assumed that you will handle your own
timeout configuration.

sslContextParameters No

Camel 2.10:ÊReference to anÊorg.apache.camel.util.jsse.SSLContextParameters inÊtheÊRegistry.
ÊSeeÊUsing the JSSE Configuration Utility. ÊThis option works when using the built-in message sender
implementations:ÊCommonsHttpMessageSenderÊandÊHttpUrlConnectionMessageSender. ÊOne of these implementations will
be used by default for HTTP based services unless you customize the Spring WS configuration options supplied to the
component. ÊIf you are using a non-standard sender, it is assumed that you will handle your own TLS configuration.

Registry based options

The following options can be specified in the registry (most likely a Spring ApplicationContext)
and referenced from the endpoint URI using the # notation.

Name Required? Description

CHAPTER 11 - COMPONENT APPENDIX 937

http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping
http://docs.oracle.com/javase/6/docs/api/java/net/URLConnection.html#setReadTimeout(int)
http://static.springsource.org/spring-ws/site/apidocs/org/springframework/ws/transport/http/CommonsHttpMessageSender.html#setReadTimeout(int)
http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://stackoverflow.com/questions/3313314/can-spring-ws-1-5-be-used-with-spring-3

webServiceTemplate No
Option to provide a custom WebServiceTemplate. This allows for full control over client-side web services handling; like
adding a custom interceptor or specifying a fault resolver, message sender or message factory.

messageSender No
Option to provide a custom WebServiceMessageSender. For example to perform authentication or use alternative
transports

messageFactory No
Option to provide a custom WebServiceMessageFactory. For example when you want Apache Axiom to handle web
service messages instead of SAAJ

transformerFactory No
Option to override default TransformerFactory. The provided transformer factory must be of type
javax.xml.transform.TransformerFactory

endpointMapping

Only when mapping-
type is rootqname,
soapaction, uri
or xpathresult

Reference to an instance of org.apache.camel.component.spring.ws.bean.CamelEndpointMapping in
the Registry/ApplicationContext. Only one bean is required in the registry to serve all Camel/Spring-WS endpoints. This
bean is auto-discovered by the MessageDispatcher and used to map requests to Camel endpoints based on characteristics
specified on the endpoint (like root QName, SOAP action, etc)

messageFilter No
Option to provide a custom MessageFilter since 2.10.3. For example when you want to process your headers or
attachments by your own.

Message headers

Name Type Description

CamelSpringWebserviceEndpointUri String URI of the web service your accessing as a client, overrides address part of the endpoint URI

CamelSpringWebserviceSoapAction String Header to specify the SOAP action of the message, overrides soapAction option if present

CamelSpringWebserviceAddressingAction URI
Use this header to specify the WS-Addressing action of the message, overrides wsAddressingAction
option if present

ACCESSING WEB SERVICES

To call a web service at http://foo.com/bar simply define a route:

from("direct:example").to("spring-ws:http://foo.com/bar")

And sent a message:

template.requestBody("direct:example", "<foobar xmlns=\"http://foo.com\"><msg>test
message</msg></foobar>");

Remember if it's a SOAP service you're calling you don't have to include SOAP tags. Spring-WS
will perform the XML-to-SOAP marshaling.

Sending SOAP and WS-Addressing action headers

When a remote web service requires a SOAP action or use of the WS-Addressing standard
you define your route as:

from("direct:example")
.to("spring-ws:http://foo.com/
bar?soapAction=http://foo.com&wsAddressingAction=http://bar.com")

Optionally you can override the endpoint options with header values:

938 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/client/core/WebServiceTemplate.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/transport/WebServiceMessageSender.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/WebServiceMessageFactory.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/server/MessageDispatcher.html
http://foo.com/bar

template.requestBodyAndHeader("direct:example",
"<foobar xmlns=\"http://foo.com\"><msg>test message</msg></foobar>",
SpringWebserviceConstants.SPRING_WS_SOAP_ACTION, "http://baz.com");

The header and attachment propagation

Spring WS Camel supports propagation of the headers and attachments into Spring-WS
WebServiceMessage response since version 2.10.3.
The endpoint will use so called "hook" the MessageFilter (default implementation is provided by
BasicMessageFilter) to propagate the exchange headers and attachments into
WebSdrviceMessage response.
Now you can use

exchange.getOut().getHeaders().put("myCustom","myHeaderValue")
exchange.getIn().addAttachment("myAttachment", new DataHandler(...))

Note: If the exchange header in the pipeline contains text, it generates Qname(key)=value
attribute in the soap header.
Recommended is to create a QName class directly and put into any key into header.

How to use MTOM attachments

The BasicMessageFilter provides all required information for Apache Axiom in order to
produce MTOM message. If you want to use Apache Camel Spring WS within Apache Axiom,
here is an example:
1. Simply define the messageFactory as is bellow and spring-ws will use MTOM strategy to
populate your SOAP message with optimized attachments.

<bean id="axiomMessageFactory"
class="org.springframework.ws.soap.axiom.AxiomSoapMessageFactory">
<property name="payloadCaching" value="false" />
<property name="attachmentCaching" value="true" />
<property name="attachmentCacheThreshold" value="1024" />
</bean>

2. Add into your pom.xml the following dependencies

<dependency>
<groupId>org.apache.ws.commons.axiom</groupId>
<artifactId>axiom-api</artifactId>
<version>1.2.13</version>
</dependency>
<dependency>
<groupId>org.apache.ws.commons.axiom</groupId>

CHAPTER 11 - COMPONENT APPENDIX 939

<artifactId>axiom-impl</artifactId>
<version>1.2.13</version>
<scope>runtime</scope>
</dependency>

3. Add your attachment into the pipeline, for example using a Processor implementation.

private class Attachement implements Processor {
public void process(Exchange exchange) throws Exception
{ exchange.getOut().copyFrom(exchange.getIn()); File file = new
File("testAttachment.txt"); exchange.getOut().addAttachment("test", new
DataHandler(new FileDataSource(file))); }
}

4. Define endpoint (producer) as ussual, for example like this:

from("direct:send")
.process(new Attachement())
.to("spring-ws:http://localhost:8089/
mySoapService?soapAction=mySoap&messageFactory=axiomMessageFactory");

5. Now, your producer will generate MTOM message with otpmized attachments.

The custom header and attachment filtering

If you need to provide your custome processing of either headers or attachments, extend
existing BasicMessageFilter and override the approchiate methods or write a brand new
implementation of the MessageFilter interface.
To use your custom filter, add this into your spring context:
You can specify either a global a or a local message filter as follows:
a) the global custome filter that provides the global configuration for all spring-ws endpoints

<bean id="messageFilter" class="your.domain.myMessageFiler" scope="singleton" />

or
b) the local messageFilter directly on the endpoint as follows:

to("spring-ws:http://yourdomain.com?messageFilter=#myEndpointSpecificMessageFilter");

For more information see CAMEL-5724

If you want to create your own MessageFilter, consider overrideing the following methods in
the default implementation of MessageFilter in class BasicMessageFilter:

940 CHAPTER 11 - COMPONENT APPENDIX

https://issues.apache.org/jira/browse/CAMEL-5724

protected void doProcessSoapHeader(Message inOrOut, SoapMessage soapMessage)
{your code /*no need to call super*/ }
protected void doProcessSoapAttachements(Message inOrOut, SoapMessage response)
{ your code /*no need to call super*/ }

Using a custom MessageSender and MessageFactory

A custom message sender or factory in the registry can be referenced like this:

from("direct:example")
.to("spring-ws:http://foo.com/
bar?messageFactory=#messageFactory&messageSender=#messageSender")

Spring configuration:

<!-- authenticate using HTTP Basic Authentication -->
<bean id="messageSender"
class="org.springframework.ws.transport.http.CommonsHttpMessageSender">

<property name="credentials">
<bean

class="org.apache.commons.httpclient.UsernamePasswordCredentials">
<constructor-arg index="0" value="admin"/>
<constructor-arg index="1" value="secret"/>

</bean>
</property>

</bean>

<!-- force use of Sun SAAJ implementation, http://static.springsource.org/spring-ws/
sites/1.5/faq.html#saaj-jboss -->
<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">

<property name="messageFactory">
<bean

class="com.sun.xml.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl"></bean>
</property>

</bean>

EXPOSING WEB SERVICES

In order to expose a web service using this component you first need to set-up a
MessageDispatcher to look for endpoint mappings in a Spring XML file. If you plan on running
inside a servlet container you probably want to use a MessageDispatcherServlet
configured in web.xml.

By default the MessageDispatcherServlet will look for a Spring XML named /WEB-
INF/spring-ws-servlet.xml. To use Camel with Spring-WS the only mandatory bean

CHAPTER 11 - COMPONENT APPENDIX 941

http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html

in that XML file is CamelEndpointMapping. This bean allows the MessageDispatcher
to dispatch web service requests to your routes.

web.xml

<web-app>
<servlet>

<servlet-name>spring-ws</servlet-name>

<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

spring-ws-servlet.xml

<bean id="endpointMapping"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointMapping" />

<bean id="wsdl" class="org.springframework.ws.wsdl.wsdl11.DefaultWsdl11Definition">
<property name="schema">

<bean class="org.springframework.xml.xsd.SimpleXsdSchema">
<property name="xsd" value="/WEB-INF/foobar.xsd"/>

</bean>
</property>
<property name="portTypeName" value="FooBar"/>
<property name="locationUri" value="/"/>
<property name="targetNamespace" value="http://example.com/"/>

</bean>

More information on setting up Spring-WS can be found in Writing Contract-First Web
Services. Basically paragraph 3.6 "Implementing the Endpoint" is handled by this component
(specifically paragraph 3.6.2 "Routing the Message to the Endpoint" is where
CamelEndpointMapping comes in). Also don't forget to check out the Spring Web
Services Example included in the Camel distribution.

Endpoint mapping in routes

With the XML configuration in-place you can now use Camel's DSL to define what web service
requests are handled by your endpoint:

The following route will receive all web service requests that have a root element named
"GetFoo" within the http://example.com/ namespace.

942 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html
http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html
http://camel.apache.org/spring-ws-example.html
http://camel.apache.org/spring-ws-example.html
http://example.com/

from("spring-ws:rootqname:{http://example.com/}GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The following route will receive web service requests containing the
http://example.com/GetFoo SOAP action.

from("spring-ws:soapaction:http://example.com/GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The following route will receive all requests sent to http://example.com/foobar.

from("spring-ws:uri:http://example.com/foobar?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The route below will receive requests that contain the element <foobar>abc</foobar>
anywhere inside the message (and the default namespace).

from("spring-ws:xpathresult:abc?expression=//foobar&endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

Alternative configuration, using existing endpoint mappings

For every endpoint with mapping-type beanname one bean of type
CamelEndpointDispatcher with a corresponding name is required in the Registry/
ApplicationContext. This bean acts as a bridge between the Camel endpoint and an existing
endpoint mapping like PayloadRootQNameEndpointMapping.
An example of a route using beanname:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="spring-ws:beanname:QuoteEndpointDispatcher" />
<to uri="mock:example" />

</route>
</camelContext>

<bean id="legacyEndpointMapping"
class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">

<property name="mappings">
<props>

<prop key="{http://example.com/}GetFuture">FutureEndpointDispatcher</prop>
<prop key="{http://example.com/}GetQuote">QuoteEndpointDispatcher</prop>

</props>
</property>

</bean>

CHAPTER 11 - COMPONENT APPENDIX 943

http://example.com/GetFoo
http://example.com/foobar
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping

The use of the beanname mapping-type is primarily meant for (legacy) situations
where you're already using Spring-WS and have endpoint mappings defined in a
Spring XML file. The beanname mapping-type allows you to wire your Camel
route into an existing endpoint mapping. When you're starting from scratch it's
recommended to define your endpoint mappings as Camel URI's (as illustrated
above with endpointMapping) since it requires less configuration and is more
expressive. Alternatively you could use vanilla Spring-WS with the help of
annotations.

<bean id="QuoteEndpointDispatcher"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher" />
<bean id="FutureEndpointDispatcher"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher" />

POJO (UN)MARSHALLING

Camel's pluggable data formats offer support for pojo/xml marshalling using libraries such as
JAXB, XStream, JibX, Castor and XMLBeans. You can use these data formats in your route to
sent and receive pojo's, to and from web services.

When accessing web services you can marshal the request and unmarshal the response
message:

JaxbDataFormat jaxb = new JaxbDataFormat(false);
jaxb.setContextPath("com.example.model");

from("direct:example").marshal(jaxb).to("spring-ws:http://foo.com/
bar").unmarshal(jaxb);

Similarly when providing web services, you can unmarshal XML requests to POJO's and marshal
the response message back to XML:

from("spring-ws:rootqname:{http://example.com/}GetFoo?endpointMapping=#endpointMapping").unmarshal(jaxb)
.to("mock:example").marshal(jaxb);

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

944 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

STREAM COMPONENT

The stream: component provides access to the System.in, System.out and
System.err streams as well as allowing streaming of file and URL.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-stream</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

stream:in[?options]
stream:out[?options]
stream:err[?options]
stream:header[?options]

In addition, the file and url endpoint URIs are supported:

stream:file?fileName=/foo/bar.txt
stream:url[?options]

If the stream:header URI is specified, the stream header is used to find the stream to
write to. This option is available only for stream producers (that is, it cannot appear in
from()).

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name
Default
Value

Description

delay 0 Initial delay in milliseconds before consuming or producing the stream.

encoding JVM Default
You can configure the encoding (is a charset name) to use text-based streams (for example, message body is a String object). If
not provided, Camel uses the JVM default Charset.

promptMessage null Message prompt to use when reading from stream:in; for example, you could set this to Enter a command:

promptDelay 0 Optional delay in milliseconds before showing the message prompt.

initialPromptDelay 2000
Initial delay in milliseconds before showing the message prompt. This delay occurs only once. Can be used during system startup
to avoid message prompts being written while other logging is done to the system out.

fileName null When using the stream:file URI format, this option specifies the filename to stream to/from.

CHAPTER 11 - COMPONENT APPENDIX 945

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()

url null
When using the stream:url URI format, this option specifies the URL to stream to/from. The input/output stream will be
opened using the JDK URLConnection facility.

scanStream false
To be used for continuously reading a stream such as the unix tail command.
Camel 2.4 to Camel 2.6: will retry opening the file if it is overwritten, somewhat like tail --retry

retry false Camel 2.7: will retry opening the file if it's overwritten, somewhat like tail --retry

scanStreamDelay 0 Delay in milliseconds between read attempts when using scanStream.

groupLines 0
Camel 2.5: To group X number of lines in the consumer. For example to group 10 lines and therefore only spit out an
Exchange with 10 lines, instead of 1 Exchange per line.

autoCloseCount 0
Camel 2.10.0: (2.9.3 and 2.8.6) Number of messages to process before closing stream on Producer side. Never close stream by
default (only when Producer is stopped). If more messages are sent, the stream is reopened for another autoCloseCount
batch.

closeOnDone false Camel 2.11.0: If it is true and stream is based on file, the producer will close the stream once it saw the flag of split complit.

Message content

The stream: component supports either String or byte[] for writing to streams. Just add
either String or byte[] content to the message.in.body. Messages sent to the
stream: producer in binary mode are not followed by the newline character (as opposed to
the String messages). Message with null body will not be appended to the output stream.
The special stream:header URI is used for custom output streams. Just add a
java.io.OutputStream object to message.in.header in the key header.
See samples for an example.

Samples

In the following sample we route messages from the direct:in endpoint to the
System.out stream:

// Route messages to the standard output.
from("direct:in").to("stream:out");

// Send String payload to the standard output.
// Message will be followed by the newline.
template.sendBody("direct:in", "Hello Text World");

// Send byte[] payload to the standard output.
// No newline will be added after the message.
template.sendBody("direct:in", "Hello Bytes World".getBytes());

The following sample demonstrates how the header type can be used to determine which
stream to use. In the sample we use our own output stream, MyOutputStream.

private OutputStream mystream = new MyOutputStream();
private StringBuilder sb = new StringBuilder();

@Test
public void testStringContent() {

template.sendBody("direct:in", "Hello");

946 CHAPTER 11 - COMPONENT APPENDIX

http://docs.oracle.com/javase/6/docs/api/java/net/URLConnection.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

// StreamProducer appends \n in text mode
assertEquals("Hello\n", sb.toString());

}

@Test
public void testBinaryContent() {

template.sendBody("direct:in", "Hello".getBytes());
// StreamProducer is in binary mode so no \n is appended
assertEquals("Hello", sb.toString());

}

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from("direct:in").setHeader("stream", constant(mystream)).

to("stream:header");
}

};
}

private class MyOutputStream extends OutputStream {

public void write(int b) throws IOException {
sb.append((char)b);

}
}

The following sample demonstrates how to continuously read a file stream (analogous to the
UNIX tail command):

from("stream:file?fileName=/server/logs/
server.log&scanStream=true&scanStreamDelay=1000").to("bean:logService?method=parseLogLine");

One gotcha with scanStream (pre Camel 2.7) or scanStream + retry is the file will be re-opened
and scanned with each iteration of scanStreamDelay. Until NIO2 is available we cannot reliably
detect when a file is deleted/recreated.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

STRING TEMPLATE

The string-template: component allows you to process a message using a String Template.
This can be ideal when using Templating to generate responses for requests.

CHAPTER 11 - COMPONENT APPENDIX 947

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.stringtemplate.org/
http://camel.apache.org/templating.html

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-stringtemplate</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

string-template:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

contentCache false
Cache for the resource content when its loaded.
Note : as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's clearContentCache operation.

Headers

Camel will store a reference to the resource in the message header with key,
org.apache.camel.stringtemplate.resource. The Resource is an
org.springframework.core.io.Resource object.

Hot reloading

The string template resource is by default hot-reloadable for both file and classpath resources
(expanded jar). If you set contentCache=true, Camel loads the resource only once and
hot-reloading is not possible. This scenario can be used in production when the resource never
changes.

StringTemplate Attributes

Camel will provide exchange information as attributes (just a java.util.Map) to the string
template. The Exchange is transfered as:

948 CHAPTER 11 - COMPONENT APPENDIX

key value

exchange The Exchange itself.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).

response The Out message (only for InOut message exchange pattern).

Samples

For example you could use a string template as follows in order to formulate a response to a
message:

from("activemq:My.Queue").
to("string-template:com/acme/MyResponse.tm");

The Email Sample

In this sample we want to use a string template to send an order confirmation email. The email
template is laid out in StringTemplate as:

Dear $headers.lastName$, $headers.firstName$

Thanks for the order of $headers.item$.

Regards Camel Riders Bookstore
$body$

And the java code is as follows:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

@Test
public void testVelocityLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus! Thanks for the order of Camel in

CHAPTER 11 - COMPONENT APPENDIX 949

Action. Regards Camel Riders Bookstore PS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("string-template:org/apache/camel/component/

stringtemplate/letter.tm").to("mock:result");
}

};
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

SQL COMPONENT

The sql: component allows you to work with databases using JDBC queries. The difference
between this component and JDBC component is that in case of SQL the query is a property of
the endpoint and it uses message payload as parameters passed to the query.

This component uses spring-jdbc behind the scenes for the actual SQL handling.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-sql</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

The SQL component also supports:
▪ a JDBC based repository for the Idempotent Consumer EIP pattern. See further

below.
▪ a JDBC based repository for the Aggregator EIP pattern. See further below.

950 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/aggregator2.html

URI format

The SQL component uses the following endpoint URI notation:

sql:select * from table where id=# order by name[?options]

From Camel 2.11 onwards you can use named parameters by using #:name style as shown:

sql:select * from table where id=:#myId order by name[?options]

When using named parameters, Camel will lookup the names from, in the given precedence:
1. from message body if its a java.util.Map
2. from message headers

If a named parameter cannot be resolved, then an exception is thrown.

Notice that the standard ? symbol that denotes the parameters to an SQL query is
substituted with the # symbol, because the ? symbol is used to specify options for the
endpoint. The ? symbol replacement can be configured on endpoint basis.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Type Default Description

batch boolean false
Camel 2.7.5, 2.8.4 and 2.9: Execute SQL batch update statements. See notes below on
how the treatment of the inbound message body changes if this is set to true.

dataSourceRef String null
Deprecated and will be removed in Camel 3.0: Reference to a DataSource to
look up in the registry.

dataSource String null Camel 2.11: Reference to a DataSource to look up in the registry.

placeholder String #

Camel 2.4: Specifies a character that will be replaced to ? in SQL query. Notice, that it is
simple String.replaceAll() operation and no SQL parsing is involved (quoted strings
will also change). This replacement is only happening if the endpoint is created using the
SqlComponent. If you manually create the endpoint, then use the expected ? sign instead.

template.<xxx> Ê null
Sets additional options on the Spring JdbcTemplate that is used behind the scenes to
execute the queries. For instance, template.maxRows=10. For detailed documentation,
see the JdbcTemplate javadoc documentation.

allowNamedParameters boolean true Camel 2.11: Whether to allow using named parameters in the queries.

processingStrategy Ê Ê
Camel 2.11: SQL consumer only: Allows to plugin to use a custom
org.apache.camel.component.sql.SqlProcessingStrategy to execute
queries when the consumer has processed the rows/batch.

prepareStatementStrategy Ê Ê
Camel 2.11: Allows to plugin to use a custom
org.apache.camel.component.sql.SqlPrepareStatementStrategy to
control preparation of the query and prepared statement.

consumer.delay long 500 Camel 2.11: SQL consumer only: Delay in milliseconds between each poll.

consumer.initialDelay long 1000 Camel 2.11: SQL consumer only: Milliseconds before polling starts.

consumer.useFixedDelay boolean false
Camel 2.11: SQL consumer only: Set to true to use fixed delay between polls,
otherwise fixed rate is used. See ScheduledExecutorService in JDK for details.

maxMessagesPerPoll int 0
Camel 2.11: SQL consumer only: An integer value to define the maximum number of
messages to gather per poll. By default, no maximum is set.

consumer.useIterator boolean true
Camel 2.11: SQL consumer only: If true each row returned when polling will be
processed individually. If false the entire java.util.List of data is set as the IN body.

CHAPTER 11 - COMPONENT APPENDIX 951

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

In Camel 2.10 or older the SQL component can only be used as producer.
From Camel 2.11 onwards this component can also be a consumer, eg from().

This component can be used as a Transactional Client.

consumer.routeEmptyResultSet boolean false
Camel 2.11: SQL consumer only: Whether to route a single empty Exchange if there
was no data to poll.

consumer.onConsume String null
Camel 2.11: SQL consumer only: After processing each row then this query can be
executed, if the Exchange was processed successfully, for example to mark the row as
processed. The query can have parameter.

consumer.onConsumeFailed String null
Camel 2.11: SQL consumer only: After processing each row then this query can be
executed, if the Exchange failed, for example to mark the row as failed. The query can have
parameter.

consumer.onConsumeBatchComplete String null
Camel 2.11: SQL consumer only: After processing the entire batch, this query can be
executed to bulk update rows etc. The query cannot have parameters.

consumer.expectedUpdateCount int -1
Camel 2.11: SQL consumer only: If using consumer.onConsume then this option
can be used to set an expected number of rows being updated. Typically you may set this to 1
to expect one row to be updated.

consumer.breakBatchOnConsumeFail boolean false
Camel 2.11: SQL consumer only: If using consumer.onConsume and it fails, then
this option controls whether to break out of the batch or continue processing the next row
from the batch.

alwaysPopulateStatement boolean false

Camel 2.11: SQL producer only: If enabled then the populateStatement method
from org.apache.camel.component.sql.SqlPrepareStatementStrategy is
always invoked, also if there is no expected parameters to be prepared. When this is false
then the populateStatement is only invoked if there is 1 or more expected parameters
to be set; for example this avoids reading the message body/headers for SQL queries with no
parameters.

Treatment of the message body

The SQL component tries to convert the message body to an object of
java.util.Iterator type and then uses this iterator to fill the query parameters (where
each query parameter is represented by a # symbol (or configured placeholder) in the endpoint
URI). If the message body is not an array or collection, the conversion results in an iterator that
iterates over only one object, which is the body itself.

For example, if the message body is an instance of java.util.List, the first item in the
list is substituted into the first occurrence of # in the SQL query, the second item in the list is
substituted into the second occurrence of #, and so on.

If batch is set to true, then the interpretation of the inbound message body changes
slightly Ð instead of an iterator of parameters, the component expects an iterator that contains
the parameter iterators; the size of the outer iterator determines the batch size.

952 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transactional-client.html

Result of the query

For select operations, the result is an instance of List<Map<String, Object>> type,
as returned by the JdbcTemplate.queryForList() method. For update operations, the result is
the number of updated rows, returned as an Integer.

Header values

When performing update operations, the SQL Component stores the update count in the
following message headers:

Header Description

CamelSqlUpdateCount
The number of rows updated for update operations,
returned as an Integer object.

CamelSqlRowCount
The number of rows returned for select operations,
returned as an Integer object.

CamelSqlQuery

Camel 2.8: Query to execute. This query takes precedence
over the query specified in the endpoint URI. Note that query
parameters in the header are represented by a ? instead of a
symbol

Configuration

You can now set a reference to a DataSource in the URI directly:

sql:select * from table where id=# order by name?dataSourceRef=myDS

Sample

In the sample below we execute a query and retrieve the result as a List of rows, where each
row is a Map<String, Object and the key is the column name.

First, we set up a table to use for our sample. As this is based on an unit test, we do it in
java:

// this is the database we create with some initial data for our unit test
db = new EmbeddedDatabaseBuilder()

.setType(EmbeddedDatabaseType.DERBY).addScript("sql/
createAndPopulateDatabase.sql").build();

The SQL script createAndPopulateDatabase.sql we execute looks like as described
below:

CHAPTER 11 - COMPONENT APPENDIX 953

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)

create table projects (id integer primary key, project varchar(10), license
varchar(5));
insert into projects values (1, 'Camel', 'ASF');
insert into projects values (2, 'AMQ', 'ASF');
insert into projects values (3, 'Linux', 'XXX');

Then we configure our route and our sql component. Notice that we use a direct endpoint
in front of the sql endpoint. This allows us to send an exchange to the direct endpoint with
the URI, direct:simple, which is much easier for the client to use than the long sql: URI.
Note that the DataSource is looked up up in the registry, so we can use standard Spring
XML to configure our DataSource.

from("direct:simple")
.to("sql:select * from projects where license = # order by id?dataSourceRef=jdbc/

myDataSource")
.to("mock:result");

And then we fire the message into the direct endpoint that will route it to our sql
component that queries the database.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);

// send the query to direct that will route it to the sql where we will execute the
query
// and bind the parameters with the data from the body. The body only contains one
value
// in this case (XXX) but if we should use multi values then the body will be iterated
// so we could supply a List<String> instead containing each binding value.
template.sendBody("direct:simple", "XXX");

mock.assertIsSatisfied();

// the result is a List
List<?> received = assertIsInstanceOf(List.class,
mock.getReceivedExchanges().get(0).getIn().getBody());

// and each row in the list is a Map
Map<?, ?> row = assertIsInstanceOf(Map.class, received.get(0));

// and we should be able the get the project from the map that should be Linux
assertEquals("Linux", row.get("PROJECT"));

We could configure the DataSource in Spring XML as follows:

<jee:jndi-lookup id="myDS" jndi-name="jdbc/myDataSource"/>

954 CHAPTER 11 - COMPONENT APPENDIX

Using named parameters

Available as of Camel 2.11

In the given route below, we want to get all the projects from the projects table. Notice the
SQL query has 2 named parameters, :#lic and :#min.
Camel will then lookup for these parameters from the message body or message headers.
Notice in the example above we set two headers with constant value
for the named parameters:

from("direct:projects")
.setHeader("lic", constant("ASF"))
.setHeader("min", constant(123))
.to("sql:select * from projects where license = :#lic and id > :#min order by id")

Though if the message body is a java.util.Map then the named parameters will be taken
from the body.

from("direct:projects")
.to("sql:select * from projects where license = :#lic and id > :#min order by id")

Using the JDBC based idempotent repository

Available as of Camel 2.7: In this section we will use the JDBC based idempotent
repository.
First we have to create the database table which will be used by the idempotent repository. For
Camel 2.7, we use the following schema:

CREATE TABLE CAMEL_MESSAGEPROCESSED (
processorName VARCHAR(255),
messageId VARCHAR(100)

)

In Camel 2.8, we added the createdAt column:

CREATE TABLE CAMEL_MESSAGEPROCESSED (
processorName VARCHAR(255),
messageId VARCHAR(100),
createdAt TIMESTAMP

)

We recommend to have a unique constraint on the columns processorName and messageId.
Because the syntax for this constraint differs for database to database, we do not show it here.

Second we need to setup a javax.sql.DataSource in the spring XML file:

CHAPTER 11 - COMPONENT APPENDIX 955

Abstract class
From Camel 2.9 onwards there is an abstract class
org.apache.camel.processor.idempotent.jdbc.AbstractJdbcMessageIdRepository
you can extend to build custom JDBC idempotent repository.

<jdbc:embedded-database id="dataSource" type="DERBY" />

And finally we can create our JDBC idempotent repository in the spring XML file as well:

<bean id="messageIdRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">

<constructor-arg ref="dataSource" />
<constructor-arg value="myProcessorName" />

</bean>

<camel:camelContext>
<camel:errorHandler id="deadLetterChannel" type="DeadLetterChannel"

deadLetterUri="mock:error">
<camel:redeliveryPolicy maximumRedeliveries="0"

maximumRedeliveryDelay="0" logStackTrace="false" />
</camel:errorHandler>

<camel:route id="JdbcMessageIdRepositoryTest"
errorHandlerRef="deadLetterChannel">

<camel:from uri="direct:start" />
<camel:idempotentConsumer messageIdRepositoryRef="messageIdRepository">

<camel:header>messageId</camel:header>
<camel:to uri="mock:result" />

</camel:idempotentConsumer>
</camel:route>

</camel:camelContext>

Customize the JdbcMessageIdRepository

Starting with Camel 2.9.1 you have a few options to tune the
org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
for your needs:

Parameter Default Value Description

createTableIfNotExists true
Defines whether or not Camel
should try to create the table if
it doesn't exist.

956 CHAPTER 11 - COMPONENT APPENDIX

tableExistsString
SELECT 1 FROM
CAMEL_MESSAGEPROCESSED
WHERE 1 = 0

This query is used to figure out
whether the table already exists
or not. It must throw an
exception to indicate the table
doesn't exist.

createString

CREATE TABLE
CAMEL_MESSAGEPROCESSED
(processorName
VARCHAR(255), messageId
VARCHAR(100), createdAt
TIMESTAMP)

The statement which is used to
create the table.

queryString

SELECT COUNT(*) FROM
CAMEL_MESSAGEPROCESSED
WHERE processorName = ?
AND messageId = ?

The query which is used to
figure out whether the message
already exists in the repository
(the result is not equals to '0').
It takes two parameters. This
first one is the processor name
(String) and the second one
is the message id (String).

insertString

INSERT INTO
CAMEL_MESSAGEPROCESSED
(processorName, messageId,
createdAt) VALUES (?, ?, ?)

The statement which is used to
add the entry into the table. It
takes three parameter. The first
one is the processor name
(String), the second one is
the message id (String) and
the third one is the timestamp
(java.sql.Timestamp)
when this entry was added to
the repository.

deleteString

DELETE FROM
CAMEL_MESSAGEPROCESSED
WHERE processorName = ?
AND messageId = ?

The statement which is used to
delete the entry from the
database. It takes two
parameter. This first one is the
processor name (String) and
the second one is the message
id (String).

A customized
org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
could look like:

CHAPTER 11 - COMPONENT APPENDIX 957

<bean id="messageIdRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">

<constructor-arg ref="dataSource" />
<constructor-arg value="myProcessorName" />
<property name="tableExistsString" value="SELECT 1 FROM

CUSTOMIZED_MESSAGE_REPOSITORY WHERE 1 = 0" />
<property name="createString" value="CREATE TABLE

CUSTOMIZED_MESSAGE_REPOSITORY (processorName VARCHAR(255), messageId VARCHAR(100),
createdAt TIMESTAMP)" />

<property name="queryString" value="SELECT COUNT(*) FROM
CUSTOMIZED_MESSAGE_REPOSITORY WHERE processorName = ? AND messageId = ?" />

<property name="insertString" value="INSERT INTO CUSTOMIZED_MESSAGE_REPOSITORY
(processorName, messageId, createdAt) VALUES (?, ?, ?)" />

<property name="deleteString" value="DELETE FROM CUSTOMIZED_MESSAGE_REPOSITORY
WHERE processorName = ? AND messageId = ?" />
</bean>

Using the JDBC based aggregation repository

Available as of Camel 2.6
JdbcAggregationRepository is an AggregationRepository which on the fly
persists the aggregated messages. This ensures that you will not loose messages, as the default
aggregator will use an in memory only AggregationRepository.
The JdbcAggregationRepository allows together with Camel to provide persistent
support for the Aggregator.

It has the following options:

Option Type Description

dataSource DataSource Mandatory: The javax.sql.DataSource to use for accessing the database.

repositoryName String Mandatory: The name of the repository.

transactionManager TransactionManager

Mandatory: The
org.springframework.transaction.PlatformTransactionManager
to mange transactions for the database. The TransactionManager must be able to
support databases.

lobHandler LobHandler
A org.springframework.jdbc.support.lob.LobHandler to handle
Lob types in the database. Use this option to use a vendor specific LobHandler, for
example when using Oracle.

returnOldExchange boolean
Whether the get operation should return the old existing Exchange if any existed. By
default this option is false to optimize as we do not need the old exchange when
aggregating.

958 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/aggregator2.html

Using JdbcAggregationRepository in Camel 2.6
In Camel 2.6, the JdbcAggregationRepository is provided in the camel-jdbc-
aggregator component. From Camel 2.7 onwards, the
JdbcAggregationRepository is provided in the camel-sql component.

useRecovery boolean
Whether or not recovery is enabled. This option is by default true. When enabled
the Camel Aggregator automatic recover failed aggregated exchange and have them
resubmitted.

recoveryInterval long
If recovery is enabled then a background task is run every x'th time to scan for failed
exchanges to recover and resubmit. By default this interval is 5000 millis.

maximumRedeliveries int

Allows you to limit the maximum number of redelivery attempts for a recovered
exchange. If enabled then the Exchange will be moved to the dead letter channel if all
redelivery attempts failed. By default this option is disabled. If this option is used then
the deadLetterUri option must also be provided.

deadLetterUri String
An endpoint uri for a Dead Letter Channel where exhausted recovered Exchanges
will be moved. If this option is used then the maximumRedeliveries option
must also be provided.

storeBodyAsText boolean
Camel 2.11: Whether to store the message body as String which is human
readable. By default this option is false storing the body in binary format.

headersToStoreAsText List<String>
Camel 2.11: Allows to store headers as String which is human readable. By default
this option is disabled, storing the headers in binary format.

What is preserved when persisting

JdbcAggregationRepository will only preserve any Serializable compatible data
types. If a data type is not such a type its dropped and a WARN is logged. And it only persists the
Message body and the Message headers. The Exchange properties are not persisted.

From Camel 2.11 onwards you can store the message body and select(ed) headers as String
in separate columns.

Recovery

The JdbcAggregationRepository will by default recover any failed Exchange. It does
this by having a background tasks that scans for failed Exchanges in the persistent store. You
can use the checkInterval option to set how often this task runs. The recovery works as
transactional which ensures that Camel will try to recover and redeliver the failed Exchange.

CHAPTER 11 - COMPONENT APPENDIX 959

http://camel.apache.org/aggregator2.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Any Exchange which was found to be recovered will be restored from the persistent store and
resubmitted and send out again.

The following headers is set when an Exchange is being recovered/redelivered:

Header Type Description

Exchange.REDELIVERED Boolean
Is set to true to indicate the Exchange
is being redelivered.

Exchange.REDELIVERY_COUNTER Integer
The redelivery attempt, starting from
1.

Only when an Exchange has been successfully processed it will be marked as complete which
happens when the confirm method is invoked on the AggregationRepository. This
means if the same Exchange fails again it will be kept retried until it success.

You can use option maximumRedeliveries to limit the maximum number of redelivery
attempts for a given recovered Exchange. You must also set the deadLetterUri option so
Camel knows where to send the Exchange when the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-sql, for example this test.

Database

To be operational, each aggregator uses two table: the aggregation and completed one. By
convention the completed has the same name as the aggregation one suffixed with
"_COMPLETED". The name must be configured in the Spring bean with the
RepositoryName property. In the following example aggregation will be used.

The table structure definition of both table are identical: in both case a String value is used as
key (id) whereas a Blob contains the exchange serialized in byte array.
However one difference should be remembered: the id field does not have the same content
depending on the table.
In the aggregation table id holds the correlation Id used by the component to aggregate the
messages. In the completed table, id holds the id of the exchange stored in corresponding the
blob field.

Here is the SQL query used to create the tables, just replace "aggregation" with your
aggregator repository name.

CREATE TABLE aggregation (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_pk PRIMARY KEY (id)

);
CREATE TABLE aggregation_completed (

id varchar(255) NOT NULL,
exchange blob NOT NULL,

960 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java

constraint aggregation_completed_pk PRIMARY KEY (id)
);

Storing body and headers as text

Available as of Camel 2.11

You can configure the JdbcAggregationRepository to store message body and
select(ed) headers as String in separate columns. For example to store the body, and the
following two headers companyName and accountName use the following SQL:

CREATE TABLE aggregationRepo3 (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
body varchar(1000),
companyName varchar(1000),
accountName varchar(1000),
constraint aggregationRepo3_pk PRIMARY KEY (id)

);
CREATE TABLE aggregationRepo3_completed (

id varchar(255) NOT NULL,
exchange blob NOT NULL,
body varchar(1000),
companyName varchar(1000),
accountName varchar(1000),
constraint aggregationRepo3_completed_pk PRIMARY KEY (id)

);

And then configure the repository to enable this behavior as shown below:

<bean id="repo3"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">

<property name="repositoryName" value="aggregationRepo3"/>
<property name="transactionManager" ref="txManager3"/>
<property name="dataSource" ref="dataSource3"/>
<!-- configure to store the message body and following headers as text in the

repo -->
<property name="storeBodyAsText" value="true"/>
<property name="headersToStoreAsText">

<list>
<value>companyName</value>

<value>accountName</value>
</list>

</property>
</bean>

CHAPTER 11 - COMPONENT APPENDIX 961

Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is
converted into a byte array to be stored in a database BLOB field. All those conversions are
handled by the JdbcCodec class. One detail of the code requires your attention: the
ClassLoadingAwareObjectInputStream.

The ClassLoadingAwareObjectInputStream has been reused from the Apache
ActiveMQ project. It wraps an ObjectInputStream and use it with the
ContextClassLoader rather than the currentThread one. The benefit is to be able to
load classes exposed by other bundles. This allows the exchange body and headers to have
custom types object references.

Transaction

A Spring PlatformTransactionManager is required to orchestrate transaction.

Service (Start/Stop)

The start method verify the connection of the database and the presence of the required
tables. If anything is wrong it will fail during starting.

Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you
already know, each aggregator should have its own repository (with the corresponding pair of
table created in the database) and a data source. If the default lobHandler is not adapted to
your database system, it can be injected with the lobHandler property.

Here is the declaration for Oracle:

<bean id="lobHandler"
class="org.springframework.jdbc.support.lob.OracleLobHandler">

<property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>

<bean id="nativeJdbcExtractor"
class="org.springframework.jdbc.support.nativejdbc.CommonsDbcpNativeJdbcExtractor"/>

<bean id="repo"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">

<property name="transactionManager" ref="transactionManager"/>
<property name="repositoryName" value="aggregation"/>
<property name="dataSource" ref="dataSource"/>
<!-- Only with Oracle, else use default -->

962 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/
http://activemq.apache.org/

<property name="lobHandler" ref="lobHandler"/>
</bean>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ JDBC

TEST COMPONENT

Testing of distributed and asynchronous processing is notoriously difficult. The Mock, Test and
DataSet endpoints work great with the Camel Testing Framework to simplify your unit and
integration testing using Enterprise Integration Patterns and Camel's large range of Components
together with the powerful Bean Integration.
The test component extends the Mock component to support pulling messages from another
endpoint on startup to set the expected message bodies on the underlying Mock endpoint. That
is, you use the test endpoint in a route and messages arriving on it will be implicitly compared
to some expected messages extracted from some other location.

So you can use, for example, an expected set of message bodies as files. This will then set up
a properly configured Mock endpoint, which is only valid if the received messages match the
number of expected messages and their message payloads are equal.

Maven users will need to add the following dependency to their pom.xml for this
component when using Camel 2.8 or older:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the Test component is provided directly in the camel-core.

URI format

test:expectedMessagesEndpointUri

CHAPTER 11 - COMPONENT APPENDIX 963

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html

Where expectedMessagesEndpointUri refers to some other Component URI that the
expected message bodies are pulled from before starting the test.

Example

For example, you could write a test case as follows:

from("seda:someEndpoint").
to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertIsSatisfied(camelContext) method, your test
case will perform the necessary assertions.

To see how you can set other expectations on the test endpoint, see the Mock component.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

TIMER COMPONENT

The timer: component is used to generate message exchanges when a timer fires You can
only consume events from this endpoint.

URI format

timer:name[?options]

Where name is the name of the Timer object, which is created and shared across endpoints.
So if you use the same name for all your timer endpoints, only one Timer object and thread
will be used.

You can append query options to the URI in the following format,
?option=value&option=value&...

Note: The IN body of the generated exchange is null. So
exchange.getIn().getBody() returns null.

964 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html

Advanced Scheduler
See also the Quartz component that supports much more advanced scheduling.

Specify time in human friendly format
In Camel 2.3 onwards you can specify the time in human friendly syntax.

Options

Name
Default
Value

Description

time null
A java.util.Date the first event should be generated. If using the URI, the pattern expected is: yyyy-MM-dd HH:mm:ss or
yyyy-MM-dd'T'HH:mm:ss.

pattern null Allows you to specify a custom Date pattern to use for setting the time option using URI syntax.

period 1000 If greater than 0, generate periodic events every period milliseconds.

delay 0 / 1000
The number of milliseconds to wait before the first event is generated. Should not be used in conjunction with the time option. The default
value has been changed to 1000 from Camel 2.11 onwards. In older releases the default value is 0.

fixedRate false Events take place at approximately regular intervals, separated by the specified period.

daemon true Specifies whether or not the thread associated with the timer endpoint runs as a daemon.

repeatCount 0
Camel 2.8: Specifies a maximum limit of number of fires. So if you set it to 1, the timer will only fire once. If you set it to 5, it will only fire
five times. A value of zero or negative means fire forever.

Exchange Properties

When the timer is fired, it adds the following information as properties to the Exchange:

Name Type Description

Exchange.TIMER_NAME String The value of the name option.

Exchange.TIMER_TIME Date The value of the time option.

Exchange.TIMER_PERIOD long The value of the period option.

Exchange.TIMER_FIRED_TIME Date The time when the consumer fired.

Exchange.TIMER_COUNTER Long Camel 2.8: The current fire counter. Starts from 1.

Message Headers

When the timer is fired, it adds the following information as headers to the IN message

Name Type Description

Exchange.TIMER_FIRED_TIME java.util.Date The time when the consumer fired

Sample

To set up a route that generates an event every 60 seconds:

CHAPTER 11 - COMPONENT APPENDIX 965

http://camel.apache.org/quartz.html
http://camel.apache.org/how-do-i-specify-time-period-in-a-human-friendly-syntax.html

from("timer://foo?fixedRate=true&period=60000").to("bean:myBean?method=someMethodName");

The above route will generate an event and then invoke the someMethodName method on
the bean called myBean in the Registry such as JNDI or Spring.

And the route in Spring DSL:

<route>
<from uri="timer://foo?fixedRate=true&period=60000"/>
<to uri="bean:myBean?method=someMethodName"/>

</route>

Firing only once

Available as of Camel 2.8

You may want to fire a message in a Camel route only once, such as when starting the
route. To do that you use the repeatCount option as shown:

<route>
<from uri="timer://foo?repeatCount=1"/>
<to uri="bean:myBean?method=someMethodName"/>

</route>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started
• Quartz

VALIDATION COMPONENT

The Validation component performs XML validation of the message body using the JAXP
Validation API and based on any of the supported XML schema languages, which defaults to
XML Schema

Note that the Jing component also supports the following useful schema languages:
• RelaxNG Compact Syntax
• RelaxNG XML Syntax

The MSV component also supports RelaxNG XML Syntax.

966 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/quartz.html
http://www.w3.org/XML/Schema
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://camel.apache.org/msv.html
http://relaxng.org/

Instead of 60000 you can use period=60s which is more friendly to read.

URI format

validator:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on the classpath
or a full URL to a remote resource or resource on the file system which contains the XSD to
validate against. For example:

• msv:org/foo/bar.xsd
• msv:file:../foo/bar.xsd
• msv:http://acme.com/cheese.xsd
• validator:com/mypackage/myschema.xsd

Maven users will need to add the following dependency to their pom.xml for this component
when using Camel 2.8 or older:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the Validation component is provided directly in the camel-core.

Options

Option Default Description

resourceResolver null Camel 2.9: Reference to a org.w3c.dom.ls.LSResourceResolver in the Registry.

useDom false Whether DOMSource/DOMResult or SaxSource/SaxResult should be used by the validator.

useSharedSchema true
Camel 2.3: Whether the Schema instance should be shared or not. This option is introduced to work around a JDK 1.6.x bug.
Xerces should not have this issue.

failOnNullBody true Camel 2.9.5/2.10.3: Whether to fail if no body exists.

headerName null Camel 2.11: To validate against a header instead of the message body.

failOnNullHeader true Camel 2.11: Whether to fail if no header exists when validating against a header.

Example

The following example shows how to configure a route from endpoint direct:start which
then goes to one of two endpoints, either mock:valid or mock:invalid based on whether
or not the XML matches the given schema (which is supplied on the classpath).

CHAPTER 11 - COMPONENT APPENDIX 967

../foo/bar.xsd
http://acme.com/cheese.xsd
http://camel.apache.org/validation.html
http://camel.apache.org/registry.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6773084
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml

<route>
<from uri="direct:start"/>
<doTry>

<to uri="validator:org/apache/camel/component/validator/schema.xsd"/>
<to uri="mock:valid"/>
<doCatch>

<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

VELOCITY

The velocity: component allows you to process a message using an Apache Velocity template.
This can be ideal when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

velocity:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template (eg: file://folder/myfile.vm).

968 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://velocity.apache.org/
http://camel.apache.org/templating.html
/folder/myfile.vm

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default Description

loaderCache true Velocity based file loader cache.

contentCache true
Cache for the resource content when it is loaded.
Note : as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's clearContentCache operation.

encoding null Character encoding of the resource content.

propertiesFile null New option in Camel 2.1: The URI of the properties file which is used for VelocityEngine initialization.

Message Headers

The velocity component sets a couple headers on the message (you can't set these yourself and
from Camel 2.1 velocity component will not set these headers which will cause some side effect
on the dynamic template support):

Header Description

CamelVelocityResourceUri The templateName as a String object.

Headers set during the Velocity evaluation are returned to the message and added as headers.
Then its kinda possible to return values from Velocity to the Message.

For example, to set the header value of fruit in the Velocity template .tm:

$in.setHeader('fruit', 'Apple')

The fruit header is now accessible from the message.out.headers.

Velocity Context

Camel will provide exchange information in the Velocity context (just a Map). The Exchange
is transfered as:

key value

exchange The Exchange itself.

exchange.properties The Exchange properties.

headers The headers of the In message.

camelContext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).

response The Out message (only for InOut message exchange pattern).

CHAPTER 11 - COMPONENT APPENDIX 969

Hot reloading

The Velocity template resource is, by default, hot reloadable for both file and classpath
resources (expanded jar). If you set contentCache=true, Camel will only load the
resource once, and thus hot reloading is not possible. This scenario can be used in production,
when the resource never changes.

Dynamic templates

Available as of Camel 2.1
Camel provides two headers by which you can define a different resource location for a
template or the template content itself. If any of these headers is set then Camel uses this over
the endpoint configured resource. This allows you to provide a dynamic template at runtime.

Header Type Description

CamelVelocityResourceUri String Camel 2.1: A URI for the template resource to use instead of the endpoint configured.

CamelVelocityTemplate String Camel 2.1: The template to use instead of the endpoint configured.

Samples

For example you could use something like

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

To use a Velocity template to formulate a response to a message for InOut message exchanges
(where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination, you
could use the following route:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

And to use the content cache, e.g. for use in production, where the .vm template never
changes:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

And a file based resource:

970 CHAPTER 11 - COMPONENT APPENDIX

from("activemq:My.Queue").
to("velocity:file://myfolder/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should use dynamically via
a header, so for example:

from("direct:in").
setHeader("CamelVelocityResourceUri").constant("path/to/my/template.vm").
to("velocity:dummy");

In Camel 2.1 it's possible to specify a template directly as a header the component should use
dynamically via a header, so for example:

from("direct:in").
setHeader("CamelVelocityTemplate").constant("Hi this is a velocity template that can

do templating ${body}").
to("velocity:dummy");

The Email Sample

In this sample we want to use Velocity templating for an order confirmation email. The email
template is laid out in Velocity as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

@Test
public void testVelocityLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");

CHAPTER 11 - COMPONENT APPENDIX 971

mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel in

Action.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("velocity:org/apache/camel/component/velocity/

letter.vm").to("mock:result");
}

};
}

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

VM COMPONENT

The vm: component provides asynchronous SEDA behavior, exchanging messages on a
BlockingQueue and invoking consumers in a separate thread pool.

This component differs from the SEDA component in that VM supports communication
across CamelContext instances - so you can use this mechanism to communicate across web
applications (provided that camel-core.jar is on the system/boot classpath).

VM is an extension to the SEDA component.

URI format

vm:queueName[?options]

Where queueName can be any string to uniquely identify the endpoint within the JVM (or at
least within the classloader that loaded camel-core.jar)

You can append query options to the URI in the following format:
?option=value&option=value&...

972 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/seda.html
http://camel.apache.org/seda.html

Before Camel 2.3 - Same URI must be used for both producer and
consumer
An exactly identical VM endpoint URI must be used for both the producer and the
consumer endpoint. Otherwise, Camel will create a second VM endpoint despite
that the queueName portion of the URI is identical. For example:

from("direct:foo").to("vm:bar?concurrentConsumers=5");

from("vm:bar?concurrentConsumers=5").to("file://output");

Notice that we have to use the full URI, including options in both the producer and
consumer.

In Camel 2.4 this has been fixed so that only the queue name must match. Using the
queue name bar, we could rewrite the previous exmple as follows:

from("direct:foo").to("vm:bar");

from("vm:bar?concurrentConsumers=5").to("file://output");

Options

See the SEDA component for options and other important usage details as the same rules apply
to the VM component.

Samples

In the route below we send exchanges across CamelContext instances to a VM queue named
order.email:

from("direct:in").bean(MyOrderBean.class).to("vm:order.email");

And then we receive exchanges in some other Camel context (such as deployed in another
.war application):

from("vm:order.email").bean(MyOrderEmailSender.class);

See Also

• Configuring Camel
• Component

CHAPTER 11 - COMPONENT APPENDIX 973

http://camel.apache.org/seda.html
http://camel.apache.org/vm.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/vm.html
http://camel.apache.org/vm.html

• Endpoint
• Getting Started
▪ SEDA

XMPP COMPONENT

The xmpp: component implements an XMPP (Jabber) transport.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmpp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

xmpp://[login@]hostname[:port][/participant][?Options]

The component supports both room based and private person-person conversations.
The component supports both producer and consumer (you can get messages from XMPP or
send messages to XMPP). Consumer mode supports rooms starting.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Description

room

If this option is specified, the component will connect to MUC (Multi User Chat). Usually, the domain name for MUC is different from the
login domain. For example, if you are superman@jabber.org and want to join the krypton room, then the room URL is
krypton@conference.jabber.org. Note the conference part.
It is not a requirement to provide the full room JID. If the room parameter does not contain the @ symbol, the domain part will be
discovered and added by Camel

user User name (without server name). If not specified, anonymous login will be attempted.

password Password.

resource XMPP resource. The default is Camel.

createAccount If true, an attempt to create an account will be made. Default is false.

participant JID (Jabber ID) of person to receive messages. room parameter has precedence over participant.

nickname Use nickname when joining room. If room is specified and nickname is not, user will be used for the nickname.

serviceName The name of the service you are connecting to. For Google Talk, this would be gmail.com.

testConnectionOnStartup

Camel 2.11 Specifies whether to test the connection on startup. This is used to ensure that the XMPP client has a valid connection to the
XMPP server when the route starts. Camel throws an exception on startup if a connection cannot be established. When this option is set to
false, Camel will attempt to establish a "lazy" connection when needed by a producer, and will poll for a consumer connection until the
connection is established. Default is true.

974 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/seda.html

connectionPollDelay
Camel 2.11 The amount of time in seconds between polls to verify the health of the XMPP connection, or between attempts to establish
an initial consumer connection. Camel will try to re-establish a connection if it has become inactive. Default is 10 seconds.

Headers and setting Subject or Language

Camel sets the message IN headers as properties on the XMPP message. You can configure a
HeaderFilterStategy if you need custom filtering of headers.
The Subject and Language of the XMPP message are also set if they are provided as IN
headers.

Examples

User superman to join room krypton at jabber server with password, secret:

xmpp://superman@jabber.org/?room=krypton@conference.jabber.org&password=secret

User superman to send messages to joker:

xmpp://superman@jabber.org/joker@jabber.org?password=secret

Routing example in Java:

from("timer://kickoff?period=10000").
setBody(constant("I will win!\n Your Superman.")).
to("xmpp://superman@jabber.org/joker@jabber.org?password=secret");

Consumer configuration, which writes all messages from joker into the queue, evil.talk.

from("xmpp://superman@jabber.org/joker@jabber.org?password=secret").
to("activemq:evil.talk");

Consumer configuration, which listens to room messages:

from("xmpp://superman@jabber.org/?password=secret&room=krypton@conference.jabber.org").
to("activemq:krypton.talk");

Room in short notation (no domain part):

from("xmpp://superman@jabber.org/?password=secret&room=krypton").
to("activemq:krypton.talk");

When connecting to the Google Chat service, you'll need to specify the serviceName as well
as your credentials:

CHAPTER 11 - COMPONENT APPENDIX 975

// send a message from fromuser@gmail.com to touser@gmail.com
from("direct:start").

to("xmpp://talk.google.com:5222/
touser@gmail.com?serviceName=gmail.com&user=fromuser&password=secret").

to("mock:result");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

XQUERY

The xquery: component allows you to process a message using an XQuery template. This can
be ideal when using Templating to generate respopnses for requests.

Maven users will need to add the following dependency to their pom.xml for this
component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

xquery:templateName

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template.

For example you could use something like this:

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery");

To use an XQuery template to formulate a response to a message for InOut message
exchanges (where there is a JMSReplyTo header).

976 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/xquery.html
http://camel.apache.org/templating.html

If you want to use InOnly, consume the message, and send it to another destination, you
could use the following route:

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery").
to("activemq:Another.Queue");

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

XSLT

The xslt: component allows you to process a message using an XSLT template. This can be
ideal when using Templating to generate respopnses for requests.

URI format

xslt:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke; or the complete
URL of the remote template. Refer to the Spring Documentation for more detail of the URI
syntax

You can append query options to the URI in the following format,
?option=value&option=value&...

Here are some example URIs

URI Description

xslt:com/acme/mytransform.xsl refers to the file com/acme/mytransform.xsl on the classpath

xslt:file:///foo/bar.xsl refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/foo.xsl refers to the remote http resource

CHAPTER 11 - COMPONENT APPENDIX 977

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.w3.org/TR/xslt
http://camel.apache.org/templating.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html

Maven users will need to add the following dependency to their pom.xml for this component
when using Camel 2.8 or older:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the XSLT component is provided directly in the camel-core.

Options

Name
Default
Value

Description

converter null
Option to override default XmlConverter. Will lookup for the converter in the Registry. The provided converted must be
of type org.apache.camel.converter.jaxp.XmlConverter.

transformerFactory null
Option to override default TransformerFactory. Will lookup for the transformerFactory in the Registry. The provided
transformer factory must be of type javax.xml.transform.TransformerFactory.

transformerFactoryClass null
Option to override default TransformerFactory. Will create a TransformerFactoryClass instance and set it to the
converter.

uriResolver null
Camel 2.3: Allows you to use a custom javax.xml.transformation.URIResolver. Camel will by default use
its own implementation org.apache.camel.builder.xml.XsltUriResolver which is capable of loading from
classpath.

resultHandlerFactory null
Camel 2.3: Allows you to use a custom org.apache.camel.builder.xml.ResultHandlerFactory which
is capable of using custom org.apache.camel.builder.xml.ResultHandler types.

failOnNullBody true Camel 2.3: Whether or not to throw an exception if the input body is null.

deleteOutputFile false
Camel 2.6: If you have output=file then this option dictates whether or not the output file should be deleted when
the Exchange is done processing. For example suppose the output file is a temporary file, then it can be a good idea to
delete it after use.

output string

Camel 2.3: Option to specify which output type to use. Possible values are: string, bytes, DOM, file. The
first three options are all in memory based, where as file is streamed directly to a java.io.File. For file you
must specify the filename in the IN header with the key Exchange.XSLT_FILE_NAME which is also
CamelXsltFileName. Also any paths leading to the filename must be created beforehand, otherwise an exception is
thrown at runtime.

contentCache true

Camel 2.6: Cache for the resource content (the stylesheet file) when it is loaded. If set to false Camel will reload the
stylesheet file on each message processing. This is good for development.
Note: from Camel 2.9 a cached stylesheet can be forced to reload at runtime via JMX using the
clearCachedStylesheet operation.

allowStAX false Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

transformerCacheSize 0
Camel 2.9.3/2.10.1: The number of javax.xml.transform.Transformer object that are cached for reuse to
avoid calls to Template.newTransformer().

saxon false
Camel 2.11: Whether to use Saxon as the transformerFactoryClass. If enabled then the class
net.sf.saxon.TransformerFactoryImpl. You would need to add Saxon to the classpath.

Using XSLT endpoints

For example you could use something like

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl");

978 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/xslt.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/exchange.html

To use an XSLT template to formulate a response for a message for InOut message exchanges
(where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you
could use the following route:

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl").
to("activemq:Another.Queue");

Getting Parameters into the XSLT to work with

By default, all headers are added as parameters which are available in the XSLT.
To do this you will need to declare the parameter so it is then useable.

<setHeader headerName="myParam"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl: >

<xsl:param name="myParam"/>

<xsl:template ...>

Spring XML versions

To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:My.Queue"/>
<to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

There is a test case along with its Spring XML if you want a concrete example.

Using xsl:include

Camel 2.2 or older
If you use xsl:include in your XSL files then in Camel 2.2 or older it uses the default

CHAPTER 11 - COMPONENT APPENDIX 979

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

javax.xml.transform.URIResolver which means it can only lookup files from file
system, and its does that relative from the JVM starting folder.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will lookup the staff_tempkalte.xsl file from the starting folder where the application
was started.

Camel 2.3 or newer
Now Camel provides its own implementation of URIResolver which allows Camel to load
included files from the classpath and more intelligent than before.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will now be located relative from the starting endpoint, which for example could be:

.to("xslt:org/apache/camel/component/xslt/staff_include_relative.xsl")

Which means Camel will locate the file in the classpath as org/apache/camel/
component/xslt/staff_template.xsl.
This allows you to use xsl include and have xsl files located in the same folder such as we do in
the example org/apache/camel/component/xslt.

You can use the following two prefixes classpath: or file: to instruct Camel to look
either in classpath or file system. If you omit the prefix then Camel uses the prefix from the
endpoint configuration. If that neither has one, then classpath is assumed.

You can also refer back in the paths such as

<xsl:include href="../staff_other_template.xsl"/>

Which then will resolve the xsl file under org/apache/camel/component.

Using xsl:include and default prefix

When using xsl:include such as:

<xsl:include href="staff_template.xsl"/>

Then in Camel 2.10.3 and older, then Camel will use "classpath:" as the default prefix, and load
the resource from the classpath. This works for most cases, but if you configure the starting
resource to load from file,

980 CHAPTER 11 - COMPONENT APPENDIX

.to("xslt:file:etc/xslt/staff_include_relative.xsl")

.. then you would have to prefix all your includes with "file:" as well.

<xsl:include href="file:staff_template.xsl"/>

From Camel 2.10.4 onwards we have made this easier as Camel will use the prefix from the
endpoint configuration as the default prefix. So from Camel 2.10.4 onwards you can do:

<xsl:include href="staff_template.xsl"/>

Which will load the staff_template.xsl resource from the file system, as the endpoint was
configured with "file:" as prefix.
You can still though explicit configure a prefix, and then mix and match. And have both file and
classpath loading. But that would be unusual, as most people either use file or classpath based
resources.

Dynamic stylesheets

Available as of Camel 2.9
Camel provides the CamelXsltResourceUri header which you can use to define a
stylesheet to use instead of what is configured on the endpoint URI. This allows you to provide
a dynamic stylesheet at runtime.

Notes on using XSLT and Java Versions

Here are some observations from Sameer, a Camel user, which he kindly shared with us:

In case anybody faces issues with the XSLT endpoint please review these points.

I was trying to use an xslt endpoint for a simple transformation from one xml to
another using a simple xsl. The output xml kept appearing (after the xslt processor
in the route) with outermost xml tag with no content within.

No explanations show up in the DEBUG logs. On the TRACE logs however I did
find some error/warning indicating that the XMLConverter bean could no be
initialized.

After a few hours of cranking my mind, I had to do the following to get it to work
(thanks to some posts on the users forum that gave some clue):

1. Use the transformerFactory option in the route ("xslt:my-
transformer.xsl?transformerFactory=tFactory") with the
tFactory bean having bean defined in the spring context for

CHAPTER 11 - COMPONENT APPENDIX 981

class="org.apache.xalan.xsltc.trax.TransformerFactoryImpl".
2. Added the Xalan jar into my maven pom.

My guess is that the default xml parsing mechanism supplied within the JDK (I am
using 1.6.0_03) does not work right in this context and does not throw up any error
either. When I switched to Xalan this way it works. This is not a Camel issue, but
might need a mention on the xslt component page.

Another note, jdk 1.6.0_03 ships with JAXB 2.0 while Camel needs 2.1. One
workaround is to add the 2.1 jar to the jre/lib/endorsed directory for the
jvm or as specified by the container.

Hope this post saves newbie Camel riders some time.

See Also

• Configuring Camel
• Component
• Endpoint
• Getting Started

982 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

	Apache Camel
	User Guide
	Version 2.9.7

	Table of Contents
	Introduction
	Quickstart
	Walk through an Example Code
	What happens?
	Walk through another example
	Introduction
	Pipes and filters
	Using Camel Components
	Conclusion
	See also

	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Continue Learning about Camel

	Architecture
	URIs
	Current Supported URIs
	URI's for external components

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	CookBook
	Bean Integration
	Annotations
	Bean Component
	Spring Remoting
	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy

	Bean Binding
	Choosing the method to invoke
	Parameter binding
	Binding Annotations
	Examples
	@Handler

	Parameter binding using method option
	Using type qualifiers to select among overloaded methods
	Bean Injection
	Parameter Binding Annotations
	Example
	Using the DSL to invoke the bean method

	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy
	@Consume

	Using context option to apply only a certain CamelContext
	Using an explicit route
	Use the Bean endpoint
	Using a property to define the endpoint
	Which approach to use?
	@EndpointInject

	Hiding the Camel APIs from your code using @Produce

	@RecipientList Annotation
	Simple Example using @Consume and @RecipientList
	How it works
	More Complex Example Using DSL

	Using Exchange Pattern Annotations
	Specifying InOnly methods
	Class level annotations
	Overloading a class level annotation
	Using your own annotations
	How to decouple from middleware APIs

	Visualisation
	How to generate
	For OS X users

	Business Activity Monitoring
	How Camel BAM Works
	Simple Example
	Complete Example
	Use Cases

	Extract Transform Load (ETL)
	Mock Component
	URI format
	Options
	Simple Example
	Using assertPeriod

	Setting expectations
	Adding expectations to specific messages

	Mocking existing endpoints
	Mocking existing endpoints using the camel-test component
	Mocking existing endpoints with XML DSL
	Mocking endpoints and skip sending to original endpoint

	Limiting the number of messages to keep
	Testing with arrival times
	See Also

	Testing
	Testing mechanisms
	Camel Test Example
	Spring Test with XML Config Example
	Spring Test with Java Config Example
	Spring Test with XML Config and Declarative Configuration Example
	Blueprint Test

	Testing endpoints
	Stubbing out physical transport technologies
	Testing existing routes

	Camel Test
	Adding to your pom.xml
	JUnit
	TestNG

	Writing your test
	Features Provided by CamelTestSupport

	JNDI
	Dynamically assigning ports
	Setup CamelContext once per class, or per every test method
	See Also

	Spring Testing
	CamelSpringTestSupport
	Plain Spring Test
	Plain Spring Test using JUnit 3.x with XML Config Example
	Plain Spring Test using JUnit 4.x with Java Config Example
	Plain Spring Test using JUnit 4.x Runner with XML Config

	Camel Enhanced Spring Test
	Adding more Mock expectations
	Further processing the received messages
	Sending and receiving messages
	See Also

	Camel Guice
	Dependency Injecting Camel with Guice
	Bootstrapping with JNDI
	Configuring Component, Endpoint or RouteBuilder instances
	Creating multiple RouteBuilder instances per type
	See Also

	Templating
	Example
	See Also

	Database
	Database endpoints
	Database pattern implementations

	Parallel Processing and Ordering
	How to achieve parallel processing
	Concurrency issues
	Ordering issues

	Recommendations
	Using Message Groups with Camel

	Asynchronous Processing
	Overview
	When to Use
	Interface Details
	Implementing Processors that Use the AsyncProcessor API
	Asynchronous Route Sequence Scenarios
	Mixing Synchronous and Asynchronous Processors
	Staying synchronous in an AsyncProcessor

	Implementing Virtual Topics on other JMS providers
	What's the Camel Transport for CXF
	Integrate Camel into CXF transport layer
	Setting up the Camel Transport in Spring
	Integrating the Camel Transport in a programmatic way

	Configure the destination and conduit with Spring
	Namespace
	The destination element
	The conduit element

	Configure the destination and conduit with Blueprint
	Example Using Camel as a load balancer for CXF
	Complete Howto and Example for attaching Camel to CXF
	Introduction
	Using a Producer

	Tutorials
	Tutorial on Spring Remoting with JMS
	Preface
	Prerequisites
	Distribution
	About
	Create the Camel Project
	Update the POM with Dependencies

	Writing the Server
	Create the Spring Service
	Define the Camel Routes
	Configure Spring
	Run the Server

	Writing The Clients
	Client Using The ProducerTemplate
	Client Using Spring Remoting
	Client Using Message Endpoint EIP Pattern
	Run the Clients

	Using the Camel Maven Plugin
	Using Camel JMX
	See Also
	Tutorial - camel-example-reportincident
	Introduction
	Motivation for this tutorial
	The use-case
	In EIP patterns

	Parts
	Links
	Part 1
	Prerequisites
	Initial Project Setup
	Developing the WebService
	CXF wsdl2java
	Configuration of the web.xml
	Getting rid of the old jsp world
	Configuration of CXF
	Implementing the ReportIncidentEndpoint
	Running our webservice
	Hitting the webservice
	Remote Debugging
	Adding a unit test

	End of part 1
	Resources
	Links
	Part 2
	Adding Camel
	Logging the "Hello World"
	Write to file - easy with the same code style
	Fully java based configuration of endpoints
	Lessons learned
	Reducing code lines
	Reducing even more code lines
	Message Translation
	First part of the solution
	End of part 2
	Links
	Part 3
	Recap
	Adding the Event Driven Consumer
	Sending the email
	Unit testing mail
	Adding new unit test
	End of part 3
	Links
	Part 4
	Introduction
	Routing
	RouteBuilder
	Adding the RouteBuilder

	Unit testing
	Adding the File Backup
	Setting the filename
	Using Bean Language to compute the filename

	Sending the email
	Using a script language to set the filename

	Conclusion
	Links
	Better JMS Transport for CXF Webservice using Apache Camel
	So how to connect Apache Camel and CXF
	How is JMS configured in Camel
	Setting up the CXF client
	Setting up the CamelContext
	Running the Example
	Conclusion

	Tutorial using Axis 1.4 with Apache Camel
	Prerequisites
	Distribution
	Introduction
	Setting up the project to run Axis
	Maven 2
	wsdl
	Configuring Axis
	Running the Example

	Integrating Spring
	Using Spring

	Integrating Camel
	CamelContext
	Store a file backup

	Running the example
	Unit Testing
	Smarter Unit Testing with Spring

	Unit Test calling WebService
	Annotations
	The End
	See Also

	Tutorial on using Camel in a Web Application
	Step1: Edit your web.xml
	Step 2: Create a /WEB-INF/applicationContext.xml file
	Hints and Tips

	Tutorial Business Partners
	Background and Introduction
	Business Background
	Tutorial Background
	High-Level Diagram
	Tutorial Tasks

	Let's Get Started!
	Step 1: Initial Maven build
	Step 2: Get Sample Files
	Step 3: XSD and JAXB Beans for the Canonical XML Format
	Generating JAXB Beans

	Step 4: Initial Work on Customer 1 Input (XML over FTP)
	Create an XSLT template
	Create a unit test
	Set Up a Skeletal Camel/Spring Unit Test
	Flesh Out the Unit Test

	Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
	Create a CSV-handling POJO
	Create a unit test

	Step 6: Initial Work on Customer 3 Input (Excel over e-mail)
	Create an Excel-handling POJO
	Create a unit test

	Step 7: Put this all together into Camel routes for the Customer Input
	Step 8: Create a unit test for the Customer Input Routes

	Languages Supported Appendix
	Bean Language
	Using Bean Expressions from the Java DSL
	Using Bean Expressions from XML
	Writing the expression bean
	Non registry beans
	Other examples
	Dependencies

	Constant Expression Language
	Example usage
	Dependencies

	EL
	Variables
	Samples
	Dependencies

	Header Expression Language
	Example usage
	Dependencies

	JXPath
	Variables
	Options
	Using XML configuration
	Examples

	JXPath injection
	Loading script from external resource
	Dependencies

	Mvel
	Variables
	Samples
	Loading script from external resource
	Dependencies

	OGNL
	Variables
	Samples
	Loading script from external resource
	Dependencies

	Property Expression Language
	Example usage
	Dependencies

	Scripting Languages
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	See Also
	BeanShell
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	JavaScript
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Groovy
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Python
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	PHP
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Ruby
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Simple Expression Language
	Variables
	OGNL expression support
	Operator support
	Using and / or

	Samples
	Referring to constants or enums

	Using new lines or tabs in XML DSLs
	Setting result type
	Changing function start and end tokens
	Loading script from external resource
	Dependencies

	File Expression Language
	Syntax
	File token example
	Relative paths
	Absolute paths

	Samples
	Using Spring PropertyPlaceholderConfigurer together with the File component
	Dependencies

	SQL Language
	Variables
	Loading script from external resource

	XPath
	Namespaces
	Variables
	Namespace given
	No namespace given

	Functions
	Using XML configuration
	Setting result type
	Using XPath on Headers
	Examples

	XPath injection
	Using XPathBuilder without an Exchange
	Using Saxon with XPathBuilder
	Setting a custom XPathFactory using System Property
	Enabling Saxon from Spring DSL
	Namespace auditing to aid debugging
	Logging the Namespace Context of your XPath expression/predicate
	Auditing namespaces

	Loading script from external resource
	Dependencies

	XQuery
	Options
	Examples
	Variables
	Using XML configuration
	Using XQuery as an endpoint
	Examples
	Learning XQuery
	Loading script from external resource
	Dependencies

	Data Format Appendix
	Data Format
	Unmarshalling
	Marshalling
	Using Spring XML

	Serialization
	Dependencies

	JAXB
	Using the Java DSL
	Using Spring XML
	Partial marshalling/unmarshalling
	Fragment
	Ignoring the NonXML Character
	Working with the ObjectFactory
	Setting encoding
	Controlling namespace prefix mapping
	Schema validation
	Dependencies

	XmlBeans
	Dependencies

	XStream
	XMLInputFactory and XMLOutputFactory
	How to set the XML encoding in Xstream DataFormat?
	Dependencies

	CSV
	Options
	Marshalling a Map to CSV
	Unmarshalling a CSV message into a Java List
	Marshalling a List<Map> to CSV
	File Poller of CSV, then unmarshaling
	Marshaling with a pipe as delimiter
	Using autogenColumns, configRef and strategyRef attributes inside XML DSL
	Using skipFirstLine option while unmarshaling
	Unmarshaling with a pipe as delimiter
	Dependencies
	Options
	Marshal
	Unmarshal
	Dependencies
	HL7 DataFormat

	EDI DataFormat
	Flatpack DataFormat
	Options
	Usage
	Dependencies

	JSON
	Using JSON data format with the XStream library
	Using JSON data format with the Jackson library
	Using JSON data format with the GSON library
	Using JSON in Spring DSL

	Excluding POJO fields from marshalling
	Configuring field naming policy
	Dependencies for XStream
	Dependencies for Jackson
	Dependencies for GSON
	Options
	Marshal
	Unmarshal
	Dependencies

	TidyMarkup
	Java DSL Example
	Spring XML Example
	Dependencies

	Bindy
	Annotations
	1. CsvRecord
	2. Link
	3. DataField
	
	4. FixedLengthRecord
	5. Message
	6. KeyValuePairField
	7. Section
	8. OneToMany
	Using the Java DSL
	Unmarshaling
	Marshaling

	Unit test
	Using Spring XML
	Dependencies

	XMLSecurity Data Format
	Basic Options
	Asymmetric Encryption Options
	Marshal
	Unmarshal
	Examples
	Full Payload encryption/decryption
	Partial Payload Content Only encryption/decryption
	Partial Multi Node Payload Content Only encryption/decryption
	Partial Payload Content Only encryption/decryption with choice of passPhrase(password)
	Partial Payload Content Only encryption/decryption with passPhrase(password) and Algorithm
	Partial Paryload Content with Namespace support
	Java DSL
	Spring XML

	Asymmetric Key Encryption
	Spring XML Sender
	Spring XML Recipient

	Dependencies
	Options
	Marshal
	Unmarshal
	Dependencies

	Castor
	Using the Java DSL
	Using Spring XML
	Options
	Dependencies

	Protobuf - Protocol Buffers
	Protobuf overview
	Defining the proto format
	Generating Java classes

	Java DSL
	Spring DSL
	Dependencies

	SOAP DataFormat
	ElementNameStrategy
	Using the Java DSL
	Using SOAP 1.2

	Multi-part Messages
	Multi-part Request
	Multi-part Response
	Holder Object mapping

	Examples
	Webservice client
	Webservice Server

	Dependencies

	Crypto
	Options
	Basic Usage
	Specifying the Encryption Algorithm
	Specifying an Initialization Vector
	Hashed Message Authentication Codes (HMAC)
	Supplying Keys Dynamically
	PGPDataFormat Options
	PGPDataFormat Message Headers
	Encrypting with PGPDataFormat
	To work with the previous example you need the following
	Managing your keyring

	Dependencies
	See Also

	Syslog DataFormat
	RFC3164 Syslog protocol
	Exposing a Syslog listener
	Sending syslog messages to a remote destination

	See Also

	Pattern Appendix
	Messaging Systems
	Message Channel
	Using This Pattern

	Message
	Using This Pattern

	Pipes and Filters
	Using Routing Logic
	Using This Pattern

	Message Router
	Choice without otherwise
	Using This Pattern

	Message Translator
	Using This Pattern

	Message Endpoint
	Using This Pattern

	Messaging Channels
	Point to Point Channel
	Using This Pattern

	Publish Subscribe Channel
	Using Routing Logic
	Using This Pattern

	Dead Letter Channel
	Redelivery
	About moving Exchange to dead letter queue and using handled
	About moving Exchange to dead letter queue and using the original message
	OnRedelivery
	Redelivery default values
	Redeliver Delay Pattern

	Redelivery header
	Which endpoint failed

	Which route failed
	Control if redelivery is allowed during stopping/shutdown
	Samples
	How can I modify the Exchange before redelivery?
	Using This Pattern

	Guaranteed Delivery
	Using This Pattern

	Message Bus
	Using This Pattern

	Message Construction

	Event Message
	Explicitly specifying InOnly
	Using This Pattern

	Request Reply
	Explicitly specifying InOut
	Using This Pattern

	Correlation Identifier
	See Also

	Return Address
	Using This Pattern

	Message Routing
	Content Based Router
	Using This Pattern

	Message Filter
	Using stop
	Knowing if Exchange was filtered or not
	Using This Pattern

	Dynamic Router
	Options
	Dynamic Router in Camel 2.5 onwards
	Java DSL
	Spring XML
	@DynamicRouter annotation

	Dynamic Router in Camel 2.4 or older
	Using This Pattern

	Recipient List
	Options
	Static Recipient List
	Dynamic Recipient List
	Iteratable value
	Using delimiter in Spring XML

	Sending to multiple recipients in parallel
	Stop continuing in case one recipient failed
	Ignore invalid endpoints
	Using custom AggregationStrategy
	Using custom thread pool
	Using method call as recipient list
	Using timeout
	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Splitter
	Options
	Exchange properties
	Examples
	Using Tokenizer from Spring XML Extensions*
	What the Splitter returns
	Parallel execution of distinct 'parts'
	Stream based
	Streaming big XML payloads using Tokenizer language
	Splitting files by grouping N lines together
	Specifying a custom aggregation strategy
	Specifying a custom ThreadPoolExecutor
	Using a Pojo to do the splitting
	Split aggregate request/reply sample

	Stop processing in case of exception
	Using onPrepare to execute custom logic when preparing messages
	Sharing unit of work
	Using This Pattern

	Aggregator
	Aggregator options
	Exchange Properties
	About AggregationStrategy
	About completion
	Persistent AggregationRepository
	Examples
	Using completionTimeout
	Using TimeoutAwareAggregationStrategy
	Using CompletionAwareAggregationStrategy
	Using completionSize
	Using completionPredicate
	Using dynamic completionTimeout
	Using dynamic completionSize
	Using This Pattern
	Manually Force the Completion of All Aggregated Exchanges Immediately
	Using a List<V> in AggregationStrategy

	See also
	Resequencer
	Batch Resequencing
	Allow Duplicates
	Reverse
	Resequence JMS messages based on JMSPriority
	Ignore invalid exchanges
	Reject Old Exchanges

	Stream Resequencing
	Further Examples
	Using This Pattern

	Composed Message Processor
	Example using both Splitter and Aggregator
	Example using only Splitter
	Using This Pattern

	Scatter-Gather
	Dynamic Scatter-Gather Example
	Static Scatter-Gather Example
	Using This Pattern

	Routing Slip
	Options
	Example
	Configuration options

	Ignore invalid endpoints
	Expression supporting
	Further Examples
	Using This Pattern

	Throttler
	Options
	Examples
	Camel 2.7.x or older
	Camel 2.8 onwards

	Dynamically changing maximum requests per period
	Asynchronous delaying
	Using This Pattern

	Sampling Throttler
	Options
	Samples
	Using This Pattern

	See Also
	Delayer
	Options
	Spring DSL

	Asynchronous delaying
	From Java DSL
	From Spring XML

	Creating a custom delay
	Using This Pattern

	See Also
	Load Balancer
	Built-in load balancing policies
	Round Robin
	Failover
	Using failover in Spring DSL
	Using failover in round robin mode

	Weighted Round-Robin and Random Load Balancing
	Using Weighted round-robin & random load balancing

	Custom Load Balancer
	Using This Pattern

	Multicast
	Options
	Example

	Stop processing in case of exception
	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Loop
	Options
	Exchange properties
	Examples
	Using copy mode
	Using This Pattern

	Message Transformation
	Content Enricher
	Content enrichment using a Message Translator or a Processor

	Content enrichment using the enrich DSL element
	Enrich Options
	Aggregation strategy is optional

	Content enrichment using pollEnrich
	PollEnrich Options
	Example
	Using This Pattern

	Content Filter
	Using This Pattern

	Claim Check
	Example
	Using This Pattern

	Normalizer
	Example
	See Also
	Using This Pattern

	Sort
	Options
	Using from Java DSL
	Using from Spring DSL
	Using This Pattern

	Messaging Endpoints
	Messaging Mapper
	See also
	Using This Pattern

	Event Driven Consumer
	Using This Pattern

	Polling Consumer
	ConsumerTemplate
	Using ConsumerTemplate with Spring DSL
	Timer based polling consumer

	Scheduled Poll Components
	ScheduledPollConsumer Options
	About error handling and scheduled polling consumers
	Controlling the error handling using PollingConsumerPollStrategy
	Configuring an Endpoint to use PollingConsumerPollStrategy
	Using This Pattern

	See Also
	Competing Consumers
	Enabling Competing Consumers with JMS
	Using This Pattern

	Message Dispatcher
	See Also
	Using This Pattern

	Selective Consumer
	Using This Pattern

	Durable Subscriber
	See Also
	Using This Pattern

	Idempotent Consumer
	Options
	Using the Fluent Builders
	Spring XML example
	How to handle duplicate messages in the route
	How to handle duplicate message in a clustered environment with a data grid
	Using This Pattern

	Transactional Client
	Transaction Policies
	OSGi Blueprint

	Database Sample
	JMS Sample

	Using multiple routes with different propagation behaviors
	See Also
	Using This Pattern
	Messaging Gateway
	See Also
	Using This Pattern

	Service Activator
	See Also
	Using This Pattern

	System Management
	Detour
	Example
	Using This Pattern

	Wire Tap
	Options
	WireTap thread pool
	WireTap node
	Sending a copy (traditional wiretap)
	Sending a new Exchange
	Further Example

	Sending a new Exchange and set headers in DSL
	Java DSL
	XML DSL

	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Log
	Using log DSL
	Using log DSL from Spring
	Using slf4j Marker
	Using This Pattern

	Component Appendix
	ActiveMQ Component
	URI format
	Options
	Configuring the Connection Factory
	Configuring the Connection Factory using Spring XML
	Using connection pooling
	Invoking MessageListener POJOs in a Camel route
	Using ActiveMQ Destination Options
	Consuming Advisory Messages
	Getting Component JAR
	See Also

	ActiveMQ Journal Component
	URI format
	Options
	Expected Exchange Data Types
	See Also

	AMQP
	URI format
	See Also

	SQS Component
	URI Format
	URI Options
	Batch Consumer
	Usage
	Message headers set by the SQS producer
	Message headers set by the SQS consumer
	Advanced AmazonSQS configuration

	Dependencies
	See Also

	Atom Component
	URI format
	Options
	Exchange data format
	Message Headers
	Samples
	See Also

	Bean Component
	URI format
	Options
	Using
	Bean as endpoint
	Java DSL bean syntax
	Bean Binding
	See Also

	Bean Validation Component
	URI format
	URI Options
	ServiceMix4/OSGi Deployment.
	Example
	See Also

	Browse Component
	URI format
	Sample
	See Also

	Cache Component
	URI format
	Options
	Sending/Receiving Messages to/from the cache
	Message Headers up to Camel 2.7
	Message Headers Camel 2.8+
	Cache Producer
	Cache Consumer
	Cache Processors

	Cache Usage Samples
	Example 1: Configuring the cache
	Example 2: Adding keys to the cache
	Example 2: Updating existing keys in a cache
	Example 3: Deleting existing keys in a cache
	Example 4: Deleting all existing keys in a cache
	Example 5: Notifying any changes registering in a Cache to Processors and other Producers
	Example 6: Using Processors to selectively replace payload with cache values
	Example 7: Getting an entry from the Cache
	Example 8: Checking for an entry in the Cache

	Management of EHCache
	Cache replication Camel 2.8+
	Example: JMS cache replication

	Class Component
	URI format
	Options
	Using

	Setting properties on the created instance
	See Also

	Cometd Component
	URI format
	Examples
	Options
	Authentication
	Setting up SSL for Cometd Component
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	See Also

	Context Component
	URI format
	Example
	Defining the context component
	Using the context component
	Naming endpoints

	Crypto component for Digital Signatures
	Introduction
	URI format
	Options
	Using
	1) Raw keys
	2) KeyStores and Aliases.
	3) Changing JCE Provider and Algorithm
	4) Changing the Signature Mesasge Header
	5) Changing the buffersize
	6) Supplying Keys dynamically.

	See Also

	CXF Component
	URI format
	Options
	The descriptions of the dataformats
	How to enable CXF's LoggingOutInterceptor in MESSAGE mode

	Description of relayHeaders option
	Available only in POJO mode
	Changes since Release 2.0

	Configure the CXF endpoints with Spring
	Configuring the CXF Endpoints with Apache Aries Blueprint.
	How to make the camel-cxf component use log4j instead of java.util.logging
	How to let camel-cxf response message with xml start document
	How to consume a message from a camel-cxf endpoint in POJO data format
	How to prepare the message for the camel-cxf endpoint in POJO data format
	How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
	How to get and set SOAP headers in POJO mode
	How to get and set SOAP headers in PAYLOAD mode
	SOAP headers are not available in MESSAGE mode
	How to throw a SOAP Fault from Camel
	How to propagate a camel-cxf endpoint's request and response context
	Attachment Support
	Streaming Support in PAYLOAD mode
	See Also

	CXF Bean Component
	URI format
	Options
	Headers
	A Working Sample

	CXFRS Component
	URI format
	Options
	How to configure the REST endpoint in Camel
	Consuming a REST Request - Simple Binding Style
	Enabling the Simple Binding Style
	Examples of request binding with different method signatures
	More examples of the Simple Binding Style

	Consuming a REST Request - Default Binding Style
	How to invoke the REST service through camel-cxfrs producer

	DataSet Component
	URI format
	Options
	Configuring DataSet
	Example
	Properties on SimpleDataSet
	See Also

	Db4o Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	Direct Component
	URI format
	Options
	Samples
	See Also

	DNS
	URI format
	Options
	Headers
	Examples
	IP lookup
	DNS lookup
	DNS Dig

	See Also

	EJB Component
	URI format
	Options
	Bean Binding
	Examples
	Using Java DSL
	Using Spring XML

	See Also

	Esper
	URI format
	Options
	Demo
	See Also

	Event Component
	URI format
	See Also

	File Component
	URI format
	URI Options
	Common
	Consumer
	Default behavior for file consumer
	Producer
	Default behavior for file producer

	Move and Delete operations
	Fine grained control over Move and PreMove option
	About moveFailed

	Message Headers
	File producer only
	File consumer only

	Batch Consumer
	Exchange Properties, file consumer only

	Using charset
	Common gotchas with folder and filenames
	Filename Expression
	Consuming files from folders where others drop files directly
	Using done files
	Writing done files
	Samples
	Read from a directory and write to another directory
	Read from a directory and write to another directory using a overrule dynamic name
	Reading recursively from a directory and writing to another
	Using flatten

	Reading from a directory and the default move operation
	Read from a directory and process the message in java
	Writing to files
	Write to subdirectory using Exchange.FILE_NAME
	Using expression for filenames

	Avoiding reading the same file more than once (idempotent consumer)
	Using a file based idempotent repository
	Using a JPA based idempotent repository

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher

	Sorting using Comparator
	Sorting using sortBy
	Using GenericFileProcessStrategy
	Using filter
	How to use the Camel error handler to deal with exceptions triggered outside the routing engine
	Using consumer.bridgeErrorHandler

	Debug logging
	See Also

	Flatpack Component
	URI format
	URI Options
	Examples
	Message Headers
	Message Body
	Header and Trailer records
	Using the endpoint

	Flatpack DataFormat
	Options
	Usage
	Dependencies
	See Also

	FreeMarker
	URI format
	Options
	Headers
	FreeMarker Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	FTP/SFTP/FTPS Component
	URI format
	URI Options
	More URI options
	Examples
	Default when consuming files
	limitations

	Message Headers
	About timeouts
	Using Local Work Directory
	Stepwise changing directories
	Using stepwise=true (default mode)
	Using stepwise=false

	Samples
	Consuming a remote FTPS server (implicit SSL) and client authentication
	Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher
	Debug logging
	See Also

	Camel Components for Google App Engine
	Camel context
	Camel 2.1
	Camel 2.2 or higher

	The web.xml

	Hazelcast Component
	URI format
	Sections
	Usage of Map
	map cache producer - to("hazelcast:map:foo")
	Sample for put:
	Sample for get:
	Sample for update:
	Sample for delete:
	Sample for query

	map cache consumer - from("hazelcast:map:foo")
	Usage of Multi Map
	multimap cache producer - to("hazelcast:multimap:foo")

	
	Sample for put:
	Sample for get:
	Sample for update:
	Sample for delete:
	Sample for query
	map cache consumer - from("hazelcast:map:foo")
	Usage of Multi Map
	multimap cache producer - to("hazelcast:multimap:foo")
	Sample for put:
	Sample for removevalue:
	Sample for get:
	Sample for delete:

	multimap cache consumer - from("hazelcast:multimap:foo")

	Usage of Queue
	Queue producer Ð to(Òhazelcast:queue:fooÓ)
	Sample for add:
	Sample for put:
	Sample for poll:
	Sample for peek:
	Sample for offer:
	Sample for removevalue:

	Queue consumer Ð from(Òhazelcast:queue:fooÓ)

	Usage of List
	List producer Ð to(Òhazelcast:list:fooÓ)
	Sample for add:
	Sample for get:
	Sample for setvalue:
	Sample for removevalue:

	List consumer Ð from(Òhazelcast:list:fooÓ)

	Usage of SEDA
	SEDA producer Ð to(Òhazelcast:seda:fooÓ)
	SEDA consumer Ð from(Òhazelcast:seda:fooÓ)

	Usage of Atomic Number
	atomic number producer - to("hazelcast:atomicnumber:foo")
	Sample for set:
	Sample for get:
	Sample for increment:
	Sample for decrement:
	Sample for destroy

	cluster support
	instance consumer - from("hazelcast:instance:foo")

	HDFS Component
	URI format
	Options
	KeyType and ValueType

	Splitting Strategy
	Controlling to close file stream
	Using this component in OSGi

	Hibernate Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	HL7 Component
	HL7 MLLP protocol
	Exposing a HL7 listener

	HL7 Model using java.lang.String
	HL7v2 Model using HAPI
	HL7 DataFormat
	Message Headers
	Options
	Dependencies
	Terser language (Camel 2.11)
	HL7 Validation predicate (Camel 2.11)
	HL7 Acknowledgement expression (Camel 2.11)
	More Samples
	Sample using plain String objects

	See Also

	HTTP Component
	URI format
	Examples
	HttpEndpoint Options
	Authentication and Proxy
	HttpComponent Options
	Message Headers
	Message Body
	Response code
	HttpOperationFailedException
	Calling using GET or POST
	How to get access to HttpServletRequest and HttpServletResponse
	Using client timeout - SO_TIMEOUT

	More Examples
	Configuring a Proxy
	Using proxy settings outside of URI

	Configuring charset
	Sample with scheduled poll
	Getting the Response Code
	Using throwExceptionOnFailure=false to get any response back
	Disabling Cookies
	Advanced Usage
	Setting MaxConnectionsPerHost
	Using preemptive authentication
	Accepting self signed certificates from remote server
	Setting up SSL for HTTP Client
	Using the JSSE Configuration Utility
	Configuring Apache HTTP Client Directly

	See Also

	iBATIS
	URI format
	Options
	Message Headers
	Message Body
	Samples
	Using StatementType for better control of IBatis
	Scheduled polling example
	Using onConsume

	See Also

	IRC Component
	URI format
	Options
	SSL Support
	Using the JSSE Configuration Utility
	Programmatic configuration of the endpoint
	Spring DSL based configuration of endpoint

	Using the legacy basic configuration options

	Using keys
	See Also

	Jasypt component
	Tooling
	Tooling dependencies for Camel 2.5 and 2.6
	Tooling dependencies for Camel 2.7 or better

	URI Options
	Protecting the master password
	Example with Java DSL
	Example with Spring XML
	See Also

	JavaSpace Component
	URI format
	Options
	Examples
	Sending and Receiving Entries
	Sending and receiving serializable objects
	Using JavaSpace as a remote invocation transport

	See Also

	JBI Component
	URI format
	Examples

	URI options
	Examples

	Using Stream bodies
	Creating a JBI Service Unit
	See Also

	JCR Component
	URI format
	Usage
	Producer
	Consumer

	Example
	See Also

	JDBC Component
	URI format
	Options
	Result
	Message Headers

	Generated keys
	Samples
	Sample - Polling the database every minute
	See Also

	Jetty Component
	URI format
	Options
	Message Headers
	Usage
	Component Options
	Producer Example
	Consumer Example
	Session Support
	SSL Support (HTTPS)
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	Configuring Jetty Directly
	Configuring general SSL properties
	How to obtain reference to the X509Certificate
	Configuring general HTTP properties

	Default behavior for returning HTTP status codes
	Customizing HttpBinding
	Jetty handlers and security configuration
	How to return a custom HTTP 500 reply message
	Multi-part Form support
	Jetty JMX support
	See Also

	Jing Component
	URI format
	Options
	Example
	See Also

	JMS Component
	URI format
	Notes
	Using ActiveMQ
	Transactions and Cache Levels
	Durable Subscriptions
	Message Header Mapping

	Options
	Most commonly used options
	All the other options

	Message Mapping between JMS and Camel
	Disabling auto-mapping of JMS messages
	Using a custom MessageConverter
	Controlling the mapping strategy selected

	Message format when sending
	Message format when receiving
	About using Camel to send and receive messages and JMSReplyTo
	JmsProducer
	JmsConsumer

	Reuse endpoint and send to different destinations computed at runtime
	Configuring different JMS providers
	Using JNDI to find the ConnectionFactory

	Concurrent Consuming
	Request-reply over JMS
	Request-reply over JMS and using a shared fixed reply queue
	Request-reply over JMS and using an exclusive fixed reply queue

	Synchronizing clocks between senders and receivers
	About time to live
	Enabling Transacted Consumption
	Using JMSReplyTo for late replies
	Using a request timeout
	Samples
	Receiving from JMS
	Sending to a JMS
	Using Annotations
	Spring DSL sample
	Other samples
	Using JMS as a Dead Letter Queue storing Exchange
	Using JMS as a Dead Letter Channel storing error only

	Sending an InOnly message and keeping the JMSReplyTo header
	Setting JMS provider options on the destination
	See Also

	JMX Component
	Standard JMX Consumer Configuration
	URI Format
	URI Options
	ObjectName Construction
	Domain with Name property
	Domain with Hashtable
	Example

	Monitor Type Consumer
	Example
	URI Options for Monitor Type

	See Also

	JPA Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	Message Headers
	Configuring EntityManagerFactory
	Configuring TransactionManager
	Using a consumer with a named query
	Using a consumer with a query
	Using a consumer with a native query
	Example
	Using the JPA based idempotent repository
	See Also

	JT/400 Component
	URI format
	URI options
	Usage
	Connection pool
	Remote program call (Camel 2.7)

	Example
	Remote program call example (Camel 2.7)
	Writing to keyed data queues
	Reading from keyed data queues

	See Also

	Language
	URI format
	URI Options
	Message Headers
	Examples
	Loading scripts from resources
	See Also

	LDAP Component
	URI format
	Options
	Result
	DirContext
	Samples
	Binding using credentials

	See Also

	Log Component
	URI format
	Options
	Formatting
	Regular logger sample
	Regular logger with formatter sample
	Throughput logger with groupSize sample
	Throughput logger with groupInterval sample
	Full customization of the logging output
	See Also

	Lucene (Indexer and Search) Component
	URI format
	Insert Options
	Query Options
	Sending/Receiving Messages to/from the cache
	Message Headers
	Lucene Producers
	Lucene Processor

	Lucene Usage Samples
	Example 1: Creating a Lucene index
	Example 2: Loading properties into the JNDI registry in the Camel Context
	Example 2: Performing searches using a Query Producer
	Example 3: Performing searches using a Query Processor

	Mail Component
	URI format
	Sample endpoints
	Default ports

	Options
	SSL support
	Using the JSSE Configuration Utility
	Programmatic configuration of the endpoint
	Spring DSL based configuration of endpoint

	Configuring JavaMail Directly

	Mail Message Content
	Headers take precedence over pre-configured recipients
	Multiple recipients for easier configuration
	Setting sender name and email
	SUN JavaMail
	Samples
	Sending mail with attachment sample
	SSL sample
	Consuming mails with attachment sample
	How to split a mail message with attachments
	Using custom SearchTerm
	See Also

	MINA Component
	URI format
	Options
	Using a custom codec
	Sample with sync=false
	Sample with sync=true
	Sample with Spring DSL
	Configuring Mina endpoints using Spring bean style
	Closing Session When Complete
	Get the IoSession for message
	Configuring Mina filters
	See Also

	Mock Component
	URI format
	Options
	Simple Example
	Using assertPeriod

	Setting expectations
	Adding expectations to specific messages

	Mocking existing endpoints
	Mocking existing endpoints using the camel-test component
	Mocking existing endpoints with XML DSL
	Mocking endpoints and skip sending to original endpoint

	Limiting the number of messages to keep
	Testing with arrival times
	See Also

	MSV Component
	URI format
	Options
	Example
	See Also

	MyBatis
	URI format
	Options
	Message Headers
	Message Body
	Samples
	Using StatementType for better control of MyBatis
	Using InsertList StatementType
	Using UpdateList StatementType
	Using DeleteList StatementType
	Notice on InsertList, UpdateList and DeleteList StatementTypes
	Scheduled polling example
	Using onConsume
	Participating in transactions

	See Also

	Nagios
	URI format
	Options
	Headers
	Sending message examples
	Using NagiosEventNotifer
	See Also

	Netty Component
	URI format
	Options
	Registry based Options
	Using non shareable encoders or decoders

	Sending Messages to/from a Netty endpoint
	Netty Producer
	Netty Consumer

	Usage Samples
	A UDP Netty endpoint using Request-Reply and serialized object payload
	A TCP based Netty consumer endpoint using One-way communication
	An SSL/TCP based Netty consumer endpoint using Request-Reply communication
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	Using Basic SSL/TLS configuration on the Jetty Component

	Using Multiple Codecs

	Closing Channel When Complete
	Adding custom channel pipeline factories to gain complete control over a created pipeline
	See Also

	NMR Component
	Installing in Apache Servicemix
	Installing in plain Apache Karaf
	Configuration
	NMR consumer and producer endpoints
	URI format
	URI Options
	Examples

	Using Stream bodies
	Testing

	See Also

	Quartz Component
	URI format
	Options
	Configuring quartz.properties file
	Starting the Quartz scheduler
	Clustering
	Message Headers
	Using Cron Triggers
	Specifying time zone
	See Also

	QuickFIX/J Component
	URI format

	Endpoints
	Exchange Format
	QuickFIX/J Configuration Extensions
	Communication Connectors
	Logging
	Message Store
	Message Factory
	JMX
	Other Defaults
	Minimal Initiator Configuration Example

	Using the InOut Message Exchange Pattern
	Implementing InOut Exchanges for Consumers
	Implementing InOut Exchanges for Producers
	Example

	Spring Configuration
	Exception handling
	FIX Sequence Number Management
	Route Examples

	QuickFIX/J Component Prior to Camel 2.5
	URI format
	Exchange data format
	Samples
	See Also

	Printer Component
	URI format
	Options
	Sending Messages to a Printer
	Printer Producer

	Usage Samples
	Example 1: Printing text based payloads on a Default printer using letter stationary and one-sided mode
	Example 2: Printing GIF based payloads on a Remote printer using A4 stationary and one-sided mode
	Example 3: Printing JPEG based payloads on a Remote printer using Japanese Postcard stationary and one-sided mode

	Properties Component
	URI format
	Options

	Using PropertyPlaceholder
	Syntax
	PropertyResolver
	Defining location
	Using system and environment variables in locations

	Configuring in Java DSL
	Configuring in Spring XML
	Using a Properties from the Registry
	Examples using properties component
	Examples
	Example with Simple language
	Additional property placeholder supported in Spring XML
	Overriding a property setting using a JVM System Property
	Using property placeholders for any kind of attribute in the XML DSL
	Using property placeholder in the Java DSL
	Using Blueprint property placeholder with Camel routes
	Overriding Blueprint property placeholders outside CamelContext
	Using .cfg or .properties file for Blueprint property placeholders
	Using .cfg file and overriding properties for Blueprint property placeholders

	Bridging Spring and Camel property placeholders
	Overriding properties from Camel test kit
	See Also

	Ref Component
	URI format
	Runtime lookup
	Sample
	See Also

	Restlet Component
	URI format
	Options
	Component Options
	Message Headers
	Message Body
	Samples
	Restlet Endpoint with Authentication
	Single restlet endpoint to service multiple methods and URI templates
	Using Restlet API to populate response
	Using the Restlet servlet within a webapp

	See Also

	RMI Component
	URI format
	Options
	Using
	See Also

	RSS Component
	URI format
	Options
	Exchange data types
	Message Headers
	RSS Dataformat
	Filtering entries
	See Also

	SEDA Component
	URI format
	Options
	Use of Request Reply
	Concurrent consumers
	Thread pools
	Sample
	Using multipleConsumers
	Extracting queue information.
	See Also

	Servlet Component
	URI format
	Options
	Message Headers
	Usage
	Putting Camel JARs in the app server boot classpath
	Sample
	Sample when using Spring 3.x
	Sample when using Spring 2.x
	Sample when using OSGi

	See Also

	Shiro Security Component
	Shiro Security Basics
	Instantiating a ShiroSecurityPolicy Object
	ShiroSecurityPolicy Options
	Applying Shiro Authentication on a Camel Route
	Applying Shiro Authorization on a Camel Route
	Creating a ShiroSecurityToken and injecting it into a Message Exchange
	Sending Messages to routes secured by a ShiroSecurityPolicy

	SIP Component
	URI format
	Options
	Registry based Options
	Sending Messages to/from a SIP endpoint
	Creating a Camel SIP Publisher
	Creating a Camel SIP Subscriber

	SMPP Component
	URI format
	URI Options
	Producer Message Headers
	Consumer Message Headers
	Exception handling
	Samples
	Debug logging
	See Also

	SNMP Component
	URI format
	Options
	The result of a poll
	Examples
	See Also

	Spring Integration Component
	URI format
	Options
	Usage
	Examples
	Using the Spring integration endpoint
	The Source and Target adapter

	See Also

	Spring LDAP Component
	URI format
	Options
	Usage
	Search
	Bind
	Unbind

	Spring Web Services Component
	URI format
	Options
	Registry based options

	Message headers

	Accessing web services
	Sending SOAP and WS-Addressing action headers
	The header and attachment propagation
	How to use MTOM attachments
	The custom header and attachment filtering
	Using a custom MessageSender and MessageFactory

	Exposing web services
	Endpoint mapping in routes
	Alternative configuration, using existing endpoint mappings

	POJO (un)marshalling
	See Also

	Stream Component
	URI format
	Options
	Message content
	Samples
	See Also

	String Template
	URI format
	Options
	Headers
	Hot reloading
	StringTemplate Attributes
	Samples
	The Email Sample
	See Also

	SQL Component
	URI format
	Options
	Treatment of the message body
	Result of the query
	Header values
	Configuration
	Sample
	Using named parameters

	Using the JDBC based idempotent repository
	Customize the JdbcMessageIdRepository

	Using the JDBC based aggregation repository
	What is preserved when persisting
	Recovery
	Database
	Storing body and headers as text
	Codec (Serialization)
	Transaction
	Service (Start/Stop)
	Aggregator configuration

	See Also

	Test Component
	URI format
	Example
	See Also

	Timer Component
	URI format
	Options
	Exchange Properties
	Message Headers
	Sample
	Firing only once

	See Also

	Validation Component
	URI format
	Options
	Example
	See Also

	Velocity
	URI format
	Options
	Message Headers
	Velocity Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	VM Component
	URI format
	Options
	Samples
	See Also

	XMPP Component
	URI format
	Options
	Headers and setting Subject or Language
	Examples
	See Also

	XQuery
	URI format
	See Also

	XSLT
	URI format
	Options
	Using XSLT endpoints
	Getting Parameters into the XSLT to work with
	Spring XML versions
	Using xsl:include
	Using xsl:include and default prefix

	Dynamic stylesheets
	Notes on using XSLT and Java Versions
	See Also

