
Apache Camel

USER GU IDE

Version 2.10.4

Copyright 2007-2012, Apache Software Foundation

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents ..ii

Chapter 1
Introduction... 1

Chapter 1
Quickstart.. 1

Chapter 1
Getting Started .. 7

Chapter 1
Architecture..18

Chapter 1
Enterprise Integration Patterns38

Chapter 1
Cook Book...43

Chapter 1
Tutorials ... 125

Chapter 1
Language Appendix... 229

Chapter 1
DataFormat Appendix.. 306

Chapter 1
Pattern Appendix .. 394

Chapter 1
Component Appendix .. 552
Index... 0

ii APACHE CAMEL

CHAPTER 1

°°°°

Introduction

Apache Camel â„¢ is a versatile open-source integration framework based on
known Enterprise Integration Patterns.
Camel empowers you to define routing and mediation rules in a variety of
domain-specific languages, including a Java-based Fluent API, Spring or
Blueprint XML Configuration files, and a Scala DSL. This means you get smart
completion of routing rules in your IDE, whether in a Java, Scala or XML
editor.

Apache Camel uses URIs to work directly with any kind of Transport or
messaging model such as HTTP, ActiveMQ, JMS, JBI, SCA, MINA or CXF, as
well as pluggable Components and Data Format options. Apache Camel is a
small library with minimal dependencies for easy embedding in any Java
application. Apache Camel lets you work with the same API regardless which
kind of Transport is used - so learn the API once and you can interact with all
the Components provided out-of-box.

Apache Camel provides support for Bean Binding and seamless integration
with popular frameworks such as Spring, Blueprint and Guice. Camel also has
extensive support for unit testing your routes.

The following projects can leverage Apache Camel as a routing and
mediation engine:

• Apache ServiceMix - a popular distributed open source ESB and JBI
container

• Apache ActiveMQ - a mature, widely used open source message
broker

• Apache CXF - a smart web services suite (JAX-WS and JAX-RS)
• Apache Karaf - a small OSGi based runtime in which applications can

be deployed
• Apache MINA - a high-performance NIO-driven networking framework

So don't get the hump - try Camel today!

CHAPTER 1 - INTRODUCTION 1

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/scala-dsl.html
http://camel.apache.org/uris.html
http://camel.apache.org/transport.html
http://camel.apache.org/http.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jbi.html
http://camel.apache.org/mina.html
http://camel.apache.org/cxf.html
http://camel.apache.org/components.html
http://camel.apache.org/data-format.html
http://camel.apache.org/what-are-the-dependencies.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transport.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/spring.html
http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/
http://karaf.apache.org/
http://mina.apache.org/
http://en.wikipedia.org/wiki/New_I/O

Too many buzzwords - what exactly is Camel?
Okay, so the description above is technology focused.
There's a great discussion about Camel at Stack Overflow. We
suggest you view the post, read the comments, and browse the
suggested links for more details.

2 CHAPTER 1 - INTRODUCTION

http://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel

CHAPTER 2

°°°°

Quickstart

To start using Apache Camel quickly, you can read through some simple
examples in this chapter. For readers who would like a more thorough
introduction, please skip ahead to Chapter 3.

WALK THROUGH AN EXAMPLE CODE
This mini-guide takes you through the source code of a simple example.

Camel can be configured either by using Spring or directly in Java - which
this example does.

This example is available in the examples\camel-example-jms-file
directory of the Camel distribution.

We start with creating a CamelContext - which is a container for
Components, Routes etc:

CamelContext context = new DefaultCamelContext();

There is more than one way of adding a Component to the CamelContext.
You can add components implicitly - when we set up the routing - as we do
here for the FileComponent:

context.addRoutes(new RouteBuilder() {
public void configure() {

from("test-jms:queue:test.queue").to("file://test");
}

});

or explicitly - as we do here when we add the JMS Component:

ConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("vm://localhost?broker.persistent=false");
// Note we can explicit name the component
context.addComponent("test-jms",
JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));

CHAPTER 2 - QUICKSTART 1

https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/spring.html
https://svn.apache.org/repos/asf/camel/trunk/examples/camel-example-jms-file/src/main/java/org/apache/camel/example/jmstofile/CamelJmsToFileExample.java
http://camel.apache.org/download.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/components.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html

The above works with any JMS provider. If we know we are using ActiveMQ
we can use an even simpler form using the activeMQComponent() method
while specifying the brokerURL used to connect to ActiveMQ

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

In normal use, an external system would be firing messages or events
directly into Camel through one if its Components but we are going to use
the ProducerTemplate which is a really easy way for testing your
configuration:

ProducerTemplate template = context.createProducerTemplate();

Next you must start the camel context. If you are using Spring to configure
the camel context this is automatically done for you; though if you are using
a pure Java approach then you just need to call the start() method

camelContext.start();

This will start all of the configured routing rules.
So after starting the CamelContext, we can fire some objects into camel:

for (int i = 0; i < 10; i++) {
template.sendBody("test-jms:queue:test.queue", "Test Message: " + i);

}

WHAT HAPPENS?
From the ProducerTemplate - we send objects (in this case text) into the
CamelContext to the Component test-jms:queue:test.queue. These text
objects will be converted automatically into JMS Messages and posted to a
JMS Queue named test.queue. When we set up the Route, we configured the
FileComponent to listen of the test.queue.

The File FileComponent will take messages off the Queue, and save them
to a directory named test. Every message will be saved in a file that
corresponds to its destination and message id.

Finally, we configured our own listener in the Route - to take notifications
from the FileComponent and print them out as text.

That's it!

2 CHAPTER 2 - QUICKSTART

http://camel.apache.org/activemq.html
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/configuring-transports.html
http://camel.apache.org/components.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/spring.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/routes.html
http://camel.apache.org/file2.html

If you have the time then use 5 more minutes to Walk through another
example that demonstrates the Spring DSL (XML based) routing.

WALK THROUGH ANOTHER EXAMPLE

Introduction
Continuing the walk from our first example, we take a closer look at the
routing and explain a few pointers - so you won't walk into a bear trap, but
can enjoy an after-hours walk to the local pub for a large beer

First we take a moment to look at the Enterprise Integration Patterns - the
base pattern catalog for integration scenarios. In particular we focus on Pipes
and Filters - a central pattern. This is used to route messages through a
sequence of processing steps, each performing a specific function - much like
the Java Servlet Filters.

Pipes and filters
In this sample we want to process a message in a sequence of steps where
each steps can perform their specific function. In our example we have a JMS
queue for receiving new orders. When an order is received we need to
process it in several steps:

▪ validate
▪ register
▪ send confirm email

This can be created in a route like this:

<route>
<from uri="jms:queue:order"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</route>

Where as the bean ref is a reference for a spring bean id, so we define our
beans using regular Spring XML as:

<bean id="validateOrder" class="com.mycompany.MyOrderValidator"/>

Our validator bean is a plain POJO that has no dependencies to Camel what
so ever. So you can implement this POJO as you like. Camel uses rather

CHAPTER 2 - QUICKSTART 3

http://camel.apache.org/walk-through-another-example.html
http://camel.apache.org/walk-through-another-example.html
http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html

Pipeline is default
In the route above we specify pipeline but it can be omitted as its
default, so you can write the route as:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</route>

This is commonly used not to state the pipeline.

An example where the pipeline needs to be used, is when using a
multicast and "one" of the endpoints to send to (as a logical group) is a
pipeline of other endpoints. For example.

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<pipeline>

<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</pipeline>
</multicast>

</route>

The above sends the order (from jms:queue:order) to two locations at the
same time, our log component, and to the "pipeline" of beans which goes
one to the other. If you consider the opposite, sans the <pipeline>

<route>
<from uri="jms:queue:order"/>
<multicast>

<to uri="log:org.company.log.Category"/>
<bean ref="validateOrder"/>
<bean ref="registerOrder"/>
<bean ref="sendConfirmEmail"/>

</multicast>
</route>

you would see that multicast would not "flow" the message from one bean
to the next, but rather send the order to all 4 endpoints (1x log, 3x bean) in

4 CHAPTER 2 - QUICKSTART

parallel, which is not (for this example) what we want. We need the
message to flow to the validateOrder, then to the registerOrder, then the
sendConfirmEmail so adding the pipeline, provides this facility.

intelligent Bean Binding to invoke your POJO with the payload of the received
message. In this example we will not dig into this how this happens. You
should return to this topic later when you got some hands on experience with
Camel how it can easily bind routing using your existing POJO beans.

So what happens in the route above. Well when an order is received from
the JMS queue the message is routed like Pipes and Filters:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as input to the registerOrder
bean
3. the output from registerOrder bean is sent as input to the
sendConfirmEmail bean

Using Camel Components
In the route lets imagine that the registration of the order has to be done by
sending data to a TCP socket that could be a big mainframe. As Camel has
many Components we will use the camel-mina component that supports TCP
connectivity. So we change the route to:

<route>
<from uri="jms:queue:order"/>
<bean ref="validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<bean ref="sendConfirmEmail"/>

</route>

What we now have in the route is a to type that can be used as a direct
replacement for the bean type. The steps is now:
1. payload from the JMS is sent as input to the validateOrder bean
2. the output from validateOrder bean is sent as text to the mainframe using
TCP
3. the output from mainframe is sent back as input to the sendConfirmEmai
bean

What to notice here is that the to is not the end of the route (the world
) in this example it's used in the middle of the Pipes and Filters. In fact we
can change the bean types to to as well:

CHAPTER 2 - QUICKSTART 5

http://camel.apache.org/bean-binding.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/jms.html
http://camel.apache.org/components.html
http://camel.apache.org/mina.html
http://camel.apache.org/jms.html
http://camel.apache.org/pipes-and-filters.html

<route>
<from uri="jms:queue:order"/>
<to uri="bean:validateOrder"/>
<to uri="mina:tcp://mainframeip:4444?textline=true"/>
<to uri="bean:sendConfirmEmail"/>

</route>

As the to is a generic type we must state in the uri scheme which component
it is. So we must write bean: for the Bean component that we are using.

Conclusion
This example was provided to demonstrate the Spring DSL (XML based) as
opposed to the pure Java DSL from the first example. And as well to point
about that the to doesn't have to be the last node in a route graph.

This example is also based on the in-only message exchange pattern.
What you must understand as well is the in-out message exchange pattern,
where the caller expects a response. We will look into this in another
example.

See also
▪ Examples
▪ Tutorials
▪ User Guide

6 CHAPTER 2 - QUICKSTART

http://camel.apache.org/bean.html
http://camel.apache.org/walk-through-an-example.html
http://camel.apache.org/examples.html
http://camel.apache.org/tutorials.html
http://camel.apache.org/user-guide.html

CHAPTER 3

°°°°

Getting Started with Apache
Camel

THE ENTERPRISE INTEGRATION PATTERNS (EIP) BOOK
The purpose of a "patterns" book is not to advocate new techniques that the
authors have invented, but rather to document existing best practices within
a particular field. By doing this, the authors of a patterns book hope to
spread knowledge of best practices and promote a vocabulary for discussing
architectural designs.
One of the most famous patterns books is Design Patterns: Elements of
Reusable Object-oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, commonly known as the "Gang of Four" (GoF)
book. Since the publication of Design Patterns, many other pattern books, of
varying quality, have been written. One famous patterns book is called
Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions by Gregor Hohpe and Bobby Woolf. It is common for
people to refer to this book by its initials EIP. As the subtitle of EIP suggests,
the book focuses on design patterns for asynchronous messaging systems.
The book discusses 65 patterns. Each pattern is given a textual name and
most are also given a graphical symbol, intended to be used in architectural
diagrams.

THE CAMEL PROJECT
Camel (http://camel.apache.org) is an open-source, Java-based project that
helps the user implement many of the design patterns in the EIP book.
Because Camel implements many of the design patterns in the EIP book, it
would be a good idea for people who work with Camel to have the EIP book
as a reference.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 7

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://en.wikipedia.org/wiki/Design_Patterns
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683
http://camel.apache.org

ONLINE DOCUMENTATION FOR CAMEL
The documentation is all under the Documentation category on the right-side
menu of the Camel website (also available in PDF form. Camel-related books
are also available, in particular the Camel in Action book, presently serving
as the Camel bible--it has a free Chapter One (pdf), which is highly
recommended to read to get more familiar with Camel.

A useful tip for navigating the online documentation
The breadcrumbs at the top of the online Camel documentation can help you
navigate between parent and child subsections.
For example, If you are on the "Languages" documentation page then the
left-hand side of the reddish bar contains the following links.

Apache Camel > Documentation > Architecture > Languages

As you might expect, clicking on "Apache Camel" takes you back to the home
page of the Apache Camel project, and clicking on "Documentation" takes
you to the main documentation page. You can interpret the "Architecture"
and "Languages" buttons as indicating you are in the "Languages" section of
the "Architecture" chapter. Adding browser bookmarks to pages that you
frequently reference can also save time.

ONLINE JAVADOC DOCUMENTATION
The Apache Camel website provides Javadoc documentation. It is important
to note that the Javadoc documentation is spread over several independent
Javadoc hierarchies rather than being all contained in a single Javadoc
hierarchy. In particular, there is one Javadoc hierarchy for the core APIs of
Camel, and a separate Javadoc hierarchy for each component technology
supported by Camel. For example, if you will be using Camel with ActiveMQ
and FTP then you need to look at the Javadoc hierarchies for the core API and
Spring API.

CONCEPTS AND TERMINOLOGY FUNDAMENTAL TO CAMEL
In this section some of the concepts and terminology that are fundamental to
Camel are explained. This section is not meant as a complete Camel tutorial,
but as a first step in that direction.

8 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/manual.html
http://camel.apache.org/books.html
http://manning.com/ibsen
http://www.manning.com/ibsen/chapter1sample.pdf
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://camel.apache.org/maven/current/camel-spring/apidocs/index.html

Endpoint
The term endpoint is often used when talking about inter-process
communication. For example, in client-server communication, the client is
one endpoint and the server is the other endpoint. Depending on the
context, an endpoint might refer to an address, such as a host:port pair for
TCP-based communication, or it might refer to a software entity that is
contactable at that address. For example, if somebody uses
"www.example.com:80" as an example of an endpoint, they might be
referring to the actual port at that host name (that is, an address), or they
might be referring to the web server (that is, software contactable at that
address). Often, the distinction between the address and software
contactable at that address is not an important one.
Some middleware technologies make it possible for several software entities
to be contactable at the same physical address. For example, CORBA is an
object-oriented, remote-procedure-call (RPC) middleware standard. If a
CORBA server process contains several objects then a client can
communicate with any of these objects at the same physical address
(host:port), but a client communicates with a particular object via that
object's logical address (called an IOR in CORBA terminology), which consists
of the physical address (host:port) plus an id that uniquely identifies the
object within its server process. (An IOR contains some additional information
that is not relevant to this present discussion.) When talking about CORBA,
some people may use the term "endpoint" to refer to a CORBA server's
physical address, while other people may use the term to refer to the logical
address of a single CORBA object, and other people still might use the term
to refer to any of the following:

• The physical address (host:port) of the CORBA server process
• The logical address (host:port plus id) of a CORBA object.
• The CORBA server process (a relatively heavyweight software entity)
• A CORBA object (a lightweight software entity)

Because of this, you can see that the term endpoint is ambiguous in at least
two ways. First, it is ambiguous because it might refer to an address or to a
software entity contactable at that address. Second, it is ambiguous in the
granularity of what it refers to: a heavyweight versus lightweight software
entity, or physical address versus logical address. It is useful to understand
that different people use the term endpoint in slightly different (and hence
ambiguous) ways because Camel's usage of this term might be different to
whatever meaning you had previously associated with the term.
Camel provides out-of-the-box support for endpoints implemented with many
different communication technologies. Here are some examples of the
Camel-supported endpoint technologies.

• A JMS queue.
• A web service.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 9

• A file. A file may sound like an unlikely type of endpoint, until you
realize that in some systems one application might write information
to a file and, later, another application might read that file.

• An FTP server.
• An email address. A client can send a message to an email address,

and a server can read an incoming message from a mail server.
• A POJO (plain old Java object).

In a Camel-based application, you create (Camel wrappers around) some
endpoints and connect these endpoints with routes, which I will discuss later
in Section 4.8 ("Routes, RouteBuilders and Java DSL"). Camel defines a Java
interface called Endpoint. Each Camel-supported endpoint has a class that
implements this Endpoint interface. As I discussed in Section 3.3 ("Online
Javadoc documentation"), Camel provides a separate Javadoc hierarchy for
each communications technology supported by Camel. Because of this, you
will find documentation on, say, the JmsEndpoint class in the JMS Javadoc
hierarchy, while documentation for, say, the FtpEndpoint class is in the FTP
Javadoc hierarchy.

CamelContext
A CamelContext object represents the Camel runtime system. You typically
have one CamelContext object in an application. A typical application
executes the following steps.

1. Create a CamelContext object.
2. Add endpoints â€“ and possibly Components, which are discussed in

Section 4.5 ("Components") â€“ to the CamelContext object.
3. Add routes to the CamelContext object to connect the endpoints.
4. Invoke the start() operation on the CamelContext object. This

starts Camel-internal threads that are used to process the sending,
receiving and processing of messages in the endpoints.

5. Eventually invoke the stop() operation on the CamelContext object.
Doing this gracefully stops all the endpoints and Camel-internal
threads.

Note that the CamelContext.start() operation does not block indefinitely.
Rather, it starts threads internal to each Component and Endpoint and then
start() returns. Conversely, CamelContext.stop() waits for all the threads
internal to each Endpoint and Component to terminate and then stop()
returns.
If you neglect to call CamelContext.start() in your application then
messages will not be processed because internal threads will not have been
created.
If you neglect to call CamelContext.stop() before terminating your
application then the application may terminate in an inconsistent state. If

10 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-jms/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/
http://camel.apache.org/maven/current/camel-ftp/apidocs/

you neglect to call CamelContext.stop() in a JUnit test then the test may
fail due to messages not having had a chance to be fully processed.

CamelTemplate
Camel used to have a class called CamelClient, but this was renamed to be
CamelTemplate to be similar to a naming convention used in some other
open-source projects, such as the TransactionTemplate and JmsTemplate
classes in Spring.
The CamelTemplate class is a thin wrapper around the CamelContext class. It
has methods that send a Message or Exchange â€“ both discussed in Section
4.6 ("Message and Exchange")) â€“ to an Endpoint â€“ discussed in Section
4.1 ("Endpoint"). This provides a way to enter messages into source
endpoints, so that the messages will move along routes â€“ discussed in
Section 4.8 ("Routes, RouteBuilders and Java DSL") â€“ to destination
endpoints.

The Meaning of URL, URI, URN and IRI
Some Camel methods take a parameter that is a URI string. Many people
know that a URI is "something like a URL" but do not properly understand the
relationship between URI and URL, or indeed its relationship with other
acronyms such as IRI and URN.
Most people are familiar with URLs (uniform resource locators), such as
"http://...", "ftp://...", "mailto:...". Put simply, a URL specifies the location of a
resource.
A URI (uniform resource identifier) is a URL or a URN. So, to fully understand
what URI means, you need to first understand what is a URN.
URN is an acronym for uniform resource name. There are may "unique
identifier" schemes in the world, for example, ISBNs (globally unique for
books), social security numbers (unique within a country), customer numbers
(unique within a company's customers database) and telephone numbers.
Each "unique identifier" scheme has its own notation. A URN is a wrapper for
different "unique identifier" schemes. The syntax of a URN is "urn:<scheme-
name>:<unique-identifier>". A URN uniquely identifies a resource, such as a
book, person or piece of equipment. By itself, a URN does not specify the
location of the resource. Instead, it is assumed that a registry provides a
mapping from a resource's URN to its location. The URN specification does
not state what form a registry takes, but it might be a database, a server
application, a wall chart or anything else that is convenient. Some
hypothetical examples of URNs are "urn:employee:08765245",
"urn:customer:uk:3458:hul8" and "urn:foo:0000-0000-9E59-0000-5E-2". The
<scheme-name> ("employee", "customer" and "foo" in these examples) part

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 11

http://www.springframework.org/

of a URN implicitly defines how to parse and interpret the <unique-
identifier> that follows it. An arbitrary URN is meaningless unless: (1) you
know the semantics implied by the <scheme-name>, and (2) you have
access to the registry appropriate for the <scheme-name>. A registry does
not have to be public or globally accessible. For example,
"urn:employee:08765245" might be meaningful only within a specific
company.
To date, URNs are not (yet) as popular as URLs. For this reason, URI is widely
misused as a synonym for URL.
IRI is an acronym for internationalized resource identifier. An IRI is simply an
internationalized version of a URI. In particular, a URI can contain letters and
digits in the US-ASCII character set, while a IRI can contain those same
letters and digits, and also European accented characters, Greek letters,
Chinese ideograms and so on.

Components
Component is confusing terminology; EndpointFactory would have been
more appropriate because a Component is a factory for creating Endpoint
instances. For example, if a Camel-based application uses several JMS
queues then the application will create one instance of the JmsComponent
class (which implements the Component interface), and then the application
invokes the createEndpoint() operation on this JmsComponent object
several times. Each invocation of JmsComponent.createEndpoint() creates
an instance of the JmsEndpoint class (which implements the Endpoint
interface). Actually, application-level code does not invoke
Component.createEndpoint() directly. Instead, application-level code
normally invokes CamelContext.getEndpoint(); internally, the
CamelContext object finds the desired Component object (as I will discuss
shortly) and then invokes createEndpoint() on it.
Consider the following code.

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

The parameter to getEndpoint() is a URI. The URI prefix (that is, the part
before ":") specifies the name of a component. Internally, the CamelContext
object maintains a mapping from names of components to Component
objects. For the URI given in the above example, the CamelContext object
would probably map the pop3 prefix to an instance of the MailComponent
class. Then the CamelContext object invokes
createEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword")
on that MailComponent object. The createEndpoint() operation splits the
URI into its component parts and uses these parts to create and configure an

12 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Endpoint object.
In the previous paragraph, I mentioned that a CamelContext object
maintains a mapping from component names to Component objects. This
raises the question of how this map is populated with named Component
objects. There are two ways of populating the map. The first way is for
application-level code to invoke CamelContext.addComponent(String
componentName, Component component). The example below shows a
single MailComponent object being registered in the map under 3 different
names.

Component mailComponent = new org.apache.camel.component.mail.MailComponent();
myCamelContext.addComponent("pop3", mailComponent);
myCamelContext.addComponent("imap", mailComponent);
myCamelContext.addComponent("smtp", mailComponent);

The second (and preferred) way to populate the map of named Component
objects in the CamelContext object is to let the CamelContext object perform
lazy initialization. This approach relies on developers following a convention
when they write a class that implements the Component interface. I illustrate
the convention by an example. Let's assume you write a class called
com.example.myproject.FooComponent and you want Camel to
automatically recognize this by the name "foo". To do this, you have to write
a properties file called "META-INF/services/org/apache/camel/component/foo"
(without a ".properties" file extension) that has a single entry in it called
class, the value of which is the fully-scoped name of your class. This is
shown below.

Listing 1. META-INF/services/org/apache/camel/component/foo

class=com.example.myproject.FooComponent

If you want Camel to also recognize the class by the name "bar" then you
write another properties file in the same directory called "bar" that has the
same contents. Once you have written the properties file(s), you create a jar
file that contains the com.example.myproject.FooComponent class and the
properties file(s), and you add this jar file to your CLASSPATH. Then, when
application-level code invokes createEndpoint("foo:...") on a
CamelContext object, Camel will find the "foo"" properties file on the
CLASSPATH, get the value of the class property from that properties file, and
use reflection APIs to create an instance of the specified class.
As I said in Section 4.1 ("Endpoint"), Camel provides out-of-the-box support
for numerous communication technologies. The out-of-the-box support
consists of classes that implement the Component interface plus properties
files that enable a CamelContext object to populate its map of named
Component objects.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 13

Earlier in this section I gave the following example of calling
CamelContext.getEndpoint().

myCamelContext.getEndpoint("pop3://john.smith@mailserv.example.com?password=myPassword");

When I originally gave that example, I said that the parameter to
getEndpoint() was a URI. I said that because the online Camel
documentation and the Camel source code both claim the parameter is a
URI. In reality, the parameter is restricted to being a URL. This is because
when Camel extracts the component name from the parameter, it looks for
the first ":", which is a simplistic algorithm. To understand why, recall from
Section 4.4 ("The Meaning of URL, URI, URN and IRI") that a URI can be a URL
or a URN. Now consider the following calls to getEndpoint.

myCamelContext.getEndpoint("pop3:...");
myCamelContext.getEndpoint("jms:...");
myCamelContext.getEndpoint("urn:foo:...");
myCamelContext.getEndpoint("urn:bar:...");

Camel identifies the components in the above example as "pop3", "jms",
"urn" and "urn". It would be more useful if the latter components were
identified as "urn:foo" and "urn:bar" or, alternatively, as "foo" and "bar" (that
is, by skipping over the "urn:" prefix). So, in practice you must identify an
endpoint with a URL (a string of the form "<scheme>:...") rather than with a
URN (a string of the form "urn:<scheme>:..."). This lack of proper support for
URNs means the you should consider the parameter to getEndpoint() as
being a URL rather than (as claimed) a URI.

Message and Exchange
The Message interface provides an abstraction for a single message, such as
a request, reply or exception message.
There are concrete classes that implement the Message interface for each
Camel-supported communications technology. For example, the JmsMessage
class provides a JMS-specific implementation of the Message interface. The
public API of the Message interface provides get- and set-style methods to
access the message id, body and individual header fields of a messge.
The Exchange interface provides an abstraction for an exchange of
messages, that is, a request message and its corresponding reply or
exception message. In Camel terminology, the request, reply and exception
messages are called in, out and fault messages.
There are concrete classes that implement the Exchange interface for each
Camel-supported communications technology. For example, the JmsExchange
class provides a JMS-specific implementation of the Exchange interface. The

14 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

public API of the Exchange interface is quite limited. This is intentional, and it
is expected that each class that implements this interface will provide its
own technology-specific operations.
Application-level programmers rarely access the Exchange interface (or
classes that implement it) directly. However, many classes in Camel are
generic types that are instantiated on (a class that implements) Exchange.
Because of this, the Exchange interface appears a lot in the generic
signatures of classes and methods.

Processor
The Processor interface represents a class that processes a message. The
signature of this interface is shown below.

Listing 1. Processor

package org.apache.camel;
public interface Processor {

void process(Exchange exchange) throws Exception;
}

Notice that the parameter to the process() method is an Exchange rather
than a Message. This provides flexibility. For example, an implementation of
this method initially might call exchange.getIn() to get the input message
and process it. If an error occurs during processing then the method can call
exchange.setException().
An application-level developer might implement the Processor interface
with a class that executes some business logic. However, there are many
classes in the Camel library that implement the Processor interface in a way
that provides support for a design pattern in the EIP book. For example,
ChoiceProcessor implements the message router pattern, that is, it uses a
cascading if-then-else statement to route a message from an input queue to
one of several output queues. Another example is the FilterProcessor
class which discards messages that do not satisfy a stated predicate (that is,
condition).

Routes, RouteBuilders and Java DSL
A route is the step-by-step movement of a Message from an input queue,
through arbitrary types of decision making (such as filters and routers) to a
destination queue (if any). Camel provides two ways for an application
developer to specify routes. One way is to specify route information in an
XML file. A discussion of that approach is outside the scope of this document.
The other way is through what Camel calls a Java DSL (domain-specific
language).

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 15

Introduction to Java DSL
For many people, the term "domain-specific language" implies a compiler or
interpreter that can process an input file containing keywords and syntax
specific to a particular domain. This is not the approach taken by Camel.
Camel documentation consistently uses the term "Java DSL" instead of
"DSL", but this does not entirely avoid potential confusion. The Camel "Java
DSL" is a class library that can be used in a way that looks almost like a DSL,
except that it has a bit of Java syntactic baggage. You can see this in the
example below. Comments afterwards explain some of the constructs used in
the example.

Listing 1. Example of Camel's "Java DSL"

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("queue:a").filter(header("foo").isEqualTo("bar")).to("queue:b");
from("queue:c").choice()

.when(header("foo").isEqualTo("bar")).to("queue:d")

.when(header("foo").isEqualTo("cheese")).to("queue:e")

.otherwise().to("queue:f");
}

};
CamelContext myCamelContext = new DefaultCamelContext();
myCamelContext.addRoutes(builder);

The first line in the above example creates an object which is an instance of
an anonymous subclass of RouteBuilder with the specified configure()
method.
The CamelContext.addRoutes(RouterBuilder builder) method invokes
builder.setContext(this) â€“ so the RouteBuilder object knows which
CamelContext object it is associated with â€“ and then invokes
builder.configure(). The body of configure() invokes methods such as
from(), filter(), choice(), when(), isEqualTo(), otherwise() and to().
The RouteBuilder.from(String uri) method invokes getEndpoint(uri)
on the CamelContext associated with the RouteBuilder object to get the
specified Endpoint and then puts a FromBuilder "wrapper" around this
Endpoint. The FromBuilder.filter(Predicate predicate) method
creates a FilterProcessor object for the Predicate (that is, condition)
object built from the header("foo").isEqualTo("bar") expression. In this
way, these operations incrementally build up a Route object (with a
RouteBuilder wrapper around it) and add it to the CamelContext object
associated with the RouteBuilder.

16 CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL

Critique of Java DSL
The online Camel documentation compares Java DSL favourably against the
alternative of configuring routes and endpoints in a XML-based Spring
configuration file. In particular, Java DSL is less verbose than its XML
counterpart. In addition, many integrated development environments (IDEs)
provide an auto-completion feature in their editors. This auto-completion
feature works with Java DSL, thereby making it easier for developers to write
Java DSL.
However, there is another option that the Camel documentation neglects to
consider: that of writing a parser that can process DSL stored in, say, an
external file. Currently, Camel does not provide such a DSL parser, and I do
not know if it is on the "to do" list of the Camel maintainers. I think that a
DSL parser would offer a significant benefit over the current Java DSL. In
particular, the DSL would have a syntactic definition that could be expressed
in a relatively short BNF form. The effort required by a Camel user to learn
how to use DSL by reading this BNF would almost certainly be significantly
less than the effort currently required to study the API of the RouterBuilder
classes.

Continue Learning about Camel
Return to the main Getting Started page for additional introductory reference
information.

CHAPTER 3 - GETTING STARTED WITH APACHE CAMEL 17

http://camel.apache.org/getting-started.html

CHAPTER 4

°°°°

Architecture

Camel uses a Java based Routing Domain Specific Language (DSL) or an Xml
Configuration to configure routing and mediation rules which are added to a
CamelContext to implement the various Enterprise Integration Patterns.

At a high level Camel consists of a CamelContext which contains a
collection of Component instances. A Component is essentially a factory of
Endpoint instances. You can explicitly configure Component instances in Java
code or an IoC container like Spring or Guice, or they can be auto-discovered
using URIs.

An Endpoint acts rather like a URI or URL in a web application or a
Destination in a JMS system; you can communicate with an endpoint; either
sending messages to it or consuming messages from it. You can then create
a Producer or Consumer on an Endpoint to exchange messages with it.

The DSL makes heavy use of pluggable Languages to create an Expression
or Predicate to make a truly powerful DSL which is extensible to the most
suitable language depending on your needs. The following languages are
supported

• Bean Language for using Java for expressions
• Constant
• the unified EL from JSP and JSF
• Header
• JXPath
• Mvel
• OGNL
• Ref Language
• Property
• Scripting Languages such as

◦ BeanShell
◦ JavaScript
◦ Groovy
◦ Python
◦ PHP
◦ Ruby

• Simple
◦ File Language

18 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/routes.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/component.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/uris.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html
http://camel.apache.org/languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/constant.html
http://camel.apache.org/el.html
http://camel.apache.org/header.html
http://camel.apache.org/jxpath.html
http://camel.apache.org/mvel.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ref-language.html
http://camel.apache.org/property.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/javascript.html
http://camel.apache.org/groovy.html
http://camel.apache.org/python.html
http://camel.apache.org/php.html
http://camel.apache.org/ruby.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html

• Spring Expression Language
• SQL
• Tokenizer
• XPath
• XQuery
• VTD-XML

Most of these languages is also supported used as Annotation Based
Expression Language.

For a full details of the individual languages see the Language Appendix

URIS
Camel makes extensive use of URIs to allow you to refer to endpoints which
are lazily created by a Component if you refer to them within Routes

Current Supported URIs

Component / ArtifactId / URI Description
AHC / camel-ahc

ahc:hostname:[port]

To call external HTTP
services using Async Http
Client

AMQP / camel-amqp

amqp:[topic:]destinationName
For Messaging with AMQP
protocol

APNS / camel-apns

apns:notify[?options]
For sending notifications to
Apple iOS devices

Atom / camel-atom

atom:uri

Working with Apache
Abdera for atom integration,
such as consuming an atom
feed.

Avro / camel-avro

avro:http://hostname[:port][?options]
Working with Apache Avro
for data serialization.

CHAPTER 4 - ARCHITECTURE 19

http://camel.apache.org/spel.html
http://camel.apache.org/sql.html
http://camel.apache.org/tokenizer.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/vtd-xml.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/book-languages-appendix.html
http://camel.apache.org/component.html
http://camel.apache.org/routes.html
http://camel.apache.org/ahc.html
http://github.com/sonatype/async-http-client
http://github.com/sonatype/async-http-client
http://camel.apache.org/amqp.html
http://www.amqp.org/
http://www.amqp.org/
http://camel.apache.org/apns.html
http://camel.apache.org/atom.html
http://incubator.apache.org/abdera/
http://incubator.apache.org/abdera/
http://camel.apache.org/avro.html
http://avro.apache.org/

AWS-CW / camel-aws

aws-cw://namespace[?options]
For working with Amazon's
CloudWatch (CW).

AWS-DDB / camel-aws

aws-ddb://tableName[?options]
For working with Amazon's
DynamoDB (DDB).

AWS-SDB / camel-aws

aws-sdb://domainName[?options]
For working with Amazon's
SimpleDB (SDB).

AWS-SES / camel-aws

aws-ses://from[?options]
For working with Amazon's
Simple Email Service (SES).

AWS-SNS / camel-aws

aws-sns://topicname[?options]

For Messaging with
Amazon's Simple
Notification Service (SNS).

AWS-SQS / camel-aws

aws-sqs://queuename[?options]

For Messaging with
Amazon's Simple Queue
Service (SQS).

AWS-S3 / camel-aws

aws-s3://bucketname[?options]
For working with Amazon's
Simple Storage Service (S3).

Bean / camel-core

bean:beanName[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
beans in the Registry. Is also
used for exposing and
invoking POJO (Plain Old
Java Objects).

20 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/aws-cw.html
http://camel.apache.org/aws.html
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/cloudwatch/
http://camel.apache.org/aws-ddb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/dynamodb/
http://camel.apache.org/aws-sdb.html
http://camel.apache.org/aws.html
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://camel.apache.org/aws-ses.html
http://camel.apache.org/aws.html
http://aws.amazon.com/ses/
http://aws.amazon.com/ses/
http://camel.apache.org/aws-sns.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sns/
http://aws.amazon.com/sns/
http://camel.apache.org/aws-sqs.html
http://camel.apache.org/aws.html
http://aws.amazon.com/sqs/
http://aws.amazon.com/sqs/
http://camel.apache.org/aws-s3.html
http://camel.apache.org/aws.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html

Bean Validation / camel-bean-validator

bean-validator:something

Validates the payload of a
message using the Java
Validation API (JSR 303 and
JAXP Validation) and its
reference implementation
Hibernate Validator

Browse / camel-core

browse:someName

Provides a simple
BrowsableEndpoint which
can be useful for testing,
visualisation tools or
debugging. The exchanges
sent to the endpoint are all
available to be browsed.

Cache / camel-cache

cache://cachename[?options]

The cache component
facilitates creation of
caching endpoints and
processors using EHCache
as the cache
implementation.

Class / camel-core

class:className[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
beans in the Registry. Is also
used for exposing and
invoking POJO (Plain Old
Java Objects).

CMIS / camel-cmis

cmis://cmisServerUrl[?options]

Uses the Apache Chemistry
client API to interface with
CMIS supporting CMS

Cometd / camel-cometd

cometd://host:port/channelname

Used to deliver messages
using the jetty cometd
implementation of the
bayeux protocol

CHAPTER 4 - ARCHITECTURE 21

http://camel.apache.org/bean-validation.html
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/stable/validator/reference/en/html_single/
http://camel.apache.org/browse.html
http://camel.apache.org/browsableendpoint.html
http://camel.apache.org/cache.html
http://ehcache.org/
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/cmis.html
http://chemistry.apache.org/java/opencmis.html
http://camel.apache.org/cometd.html
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://docs.codehaus.org/display/JETTY/Cometd+(aka+Bayeux)
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

Context / camel-context

context:camelContextId:localEndpointName

Used to refer to endpoints
within a separate
CamelContext to provide a
simple black box
composition approach so
that routes can be combined
into a CamelContext and
then used as a black box
component inside other
routes in other
CamelContexts

ControlBus / camel-core

controlbus:command[?options]

ControlBus EIP that allows to
send messages to Endpoints
for managing and
monitoring your Camel
applications.

Crypto (Digital Signatures) / camel-crypto

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify
exchanges using the
Signature Service of the
Java Cryptographic
Extension.

CXF / camel-cxf

cxf:address[?serviceClass=...]
Working with Apache CXF
for web services integration

CXF Bean / camel-cxf

cxf:bean name

Proceess the exchange
using a JAX WS or JAX RS
annotated bean from the
registry. Requires less
configuration than the
above CXF Component

CXFRS / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF
for REST services
integration

22 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/context.html
http://camel.apache.org/controlbus-component.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/crypto-digital-signatures.html
http://camel.apache.org/cxf.html
http://apache.org/cxf/
http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/cxfrs.html
http://apache.org/cxf/

DataSet / camel-core

dataset:name

For load & soak testing the
DataSet provides a way to
create huge numbers of
messages for sending to
Components or asserting
that they are consumed
correctly

Direct / camel-core

direct:name

Synchronous call to another
endpoint from same
CamelContext.

Direct-VM / camel-core

direct-vm:name

Synchronous call to another
endpoint in another
CamelContext running in
the same JVM.

DNS / camel-dns

dns:operation

To lookup domain
information and run DNS
queries using DNSJava

EJB / camel-ejb

ejb:ejbName[?method=someMethod]

Uses the Bean Binding to
bind message exchanges to
EJBs. It works like the Bean
component but just for
accessing EJBs. Supports EJB
3.0 onwards.

ElasticSearch / camel-elasticsearch

elasticsearch://clusterName
For interfacing with an
ElasticSearch server.

Event / camel-spring

event://default
spring-event://default

Working with Spring
ApplicationEvents

EventAdmin / camel-eventadmin

eventadmin:topic
Receiving OSGi EventAdmin
events

CHAPTER 4 - ARCHITECTURE 23

http://camel.apache.org/dataset.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/components.html
http://camel.apache.org/direct.html
http://camel.apache.org/direct-vm.html
http://camel.apache.org/dns.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/ejb.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://camel.apache.org/elasticsearch.html
http://elasticsearch.org
http://camel.apache.org/event.html
http://camel.apache.org/eventadmin.html

Exec / camel-exec

exec://executable[?options]
For executing system
commands

File / camel-core

file://nameOfFileOrDirectory
Sending messages to a file
or polling a file or directory.

Flatpack / camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or
delimited files or messages
using the FlatPack library

FOP / camel-fop

fop:outputFormat

Renders the message into
different output formats
using Apache FOP

FreeMarker / camel-freemarker

freemarker:someTemplateResource
Generates a response using
a FreeMarker template

FTP / camel-ftp

ftp://host[:port]/fileName
Sending and receiving files
over FTP.

FTPS / camel-ftp

ftps://host[:port]/fileName

Sending and receiving files
over FTP Secure (TLS and
SSL).

GAuth / camel-gae

gauth://name[?options]

Used by web applications to
implement an OAuth
consumer. See also Camel
Components for Google App
Engine.

24 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/exec.html
http://camel.apache.org/file2.html
http://camel.apache.org/flatpack.html
http://flatpack.sourceforge.net
http://camel.apache.org/fop.html
http://xmlgraphics.apache.org/fop/index.html
http://camel.apache.org/freemarker.html
http://freemarker.org/
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/gauth.html
http://camel.apache.org/gae.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html

GHttp / camel-gae

ghttp://hostname[:port][/path][?options]
ghttp:///path[?options]

Provides connectivity to the
URL fetch service of Google
App Engine but can also be
used to receive messages
from servlets. See also
Camel Components for
Google App Engine.

GLogin / camel-gae

glogin://hostname[:port][?options]

Used by Camel applications
outside Google App Engine
(GAE) for programmatic
login to GAE applications.
See also Camel Components
for Google App Engine.

GTask / camel-gae

gtask://queue-name

Supports asynchronous
message processing on
Google App Engine by using
the task queueing service as
message queue. See also
Camel Components for
Google App Engine.

GMail / camel-gae

gmail://user@gmail.com[?options]
gmail://user@googlemail.com[?options]

Supports sending of emails
via the mail service of
Google App Engine. See also
Camel Components for
Google App Engine.

Google Guava EventBus / camel-guava-
eventbus

guava-eventbus:busName[?eventClass=className]

The Google Guava EventBus
allows publish-subscribe-
style communication
between components
without requiring the
components to explicitly
register with one another
(and thus be aware of each
other). This component
provides integration bridge
between Camel and Google
Guava EventBus
infrastructure.

CHAPTER 4 - ARCHITECTURE 25

http://camel.apache.org/ghttp.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gtask.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/gmail.html
http://camel.apache.org/gae.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camel.apache.org/guava-eventbus.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html
http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/eventbus/package-summary.html

Hazelcast / camel-hazelcast

hazelcast://[type]:cachename[?options]

Hazelcast is a data grid
entirely implemented in Java
(single jar). This component
supports map, multimap,
seda, queue, set, atomic
number and simple cluster
support.

HBase / camel-hbase

hbase://table[?options]

For reading/writing from/to
an HBase store (Hadoop
database)

HDFS / camel-hdfs

hdfs://path[?options]
For reading/writing from/to
an HDFS filesystem

HL7 / camel-hl7

mina:tcp://hostname[:port]

For working with the HL7
MLLP protocol and the HL7
model using the HAPI library

HTTP / camel-http

http://hostname[:port]

For calling out to external
HTTP servers using Apache
HTTP Client 3.x

HTTP4 / camel-http4

http4://hostname[:port]

For calling out to external
HTTP servers using Apache
HTTP Client 4.x

iBATIS / camel-ibatis

ibatis://statementName

Performs a query, poll,
insert, update or delete in a
relational database using
Apache iBATIS

IMAP / camel-mail

imap://hostname[:port]
Receiving email using IMAP

26 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/hazelcast-component.html
http://www.hazelcast.com
http://camel.apache.org/hbase.html
http://hadoop.apache.org/hbase/
http://camel.apache.org/hdfs.html
http://hadoop.apache.org/hdfs/
http://camel.apache.org/hl7.html
http://hl7api.sourceforge.net
http://camel.apache.org/http.html
http://camel.apache.org/http4.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/mail.html
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol

IRC / camel-irc

irc:host[:port]/#room
For IRC communication

JavaSpace / camel-javaspace

javaspace:jini://host?spaceName=mySpace?...

Sending and receiving
messages through
JavaSpace

JBI / servicemix-camel

jbi:serviceName

For JBI integration such as
working with Apache
ServiceMix

jclouds / jclouds

jclouds:[blobstore|computservice]:provider

For interacting with cloud
compute & blobstore service
via jclouds

JCR / camel-jcr

jcr://user:password@repository/path/to/node

Storing a message in a JCR
compliant repository like
Apache Jackrabbit

JDBC / camel-jdbc

jdbc:dataSourceName?options
For performing JDBC queries
and operations

Jetty / camel-jetty

jetty:url
For exposing services over
HTTP

JMS / camel-jms

jms:[topic:]destinationName
Working with JMS providers

JMX / camel-jmx

jmx://platform?options
For working with JMX
notification listeners

CHAPTER 4 - ARCHITECTURE 27

http://camel.apache.org/irc.html
http://camel.apache.org/javaspace.html
http://java.sun.com/products/jini/2.1/doc/specs/html/js-spec.html
http://camel.apache.org/jbi.html
http://servicemix.apache.org
http://servicemix.apache.org
http://camel.apache.org/jclouds.html
http://www.jclouds.org
http://camel.apache.org/jcr.html
http://jackrabbit.apache.org
http://camel.apache.org/jdbc.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jms.html
http://camel.apache.org/jmx.html

JPA / camel-jpa

jpa://entityName

For using a database as a
queue via the JPA
specification for working
with OpenJPA, Hibernate or
TopLink

Jsch / camel-jsch

scp://localhost/destination
Support for the scp protocol

JT/400 / camel-jt400

jt400://user:pwd@system/<path_to_dtaq>

For integrating with data
queues on an AS/400 (aka
System i, IBM i, i5, ...)
system

Kestrel / camel-kestrel

kestrel://[addresslist/]queuename[?options]

For producing to or
consuming from Kestrel
queues

Krati / camel-krati

krati://[path to datastore/][?options]

For producing to or
consuming to Krati
datastores

Language / camel-core

language://languageName[:script][?options]
Executes Languages scripts

LDAP / camel-ldap

ldap:host[:port]?base=...[&scope=<scope>]

Performing searches on
LDAP servers (<scope>
must be one of
object|onelevel|subtree)

Log / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons
Logging to log the message
exchange to some
underlying logging system
like log4j

28 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/jpa.html
http://openjpa.apache.org/
http://www.hibernate.org/
http://camel.apache.org/jsch.html
http://camel.apache.org/jt400.html
http://camel.apache.org/kestrel.html
https://github.com/robey/kestrel
http://camel.apache.org/krati.html
http://sna-projects.com/krati/
http://camel.apache.org/language.html
http://camel.apache.org/languages.html
http://camel.apache.org/ldap.html
http://camel.apache.org/log.html

Lucene / camel-lucene

lucene:searcherName:insert[?analyzer=<analyzer>]
lucene:searcherName:query[?analyzer=<analyzer>]

Uses Apache Lucene to
perform Java-based indexing
and full text based searches
using advanced analysis/
tokenization capabilities

Mail / camel-mail

mail://user-info@host:port
Sending and receiving email

MINA / camel-mina

[tcp|udp|vm]:host[:port]
Working with Apache MINA

Mock / camel-core

mock:name
For testing routes and
mediation rules using mocks

MongoDB / camel-mongodb

mongodb:connection?options

Interacts with MongoDB
databases and collections.
Offers producer endpoints to
perform CRUD-style
operations and more against
databases and collections,
as well as consumer
endpoints to listen on
collections and dispatch
objects to Camel routes

MQTT / camel-mqtt

mqtt:name

Component for
communicating with MQTT
M2M message brokers

MSV / camel-msv

msv:someLocalOrRemoteResource

Validates the payload of a
message using the MSV
Library

MyBatis / camel-mybatis

mybatis://statementName

Performs a query, poll,
insert, update or delete in a
relational database using
MyBatis

CHAPTER 4 - ARCHITECTURE 29

http://camel.apache.org/lucene.html
http://camel.apache.org/mail.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/mock.html
http://camel.apache.org/mongodb.html
http://www.mongodb.org/
http://camel.apache.org/mqtt.html
http://mqtt.org
http://camel.apache.org/msv.html
https://msv.dev.java.net/
https://msv.dev.java.net/
http://camel.apache.org/mybatis.html
http://mybatis.org/

Nagios / camel-nagios

nagios://host[:port]?options
Sending passive checks to
Nagios using JSendNSCA

Netty / camel-netty

netty:tcp//host[:port]?options
netty:udp//host[:port]?options

Working with TCP and UDP
protocols using Java NIO
based capabilities offered by
the JBoss Netty community
project

Pax-Logging / camel-paxlogging

paxlogging:appender
Receiving Pax-Logging
events in OSGi

POP / camel-mail

pop3://user-info@host:port
Receiving email using POP3
and JavaMail

Printer / camel-printer

lpr://host:port/path/to/printer[?options]

The printer component
facilitates creation of printer
endpoints to local, remote
and wireless printers. The
endpoints provide the ability
to print camel directed
payloads when utilized on
camel routes.

Properties / camel-core

properties://key[?options]

The properties component
facilitates using property
placeholders directly in
endpoint uri definitions.

Quartz / camel-quartz

quartz://groupName/timerName

Provides a scheduled
delivery of messages using
the Quartz scheduler

Quickfix / camel-quickfix

quickfix-server:config file
quickfix-client:config-file

Implementation of the
QuickFix for Java engine
which allow to send/receive
FIX messages

30 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/nagios.html
http://www.nagios.org/
http://code.google.com/p/jsendnsca/
http://camel.apache.org/netty.html
http://www.jboss.org/netty
http://camel.apache.org/pax-logging.html
http://camel.apache.org/mail.html
http://camel.apache.org/printer.html
http://camel.apache.org/properties.html
http://camel.apache.org/quartz.html
http://www.quartz-scheduler.org/
http://camel.apache.org/quickfix.html
http://www.fixprotocol.org

Redis / camel-redis

redis:restletUrl[?options]

Component for consuming
and producing from Redis
key-value store Redis

Ref / camel-core

ref:name

Component for lookup of
existing endpoints bound in
the Registry.

Restlet / camel-restlet

restlet:restletUrl[?options]

Component for consuming
and producing Restful
resources using Restlet

RMI / camel-rmi

rmi://host[:port]
Working with RMI

RNC / camel-jing

rnc:/relativeOrAbsoluteUri

Validates the payload of a
message using RelaxNG
Compact Syntax

RNG / camel-jing

rng:/relativeOrAbsoluteUri
Validates the payload of a
message using RelaxNG

Routebox / camel-routebox

routebox:routeboxName[?options]

Facilitates the creation of
specialized endpoints that
offer encapsulation and a
strategy/map based
indirection service to a
collection of camel routes
hosted in an automatically
created or user injected
camel context

RSS / camel-rss

rss:uri

Working with ROME for RSS
integration, such as
consuming an RSS feed.

CHAPTER 4 - ARCHITECTURE 31

http://camel.apache.org/redis.html
http://redis.io
http://camel.apache.org/ref.html
http://camel.apache.org/registry.html
http://camel.apache.org/restlet.html
http://www.restlet.org
http://camel.apache.org/rmi.html
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://camel.apache.org/jing.html
http://relaxng.org/
http://camel.apache.org/routebox.html
http://camel.apache.org/rss.html
http://rometools.org/

SEDA / camel-core

seda:name

Asynchronous call to
another endpoint in the
same Camel Context

SERVLET / camel-servlet

servlet:uri

For exposing services over
HTTP through the servlet
which is deployed into the
Web container.

SFTP / camel-ftp

sftp://host[:port]/fileName
Sending and receiving files
over SFTP (FTP over SSH).

Sip / camel-sip

sip://user@host[:port]?[options]
sips://user@host[:port]?[options]

Publish/Subscribe
communication capability
using the Telecom SIP
protocol. RFC3903 - Session
Initiation Protocol (SIP)
Extension for Event

SJMS / camel-sjms

sjms:[topic:]destinationName?[options]
A ground up implementation
of a JMS client

SMTP / camel-mail

smtp://user-info@host[:port]
Sending email using SMTP
and JavaMail

SMPP / camel-smpp

smpp://user-info@host[:port]?options

To send and receive SMS
using Short Messaging
Service Center using the
JSMPP library

SNMP / camel-snmp

snmp://host[:port]?options

Polling OID values and
receiving traps using SNMP
via SNMP4J library

Solr / camel-solr

solr://host[:port]/solr?[options]

Uses the Solrj client API to
interface with an Apache
Lucene Solr server

32 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/seda.html
http://camel.apache.org/servlet.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/sip.html
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt
http://camel.apache.org/sjms.html
http://camel.apache.org/mail.html
http://camel.apache.org/smpp.html
http://code.google.com/p/jsmpp/
http://camel.apache.org/snmp.html
http://snmp4j.com
http://camel.apache.org/solr.html
http://wiki.apache.org/solr/Solrj
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

SpringBatch / camel-spring-batch

spring-batch:job[?options]
To bridge Camel and Spring
Batch

SpringIntegration / camel-spring-integration

spring-integration:defaultChannelName

The bridge component of
Camel and Spring
Integration

Spring LDAP / camel-spring-ldap

spring-ldap:spring-ldap-template-bean?options
Camel wrapper for Spring
LDAP

Spring Web Services / camel-spring-ws

spring-ws:[mapping-type:]address[?options]

Client-side support for
accessing web services, and
server-side support for
creating your own contract-
first web services using
Spring Web Services

SQL / camel-sql

sql:select * from table where id=#
Performing SQL queries
using JDBC

SSH component / camel-ssh

ssh:[username[:password]@]host[:port][?options]
For sending commands to a
SSH server

StAX / camel-stax

stax:contentHandlerClassName
Process messages through a
SAX ContentHandler.

Stream / camel-stream

stream:[in|out|err|file]

Read or write to an input/
output/error/file stream
rather like unix pipes

StringTemplate / camel-stringtemplate

string-template:someTemplateResource
Generates a response using
a String Template

CHAPTER 4 - ARCHITECTURE 33

http://camel.apache.org/springbatch.html
http://www.springsource.org/spring-batch
http://www.springsource.org/spring-batch
http://camel.apache.org/springintegration.html
http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://camel.apache.org/spring-ldap.html
http://www.springsource.org/ldap
http://www.springsource.org/ldap
http://camel.apache.org/spring-web-services.html
http://static.springsource.org/spring-ws/sites/1.5/
http://camel.apache.org/sql-component.html
http://camel.apache.org/ssh.html
http://camel.apache.org/stax.html
http://download.oracle.com/javase/6/docs/api/org/xml/sax/ContentHandler.html
http://camel.apache.org/stream.html
http://camel.apache.org/stringtemplate.html
http://www.stringtemplate.org/

Stub / camel-core

stub:someOtherCamelUri

Allows you to stub out some
physical middleware
endpoint for easier testing
or debugging

TCP / camel-mina

mina:tcp://host:port
Working with TCP protocols
using Apache MINA

Test / camel-spring

test:expectedMessagesEndpointUri

Creates a Mock endpoint
which expects to receive all
the message bodies that
could be polled from the
given underlying endpoint

Timer / camel-core

timer://name
A timer endpoint

Twitter / camel-twitter

twitter://[endpoint]?[options]
A twitter endpoint

UDP / camel-mina

mina:udp://host:port
Working with UDP protocols
using Apache MINA

Validation / camel-core (camel-spring for
Camel 2.8 or older)

validation:someLocalOrRemoteResource

Validates the payload of a
message using XML Schema
and JAXP Validation

Velocity / camel-velocity

velocity:someTemplateResource
Generates a response using
an Apache Velocity template

VM / camel-core

vm:name

Asynchronous call to
another endpoint in the
same JVM

34 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/stub.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/timer.html
http://camel.apache.org/twitter.html
http://camel.apache.org/mina.html
http://mina.apache.org/
http://camel.apache.org/validation.html
http://www.w3.org/XML/Schema
http://camel.apache.org/velocity.html
http://velocity.apache.org/
http://camel.apache.org/vm.html

Websocket / camel-websocket

websocket://host:port/path
Communicating with
Websocket clients

XMPP / camel-xmpp

xmpp://host:port/room
Working with XMPP and
Jabber

XQuery / camel-saxon

xquery:someXQueryResource
Generates a response using
an XQuery template

XSLT / camel-core (camel-spring for Camel
2.8 or older)

xslt:someTemplateResource

Generates a response using
an XSLT template

Zookeeper / camel-zookeeper

zookeeper://host:port/path
Working with ZooKeeper
cluster(s)

URI's for external components
Other projects and companies have also created Camel components to
integrate additional functionality into Camel. These components may be
provided under licenses that are not compatible with the Apache License, use
libraries that are not compatible, etc... These components are not supported
by the Camel team, but we provide links here to help users find the
additional functionality.
Component / ArtifactId / URI License Description
ActiveMQ / activemq-camel

activemq:[topic:]destinationName
Apache For JMS Messaging with

Apache ActiveMQ

CHAPTER 4 - ARCHITECTURE 35

http://camel.apache.org/websocket.html
http://wiki.eclipse.org/Jetty/Feature/WebSockets
http://camel.apache.org/xmpp.html
http://camel.apache.org/xquery-endpoint.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html
http://hadoop.apache.org/zookeeper/
http://camel.apache.org/activemq.html
http://activemq.apache.org/

ActiveMQ Journal / activemq-core

activemq.journal:directory-on-filesystem
Apache

Uses ActiveMQ's fast
disk journaling
implementation to store
message bodies in a
rolling log file

Activiti / activiti-camel

activiti:camelProcess:serviceTask
Apache

For working with Activiti,
a light-weight workflow
and Business Process
Management (BPM)
platform which supports
BPMN 2

Db4o / camel-db4o in camel-extra

db4o://className
GPL

For using a db4o
datastore as a queue via
the db4o library

Esper / camel-esper in camel-extra

esper:name
GPL

Working with the Esper
Library for Event Stream
Processing

Hibernate / camel-hibernate in
camel-extra

hibernate://entityName
GPL

For using a database as
a queue via the
Hibernate library

JGroups / camel-jgroups in camel-
extra

jgroups://clusterName
LGPL

The jgroups:
component provides
exchange of messages
between Camel
infrastructure and
JGroups clusters.

NMR / servicemix-nmr

nmr://serviceName
Apache

Integration with the
Normalized Message
Router BUS in
ServiceMix 4.x

Scalate / scalate-camel

scalate:templateName
Apache

Uses the given Scalate
template to transform
the message

36 CHAPTER 4 - ARCHITECTURE

http://camel.apache.org/activemq-journal.html
http://www.activiti.org/
http://www.activiti.org/
http://camel.apache.org/db4o.html
http://code.google.com/p/camel-extra/
http://www.db4o.com/
http://camel.apache.org/esper.html
http://code.google.com/p/camel-extra/
http://esper.codehaus.org
http://esper.codehaus.org
http://camel.apache.org/hibernate.html
http://code.google.com/p/camel-extra/
http://www.hibernate.org/
http://camel.apache.org/jgroups.html
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://camel.apache.org/nmr.html
http://servicemix.apache.org/SMX4NMR/index.html
http://scalate.fusesource.org/camel.html
http://scalate.fusesource.org/

Smooks / camel-smooks in camel-
extra.

unmarshal(edi)
GPL

For working with EDI
parsing using the
Smooks library. This
component is
deprecated as Smooks
now provides Camel
integration out of the
box

ZeroMQ / camel-zeromq in camel-
extra.

zeromq:(tcp|ipc)://hostname:port
LGPL

The ZeroMQ component
allows you to consumer
or produce messages
using ZeroMQ.

For a full details of the individual components see the Component Appendix

CHAPTER 4 - ARCHITECTURE 37

http://camel.apache.org/smooks.html
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://milyn.codehaus.org/Smooks
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://www.smooks.org/mediawiki/index.php?title=V1.5:Smooks_v1.5_User_Guide#Apache_Camel_Integration
http://camel.apache.org/zeromq.html
http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://zeromq.org
http://camel.apache.org/book-component-appendix.html

CHAPTER 5

°°°°

Enterprise Integration
Patterns

Camel supports most of the Enterprise Integration Patterns from the
excellent book of the same name by Gregor Hohpe and Bobby Woolf. Its a
highly recommended book, particularly for users of Camel.

PATTERN INDEX
There now follows a list of the Enterprise Integration Patterns from the book
along with examples of the various patterns using Apache Camel

Messaging Systems

Message
Channel

How does one application communicate with
another using messaging?

Message How can two applications connected by a message
channel exchange a piece of information?

Pipes and
Filters

How can we perform complex processing on a
message while maintaining independence and
flexibility?

Message
Router

How can you decouple individual processing steps
so that messages can be passed to different filters
depending on a set of conditions?

Message
Translator

How can systems using different data formats
communicate with each other using messaging?

Message
Endpoint

How does an application connect to a messaging
channel to send and receive messages?

38 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.amazon.com/dp/0321200683?tag=enterpriseint-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=0321200683&adid=1VPQTCMNNEMCJXPKRFPG&
http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

Messaging Channels

Point to
Point
Channel

How can the caller be sure that exactly one
receiver will receive the document or perform the
call?

Publish
Subscribe
Channel

How can the sender broadcast an event to all
interested receivers?

Dead Letter
Channel

What will the messaging system do with a
message it cannot deliver?

Guaranteed
Delivery

How can the sender make sure that a message
will be delivered, even if the messaging system
fails?

Message
Bus

What is an architecture that enables separate
applications to work together, but in a de-coupled
fashion such that applications can be easily added
or removed without affecting the others?

Message Construction

Event
Message

How can messaging be used to transmit events
from one application to another?

Request
Reply

When an application sends a message, how can it
get a response from the receiver?

Correlation
Identifier

How does a requestor that has received a reply
know which request this is the reply for?

Return
Address How does a replier know where to send the reply?

Message Routing

Content
Based
Router

How do we handle a situation where the
implementation of a single logical function (e.g.,
inventory check) is spread across multiple
physical systems?

Message
Filter

How can a component avoid receiving
uninteresting messages?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 39

http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/publish-subscribe-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/guaranteed-delivery.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/message-bus.html
http://camel.apache.org/event-message.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/return-address.html
http://camel.apache.org/return-address.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html

Dynamic
Router

How can you avoid the dependency of the
router on all possible destinations while
maintaining its efficiency?

Recipient
List

How do we route a message to a list of (static or
dynamically) specified recipients?

Splitter
How can we process a message if it contains
multiple elements, each of which may have to
be processed in a different way?

Aggregator
How do we combine the results of individual,
but related messages so that they can be
processed as a whole?

Resequencer How can we get a stream of related but out-of-
sequence messages back into the correct order?

Composed
Message
Processor

How can you maintain the overall message flow
when processing a message consisting of
multiple elements, each of which may require
different processing?

Scatter-
Gather

How do you maintain the overall message flow
when a message needs to be sent to multiple
recipients, each of which may send a reply?

Routing Slip
How do we route a message consecutively
through a series of processing steps when the
sequence of steps is not known at design-time
and may vary for each message?

Throttler
How can I throttle messages to ensure that a
specific endpoint does not get overloaded, or
we don't exceed an agreed SLA with some
external service?

Sampling
How can I sample one message out of many in a
given period to avoid downstream route does
not get overloaded?

Delayer How can I delay the sending of a message?
Load
Balancer

How can I balance load across a number of
endpoints?

Multicast How can I route a message to a number of
endpoints at the same time?

40 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/dynamic-router.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/composed-message-processor.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/scatter-gather.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/throttler.html
http://camel.apache.org/sampling.html
http://camel.apache.org/delayer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/multicast.html

Loop How can I repeat processing a message in a
loop?

Message Transformation

Content
Enricher

How do we communicate with another system if
the message originator does not have all the
required data items available?

Content
Filter

How do you simplify dealing with a large message,
when you are interested only in a few data items?

Claim
Check

How can we reduce the data volume of message
sent across the system without sacrificing
information content?

Normalizer
How do you process messages that are
semantically equivalent, but arrive in a different
format?

Sort How can I sort the body of a message?
Validate How can I validate a message?

Messaging Endpoints

Messaging
Mapper

How do you move data between domain objects
and the messaging infrastructure while keeping
the two independent of each other?

Event Driven
Consumer

How can an application automatically consume
messages as they become available?

Polling
Consumer

How can an application consume a message
when the application is ready?

Competing
Consumers

How can a messaging client process multiple
messages concurrently?

Message
Dispatcher

How can multiple consumers on a single channel
coordinate their message processing?

Selective
Consumer

How can a message consumer select which
messages it wishes to receive?

Durable
Subscriber

How can a subscriber avoid missing messages
while it's not listening for them?

CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS 41

http://camel.apache.org/loop.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/content-filter.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/claim-check.html
http://camel.apache.org/normalizer.html
http://camel.apache.org/sort.html
http://camel.apache.org/validate.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/messaging-mapper.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/durable-subscriber.html
http://camel.apache.org/durable-subscriber.html

Idempotent
Consumer

How can a message receiver deal with duplicate
messages?

Transactional
Client

How can a client control its transactions with the
messaging system?

Messaging
Gateway

How do you encapsulate access to the
messaging system from the rest of the
application?

Service
Activator

How can an application design a service to be
invoked both via various messaging technologies
and via non-messaging techniques?

System Management

ControlBus
How can we effectively administer a messaging
system that is distributed across multiple platforms
and a wide geographic area?

Detour
How can you route a message through
intermediate steps to perform validation, testing or
debugging functions?

Wire Tap How do you inspect messages that travel on a
point-to-point channel?

Message
History

How can we effectively analyze and debug the flow
of messages in a loosely coupled system?

Log How can I log processing a message?
For a full breakdown of each pattern see the Book Pattern Appendix

42 CHAPTER 5 - ENTERPRISE INTEGRATION PATTERNS

http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/service-activator.html
http://camel.apache.org/controlbus.html
http://camel.apache.org/detour.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/message-history.html
http://camel.apache.org/message-history.html
http://camel.apache.org/logeip.html
http://camel.apache.org/book-pattern-appendix.html

CookBook

This document describes various recipes for working with Camel
• Bean Integration describes how to work with beans and Camel in a

loosely coupled way so that your beans do not have to depend on
any Camel APIs

◦ Annotation Based Expression Language binds expressions to
method parameters

◦ Bean Binding defines which methods are invoked and how
the Message is converted into the parameters of the method
when it is invoked

◦ Bean Injection for injecting Camel related resources into your
POJOs

◦ Parameter Binding Annotations for extracting various
headers, properties or payloads from a Message

◦ POJO Consuming for consuming and possibly routing
messages from Camel

◦ POJO Producing for producing camel messages from your
POJOs

◦ RecipientList Annotation for creating a Recipient List from a
POJO method

◦ Using Exchange Pattern Annotations describes how pattern
annotations can be used to change the behaviour of method
invocations

• Hiding Middleware describes how to avoid your business logic being
coupled to any particular middleware APIs allowing you to easily
switch from in JVM SEDA to JMS, ActiveMQ, Hibernate, JPA, JDBC,
iBATIS or JavaSpace etc.

• Visualisation describes how to visualise your Enterprise Integration
Patterns to help you understand your routing rules

• Business Activity Monitoring (BAM) for monitoring business processes
across systems

• Extract Transform Load (ETL) to load data into systems or databases
• Testing for testing distributed and asynchronous systems using a

messaging approach
◦ Camel Test for creating test cases using a single Java class

for all your configuration and routing
◦ Spring Testing uses Spring Test together with either XML or

Java Config to dependency inject your test classes
◦ Guice uses Guice to dependency inject your test classes

COOKBOOK 43

http://camel.apache.org/bean-integration.html
http://camel.apache.org/annotation-based-expression-language.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/hiding-middleware.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/visualisation.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bam.html
http://camel.apache.org/etl.html
http://camel.apache.org/testing.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html

• Templating is a great way to create service stubs to be able to test
your system without some back end system.

• Database for working with databases
• Parallel Processing and Ordering on how using parallel processing

and SEDA or JMS based load balancing can be achieved.
• Asynchronous Processing in Camel Routes.
• Implementing Virtual Topics on other JMS providers shows how to get

the effect of Virtual Topics and avoid issues with JMS durable topics
• Camel Transport for CXF describes how to put the Camel context into

the CXF transport layer.
• Fine Grained Control Over a Channel describes how to deliver a

sequence of messages over a single channel and then stopping any
more messages being sent over that channel. Typically used for
sending data over a socket and then closing the socket.

• EventNotifier to log details about all sent Exchanges shows how to let
Camels EventNotifier log all sent to endpoint events and how long
time it took.

• Loading routes from XML files into an existing CamelContext.
• Using MDC logging with Camel
• Running Camel standalone and have it keep running shows how to

keep Camel running when you run it standalone.
• Hazelcast Idempotent Repository Tutorial shows how to avoid to

consume duplicated messages in a clustered environment.
• How to use Camel as a HTTP proxy between a client and server

shows how to use Camel as a HTTP adapter/proxy between a client
and HTTP service.

BEAN INTEGRATION
Camel supports the integration of beans and POJOs in a number of ways

Annotations
If a bean is defined in Spring XML or scanned using the Spring component
scanning mechanism and a <camelContext> is used or a
CamelBeanPostProcessor then we process a number of Camel annotations
to do various things such as injecting resources or producing, consuming or
routing messages.

• POJO Consuming to consume and possibly route messages from
Camel

• POJO Producing to make it easy to produce camel messages from
your POJOs

44 COOKBOOK

http://camel.apache.org/templating.html
http://camel.apache.org/database.html
http://camel.apache.org/parallel-processing-and-ordering.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/asynchronous-processing.html
http://camel.apache.org/implementing-virtual-topics-on-other-jms-providers.html
http://camel.apache.org/camel-transport-for-cxf.html
http://camel.apache.org/fine-grained-control-over-a-channel.html
http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html
http://camel.apache.org/loading-routes-from-xml-files.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/mdc-logging.html
http://camel.apache.org/running-camel-standalone-and-have-it-keep-running.html
http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/spring.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

• DynamicRouter Annotation for creating a Dynamic Router from a
POJO method

• RecipientList Annotation for creating a Recipient List from a POJO
method

• RoutingSlip Annotation for creating a Routing Slip for a POJO method
• Bean Injection to inject Camel related resources into your POJOs
• Using Exchange Pattern Annotations describes how the pattern

annotations can be used to change the behaviour of method
invocations with Spring Remoting or POJO Producing

Bean Component
The Bean component allows one to invoke a particular method. Alternately
the Bean component supports the creation of a proxy via ProxyHelper to a
Java interface; which the implementation just sends a message containing a
BeanInvocation to some Camel endpoint.

Spring Remoting
We support a Spring Remoting provider which uses Camel as the underlying
transport mechanism. The nice thing about this approach is we can use any
of the Camel transport Components to communicate between beans. It also
means we can use Content Based Router and the other Enterprise Integration
Patterns in between the beans; in particular we can use Message Translator
to be able to convert what the on-the-wire messages look like in addition to
adding various headers and so forth.

Annotation Based Expression Language
You can also use any of the Languages supported in Camel to bind
expressions to method parameters when using Bean Integration. For
example you can use any of these annotations:
Annotation Description
@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression

COOKBOOK 45

http://camel.apache.org/dynamicrouter-annotation.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routingslip-annotation.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean-injection.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html

Example
See the POJO Messaging Example for how to use the annotations for
routing and messaging.

Bean binding
Whenever Camel invokes a bean method via one of the above
methods (Bean component, Spring Remoting or POJO Consuming)
then the Bean Binding mechanism is used to figure out what
method to use (if it is not explicit) and how to bind the Message to
the parameters possibly using the Parameter Binding Annotations
or using a method name option.

@JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

46 COOKBOOK

http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html
http://camel.apache.org/pojo-messaging-example.html
http://camel.apache.org/bean.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/bean-binding.html

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can
use a Pojo where you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id
myCorrelationIdGenerator where we can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters.
However we have also annotated this one with the @Header and @Body
annotation to help Camel know what to bind here from the Message from the
Exchange being processed.

Of course this could be simplified a lot if you for instance just have a
simple id generator. But we wanted to demonstrate that you can use the
Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the
Spring Registry:

COOKBOOK 47

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy
In this example we have an Exchange that has a User object stored in the in
header. This User object has methods to get some user information. We want
to use Groovy to inject an expression that extracts and concats the fullname
of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $
placeholders that will be evaluated by Groovy.

BEAN BINDING
Bean Binding in Camel defines both which methods are invoked and also how
the Message is converted into the parameters of the method when it is
invoked.

Choosing the method to invoke
The binding of a Camel Message to a bean method call can occur in different
ways, in the following order of importance:

• if the message contains the header CamelBeanMethodName then
that method is invoked, converting the body to the type of the
method's argument.

◦ From Camel 2.8 onwards you can qualify parameter types to
select exactly which method to use among overloads with
the same name (see below for more details).

◦ From Camel 2.9 onwards you can specify parameter values
directly in the method option (see below for more details).

• you can explicitly specify the method name in the DSL or when using
POJO Consuming or POJO Producing

• if the bean has a method marked with the @Handler annotation, then
that method is selected

• if the bean can be converted to a Processor using the Type Converter
mechanism, then this is used to process the message. The ActiveMQ

48 COOKBOOK

http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/message.html
http://camel.apache.org/message.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/processor.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/activemq.html

component uses this mechanism to allow any JMS MessageListener
to be invoked directly by Camel without having to write any
integration glue code. You can use the same mechanism to integrate
Camel into any other messaging/remoting frameworks.

• if the body of the message can be converted to a BeanInvocation
(the default payload used by the ProxyHelper) component - then that
is used to invoke the method and pass its arguments

• otherwise the type of the body is used to find a matching method; an
error is thrown if a single method cannot be chosen unambiguously.

• you can also use Exchange as the parameter itself, but then the
return type must be void.

• if the bean class is private (or package-private), interface methods
will be preferred (from Camel 2.9 onwards) since Camel can't invoke
class methods on such beans

In cases where Camel cannot choose a method to invoke, an
AmbiguousMethodCallException is thrown.

By default the return value is set on the outbound message body.

Parameter binding
When a method has been chosen for invokation, Camel will bind to the
parameters of the method.

The following Camel-specific types are automatically bound:
▪ org.apache.camel.Exchange
▪ org.apache.camel.Message
▪ org.apache.camel.CamelContext
▪ org.apache.camel.TypeConverter
▪ org.apache.camel.spi.Registry
▪ java.lang.Exception

So, if you declare any of these types, they will be provided by Camel. Note
that Exception will bind to the caught exception of the Exchange - so
it's often usable if you employ a Pojo to handle, e.g., an onException route.

What is most interesting is that Camel will also try to bind the body of the
Exchange to the first parameter of the method signature (albeit not of any of
the types above). So if, for instance, we declare a parameter as String
body, then Camel will bind the IN body to this type. Camel will also
automatically convert to the type declared in the method signature.

Let's review some examples:
Below is a simple method with a body binding. Camel will bind the IN body

to the body parameter and convert it to a String.

public String doSomething(String body)

COOKBOOK 49

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/BeanInvocation.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/exchange.html

In the following sample we got one of the automatically-bound types as well -
for instance, a Registry that we can use to lookup beans.

public String doSomething(String body, Registry registry)

We can use Exchange as well:

public String doSomething(String body, Exchange exchange)

You can also have multiple types:

public String doSomething(String body, Exchange exchange, TypeConverter converter)

And imagine you use a Pojo to handle a given custom exception
InvalidOrderException - we can then bind that as well:

public String badOrder(String body, InvalidOrderException invalid)

Notice that we can bind to it even if we use a sub type of
java.lang.Exception as Camel still knows it's an exception and can bind
the cause (if any exists).

So what about headers and other stuff? Well now it gets a bit tricky - so we
can use annotations to help us, or specify the binding in the method name
option.
See the following sections for more detail.

Binding Annotations
You can use the Parameter Binding Annotations to customize how parameter
values are created from the Message

Examples
For example, a Bean such as:

public class Bar {

public String doSomething(String body) {
// process the in body and return whatever you want
return "Bye World";

}

50 COOKBOOK

http://camel.apache.org/exchange.html
http://camel.apache.org/pojo.html
http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html
http://camel.apache.org/bean.html

Or the Exchange example. Notice that the return type must be void when
there is only a single parameter of the type org.apache.camel.Exchange:

public class Bar {

public void doSomething(Exchange exchange) {
// process the exchange
exchange.getIn().setBody("Bye World");

}

@Handler
You can mark a method in your bean with the @Handler annotation to
indicate that this method should be used for Bean Binding.
This has an advantage as you need not specify a method name in the Camel
route, and therefore do not run into problems after renaming the method in
an IDE that can't find all its references.

public class Bar {

@Handler
public String doSomething(String body) {

// process the in body and return whatever you want
return "Bye World";

}

Parameter binding using method option
Available as of Camel 2.9

Camel uses the following rules to determine if it's a parameter value in the
method option

▪ The value is either true or false which denotes a boolean value
▪ The value is a numeric value such as 123 or 7
▪ The value is a String enclosed with either single or double quotes
▪ The value is null which denotes a null value
▪ It can be evaluated using the Simple language, which means you can

use, e.g., body, header.foo and other Simple tokens. Notice the
tokens must be enclosed with ${ }.

Any other value is consider to be a type declaration instead - see the next
section about specifying types for overloaded methods.

When invoking a Bean you can instruct Camel to invoke a specific method
by providing the method name:

COOKBOOK 51

http://camel.apache.org/bean-binding.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

.bean(OrderService.class, "doSomething")

Here we tell Camel to invoke the doSomething method - Camel handles the
parameters' binding. Now suppose the method has 2 parameters, and the
2nd parameter is a boolean where we want to pass in a true value:

public void doSomething(String payload, boolean highPriority) {
...

}

This is now possible in Camel 2.9 onwards:

.bean(OrderService.class, "doSomething(*, true)")

In the example above, we defined the first parameter using the wild card
symbol *, which tells Camel to bind this parameter to any type, and let
Camel figure this out. The 2nd parameter has a fixed value of true. Instead
of the wildcard symbol we can instruct Camel to use the message body as
shown:

.bean(OrderService.class, "doSomething(${body}, true)")

The syntax of the parameters is using the Simple expression language so we
have to use ${ } placeholders in the body to refer to the message body.

If you want to pass in a null value, then you can explicit define this in the
method option as shown below:

.to("bean:orderService?method=doSomething(null, true)")

Specifying null as a parameter value instructs Camel to force passing a null
value.

Besides the message body, you can pass in the message headers as a
java.util.Map:

.bean(OrderService.class, "doSomethingWithHeaders(${body}, ${headers})")

You can also pass in other fixed values besides booleans. For example, you
can pass in a String and an integer:

.bean(MyBean.class, "echo('World', 5)")

52 COOKBOOK

http://camel.apache.org/simple.html

In the example above, we invoke the echo method with two parameters. The
first has the content 'World' (without quotes), and the 2nd has the value of 5.
Camel will automatically convert these values to the parameters' types.

Having the power of the Simple language allows us to bind to message
headers and other values such as:

.bean(OrderService.class, "doSomething(${body}, ${header.high})")

You can also use the OGNL support of the Simple expression language. Now
suppose the message body is an object which has a method named asXml. To
invoke the asXml method we can do as follows:

.bean(OrderService.class, "doSomething(${body.asXml}, ${header.high})")

Instead of using .bean as shown in the examples above, you may want to
use .to instead as shown:

.to("bean:orderService?method=doSomething(${body.asXml}, ${header.high})")

Using type qualifiers to select among overloaded methods
Available as of Camel 2.8

If you have a Bean with overloaded methods, you can now specify
parameter types in the method name so Camel can match the method you
intend to use.
Given the following bean:

Listing 1. MyBean

public static final class MyBean {

public String hello(String name) {
return "Hello " + name;

}

public String hello(String name, @Header("country") String country) {
return "Hello " + name + " you are from " + country;

}

public String times(String name, @Header("times") int times) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
}
return sb.toString();

}

COOKBOOK 53

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

public String times(byte[] data, @Header("times") int times) {
String s = new String(data);
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(s);
if (i < times - 1) {

sb.append(",");
}

}
return sb.toString();

}

public String times(String name, int times, char separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < times; i++) {

sb.append(name);
if (i < times - 1) {

sb.append(separator);
}

}
return sb.toString();

}

}

Then the MyBean has 2 overloaded methods with the names hello and
times. So if we want to use the method which has 2 parameters we can do
as follows in the Camel route:

Listing 1. Invoke 2 parameter method

from("direct:start")
.bean(MyBean.class, "hello(String,String)")
.to("mock:result");

We can also use a * as wildcard so we can just say we want to execute the
method with 2 parameters we do

Listing 1. Invoke 2 parameter method using wildcard

from("direct:start")
.bean(MyBean.class, "hello(*,*)")
.to("mock:result");

By default Camel will match the type name using the simple name, e.g. any
leading package name will be disregarded. However if you want to match
using the FQN, then specify the FQN type and Camel will leverage that. So if
you have a com.foo.MyOrder and you want to match against the FQN, and
not the simple name "MyOrder", then follow this example:

54 COOKBOOK

.bean(OrderService.class, "doSomething(com.foo.MyOrder)")

Bean Injection
We support the injection of various resources using @EndpointInject. This can
be used to inject

• Endpoint instances which can be used for testing when used with
Mock endpoints; see the Spring Testing for an example.

• ProducerTemplate instances for POJO Producing
• client side proxies for POJO Producing which is a simple approach to

Spring Remoting

Parameter Binding Annotations
Annotations can be used to define an Expression or to extract various
headers, properties or payloads from a Message when invoking a bean
method (see Bean Integration for more detail of how to invoke bean
methods) together with being useful to help disambiguate which method to
invoke.

If no annotations are used then Camel assumes that a single parameter is
the body of the message. Camel will then use the Type Converter mechanism
to convert from the expression value to the actual type of the parameter.

The core annotations are as follows
Annotation Meaning Parameter
@Body To bind to an inbound message body Â

@ExchangeException To bind to an Exception set on the
exchange Â

@Header To bind to an inbound message
header

String
name of
the header

@Headers To bind to the Map of the inbound
message headers Â

@OutHeaders To bind to the Map of the outbound
message headers Â

@Property To bind to a named property on the
exchange

String
name of
the
property

COOKBOOK 55

http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/expression.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ExchangeException.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Headers.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/OutHeaders.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Property.html

Camel currently only supports either specifying parameter binding
or type per parameter in the method name option. You cannot
specify both at the same time, such as

doSomething(com.foo.MyOrder ${body}, boolean ${header.high})

This may change in the future.

camel-core
The annotations below are all part of camel-core and thus does
not require camel-spring or Spring. These annotations can be
used with the Bean component or when invoking beans in the DSL

@Properties To bind to the property map on the
exchange Â

@Handler

Not part as a type parameter but
stated in this table anyway to spread
the good word that we have this
annotation in Camel now. See more
at Bean Binding.

Â

The follow annotations @Headers, @OutHeaders and @Properties binds to
the backing java.util.Map so you can alter the content of these maps
directly, for instance using the put method to add a new entry. See the
OrderService class at Exception Clause for such an example. You can use
@Header("myHeader") and @Property("myProperty") to access the backing
java.util.Map.

Example
In this example below we have a @Consume consumer (like message driven)
that consumes JMS messages from the activemq queue. We use the @Header
and @Body parameter binding annotations to bind from the JMSMessage to
the method parameters.

public class Foo {

@Consume(uri = "activemq:my.queue")

56 COOKBOOK

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Properties.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Handler.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean.html
http://camel.apache.org/dsl.html

public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body
String body) {

// process the inbound message here
}

}

In the above Camel will extract the value of Message.getJMSCorrelationID(),
then using the Type Converter to adapt the value to the type of the
parameter if required - it will inject the parameter value for the
correlationID parameter. Then the payload of the message will be
converted to a String and injected into the body parameter.

You don't necessarily need to use the @Consume annotation if you don't
want to as you could also make use of the Camel DSL to route to the bean's
method as well.

Using the DSL to invoke the bean method
Here is another example which does not use POJO Consuming annotations
but instead uses the DSL to route messages to the bean method

public class Foo {
public void doSomething(@Header("JMSCorrelationID") String correlationID, @Body

String body) {
// process the inbound message here

}

}

The routing DSL then looks like this

from("activemq:someQueue").
to("bean:myBean");

Here myBean would be looked up in the Registry (such as JNDI or the Spring
ApplicationContext), then the body of the message would be used to try
figure out what method to call.

If you want to be explicit you can use

from("activemq:someQueue").
to("bean:myBean?methodName=doSomething");

COOKBOOK 57

http://camel.apache.org/type-converter.html
http://camel.apache.org/dsl.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/dsl.html
http://camel.apache.org/registry.html

And here we have a nifty example for you to show some great power in
Camel. You can mix and match the annotations with the normal parameters,
so we can have this example with annotations and the Exchange also:

public void doSomething(@Header("user") String user, @Body String body, Exchange
exchange) {

exchange.getIn().setBody(body + "MyBean");
}

Annotation Based Expression Language
You can also use any of the Languages supported in Camel to bind
expressions to method parameters when using Bean Integration. For
example you can use any of these annotations:
Annotation Description
@Bean Inject a Bean expression
@BeanShell Inject a BeanShell expression
@Constant Inject a Constant expression
@EL Inject an EL expression
@Groovy Inject a Groovy expression
@Header Inject a Header expression
@JavaScript Inject a JavaScript expression
@MVEL Inject a Mvel expression
@OGNL Inject an OGNL expression
@PHP Inject a PHP expression
@Python Inject a Python expression
@Ruby Inject a Ruby expression
@Simple Inject an Simple expression
@XPath Inject an XPath expression
@XQuery Inject an XQuery expression

58 COOKBOOK

http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/BeanShell.html
http://camel.apache.org/beanshell.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Constant.html
http://camel.apache.org/constant.html
http://camel.apache.org/maven/current/camel-juel/apidocs/org/apache/camel/language/juel/EL.html
http://camel.apache.org/el.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/maven/camel-core/apidocs/org/apache/camel/Header.html
http://camel.apache.org/header.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/JavaScript.html
http://camel.apache.org/javascript.html
http://camel.apache.org/maven/current/camel-mvel/apidocs/org/apache/camel/language/mvel/MVEL.html
http://camel.apache.org/mvel.html
http://camel.apache.org/maven/current/camel-ognl/apidocs/org/apache/camel/language/ognl/OGNL.html
http://camel.apache.org/ognl.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/PHP.html
http://camel.apache.org/php.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Python.html
http://camel.apache.org/python.html
http://camel.apache.org/maven/current/camel-script/apidocs/org/apache/camel/builder/script/Ruby.html
http://camel.apache.org/ruby.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html
http://camel.apache.org/xpath.html
http://camel.apache.org/maven/current/camel-saxon/apidocs/org/apache/camel/component/xquery/XQuery.html
http://camel.apache.org/xquery.html

Example:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@XPath("/foo/bar/text()") String correlationID, @Body

String body) {
// process the inbound message here

}
}

Advanced example using @Bean
And an example of using the the @Bean binding annotation, where you can
use a Pojo where you can do whatever java code you like:

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@Bean("myCorrelationIdGenerator") String correlationID,

@Body String body) {
// process the inbound message here

}
}

And then we can have a spring bean with the id
myCorrelationIdGenerator where we can compute the id.

public class MyIdGenerator {

private UserManager userManager;

public String generate(@Header(name = "user") String user, @Body String payload)
throws Exception {

User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);
return id;

}
}

The Pojo MyIdGenerator has one public method that accepts two parameters.
However we have also annotated this one with the @Header and @Body
annotation to help Camel know what to bind here from the Message from the
Exchange being processed.

COOKBOOK 59

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/Bean.html
http://camel.apache.org/pojo.html
http://camel.apache.org/pojo.html

Of course this could be simplified a lot if you for instance just have a
simple id generator. But we wanted to demonstrate that you can use the
Bean Binding annotations anywhere.

public class MySimpleIdGenerator {

public static int generate() {
// generate a unique id
return 123;

}
}

And finally we just need to remember to have our bean registered in the
Spring Registry:

<bean id="myCorrelationIdGenerator" class="com.mycompany.MySimpleIdGenerator"/>

Example using Groovy
In this example we have an Exchange that has a User object stored in the in
header. This User object has methods to get some user information. We want
to use Groovy to inject an expression that extracts and concats the fullname
of the user into the fullName parameter.

public void doSomething(@Groovy("$request.header['user'].firstName
$request.header['user'].familyName) String fullName, @Body String body) {

// process the inbound message here
}

Groovy supports GStrings that is like a template where we can insert $
placeholders that will be evaluated by Groovy.

@Consume
To consume a message you use the @Consume annotation to mark a
particular method of a bean as being a consumer method. The uri of the
annotation defines the Camel Endpoint to consume from.

e.g. lets invoke the onCheese() method with the String body of the
inbound JMS message from ActiveMQ on the cheese queue; this will use the
Type Converter to convert the JMS ObjectMessage or BytesMessage to a
String - or just use a TextMessage from JMS

60 COOKBOOK

http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/groovy.html
http://camel.apache.org/groovy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consume.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/activemq.html
http://camel.apache.org/type-converter.html

public class Foo {

@Consume(uri="activemq:cheese")
public void onCheese(String name) {

...
}

}

The Bean Binding is then used to convert the inbound Message to the
parameter list used to invoke the method .

What this does is basically create a route that looks kinda like this

from(uri).bean(theBean, "methodName");

Using context option to apply only a certain CamelContext
See the warning above.

You can use the context option to specify which CamelContext the
consumer should only apply for. For example:

@Consume(uri="activemq:cheese", context="camel-1")
public void onCheese(String name) {

The consumer above will only be created for the CamelContext that have the
context id = camel-1. You set this id in the XML tag:

<camelContext id="camel-1" ...>

Using an explicit route
If you want to invoke a bean method from many different endpoints or within
different complex routes in different circumstances you can just use the
normal routing DSL or the Spring XML configuration file.

For example

from(uri).beanRef("myBean", "methodName");

which will then look up in the Registry and find the bean and invoke the
given bean name. (You can omit the method name and have Camel figure
out the right method based on the method annotations and body type).

COOKBOOK 61

http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/dsl.html
http://camel.apache.org/spring.html
http://camel.apache.org/registry.html

When using more than one CamelContext
When you use more than 1 CamelContext you might end up with
each of them creating a POJO Consuming; therefore use the option
context on @Consume that allows you to specify which
CamelContext id/name you want it to apply for.

Use the Bean endpoint
You can always use the bean endpoint

from(uri).to("bean:myBean?method=methodName");

Using a property to define the endpoint
Available as of Camel 2.11

The following annotations @Consume, @Produce, @EndpointInject, now
offers a property attribute you can use to define the endpoint as a property
on the bean. Then Camel will use the getter method to access the property.
For example

public class MyService {
private String serviceEndpoint;

public void setServiceEndpoint(String uri) {
this.serviceEndpoint = uri;

}

public String getServiceEndpoint() {
return serviceEndpoint

}

@Consume(property = "serviceEndpoint")
public void onService(String input) {

...
}

}

The bean MyService has a property named serviceEndpoint which has
getter/setter for the property. Now we want to use the bean for POJO
Consuming, and hence why we use @Consume in the onService method.
Notice how we use the property = "serviceEndpoint to configure the
property that has the endpoint url.

62 COOKBOOK

http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/camelcontext.html

This applies for them all
The explanation below applies for all the three annotations, eg
@Consume, @Produce, and @EndpointInject

If you define the bean in Spring XML or Blueprint, then you can configure
the property as follows:

<bean id="myService" class="com.foo.MyService">
<property name="serviceEndpoint" value="activemq:queue:foo"/>

</bean>

This allows you to configure the bean using any standard IoC style.
Camel offers a naming convention which allows you to not have to explicit

name the property.
Camel uses this algorithm to find the getter method. The method must be a
getXXX method.

1. Use the property name if explicit given
2. If no property name was configured, then use the method name
3. Try to get the property with name*Endpoint* (eg with Endpoint as postfix)
4. Try to get the property with the name as is (eg no postfix or postfix)
5. If the property name starts with on then omit that, and try step 3 and 4
again.

So in the example above, we could have defined the @Consume
annotation as

@Consume(property = "service")
public void onService(String input) {

Now the property is named 'service' which then would match step 3 from the
algorithm, and have Camel invoke the getServiceEndpoint method.

We could also have omitted the property attribute, to make it implicit

@Consume
public void onService(String input) {

Now Camel matches step 5, and loses the prefix on in the name, and looks
for 'service' as the property. And because there is a getServiceEndpoint
method, Camel will use that.

COOKBOOK 63

Which approach to use?
Using the @Consume annotations are simpler when you are creating a
simple route with a single well defined input URI.

However if you require more complex routes or the same bean method
needs to be invoked from many places then please use the routing DSL as
shown above.

There are two different ways to send messages to any Camel Endpoint
from a POJO

@EndpointInject
To allow sending of messages from POJOs you can use the @EndpointInject
annotation. This will inject a ProducerTemplate so that the bean can
participate in message exchanges.

e.g. lets send a message to the foo.bar queue in ActiveMQ at some point

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
if (whatever) {

producer.sendBody("<hello>world!</hello>");
}

}
}

The downside of this is that your code is now dependent on a Camel API, the
ProducerTemplate. The next section describes how to remove this

Hiding the Camel APIs from your code using @Produce
We recommend Hiding Middleware APIs from your application code so the
next option might be more suitable.
You can add the @Produce annotation to an injection point (a field or
property setter) using a ProducerTemplate or using some interface you use in
your business logic. e.g.

public interface MyListener {
String sayHello(String name);

}

public class MyBean {

64 COOKBOOK

http://camel.apache.org/dsl.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/EndpointInject.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/activemq.html
http://camel.apache.org/hiding-middleware.html

See POJO Consuming for how to use a property on the bean as
endpoint configuration, eg using the property attribute on
@Produce, @EndpointInject.

@Produce(uri = "activemq:foo")
protected MyListener producer;

public void doSomething() {
// lets send a message
String response = producer.sayHello("James");

}
}

Here Camel will automatically inject a smart client side proxy at the
@Produce annotation - an instance of the MyListener instance. When we
invoke methods on this interface the method call is turned into an object and
using the Camel Spring Remoting mechanism it is sent to the endpoint - in
this case the ActiveMQ endpoint to queue foo; then the caller blocks for a
response.

If you want to make asynchronous message sends then use an @InOnly
annotation on the injection point.

@RECIPIENTLIST ANNOTATION
We support the use of @RecipientList on a bean method to easily create a
dynamic Recipient List using a Java method.

Simple Example using @Consume and @RecipientList

package com.acme.foo;

public class RouterBean {

@Consume(uri = "activemq:foo")
@RecipientList
public String[] route(String body) {

return new String[]{"activemq:bar", "activemq:whatnot"};
}

}

For example if the above bean is configured in Spring when using a
<camelContext> element as follows

COOKBOOK 65

http://camel.apache.org/spring-remoting.html
http://camel.apache.org/activemq.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/using-exchange-pattern-annotations.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/spring.html
http://camel.apache.org/pojo-consuming.html

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring"/>

<bean id="myRecipientList" class="com.acme.foo.RouterBean"/>

</beans>

then a route will be created consuming from the foo queue on the ActiveMQ
component which when a message is received the message will be
forwarded to the endpoints defined by the result of this method call - namely
the bar and whatnot queues.

How it works
The return value of the @RecipientList method is converted to either a
java.util.Collection / java.util.Iterator or array of objects where each element
is converted to an Endpoint or a String, or if you are only going to route to a
single endpoint then just return either an Endpoint object or an object that
can be converted to a String. So the following methods are all valid

@RecipientList
public String[] route(String body) { ... }

@RecipientList
public List<String> route(String body) { ... }

@RecipientList
public Endpoint route(String body) { ... }

@RecipientList
public Endpoint[] route(String body) { ... }

@RecipientList
public Collection<Endpoint> route(String body) { ... }

@RecipientList
public URI route(String body) { ... }

@RecipientList
public URI[] route(String body) { ... }

66 COOKBOOK

http://camel.apache.org/activemq.html
http://camel.apache.org/endpoint.html

Then for each endpoint or URI the message is forwarded a separate copy to
that endpoint.

You can then use whatever Java code you wish to figure out what
endpoints to route to; for example you can use the Bean Binding annotations
to inject parts of the message body or headers or use Expression values on
the message.

More Complex Example Using DSL
In this example we will use more complex Bean Binding, plus we will use a
separate route to invoke the Recipient List

public class RouterBean2 {

@RecipientList
public String route(@Header("customerID") String custID String body) {

if (custID == null) return null;
return "activemq:Customers.Orders." + custID;

}
}

public class MyRouteBuilder extends RouteBuilder {
protected void configure() {

from("activemq:Orders.Incoming").recipientList(bean("myRouterBean", "route"));
}

}

Notice how we are injecting some headers or expressions and using them to
determine the recipients using Recipient List EIP.
See the Bean Integration for more details.

USING EXCHANGE PATTERN ANNOTATIONS
When working with POJO Producing or Spring Remoting you invoke methods
which typically by default are InOut for Request Reply. That is there is an In
message and an Out for the result. Typically invoking this operation will be
synchronous, the caller will block until the server returns a result.

Camel has flexible Exchange Pattern support - so you can also support the
Event Message pattern to use InOnly for asynchronous or one way
operations. These are often called 'fire and forget' like sending a JMS
message but not waiting for any response.

From 1.5 onwards Camel supports annotations for specifying the message
exchange pattern on regular Java methods, classes or interfaces.

COOKBOOK 67

http://camel.apache.org/bean-binding.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html

Specifying InOnly methods
Typically the default InOut is what most folks want but you can customize to
use InOnly using an annotation.

public interface Foo {
Object someInOutMethod(String input);
String anotherInOutMethod(Cheese input);

@InOnly
void someInOnlyMethod(Document input);

}

The above code shows three methods on an interface; the first two use the
default InOut mechanism but the someInOnlyMethod uses the InOnly
annotation to specify it as being a oneway method call.

Class level annotations
You can also use class level annotations to default all methods in an interface
to some pattern such as

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

}

Annotations will also be detected on base classes or interfaces. So for
example if you created a client side proxy for

public class MyFoo implements Foo {
...

}

Then the methods inherited from Foo would be InOnly.

Overloading a class level annotation
You can overload a class level annotation on specific methods. A common
use case for this is if you have a class or interface with many InOnly methods
but you want to just annote one or two methods as InOut

@InOnly
public interface Foo {

void someInOnlyMethod(Document input);

68 COOKBOOK

void anotherInOnlyMethod(String input);

@InOut
String someInOutMethod(String input);

}

In the above Foo interface the someInOutMethod will be InOut

Using your own annotations
You might want to create your own annotations to represent a group of
different bits of metadata; such as combining synchrony, concurrency and
transaction behaviour.

So you could annotate your annotation with the @Pattern annotation to
default the exchange pattern you wish to use.

For example lets say we want to create our own annotation called
@MyAsyncService

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})

// lets add the message exchange pattern to it
@Pattern(ExchangePattern.InOnly)

// lets add some other annotations - maybe transaction behaviour?

public @interface MyAsyncService {
}

Now we can use this annotation and Camel will figure out the correct
exchange pattern...

public interface Foo {
void someInOnlyMethod(Document input);
void anotherInOnlyMethod(String input);

@MyAsyncService
String someInOutMethod(String input);

}

When writing software these days, its important to try and decouple as much
middleware code from your business logic as possible.

This provides a number of benefits...
• you can choose the right middleware solution for your deployment

and switch at any time

COOKBOOK 69

• you don't have to spend a large amount of time learning the specifics
of any particular technology, whether its JMS or JavaSpace or
Hibernate or JPA or iBATIS whatever

For example if you want to implement some kind of message passing,
remoting, reliable load balancing or asynchronous processing in your
application we recommend you use Camel annotations to bind your services
and business logic to Camel Components which means you can then easily
switch between things like

• in JVM messaging with SEDA
• using JMS via ActiveMQ or other JMS providers for reliable load

balancing, grid or publish and subscribe
• for low volume, but easier administration since you're probably

already using a database you could use
◦ Hibernate or JPA to use an entity bean / table as a queue
◦ iBATIS to work with SQL
◦ JDBC for raw SQL access

• use JavaSpace

How to decouple from middleware APIs
The best approach when using remoting is to use Spring Remoting which can
then use any messaging or remoting technology under the covers. When
using Camel's implementation you can then use any of the Camel
Components along with any of the Enterprise Integration Patterns.

Another approach is to bind Java beans to Camel endpoints via the Bean
Integration. For example using POJO Consuming and POJO Producing you can
avoid using any Camel APIs to decouple your code both from middleware
APIs and Camel APIs!

VISUALISATION
Camel supports the visualisation of your Enterprise Integration Patterns using
the GraphViz DOT files which can either be rendered directly via a suitable
GraphViz tool or turned into HTML, PNG or SVG files via the Camel Maven
Plugin.

Here is a typical example of the kind of thing we can generate

If you click on the actual generated htmlyou will see that you can navigate
from an EIP node to its pattern page, along with getting hover-over tool tips
ec.

70 COOKBOOK

http://camel.apache.org/jms.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/javaspace.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://graphviz.org
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/camel-maven-plugin.html
http://activemq.apache.org/camel/maven/camel-spring/cameldoc/index.html
http://activemq.apache.org/camel/maven/examples/camel-example-docs/cameldoc/main/routes.html

How to generate
See Camel Dot Maven Goal or the other maven goals Camel Maven Plugin

For OS X users
If you are using OS X then you can open the DOT file using graphviz which
will then automatically re-render if it changes, so you end up with a real time
graphical representation of the topic and queue hierarchies!

Also if you want to edit the layout a little before adding it to a wiki to
distribute to your team, open the DOT file with OmniGraffle then just edit
away

BUSINESS ACTIVITY MONITORING
The Camel BAM module provides a Business Activity Monitoring (BAM)
framework for testing business processes across multiple message
exchanges on different Endpoint instances.

Consider, for example, a simple system in which you submit Purchase
Orders into system A and then receive Invoices from system B. You might
want to test that, for a given Purchase Order, you receive a matching Invoice
from system B within a specific time period.

How Camel BAM Works
Camel BAM uses a Correlation Identifier on an input message to determine
the Process Instance to which it belongs. The process instance is an entity
bean which can maintain state for each Activity (where an activity typically
maps to a single endpoint - such as the submission of Purchase Orders or the
receipt of Invoices).

You can then add rules to be triggered when a message is received on any
activity - such as to set time expectations or perform real time reconciliation
of values across activities.

Simple Example
The following example shows how to perform some time based rules on a
simple business process of 2 activities - A and B - which correspond with
Purchase Orders and Invoices in the example above. If you would like to
experiment with this scenario, you may edit this Test Case, which defines the
activities and rules, and then tests that they work.

COOKBOOK 71

http://camel.apache.org/camel-dot-maven-goal.html
http://camel.apache.org/camel-maven-plugin.html
http://www.pixelglow.com/graphviz/
http://www.omnigroup.com/applications/omnigraffle/
http://camel.apache.org/endpoint.html
http://camel.apache.org/correlation-identifier.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-bam/src/test/java/org/apache/camel/bam/BamRouteTest.java

return new ProcessBuilder(jpaTemplate, transactionTemplate) {
public void configure() throws Exception {

// let's define some activities, correlating on an XPath on the message bodies
ActivityBuilder a = activity("seda:a").name("a")

.correlate(xpath("/hello/@id"));

ActivityBuilder b = activity("seda:b").name("b")
.correlate(xpath("/hello/@id"));

// now let's add some rules
b.starts().after(a.completes())

.expectWithin(seconds(1))

.errorIfOver(seconds(errorTimeout)).to("mock:overdue");
}

};

As you can see in the above example, we first define two activities, and then
rules to specify when we expect them to complete for a process instance and
when an error condition should be raised.p. The ProcessBuilder is a
RouteBuilder and can be added to any CamelContext.

Complete Example
For a complete example please see the BAM Example, which is part of the
standard Camel Examples

Use Cases
In the world of finance, a common requirement is tracking trades. Often a
trader will submit a Front Office Trade which then flows through the Middle
Office and Back Office through various systems to settle the trade so that
money is exchanged. You may wish to test that the front and back office
trades match up within a certain time period; if they don't match or a back
office trade does not arrive within a required amount of time, you might
signal an alarm.

EXTRACT TRANSFORM LOAD (ETL)
The ETL (Extract, Transform, Load) is a mechanism for loading data into
systems or databases using some kind of Data Format from a variety of
sources; often files then using Pipes and Filters, Message Translator and
possible other Enterprise Integration Patterns.

72 COOKBOOK

http://camel.apache.org/routebuilder.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/bam-example.html
http://camel.apache.org/examples.html
http://en.wikipedia.org/wiki/Extract,_transform,_load
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/enterprise-integration-patterns.html

So you could query data from various Camel Components such as File,
HTTP or JPA, perform multiple patterns such as Splitter or Message Translator
then send the messages to some other Component.

To show how this all fits together, try the ETL Example

MOCK COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult.
The Mock, Test and DataSet endpoints work great with the Camel Testing
Framework to simplify your unit and integration testing using Enterprise
Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism,
which is similar to jMock in that it allows declarative expectations to be
created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the
expectations can be asserted in a test case to ensure the system worked as
expected.

This allows you to test various things like:
• The correct number of messages are received on each endpoint,
• The correct payloads are received, in the right order,
• Messages arrive on an endpoint in order, using some Expression to

create an order testing function,
• Messages arrive match some kind of Predicate such as that specific

headers have certain values, or that parts of the messages match
some predicate, such as by evaluating an XPath or XQuery
Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which
uses a second endpoint to provide the list of expected message bodies and
automatically sets up the Mock endpoint assertions. In other words, it's a
Mock endpoint that automatically sets up its assertions from some sample
messages in a File or database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.
You can append query options to the URI in the following format,

?option=value&option=value&...

COOKBOOK 73

http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jpa.html
http://camel.apache.org/splitter.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/component.html
http://camel.apache.org/etl-example.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html

Mock endpoints keep received Exchanges in memory
indefinitely
Remember that Mock is designed for testing. When you add Mock
endpoints to a route, each Exchange sent to the endpoint will be
stored (to allow for later validation) in memory until explicitly reset
or the JVM is restarted. If you are sending high volume and/or large
messages, this may cause excessive memory use. If your goal is to
test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes
directly.

From Camel 2.10 onwards there are two new options retainFirst, and
retainLast that can be used to limit the number of messages the Mock
endpoints keep in memory.

Options
Option Default Description
reportGroup null A size to use a throughput logger for reporting

Simple Example
Here's a simple example of Mock endpoint in use. First, the endpoint is
resolved on the context. Then we set an expectation, and then, after the test
has run, we assert that our expectations have been met.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the
expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is
invoked. This can be configured by setting the setResultWaitTime(millis)
method.

74 COOKBOOK

http://camel.apache.org/log.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

Using assertPeriod
Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue
from the assertIsSatisfied method. That means if a new message arrives
on the mock endpoint, just a bit later, that arrival will not affect the outcome
of the assertion. Suppose you do want to test that no new messages arrives
after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

Setting expectations
You can see from the javadoc of MockEndpoint the various helper methods
you can use to set expectations. The main methods are as follows:
Method Description
expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsNoDuplicates(Expression)
To add an expectation that no duplicate messages are received; using an Expression to calculate a
unique identifier for each message. This could be something like the JMSMessageID if using JMS, or some
unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages
In addition, you can use the message(int messageIndex) method to add
assertions about a specific message that is received.

COOKBOOK 75

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)

For example, to add expectations of the headers or body of the first
message (using zero-based indexing like java.util.List), you can use the
following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core
processor tests.

Mocking existing endpoints
Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your
Camel routes.
Suppose you have the given route below:

Listing 1. Route

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

You can then use the adviceWith feature in Camel to mock all the endpoints
in a given route from your unit test, as shown below:

Listing 1. adviceWith mocking all endpoints

public void testAdvisedMockEndpoints() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock all endpoints
mockEndpoints();

}
});

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

76 COOKBOOK

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

How it works
Important: The endpoints are still in action. What happens
differently is that a Mock endpoint is injected and receives the
message first and then delegates the message to the target
endpoint. You can view this as a kind of intercept and delegate or
endpoint listener.

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

Notice that the mock endpoints is given the uri mock:<endpoint>, for
example mock:direct:foo. Camel logs at INFO level the endpoints being
mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example
to mock all log endpoints you do as shown:

Listing 1. adviceWith mocking only log endpoints using a pattern

public void testAdvisedMockEndpointsWithPattern() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock only log endpoints
mockEndpoints("log*");

}
});

COOKBOOK 77

http://camel.apache.org/mock.html

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off.
For example the endpoint "log:foo?showAll=true" will be mocked to
the following endpoint "mock:log:foo". Notice the parameters have
been removed.

// now we can refer to log:foo as a mock and set our expectations
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull(context.hasEndpoint("mock:log:foo"));
assertNull(context.hasEndpoint("mock:direct:start"));
assertNull(context.hasEndpoint("mock:direct:foo"));

}

The pattern supported can be a wildcard or a regular expression. See more
details about this at Intercept as its the same matching function used by
Camel.

Mocking existing endpoints using the camel-test
component
Instead of using the adviceWith to instruct Camel to mock endpoints, you
can easily enable this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the
isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

Listing 1. isMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

@Override

78 COOKBOOK

http://camel.apache.org/intercept.html

Mind that mocking endpoints causes the messages to be copied
when they arrive on the mock.
That means Camel will use more memory. This may not be suitable
when you send in a lot of messages.

public String isMockEndpoints() {
// override this method and return the pattern for which endpoints to mock.
// use * to indicate all
return "*";

}

@Test
public void testMockAllEndpoints() throws Exception {

// notice we have automatic mocked all endpoints and the name of the
endpoints is "mock:uri"

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

}

COOKBOOK 79

Mocking existing endpoints with XML DSL
If you do not use the camel-test component for unit testing (as shown
above) you can use a different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then
include the intended XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:
Listing 1. camel-route.xml

<!-- this camel route is in the camel-route.xml file -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<transform>

<constant>Bye World</constant>
</transform>

</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-
route.xml file and define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which
tells Camel to mock all endpoints:

Listing 1. test-camel-route.xml

<!-- the Camel route is defined in another XML file -->
<import resource="camel-route.xml"/>

<!-- bean which enables mocking all endpoints -->
<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml)
instead of camel-route.xml.

To only mock all Log endpoints you can define the pattern in the
constructor for the bean:

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">

80 COOKBOOK

http://camel.apache.org/log.html

<constructor-arg index="0" value="log*"/>
</bean>

Mocking endpoints and skip sending to original endpoint
Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain
endpoints. So the message is detoured and send to the mock endpoint only.
From Camel 2.10 onwards you can now use the mockEndpointsAndSkip
method using AdviceWith or the [Test Kit]. The example below will skip
sending to the two endpoints "direct:foo", and "direct:bar".

Listing 1. adviceWith mock and skip sending to endpoints

public void testAdvisedMockEndpointsWithSkip() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock sending to direct:foo and direct:bar and skip send to it
mockEndpointsAndSkip("direct:foo", "direct:bar");

}
});

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);
getMockEndpoint("mock:direct:bar").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the seda
endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

The same example using the Test Kit
Listing 1. isMockEndpointsAndSkip using camel-test kit

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpointsAndSkip() {

// override this method and return the pattern for which endpoints to mock,

COOKBOOK 81

http://camel.apache.org/advicewith.html
http://camel.apache.org/testing.html

// and skip sending to the original endpoint.
return "direct:foo";

}

@Test
public void testMockEndpointAndSkip() throws Exception {

// notice we have automatic mocked the direct:foo endpoints and the name of
the endpoints is "mock:uri"

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the
seda endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World")).to("seda:foo");
}

};
}

}

Limiting the number of messages to keep
Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it
received. So if you test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and
retainLast that can be used to specify to only keep N'th of the first and/or
last Exchanges.

For example in the code below, we only want to retain a copy of the first 5
and last 5 Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data");
mock.setRetainFirst(5);
mock.setRetainLast(5);
mock.expectedMessageCount(2000);

82 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

...

mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and
getReceivedExchanges() methods on the MockEndpoint will return only the
retained copies of the Exchanges. So in the example above, the list will
contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which
expectation methods you can use. For example the expectedXXX methods
that work on message bodies, headers, etc. will only operate on the retained
messages. In the example above they can test only the expectations on the
10 retained messages.

Testing with arrival times
Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on
the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock.
But it also provides foundation to know the time interval between the
previous and next message arrived on the mock. You can use this to set
expectations using the arrives DSL on the Mock endpoint.

For example to say that the first message should arrive between 0-2
seconds before the next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive
no later than 0-2 seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it
should be between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

COOKBOOK 83

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html

You can also set the expectation on all messages, for example to say that the
gap between them should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing
• Testing

TESTING
Testing is a crucial activity in any piece of software development or
integration. Typically Camel Riders use various different technologies wired
together in a variety of patterns with different expression languages together
with different forms of Bean Integration and Dependency Injection so its very
easy for things to go wrong! . Testing is the crucial weapon to ensure that
things work as you would expect.

Camel is a Java library so you can easily wire up tests in whatever unit
testing framework you use (JUnit 3.x (deprecated), 4.x, or TestNG). However
the Camel project has tried to make the testing of Camel as easy and
powerful as possible so we have introduced the following features.

Testing mechanisms
The following mechanisms are supported
Name Component Description

Camel
Test camel-test

Is a standalone Java library letting you easily
create Camel test cases using a single Java
class for all your configuration and routing
without using Spring or Guice for Dependency
InjectionÂ which does not require an in-depth
knowledge of Spring + Spring Test or Guice.
Â Supports JUnit 3.x (deprecated) and JUnit 4.x
based tests.

84 COOKBOOK

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/languages.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html

time units
In the example above we use seconds as the time unit, but Camel
offers milliseconds, and minutes as well.

Spring
Testing

camel-
test-
spring

Supports JUnit 3.x (deprecated) or JUnit 4.x
based tests that bootstrap a test environment
using Spring without needing to be familiar with
Spring Test. Â The Â plain JUnit 3.x/4.x based
tests work very similar to the test support
classes in camel-test. Â Also supports Spring
Test based tests that use the declarative style of
test configuration and injection common in
Spring Test. Â The Spring Test based tests
provide feature parity with the plain JUnit 3.x/
4.x based testing approach. Â Notice camel-
test-spring is a new component in Camel
2.10 onwards. For older Camel release use
camel-test which has built-in Spring Testing.

Blueprint
Testing

camel-
test-
blueprint

Camel 2.10: Provides the ability to do unit
testing on blueprint configurations

Guice camel-
guice

Uses Guice to dependency inject your test
classes

Camel
TestNG

camel-
testng

Supports plain TestNG based testsÂ with or
withoutÂ SpringÂ orÂ GuiceÂ forÂ Dependency
InjectionÂ which does not require an in-depth
knowledge of Spring + Spring Test or Guice.
Â Also from Camel 2.10 onwards, this
component supports Spring TestÂ based tests
that use the declarative style of test
configuration and injection common in Spring
Test and described in more detail under Spring
Testing.

In all approaches the test classes look pretty much the same in that they all
reuse the Camel binding and injection annotations.

Camel Test Example
Here is the Camel Test example.

COOKBOOK 85

http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/blueprint-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/guice.html
http://camel.apache.org/spring.html
http://camel.apache.org/guice.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/dependency-injection.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/camel-test.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

Notice how it derives from the Camel helper class CamelTestSupport but
has no Spring or Guice dependency injection configuration but instead
overrides the createRouteBuilder() method.

Spring Test with XML Config Example
Here is the Spring Testing example using XML Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

86 COOKBOOK

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

Notice that we use @DirtiesContext on the test methods to force Spring
Testing to automatically reload the CamelContext after each test method -
this ensures that the tests don't clash with each other (e.g. one test method
sending to an endpoint that is then reused in another test method).

Also notice the use of @ContextConfiguration to indicate that by default
we should look for the FilterTest-context.xml on the classpath to configure
the test case which looks like this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<filter>

COOKBOOK 87

http://camel.apache.org/spring-testing.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>

</filter>
</route>

</camelContext>

</beans>

Spring Test with Java Config Example
Here is the Spring Testing example using Java Config. For more information
see Spring Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean

88 COOKBOOK

http://camel.apache.org/spring-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java
http://camel.apache.org/spring-java-config.html

public RouteBuilder route() {
return new RouteBuilder() {

public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML
file and instead the nested ContextConfig class does all of the
configuration; so your entire test case is contained in a single Java class. We
currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to
address this and make Spring Test work more cleanly with Spring JavaConfig.

Its totally optional but for the ContextConfig implementation we derive
from SingleRouteCamelConfiguration which is a helper Spring Java Config
class which will configure the CamelContext for us and then register the
RouteBuilder we create.

Spring Test with XML Config and Declarative
Configuration Example
Here is a Camel test support enhancedÂ Spring TestingÂ example using XML
Config and pure Spring Test based configuration of the Camel Context.
Error formatting macro: snippet: java.lang.IndexOutOfBoundsException:
Index: 20, Size: 20
Notice how a custom test runner is used with theÂ @RunWithÂ annotation
to support the features ofÂ CamelTestSupportÂ through annotations on the
test class. Â SeeÂ Spring TestingÂ for a list of annotations you can use in
your tests.

Blueprint Test
Here is the Blueprint Testing example using XML Config.

// to use camel-test-blueprint, then extend the CamelBlueprintTestSupport class,
// and add your unit tests methods as shown below.
public class DebugBlueprintTest extends CamelBlueprintTestSupport {

// override this method, and return the location of our Blueprint XML file to be

COOKBOOK 89

http://jira.springframework.org/browse/SJC-238
http://camel.apache.org/spring-testing.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/junit4/CamelSpringJUnit4ClassRunnerPlainTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-test-spring/src/test/java/org/apache/camel/test/junit4/CamelSpringJUnit4ClassRunnerPlainTest.java
http://camel.apache.org/spring-testing.html
http://camel.apache.org/blueprint-testing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/java/org/apache/camel/test/blueprint/DebugBlueprintTest.java

used for testing
@Override
protected String getBlueprintDescriptor() {

return "org/apache/camel/test/blueprint/camelContext.xml";
}

// here we have regular Junit @Test method
@Test
public void testRoute() throws Exception {

// set mock expectations
getMockEndpoint("mock:a").expectedMessageCount(1);

// send a message
template.sendBody("direct:start", "World");

// assert mocks
assertMockEndpointsSatisfied();

}

}

Also notice the use of getBlueprintDescriptors to indicate that by default
we should look for the camelContext.xml in the package to configure the test
case which looks like this

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<transform>

<simple>Hello ${body}</simple>
</transform>
<to uri="mock:a"/>

</route>

</camelContext>

</blueprint>

Testing endpoints
Camel provides a number of endpoints which can make testing easier.
Name Description

90 COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test-blueprint/src/test/resources/org/apache/camel/test/blueprint/camelContext.xml

DataSet
For load & soak testing this endpoint provides a way to create
huge numbers of messages for sending to Components and
asserting that they are consumed correctly

Mock For testing routes and mediation rules using mocks and allowing
assertions to be added to an endpoint

Test
Creates a Mock endpoint which expects to receive all the
message bodies that could be polled from the given underlying
endpoint

The main endpoint is the Mock endpoint which allows expectations to be
added to different endpoints; you can then run your tests and assert that
your expectations are met at the end.

Stubbing out physical transport technologies
If you wish to test out a route but want to avoid actually using a real physical
transport (for example to unit test a transformation route rather than
performing a full integration test) then the following endpoints can be useful.
Name Description

Direct
Direct invocation of the consumer from the producer so that
single threaded (non-SEDA) in VM invocation is performed which
can be useful to mock out physical transports

SEDA
Delivers messages asynchonously to consumers via a
java.util.concurrent.BlockingQueue which is good for testing
asynchronous transports

Stub Works like SEDA but does not validate the endpoint uri, which
makes stubbing much easier.

Testing existing routes
Camel provides some features to aid during testing of existing routes where
you cannot or will not use Mock etc. For example you may have a production
ready route which you want to test with some 3rd party API which sends
messages into this route.
Name Description

NotifyBuilder
Allows you to be notified when a certain condition has
occurred. For example when the route has completed 5
messages. You can build complex expressions to match
your criteria when to be notified.

COOKBOOK 91

http://camel.apache.org/dataset.html
http://camel.apache.org/components.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/direct.html
http://camel.apache.org/seda.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/stub.html
http://camel.apache.org/seda.html
http://camel.apache.org/mock.html
http://camel.apache.org/notifybuilder.html

AdviceWith
Allows you to advice or enhance an existing route using a
RouteBuilder style. For example you can add interceptors
to intercept sending outgoing messages to assert those
messages are as expected.

CAMEL TEST
As a simple alternative to using Spring Testing or Guice the camel-test
module was introduced so you can perform powerful Testing of your
Enterprise Integration Patterns easily.

Adding to your pom.xml
To get started using Camel Test you will need to add an entry to your
pom.xml

JUnit

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-test</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

TestNG
Available as of Camel 2.8

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-testng</artifactId>
<version>${camel-version}</version>
<scope>test</scope>

</dependency>

You might also want to add slf4j and log4j to ensure nice logging messages
(and maybe adding a log4j.properties file into your src/test/resources
directory).

92 COOKBOOK

http://camel.apache.org/advicewith.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/spring-testing.html
http://camel.apache.org/guice.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/log4j.properties

The camel-test JAR is using JUnit. There is an alternative camel-
testng JAR (Camel 2.8 onwards) using the TestNG test framework.

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<scope>test</scope>

</dependency>
<dependency>

<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<scope>test</scope>

</dependency>

Writing your test
You firstly need to derive from the class
CamelTestSupportÂ (org.apache.camel.test.CamelTestSupport,
org.apache.camel.test.junit4.CamelTestSupport, or
org.apache.camel.testng.CamelTestSupport for JUnit 3.x, JUnit 4.x, and
TestNG, respectively)Â and typically you will need to override the
createRouteBuilder() orÂ createRouteBuilders()Â method to create
routes to be tested.

Here is an example.

public class FilterTest extends CamelTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@Test

COOKBOOK 93

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/java/org/apache/camel/test/patterns/FilterTest.java
http://testng.org/doc/index.html

public void testSendNotMatchingMessage() throws Exception {
resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}

Notice how you can use the various Camel binding and injection annotations
to inject individual Endpoint objects - particularly the Mock endpoints which
are very useful for Testing. Also you can inject producer objects such as
ProducerTemplate or some application code interface for sending messages
or invoking services.

Features Provided by CamelTestSupport
The various CamelTestSupport classes provide a standard set of behaviors
relating to the CamelContext used to host the route(s) under test. Â The
classes provide a number of methods that allow a test to alter the
configuration of the CamelContext used. Â The following table describes the
available customization methods and the default behavior of tests that are
built from aÂ CamelTestSupport class.
Method Name Description Default Behavior

boolean isUseRouteBuilder()
If the route builders from returned fromÂ createRouteBuilder() or
createRouteBuilders() should be added to the CamelContext used in the test
should be started.

Returns true.
Â createRouteBuilder()Â orÂ createRouteBuilders()
are invoked and the CamelContext is started
automatically.

94 COOKBOOK

http://camel.apache.org/bean-integration.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/mock.html
http://camel.apache.org/testing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html

boolean isUseAdviceWith()

If the CamelContext use in the test should be automatically started before test
methods are invoked.
Override when using advice withÂ and return true. Â This helps in knowing the
adviceWith is to be used, and theÂ CamelContextÂ will not be started
beforeÂ the advice with takes place. This delay helps by ensuring the advice with
has been property setup before theÂ CamelContextÂ is started.

Returns false. Â the CamelContext is started
automatically before test methods are invoked.

boolean isCreateCamelContextPerClass() SeeÂ Setup CamelContext once per class, or per every test method. The CamelContext and routes are recreated for each
test method.

String isMockEndpoints()

Triggers the auto-mocking of endpoints whose URIs match the provided filter.
Â The defaultÂ filter is null which disables this feature. Â Return "*" Â to match all
endpoints.
Â SeeÂ org.apache.camel.impl.InterceptSendToMockEndpointStrategyÂ forÂ more
details on the registration of the mock endpoints.

Disabled

boolean isUseDebugger()

If this method returns true, theÂ debugBefore(Exchange exchange,
Processor processor, ProcessorDefinition<?> definition,Â String id,
String label)Â andÂ
debugAfter(Exchange exchange, Processor processor,
ProcessorDefinition<?> definition,Â String id, String label, long
timeTaken)Â methods are invoked for each processor in the registered routes.

Disabled. Â The methods are not invoked during the
test.

int getShutdownTimeout()
Returns the number of seconds that Camel should wait for graceful shutdown.
Â Useful for decreasing test times when a message is still in flight at the end of
the test.

Returns 10 seconds.

boolean useJmx() If JMX should be disabled on the CamelContext used in the test. JMX is disabled.

JndiRegistry createRegistry() Provides a hook for adding objects into the registry. Â Override this method to
bind objects to the registry before test methods are invoked. An empty registry is initialized.

useOverridePropertiesWithPropertiesComponent Camel 2.10: Allows to add/override properties when Using PropertyPlaceholder
in Camel. null

ignoreMissingLocationWithPropertiesComponent Camel 2.10: Allows to control if Camel should ignore missing locations for
properties. null

JNDI
Camel uses a Registry to allow you to configure Component or Endpoint
instances or Beans used in your routes. If you are not using Spring or [OSGi]
then JNDI is used as the default registry implementation.

So you will also need to create a jndi.properties file in your src/test/
resources directory so that there is a default registry available to initialise
the CamelContext.

COOKBOOK 95

http://camel.apache.org/advicewith.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/registry.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/spring.html
http://camel.apache.org/jndi.html
http://camel.apache.org/camelcontext.html

Its important to start the CamelContext manually from the unit test
after you are done doing all the advice with.

Here is an example jndi.properties file

java.naming.factory.initial = org.apache.camel.util.jndi.CamelInitialContextFactory

Dynamically assigning ports
Available as of Camel 2.7

Tests that use port numbers will fail if that port is already on use.
AvailablePortFinder provides methods for finding unused port numbers at
runtime.

// Get the next available port number starting from the default starting port of 1024
int port1 = AvailablePortFinder.getNextAvailable();
/*
* Get another port. Note that just getting a port number does not reserve it so
* we look starting one past the last port number we got.
*/

int port2 = AvailablePortFinder.getNextAvailable(port1 + 1);

Setup CamelContext once per class, or per every test method
Available as of Camel 2.8

The Camel Test kit will by default setup and shutdown CamelContext per
every test method in your test class. So for example if you have 3 test
methods, then CamelContext is started and shutdown after each test, that is
3 times.
You may want to do this once, to share the CamelContext between test
methods, to speedup unit testing. This requires to use JUnit 4! In your unit
test method you have to extend the
org.apache.camel.test.junit4.CamelTestSupport or the
org.apache.camel.test.junit4.CamelSpringTestSupport test class and
override the isCreateCamelContextPerClass method and return true as
shown in the following example:

Listing 1. Setup CamelContext once per class

public class FilterCreateCamelContextPerClassTest extends CamelTestSupport {

96 COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-test/src/test/resources/jndi.properties
http://camel.apache.org/camel-test.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html

TestNG
This feature is also supported in camel-testng

Beware
When using this the CamelContext will keep state between tests, so
have that in mind. So if your unit tests start to fail for no apparent
reason, it could be due this fact. So use this feature with a bit of
care.

@Override
public boolean isCreateCamelContextPerClass() {

// we override this method and return true, to tell Camel test-kit that
// it should only create CamelContext once (per class), so we will
// re-use the CamelContext between each test method in this class
return true;

}

@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

getMockEndpoint("mock:result").expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader("direct:start", expectedBody, "foo", "bar");

assertMockEndpointsSatisfied();
}

@Test
public void testSendNotMatchingMessage() throws Exception {

getMockEndpoint("mock:result").expectedMessageCount(0);

template.sendBodyAndHeader("direct:start", "<notMatched/>", "foo",
"notMatchedHeaderValue");

assertMockEndpointsSatisfied();
}

@Override
protected RouteBuilder createRouteBuilder() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};

COOKBOOK 97

http://camel.apache.org/camelcontext.html

}
}

See Also
• Testing
• Mock
• Test

SPRING TESTING
Testing is a crucial part of any development or integration work. The Spring
Framework offers a number of features that makes it easy to test while using
Spring for Inversion of Control which works with JUnit 3.x, JUnit 4.x, and
TestNG.

We can use Spring for IoC and the Camel Mock and Test endpoints to
create sophisticated integration/unit tests that are easy to run and debug
inside your IDE. Â There are three supported approaches for testing with
Spring in Camel.

Name
Testing
Frameworks
Supported

Description
Required Camel
Test
Dependencies

CamelSpringTestSupport

• JUnit 3.x
(deprecated)

• JUnit 4.x
• TestNG -

Camel 2.8

Provided by org.apache.camel.test.CamelSpringTestSupport, org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupport. Â These base classes provide feature parity withÂ the simple CamelTestSupport classes fromÂ Camel
TestÂ but do not support Spring annotations on the test class such as @Autowired,Â @DirtiesContext, andÂ @ContextConfiguration.

• JUnit 3.x
(deprecated)
- camel-test-
spring

• JUnit 4.xÂ -
camel-test-
spring

• TestNG -
camel-test-
ng

Plain Spring Test
• JUnit 3.x
• JUnit 4.x
• TestNG

Extend the abstract base classes
(org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests,Â org.springframework.test.context.junit38.AbstractJUnit4SpringContextTests,
etc.)Â provided in Spring Test or use the Spring Test JUnit4 runner. Â These approaches support both the Camel annotations and Spring annotations, but do
not have feature parity withÂ org.apache.camel.test.CamelTestSupport, org.apache.camel.test.junit4.CamelTestSupport, and
org.apache.camel.testng.CamelSpringTestSupport.

• JUnit 3.x
(deprecated)
- None

• JUnit 4.xÂ -
None

• TestNG -
None

98 COOKBOOK

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/testing.html
http://testng.org
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html
http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport

Camel Enhanced Spring
Test

• JUnit 4.x -
Camel 2.10

• TestNG -
Camel 2.10

Use the org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunnerÂ runner with theÂ @RunWithÂ annotation or extend
org.apache.camel.testng.AbstractCamelTestNGSpringContextTestsÂ to enable feature parity with org.apache.camel.test.CamelTestSupport and
org.apache.camel.test.junit4.CamelTestSupport and also support the full suite of Spring Test annotations such asÂ @Autowired,Â @DirtiesContext, and
@ContextConfiguration.

• JUnit 3.x
(deprecated)
- camel-test-
spring

• JUnit 4.xÂ -
camel-test-
spring

• TestNG -
camel-test-
ng

CamelSpringTestSupport
org.apache.camel.test.CamelSpringTestSupport,
org.apache.camel.test.junit4.CamelSpringTestSupport, and
org.apache.camel.testng.CamelSpringTestSupportÂ extend their non-Spring
aware counterparts (org.apache.camel.test.CamelTestSupport,
org.apache.camel.test.junit4.CamelTestSupport, and
org.apache.camel.testng.CamelTestSupport) and deliver integration with
Spring into your test classes. Â Instead ofÂ instantiatingÂ the CamelContext
and routes programmatically, these classes rely on a Spring context to wire
the needed components together. Â If your test extends one of these classes,
you must provide the Spring context by implementing the following method.

protected abstract AbstractApplicationContext createApplicationContext();

You are responsible for the instantiation of the Spring context in the method
implementation. Â All of the features available in the non-Spring aware
counterparts from Camel Test are available in your test.

Plain Spring Test
In this approach, your test classes directly inherit from the Spring Test
abstract test classes or use the JUnit 4.x test runner provided in Spring Test.
Â This approach supportsÂ dependencyÂ injection into your test class and
the full suite of Spring Test annotations but does not support the features
provided by the CamelSpringTestSupport classes.

COOKBOOK 99

http://camel.apache.org/camel-test.html#CamelTest-FeaturesProvidedbyCamelTestSupport
http://camel.apache.org/camel-test.html

Plain Spring Test using JUnit 3.x with XML Config
Example
Here is a simple unit test using JUnit 3.x support from Spring Test usingÂ XML
Config.

@ContextConfiguration
public class FilterTest extends SpringRunWithTestSupport {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

}

Notice that we useÂ @DirtiesContextÂ on the test methods to
forceÂ Spring TestingÂ to automatically reload theÂ CamelContextÂ after
each test method - this ensures that the tests don't clash with each other
(e.g. one test method sending to an endpoint that is then reused in another
test method).

Also notice the use ofÂ @ContextConfigurationÂ to indicate that by
default we should look for theÂ FilterTest-context.xml on the classpathÂ to
configure the test case which looks like this

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

100 COOKBOOK

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/patterns/FilterTest.java
http://camel.apache.org/spring-testing.html
http://camel.apache.org/camelcontext.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="mock:result"/>

</filter>
</route>

</camelContext>

</beans>

This test will load a Spring XML configuration file calledFilterTest-
context.xmlÂ from the classpath in the same package structure as the
FilterTest class and initialize it along with any Camel routes we define inside
it, then inject theCamelContextinstance into our test case.

For instance, like this maven folder layout:

src/test/java/org/apache/camel/spring/patterns/FilterTest.java
src/test/resources/org/apache/camel/spring/patterns/FilterTest-context.xml

Plain Spring Test using JUnit 4.x with Java Config
Example
You can completely avoid using an XML configuration file by using Spring
Java Config. Â Here is a unit test using JUnit 4.x support from Spring Test
usingÂ Java Config.

@ContextConfiguration(
locations =

"org.apache.camel.spring.javaconfig.patterns.FilterTest$ContextConfig",
loader = JavaConfigContextLoader.class)

public class FilterTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
protected MockEndpoint resultEndpoint;

@Produce(uri = "direct:start")
protected ProducerTemplate template;

COOKBOOK 101

http://camel.apache.org/spring-java-config.html
http://camel.apache.org/spring-java-config.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring-javaconfig/src/test/java/org/apache/camel/spring/javaconfig/patterns/FilterTest.java

@DirtiesContext
@Test
public void testSendMatchingMessage() throws Exception {

String expectedBody = "<matched/>";

resultEndpoint.expectedBodiesReceived(expectedBody);

template.sendBodyAndHeader(expectedBody, "foo", "bar");

resultEndpoint.assertIsSatisfied();
}

@DirtiesContext
@Test
public void testSendNotMatchingMessage() throws Exception {

resultEndpoint.expectedMessageCount(0);

template.sendBodyAndHeader("<notMatched/>", "foo", "notMatchedHeaderValue");

resultEndpoint.assertIsSatisfied();
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

@Bean
public RouteBuilder route() {

return new RouteBuilder() {
public void configure() {

from("direct:start").filter(header("foo").isEqualTo("bar")).to("mock:result");
}

};
}

}
}

This is similar to the XML Config example above except that there is no XML
file and instead the nested ContextConfig class does all of the
configuration; so your entire test case is contained in a single Java class. We
currently have to reference by class name this class in the
@ContextConfiguration which is a bit ugly. Please vote for SJC-238 to
address this and make Spring Test work more cleanly with Spring JavaConfig.

Plain Spring Test using JUnit 4.x Runner with XML Config
You can avoid extending Spring classes by using the SpringJUnit4ClassRunner
provided by Spring Test. Â This custom JUnit runner means you are free to
choose your own class hierarchy while retaining all the capabilities of Spring
Test.

102 COOKBOOK

http://jira.springframework.org/browse/SJC-238

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration
public class MyCamelTest {

Â Â @Autowired
Â Â protected CamelContext camelContext;

Â Â @EndpointInject(uri = "mock:foo")
Â Â protected MockEndpoint foo;

@Test
@DirtiesContext

Â Â public void testMocksAreValid() throws Exception {
...Â Â Â Â

Â Â Â Â foo.message(0).header("bar").isEqualTo("ABC");

Â Â Â Â MockEndpoint.assertIsSatisfied(camelContext);
Â Â }
}

Camel Enhanced Spring Test
Using org.apache.camel.test.junit4.CamelSpringJUnit4ClassRunnerÂ runner
with theÂ @RunWithÂ annotation or extending
org.apache.camel.testng.AbstractCamelTestNGSpringContextTests provides
the full feature set of Spring Test with support for the feature set provided in
the CamelTestSupport classes. Â A number of Camel specific annotations
have been developed in order to provide for declarative manipulation of the
Camel context(s) involved in the test. Â These annotations free your test
classes from having to inherit from the CamelSpringTestSupport classes and
also reduce the amount of code required to customize the tests.

Annotation Class Applies
To Description

Default
Behavioir If
Not Present

Default
Behavior If
Present

org.apache.camel.test.spring.DisableJmx Class
Indicates if JMX should be globally disabled in the CamelContexts that are
bootstrapped Â during the test through the use of Spring Test loaded application
contexts.

JMX is disabled JMX is disabled

org.apache.camel.test.spring.ExcludeRoutes Class

Indicates if certain route builder classes should be excluded from discovery.
Â Initializes a org.apache.camel.spi.PackageScanClassResolverÂ to exclude a set
of given classes from being resolved. Typically this is used at test time to exclude
certain routes,Â which might otherwise be just noisy, from being discovered and
initialized.

Not enabled
and no routes
are excluded

No routes are
excluded

COOKBOOK 103

org.apache.camel.test.spring.LazyLoadTypeConverters
(Deprecated) Class

Indicates if theÂ CamelContexts that are bootstrapped during the test through
the use of Spring TestÂ loaded application contexts should use lazy loading of
type converters.

Type
converters are
not lazy
loaded

Type converters
are not lazy
loaded

org.apache.camel.test.spring.MockEndpoints Class
Triggers the auto-mocking of endpoints whose URIs match the provided filter.Â
The defaultÂ filter is "*" which matches all endpoints.
Â SeeÂ org.apache.camel.impl.InterceptSendToMockEndpointStrategyÂ forÂ more
details on the registration of the mock endpoints.

Not enabled
All endpoints
are sniffed and
recorded in a
mock endpoint.

org.apache.camel.test.spring.MockEndpointsAndSkip Class

Triggers the auto-mocking of endpoints whose URIs match the provided filter.Â
The defaultÂ filter is "*", which matches all endpoints.
Â SeeÂ org.apache.camel.impl.InterceptSendToMockEndpointStrategyÂ forÂ more
details on the registration of the mock endpoints. Â This annotation will also skip
sending the message to matched endpoints as well.

Not enabled

All endpoints
are sniffed and
recorded in a
mock endpoint.
Â The original
endpoint is not
invoked.

org.apache.camel.test.spring.ProvidesBreakpoint Method

Indicates that the annotated method returns
anÂ org.apache.camel.spi.BreakpointÂ for use in the test.Â Useful for
interceptingÂ traffic to all endpoints or simply for setting a break point in an IDE
for debugging.Â The method mustÂ be public, static, take no arguments, and
return org.apache.camel.spi.Breakpoint.

N/A
The returned
Breakpoint is
registered in the
CamelContext(s)

org.apache.camel.test.spring.ShutdownTimeout Class
Indicates to set the shutdown timeout of all CamelContexts instantiated through
theÂ use of Spring Test loaded application contexts.Â If no annotation is used,
the timeout isÂ automatically reduced to 10 seconds by the test framework.

10 seconds 10 seconds

org.apache.camel.test.spring.UseAdviceWith Class

Indicates the use of adviceWith() within the test class.Â If a class is annotated
withÂ this annotation and UseAdviceWith#value()Â returns true,
anyÂ CamelContexts bootstrapped during the test through the use of Spring Test
loadedÂ application contexts will not be started automatically.Â The test author
is responsible forÂ injecting the Camel contexts into the test and executing
CamelContext#start()Â on themÂ at the appropriate time after any advice has
been applied to the routes in the CamelContext(s).

CamelContexts
do not
automatically
start.

CamelContexts
do not
automatically
start.

The following example illustrates the use of the
@MockEndpointsÂ annotation in order to setup mock endpoints as
interceptors on all endpoints using the Camel Log component and the
@DisableJmx annotation to enable JMX which is disabled during tests by
default. Â Note that we still use the @DirtiesContext annotation to ensure
that the CamelContext, routes, and mock endpoints are reinitialized between
test methods.

@RunWith(CamelSpringJUnit4ClassRunner.class)
@ContextConfiguration

104 COOKBOOK

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/main/java/org/apache/camel/impl/InterceptSendToMockEndpointStrategy.java?view=markup

@DirtiesContext(classMode = ClassMode.AFTER_EACH_TEST_METHOD)
@MockEndpoints("log:*")
@DisableJmx(false)
public class CamelSpringJUnit4ClassRunnerPlainTest {

@Autowired
protected CamelContext camelContext2;

protected MockEndpoint mockB;

@EndpointInject(uri = "mock:c", context = "camelContext2")
protected MockEndpoint mockC;

@Produce(uri = "direct:start2", context = "camelContext2")
protected ProducerTemplate start2;

@EndpointInject(uri = "mock:log:org.apache.camel.test.junit4.spring", context =
"camelContext2")

protected MockEndpoint mockLog;

@Test
public void testPositive() throws Exception {

mockC.expectedBodiesReceived("David");
mockLog.expectedBodiesReceived("Hello David");

start2.sendBody("David");

MockEndpoint.assertIsSatisfied(camelContext);
}

Adding more Mock expectations
If you wish to programmatically add any new assertions to your test you can
easily do so with the following. Notice how we use @EndpointInject to inject a
Camel endpoint into our code then the Mock API to add an expectation on a
specific message.

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations
foo.message(0).header("bar").isEqualTo("ABC");

COOKBOOK 105

http://camel.apache.org/mock.html

MockEndpoint.assertIsSatisfied(camelContext);
}

}

Further processing the received messages
Sometimes once a Mock endpoint has received some messages you want to
then process them further to add further assertions that your test case
worked as you expect.

So you can then process the received message exchanges if you like...

@ContextConfiguration
public class MyCamelTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;

@EndpointInject(uri = "mock:foo")
protected MockEndpoint foo;

public void testMocksAreValid() throws Exception {
// lets add more expectations...

MockEndpoint.assertIsSatisfied(camelContext);

// now lets do some further assertions
List<Exchange> list = foo.getReceivedExchanges();
for (Exchange exchange : list) {

Message in = exchange.getIn();
...

}
}

}

Sending and receiving messages
It might be that the Enterprise Integration Patterns you have defined in either
Spring XML or using the Java DSL do all of the sending and receiving and you
might just work with the Mock endpoints as described above. However
sometimes in a test case its useful to explicitly send or receive messages
directly.

To send or receive messages you should use the Bean Integration
mechanism. For example to send messages inject a ProducerTemplate using
the @EndpointInject annotation then call the various send methods on this
object to send a message to an endpoint. To consume messages use the

106 COOKBOOK

http://camel.apache.org/mock.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html
http://camel.apache.org/dsl.html
http://camel.apache.org/mock.html
http://camel.apache.org/bean-integration.html

@MessageDriven annotation on a method to have the method invoked when
a message is received.

public class Foo {
@EndpointInject(uri="activemq:foo.bar")
ProducerTemplate producer;

public void doSomething() {
// lets send a message!
producer.sendBody("<hello>world!</hello>");

}

// lets consume messages from the 'cheese' queue
@MessageDriven(uri="activemq:cheese")
public void onCheese(String name) {

...
}

}

See Also
• A real example test case using Mock and Spring along with its Spring

XML
• Bean Integration
• Mock endpoint
• Test endpoint

CAMEL GUICE
We have support for Google Guice as a dependency injection framework.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-guice</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Dependency Injecting Camel with Guice
The GuiceCamelContext is designed to work nicely inside Guice. You then
need to bind it using some Guice Module.

COOKBOOK 107

https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/mock/InterceptSendToMockEndpointStrategyTest.xml
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://code.google.com/p/google-guice/
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/GuiceCamelContext.html

The camel-guice library comes with a number of reusable Guice Modules
you can use if you wish - or you can bind the GuiceCamelContext yourself in
your own module.

• CamelModule is the base module which binds the
GuiceCamelContext but leaves it up you to bind the RouteBuilder
instances

• CamelModuleWithRouteTypes extends CamelModule so that in the
constructor of the module you specify the RouteBuilder classes or
instances to use

• CamelModuleWithMatchingRoutes extends CamelModule so that all
bound RouteBuilder instances will be injected into the CamelContext
or you can supply an optional Matcher to find RouteBuilder instances
matching some kind of predicate.

So you can specify the exact RouteBuilder instances you want

Injector injector = Guice.createInjector(new
CamelModuleWithRouteTypes(MyRouteBuilder.class, AnotherRouteBuilder.class));
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

Or inject them all

Injector injector = Guice.createInjector(new CamelModuleWithRouteTypes());
// if required you can lookup the CamelContext
CamelContext camelContext = injector.getInstance(CamelContext.class);

You can then use Guice in the usual way to inject the route instances or any
other dependent objects.

Bootstrapping with JNDI
A common pattern used in J2EE is to bootstrap your application or root
objects by looking them up in JNDI. This has long been the approach when
working with JMS for example - looking up the JMS ConnectionFactory in JNDI
for example.

You can follow a similar pattern with Guice using the GuiceyFruit JNDI
Provider which lets you bootstrap Guice from a jndi.properties file which
can include the Guice Modules to create along with environment specific
properties you can inject into your modules and objects.

If the jndi.properties is conflict with other component, you can specify
the jndi properties file name in the Guice Main with option -j or -jndiProperties
with the properties file location to let Guice Main to load right jndi properties
file.

108 COOKBOOK

http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModule.html
hhttp://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithRouteTypes.html
http://camel.apache.org/maven/current/camel-guice/apidocs/org/apache/camel/guice/CamelModuleWithMatchingRoutes.html
http://camel.apache.org/routebuilder.html
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi
http://code.google.com/p/guiceyfruit/wiki/GuiceyJndi

Configuring Component, Endpoint or RouteBuilder instances
You can use Guice to dependency inject whatever objects you need to create,
be it an Endpoint, Component, RouteBuilder or arbitrary bean used within a
route.

The easiest way to do this is to create your own Guice Module class which
extends one of the above module classes and add a provider method for
each object you wish to create. A provider method is annotated with
@Provides as follows

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides
@JndiBind("jms")
JmsComponent jms(@Named("activemq.brokerURL") String brokerUrl) {

return JmsComponent.jmsComponent(new ActiveMQConnectionFactory(brokerUrl));
}

}

You can optionally annotate the method with @JndiBind to bind the object to
JNDI at some name if the object is a component, endpoint or bean you wish
to refer to by name in your routes.

You can inject any environment specific properties (such as URLs, machine
names, usernames/passwords and so forth) from the jndi.properties file
easily using the @Named annotation as shown above. This allows most of
your configuration to be in Java code which is typesafe and easily
refactorable - then leaving some properties to be environment specific (the
jndi.properties file) which you can then change based on development,
testing, production etc.

Creating multiple RouteBuilder instances per type
It is sometimes useful to create multiple instances of a particular
RouteBuilder with different configurations.

To do this just create multiple provider methods for each configuration; or
create a single provider method that returns a collection of RouteBuilder
instances.

For example

import org.apache.camel.guice.CamelModuleWithMatchingRoutes;
import com.google.common.collect.Lists;

public class MyModule extends CamelModuleWithMatchingRoutes {

@Provides

COOKBOOK 109

http://camel.apache.org/guice.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/component.html
http://camel.apache.org/routebuilder.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/routebuilder.html

@JndiBind("foo")
Collection<RouteBuilder> foo(@Named("fooUrl") String fooUrl) {

return Lists.newArrayList(new MyRouteBuilder(fooUrl), new
MyRouteBuilder("activemq:CheeseQueue"));

}
}

See Also
• there are a number of Examples you can look at to see Guice and

Camel being used such as Guice JMS Example
• Guice Maven Plugin for running your Guice based routes via Maven

TEMPLATING
When you are testing distributed systems its a very common requirement to
have to stub out certain external systems with some stub so that you can
test other parts of the system until a specific system is available or written
etc.

A great way to do this is using some kind of Template system to generate
responses to requests generating a dynamic message using a mostly-static
body.

There are a number of templating components included in the Camel
distribution you could use

• FreeMarker
• StringTemplate
• Velocity
• XQuery
• XSLT

or the following external Camel components
• Scalate

Example
Here's a simple example showing how we can respond to InOut requests on
the My.Queue queue on ActiveMQ with a template generated response. The
reply would be sent back to the JMSReplyTo Destination.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

110 COOKBOOK

http://camel.apache.org/examples.html
http://camel.apache.org/guice-jms-example.html
http://camel.apache.org/guice-maven-plugin.html
http://camel.apache.org/freemarker.html
http://camel.apache.org/stringtemplate.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/xslt.html
http://scalate.fusesource.org/camel.html
http://camel.apache.org/activemq.html

If you want to use InOnly and consume the message and send it to another
destination you could use

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

See Also
• Mock for details of mock endpoint testing (as opposed to template

based stubs).

DATABASE
Camel can work with databases in a number of different ways. This
document tries to outline the most common approaches.

Database endpoints
Camel provides a number of different endpoints for working with databases

• JPA for working with hibernate, openjpa or toplink. When consuming
from the endpoints entity beans are read (and deleted/updated to
mark as processed) then when producing to the endpoints they are
written to the database (via insert/update).

• iBATIS similar to the above but using Apache iBATIS
• JDBC similar though using explicit SQL

Database pattern implementations
Various patterns can work with databases as follows

• Idempotent Consumer
• Aggregator
• BAM for business activity monitoring

PARALLEL PROCESSING AND ORDERING
It is a common requirement to want to use parallel processing of messages
for throughput and load balancing, while at the same time process certain
kinds of messages in order.

COOKBOOK 111

http://camel.apache.org/mock.html
http://camel.apache.org/jpa.html
http://camel.apache.org/ibatis.html
http://ibatis.apache.org/
http://camel.apache.org/jdbc.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/bam.html

How to achieve parallel processing
You can send messages to a number of Camel Components to achieve
parallel processing and load balancing such as

• SEDA for in-JVM load balancing across a thread pool
• ActiveMQ or JMS for distributed load balancing and parallel

processing
• JPA for using the database as a poor mans message broker

When processing messages concurrently, you should consider ordering and
concurrency issues. These are described below

Concurrency issues
Note that there is no concurrency or locking issue when using ActiveMQ, JMS
or SEDA by design; they are designed for highly concurrent use. However
there are possible concurrency issues in the Processor of the messages i.e.
what the processor does with the message?

For example if a processor of a message transfers money from one
account to another account; you probably want to use a database with
pessimistic locking to ensure that operation takes place atomically.

Ordering issues
As soon as you send multiple messages to different threads or processes you
will end up with an unknown ordering across the entire message stream as
each thread is going to process messages concurrently.

For many use cases the order of messages is not too important. However
for some applications this can be crucial. e.g. if a customer submits a
purchase order version 1, then amends it and sends version 2; you don't
want to process the first version last (so that you loose the update). Your
Processor might be clever enough to ignore old messages. If not you need to
preserve order.

Recommendations
This topic is large and diverse with lots of different requirements; but from a
high level here are our recommendations on parallel processing, ordering
and concurrency

• for distributed locking, use a database by default, they are very good
at it

• to preserve ordering across a JMS queue consider using Exclusive
Consumers in the ActiveMQ component

112 COOKBOOK

http://camel.apache.org/components.html
http://camel.apache.org/seda.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/seda.html
http://camel.apache.org/processor.html
http://camel.apache.org/processor.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/exclusive-consumer.html
http://camel.apache.org/activemq.html

• even better are Message Groups which allows you to preserve
ordering across messages while still offering parallelisation via the
JMSXGroupID header to determine what can be parallelized

• if you receive messages out of order you could use the Resequencer
to put them back together again

A good rule of thumb to help reduce ordering problems is to make sure each
single can be processed as an atomic unit in parallel (either without
concurrency issues or using say, database locking); or if it can't, use a
Message Group to relate the messages together which need to be processed
in order by a single thread.

Using Message Groups with Camel
To use a Message Group with Camel you just need to add a header to the
output JMS message based on some kind of Correlation Identifier to correlate
messages which should be processed in order by a single thread - so that
things which don't correlate together can be processed concurrently.

For example the following code shows how to create a message group
using an XPath expression taking an invoice's product code as the Correlation
Identifier

from("activemq:a").setHeader("JMSXGroupID", xpath("/invoice/
productCode")).to("activemq:b");

You can of course use the Xml Configuration if you prefer

ASYNCHRONOUS PROCESSING

Overview
Camel supports a more complex asynchronous processing model. The
asynchronous processors implement the AsyncProcessor interface which is
derived from the more synchronous Processor interface. There are
advantages and disadvantages when using asynchronous processing when
compared to using the standard synchronous processing model.

Advantages:
• Processing routes that are composed fully of asynchronous

processors do not use up threads waiting for processors to complete
on blocking calls. This can increase the scalability of your system by
reducing the number of threads needed to process the same
workload.

COOKBOOK 113

http://activemq.apache.org/message-groups.html
http://camel.apache.org/resequencer.html
http://activemq.apache.org/message-groups.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/correlation-identifier.html
http://camel.apache.org/xml-configuration.html

Supported versions
The information on this page applies for Camel 2.4 onwards. Before
Camel 2.4 the asynchronous processing is only implemented for JBI
where as in Camel 2.4 onwards we have implemented it in many
other areas. See more at Asynchronous Routing Engine.

• Processing routes can be broken up into SEDA processing stages
where different thread pools can process the different stages. This
means that your routes can be processed concurrently.

Disadvantages:
• Implementing asynchronous processors is more complex than

implementing the synchronous versions.

When to Use
We recommend that processors and components be implemented the more
simple synchronous APIs unless you identify a performance of scalability
requirement that dictates otherwise. A Processor whose process() method
blocks for a long time would be good candidates for being converted into an
asynchronous processor.

Interface Details

public interface AsyncProcessor extends Processor {
boolean process(Exchange exchange, AsyncCallback callback);

}

The AsyncProcessor defines a single process() method which is very similar
to it's synchronous Processor.process() brethren. Here are the differences:

• A non-null AsyncCallback MUST be supplied which will be notified
when the exchange processing is completed.

• It MUST not throw any exceptions that occurred while processing the
exchange. Any such exceptions must be stored on the exchange's
Exception property.

• It MUST know if it will complete the processing synchronously or
asynchronously. The method will return true if it does complete
synchronously, otherwise it returns false.

• When the processor has completed processing the exchange, it must
call the callback.done(boolean sync) method. The sync
parameter MUST match the value returned by the process()
method.

114 COOKBOOK

http://camel.apache.org/seda.html
http://camel.apache.org/jbi.html
http://camel.apache.org/asynchronous-routing-engine.html

Implementing Processors that Use the AsyncProcessor API
All processors, even synchronous processors that do not implement the
AsyncProcessor interface, can be coerced to implement the AsyncProcessor
interface. This is usually done when you are implementing a Camel
component consumer that supports asynchronous completion of the
exchanges that it is pushing through the Camel routes. Consumers are
provided a Processor object when created. All Processor object can be
coerced to a AsyncProcessor using the following API:

Processor processor = ...
AsyncProcessor asyncProcessor = AsyncProcessorTypeConverter.convert(processor);

For a route to be fully asynchronous and reap the benefits to lower Thread
usage, it must start with the consumer implementation making use of the
asynchronous processing API. If it called the synchronous process() method
instead, the consumer's thread would be forced to be blocked and in use for
the duration that it takes to process the exchange.

It is important to take note that just because you call the asynchronous
API, it does not mean that the processing will take place asynchronously. It
only allows the possibility that it can be done without tying up the caller's
thread. If the processing happens asynchronously is dependent on the
configuration of the Camel route.

Normally, the the process call is passed in an inline inner AsyncCallback
class instance which can reference the exchange object that was declared
final. This allows it to finish up any post processing that is needed when the
called processor is done processing the exchange. See below for an example.

final Exchange exchange = ...
AsyncProcessor asyncProcessor = ...
asyncProcessor.process(exchange, new AsyncCallback() {

public void done(boolean sync) {

if (exchange.isFailed()) {
... // do failure processing.. perhaps rollback etc.

} else {
... // processing completed successfully, finish up

// perhaps commit etc.
}

}
});

Asynchronous Route Sequence Scenarios
Now that we have understood the interface contract of the AsyncProcessor,
and have seen how to make use of it when calling processors, lets looks a

COOKBOOK 115

what the thread model/sequence scenarios will look like for some sample
routes.

The Jetty component's consumers support async processing by using
continuations. Suffice to say it can take a http request and pass it to a camel
route for async processing. If the processing is indeed async, it uses Jetty
continuation so that the http request is 'parked' and the thread is released.
Once the camel route finishes processing the request, the jetty component
uses the AsyncCallback to tell Jetty to 'un-park' the request. Jetty un-parks
the request, the http response returned using the result of the exchange
processing.

Notice that the jetty continuations feature is only used "If the processing is
indeed async". This is why AsyncProcessor.process() implementations MUST
accurately report if request is completed synchronously or not.

The jhc component's producer allows you to make HTTP requests and
implement the AsyncProcessor interface. A route that uses both the jetty
asynchronous consumer and the jhc asynchronous producer will be a fully
asynchronous route and has some nice attributes that can be seen if we take
a look at a sequence diagram of the processing route. For the route:

from("jetty:http://localhost:8080/service").to("jhc:http://localhost/service-impl");

The sequence diagram would look something like this:

The diagram simplifies things by making it looks like processors implement
the AsyncCallback interface when in reality the AsyncCallback interfaces are
inline inner classes, but it illustrates the processing flow and shows how 2
separate threads are used to complete the processing of the original http
request. The first thread is synchronous up until processing hits the jhc
producer which issues the http request. It then reports that the exchange
processing will complete async since it will use a NIO to complete getting the
response back. Once the jhc component has received a full response it uses
AsyncCallback.done() method to notify the caller. These callback
notifications continue up until it reaches the original jetty consumer which
then un-parks the http request and completes it by providing the response.

Mixing Synchronous and Asynchronous Processors
It is totally possible and reasonable to mix the use of synchronous and
asynchronous processors/components. The pipeline processor is the
backbone of a Camel processing route. It glues all the processing steps
together. It is implemented as an AsyncProcessor and supports interleaving

116 COOKBOOK

synchronous and asynchronous processors as the processing steps in the
pipeline.

Lets say we have 2 custom processors, MyValidator and MyTransformation,
both of which are synchronous processors. Lets say we want to load file from
the data/in directory validate them with the MyValidator() processor,
Transform them into JPA java objects using MyTransformation and then insert
them into the database using the JPA component. Lets say that the
transformation process takes quite a bit of time and we want to allocate 20
threads to do parallel transformations of the input files. The solution is to
make use of the thread processor. The thread is AsyncProcessor that forces
subsequent processing in asynchronous thread from a thread pool.

The route might look like:

from("file:data/in").process(new MyValidator()).threads(20).process(new
MyTransformation()).to("jpa:PurchaseOrder");

The sequence diagram would look something like this:

You would actually have multiple threads executing the 2nd part of the
thread sequence.

Staying synchronous in an AsyncProcessor
Generally speaking you get better throughput processing when you process
things synchronously. This is due to the fact that starting up an asynchronous
thread and doing a context switch to it adds a little bit of of overhead. So it is
generally encouraged that AsyncProcessors do as much work as they can
synchronously. When they get to a step that would block for a long time, at
that point they should return from the process call and let the caller know
that it will be completing the call asynchronously.

IMPLEMENTING VIRTUAL TOPICS ON OTHER JMS
PROVIDERS
ActiveMQ supports Virtual Topics since durable topic subscriptions kinda suck
(see this page for more detail) mostly since they don't support Competing
Consumers.

Most folks want Queue semantics when consuming messages; so that you
can support Competing Consumers for load balancing along with things like
Message Groups and Exclusive Consumers to preserve ordering or partition
the queue across consumers.

COOKBOOK 117

http://camel.apache.org/jpa.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://camel.apache.org/competing-consumers.html
http://activemq.apache.org/message-groups.html
http://activemq.apache.org/exclusive-consumer.html

However if you are using another JMS provider you can implement Virtual
Topics by switching to ActiveMQ or you can use the following Camel
pattern.

First here's the ActiveMQ approach.
• send to activemq:topic:VirtualTopic.Orders
• for consumer A consume from

activemq:Consumer.A.VirtualTopic.Orders
When using another message broker use the following pattern

• send to jms:Orders
• add this route with a to() for each logical durable topic subscriber

from("jms:Orders").to("jms:Consumer.A", "jms:Consumer.B", ...);

• for consumer A consume from jms:Consumer.A

WHAT'S THE CAMEL TRANSPORT FOR CXF
In CXF you offer or consume a webservice by defining itÂ´s address. The first
part of the address specifies the protocol to use. For example
address="http://localhost:9000" in an endpoint configuration means your
service will be offered using the http protocol on port 9000 of localhost.
When you integrate Camel Tranport into CXF you get a new transport
"camel". So you can specify address="camel://direct:MyEndpointName" to
bind the CXF service address to a camel direct endpoint.

Technically speaking Camel transport for CXF is a component which
implements the CXF transport API with the Camel core library. This allows you
to use camelÂ´s routing engine and integration patterns support smoothly
together with your CXF services.

INTEGRATE CAMEL INTO CXF TRANSPORT LAYER
To include the Camel Tranport into your CXF bus you use the
CamelTransportFactory. You can do this in Java as well as in Spring.

Setting up the Camel Transport in Spring
You can use the following snippet in your applicationcontext if you want to
configure anything special. If you only want to activate the camel transport
you do not have to do anything in your application context. As soon as you
include the camel-cxf-transport jar (or camel-cxf.jar if your camel version is
less than 2.7.x) in your app cxf will scan the jar and load a
CamelTransportFactory for you.

118 COOKBOOK

http://cwiki.apache.org/CXF20DOC/cxf-architecture.html#CXFArchitecture-Transports

<!-- you don't need to specify the CamelTransportFactory configuration as it is auto
load by CXF bus -->
<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">

<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<!-- checkException new added in Camel 2.1 and Camel 1.6.2 -->
<!-- If checkException is true , CamelDestination will check the outMessage's

exception and set it into camel exchange. You can also override this value
in CamelDestination's configuration. The default value is false.
This option should be set true when you want to leverage the camel's error
handler to deal with fault message -->

<property name="checkException" value="true" />
<property name="transportIds">

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>
</property>

</bean>

Integrating the Camel Transport in a programmatic way
Camel transport provides a setContext method that you could use to set the
Camel context into the transport factory. If you want this factory take effect,
you need to register the factory into the CXF bus. Here is a full example for
you.

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.DestinationFactoryManager;
...

BusFactory bf = BusFactory.newInstance();
Bus bus = bf.createBus();
CamelTransportFactory camelTransportFactory = new CamelTransportFactory();
// set up the CamelContext which will be use by the CamelTransportFactory
camelTransportFactory.setCamelContext(context)
// if you are using CXF higher then 2.4.x the
camelTransportFactory.setBus(bus);

// if you are lower CXF, you need to register the ConduitInitiatorManager and
DestinationFactoryManager like below
// register the conduit initiator
ConduitInitiatorManager cim = bus.getExtension(ConduitInitiatorManager.class);
cim.registerConduitInitiator(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);
// register the destination factory
DestinationFactoryManager dfm = bus.getExtension(DestinationFactoryManager.class);
dfm.registerDestinationFactory(CamelTransportFactory.TRANSPORT_ID,
camelTransportFactory);

COOKBOOK 119

// set or bus as the default bus for cxf
BusFactory.setDefaultBus(bus);

CONFIGURE THE DESTINATION AND CONDUIT WITH
SPRING

Namespace
The elements used to configure an Camel transport endpoint are defined in
the namespace http://cxf.apache.org/transports/camel. It is commonly
referred to using the prefix camel. In order to use the Camel transport
configuration elements you will need to add the lines shown below to the
beans element of your endpoint's configuration file. In addition, you will need
to add the configuration elements' namespace to the xsi:schemaLocation
attribute.

Listing 1. Adding the Configuration Namespace

<beans ...
xmlns:camel="http://cxf.apache.org/transports/camel
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/camel
http://cxf.apache.org/transports/camel.xsd

...>

The destination element
You configure an Camel transport server endpoint using the
camel:destination element and its children. The camel:destination
element takes a single attribute, name, the specifies the WSDL port element
that corresponds to the endpoint. The value for the name attribute takes the
form portQName.camel-destination. The example below shows the
camel:destination element that would be used to add configuration for an
endpoint that was specified by the WSDL fragment <port
binding="widgetSOAPBinding" name="widgetSOAPPort> if the endpoint's
target namespace was http://widgets.widgetvendor.net.

Listing 1. camel:destination Element

...
<camel:destination name="{http://widgets/

widgetvendor.net}widgetSOAPPort.http-destination>

120 COOKBOOK

http://cxf.apache.org/transports/camel
http://widgets.widgetvendor.net

<camelContext id="context" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="direct:EndpointC" />
<to uri="direct:EndpointD" />

</route>
</camelContext>

</camel:destination>

<!-- new added feature since Camel 2.11.x
<camel:destination name="{http://widgets/

widgetvendor.net}widgetSOAPPort.camel-destination" camelContextId="context" />

...

The camel:destination element for Spring has a number of child elements
that specify configuration information. They are described below.
Element Description
camel-
spring:camelContext

You can specify the camel context in the camel
destination

camel:camelContextRef The camel context id which you want inject
into the camel destination

The conduit element
You configure an Camel transport client using the camel:conduit element
and its children. The camel:conduit element takes a single attribute, name,
that specifies the WSDL port element that corresponds to the endpoint. The
value for the name attribute takes the form portQName.camel-conduit. For
example, the code below shows the camel:conduit element that would be
used to add configuration for an endpoint that was specified by the WSDL
fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> if
the endpoint's target namespace was http://widgets.widgetvendor.net.

Listing 1. http-conf:conduit Element

...
<camelContext id="conduit_context" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>

<from uri="direct:EndpointA" />
<to uri="direct:EndpointB" />

</route>
</camelContext>

<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit">
<camel:camelContextRef>conduit_context</camel:camelContextRef>

</camel:conduit>

COOKBOOK 121

http://widgets.widgetvendor.net

<!-- new added feature since Camel 2.11.x
<camel:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.camel-conduit"

camelContextId="conduit_context" />

<camel:conduit name="*.camel-conduit">
<!-- you can also using the wild card to specify the camel-conduit that you want to

configure -->
...

</camel:conduit>
...

The camel:conduit element has a number of child elements that specify
configuration information. They are described below.
Element Description
camel-
spring:camelContext

You can specify the camel context in the camel
conduit

camel:camelContextRef The camel context id which you want inject
into the camel conduit

CONFIGURE THE DESTINATION AND CONDUIT WITH
BLUEPRINT
From Camel 2.11.x, Camel Transport supports to be configured with
Blueprint

If you are using blueprint, you should use the the namespace
http://cxf.apache.org/transports/camel/blueprint and import the
schema like the blow.

Listing 1. Adding the Configuration Namespace for blueprint

<beans ...
xmlns:camel="http://cxf.apache.org/transports/camel/blueprint"
...
xsi:schemaLocation="...

http://cxf.apache.org/transports/camel/blueprint
http://cxf.apache.org/schmemas/blueprint/camel.xsd

...>

In blueprint camel:conduit camel:destination only has one
camelContextId attribute, they doesn't support to specify the camel context
in the camel destination.

122 COOKBOOK

http://cxf.apache.org/transports/camel/blueprint

<camel:conduit id="*.camel-conduit" camelContextId="camel1" />
<camel:destination id="*.camel-destination" camelContextId="camel1" />

EXAMPLE USING CAMEL AS A LOAD BALANCER FOR CXF
This example show how to use the camel load balance feature in CXF, and
you need load the configuration file in CXF and publish the endpoints on the
address "camel://direct:EndpointA" and "camel://direct:EndpointB"

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://cxf.apache.org/transports/camel"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/transports/camel http://cxf.apache.org/transports/

camel.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

cxfEndpoint.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<!-- Enable bridge between Camel Property Placeholder and Spring Property
placeholder so we can use system properties

to dynamically set the port number for unit testing the example. -->
<bean id="bridgePropertyPlaceholder"

class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer"/>

<bean id = "roundRobinRef"
class="org.apache.camel.processor.loadbalancer.RoundRobinLoadBalancer" />

<camelContext id="dest_context" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="jetty:http://localhost:{{port}}/GreeterContext/GreeterPort"/>
<loadBalance ref="roundRobinRef">

<to uri="direct:EndpointA"/>
<to uri="direct:EndpointB"/>

</loadBalance>
</route>

</camelContext>

<!-- Inject the camel context to the Camel transport's destination -->
<camel:destination name="{http://apache.org/

hello_world_soap_http}CamelPort.camel-destination">
<camel:camelContextRef>dest_context</camel:camelContextRef>

</camel:destination>

</beans>

COOKBOOK 123

COMPLETE HOWTO AND EXAMPLE FOR ATTACHING
CAMEL TO CXF
Better JMS Transport for CXF Webservice using Apache CamelÂ

INTRODUCTION
When sending an Exchange to an Endpoint you can either use a Route or a
ProducerTemplate. This works fine in many scenarios. However you may
need to guarantee that an exchange is delivered to the same endpoint that
you delivered a previous exchange on. For example in the case of delivering
a batch of exchanges to a MINA socket you may need to ensure that they are
all delivered through the same socket connection. Furthermore once the
batch of exchanges have been delivered the protocol requirements may be
such that you are responsible for closing the socket.

USING A PRODUCER
To achieve fine grained control over sending exchanges you will need to
program directly to a Producer. Your code will look similar to:

CamelContext camelContext = ...

// Obtain an endpoint and create the producer we will be using.
Endpoint endpoint = camelContext.getEndpoint("someuri:etc");
Producer producer = endpoint.createProducer();
producer.start();

try {
// For each message to send...
Object requestMessage = ...
Exchange exchangeToSend = producer.createExchange();
exchangeToSend().setBody(requestMessage);
producer.process(exchangeToSend);
...

} finally {
// Tidy the producer up.
producer.stop();

}

In the case of using Apache MINA the producer.stop() invocation will cause
the socket to be closed.

124 COOKBOOK

http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/routes.html
http://camel.apache.org/producertemplate.html
http://camel.apache.org/mina.html

Tutorials

There now follows the documentation on camel tutorials
We have a number of tutorials as listed below. The tutorials often comes

with source code which is either available in the Camel Download or attached
to the wiki page.

• OAuth Tutorial
This tutorial demonstrates how to implement OAuth for a web
application with Camel's gauth component. The sample application of
this tutorial is also online at http://gauthcloud.appspot.com/

• Tutorial for Camel on Google App Engine
This tutorial demonstrates the usage of the Camel Components for
Google App Engine. The sample application of this tutorial is also
online at http://camelcloud.appspot.com/

• Tutorial on Spring Remoting with JMS
This tutorial is focused on different techniques with Camel for Client-
Server communication.

• Report Incident - This tutorial introduces Camel steadily and is based
on a real life integration problem
This is a very long tutorial beginning from the start; its for entry level
to Camel. Its based on a real life integration, showing how Camel can
be introduced in an existing solution. We do this in baby steps. The
tutorial is currently work in progress, so check it out from time to
time. The tutorial explains some of the inner building blocks Camel
uses under the covers. This is good knowledge to have when you
start using Camel on a higher abstract level where it can do wonders
in a few lines of routing DSL.

• Using Camel with ServiceMix a tutorial on using Camel inside Apache
ServiceMix.

• Better JMS Transport for CXF Webservice using Apache Camel
Describes how to use the Camel Transport for CXF to attach a CXF
Webservice to a JMS Queue

• Tutorial how to use good old Axis 1.4 with Camel
This tutorial shows that Camel does work with the good old
frameworks such as AXIS that is/was widely used for WebService.

• Tutorial on using Camel in a Web Application
This tutorial gives an overview of how to use Camel inside Tomcat,
Jetty or any other servlet engine

• Tutorial on Camel 1.4 for Integration
Another real-life scenario. The company sells widgets, with a

TUTORIALS 125

http://camel.apache.org/download.html
http://camel.apache.org/tutorial-oauth.html
http://camel.apache.org/gauth.html
http://gauthcloud.appspot.com/
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/gae.html
http://camel.apache.org/gae.html
http://camelcloud.appspot.com/
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://camel.apache.org/better-jms-transport-for-cxf-webservice-using-apache-camel.html
http://camel.apache.org/tutorial-axis-camel.html
http://camel.apache.org/tutorial-on-using-camel-in-a-web-application.html
http://camel.apache.org/tutorial-business-partners.html

Notice
These tutorials listed below, is hosted at Apache. We offer the
Articles page where we have a link collection for 3rd party Camel
material, such as tutorials, blog posts, published articles, videos,
pod casts, presentations, and so forth.

If you have written a Camel related article, then we are happy to provide a
link to it. You can contact the Camel Team, for example using the Mailing
Lists, (or post a tweet with the word Apache Camel).

somewhat unique business process (their customers periodically
report what they've purchased in order to get billed). However every
customer uses a different data format and protocol. This tutorial goes
through the process of integrating (and testing!) several customers
and their electronic reporting of the widgets they've bought, along
with the company's response.

• Tutorial how to build a Service Oriented Architecture using Camel
with OSGI - Updated 20/11/2009
The tutorial has been designed in two parts. The first part introduces
basic concept to create a simple SOA solution using Camel and OSGI
and deploy it in a OSGI Server like Apache Felix Karaf and Spring DM
Server while the second extends the ReportIncident tutorial part 4 to
show How we can separate the different layers (domain, service, ...)
of an application and deploy them in separate bundles. The Web
Application has also be modified in order to communicate to the OSGI
bundles.

• Several of the vendors on the Commercial Camel Offerings page also
offer various tutorials, webinars, examples, etc.... that may be useful.

• Examples
While not actual tutorials you might find working through the source
of the various Examples useful.

TUTORIAL ON SPRING REMOTING WITH JMS
Â

PREFACE
This tutorial aims to guide the reader through the stages of creating a project
which uses Camel to facilitate the routing of messages from a JMS queue to a

126 TUTORIALS

http://camel.apache.org/tutorial-osgi-camel-part1.html
http://camel.apache.org/tutorial-osgi-camel-part2.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/commercial-camel-offerings.html
http://camel.apache.org/examples.html
http://camel.apache.org/examples.html
http://camel.apache.org/articles.html
http://camel.apache.org/team.html
http://camel.apache.org/mailing-lists.html
http://camel.apache.org/mailing-lists.html

Thanks
This tutorial was kindly donated to Apache Camel by Martin Gilday.

Spring service. The route works in a synchronous fashion returning a
response to the client.

• Tutorial on Spring Remoting with JMS
• Preface
• Prerequisites
• Distribution
• About
• Create the Camel Project
• Update the POM with Dependencies
• Writing the Server
• Create the Spring Service
• Define the Camel Routes
• Configure Spring
• Run the Server
• Writing The Clients
• Client Using The ProducerTemplate
• Client Using Spring Remoting
• Client Using Message Endpoint EIP Pattern
• Run the Clients
• Using the Camel Maven Plugin
• Using Camel JMX
• See Also

PREREQUISITES
This tutorial uses Maven to setup the Camel project and for dependencies for
artifacts.

DISTRIBUTION
This sample is distributed with the Camel distribution as examples/camel-
example-spring-jms.

TUTORIALS 127

http://www.springramework.org

ABOUT
This tutorial is a simple example that demonstrates more the fact how well
Camel is seamless integrated with Spring to leverage the best of both worlds.
This sample is client server solution using JMS messaging as the transport.
The sample has two flavors of servers and also for clients demonstrating
different techniques for easy communication.

The Server is a JMS message broker that routes incoming messages to a
business service that does computations on the received message and
returns a response.
The EIP patterns used in this sample are:
Pattern Description
Message
Channel

We need a channel so the Clients can communicate with the
server.

Message The information is exchanged using the Camel Message
interface.

Message
Translator

This is where Camel shines as the message exchange
between the Server and the Clients are text based strings with
numbers. However our business service uses int for numbers.
So Camel can do the message translation automatically.

Message
Endpoint

It should be easy to send messages to the Server from the the
clients. This is archived with Camels powerful Endpoint
pattern that even can be more powerful combined with Spring
remoting. The tutorial have clients using each kind of
technique for this.

Point to
Point
Channel

We using JMS queues so there are only one receive of the
message exchange

Event
Driven
Consumer

Yes the JMS broker is of course event driven and only reacts
when the client sends a message to the server.

We use the following Camel components:
Component Description

ActiveMQ We use Apache ActiveMQ as the JMS broker on the Server
side

Bean
We use the bean binding to easily route the messages to
our business service. This is a very powerful component in
Camel.

128 TUTORIALS

http://camel.apache.org/message-channel.html
http://camel.apache.org/message-channel.html
http://camel.apache.org/message.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/point-to-point-channel.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/activemq.html
http://camel.apache.org/bean.html

File In the AOP enabled Server we store audit trails as files.
JMS Used for the JMS messaging

CREATE THE CAMEL PROJECT

mvn archetype:create -DgroupId=org.example -DartifactId=CamelWithJmsAndSpring

Update the POM with Dependencies
First we need to have dependencies for the core Camel jars, its spring, jms
components and finally ActiveMQ as the message broker.

<!-- required by both client and server -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>

</dependency>
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>

</dependency>
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>

</dependency>
<dependency>

<groupId>org.apache.activemq</groupId>
<artifactId>activemq-pool</artifactId>

</dependency>

As we use spring xml configuration for the ActiveMQ JMS broker we need this
dependency:

<!-- xbean is required for ActiveMQ broker configuration in the spring xml file -->
<dependency>

<groupId>org.apache.xbean</groupId>
<artifactId>xbean-spring</artifactId>

</dependency>

TUTORIALS 129

http://camel.apache.org/file2.html
http://camel.apache.org/jms.html

For the purposes of the tutorial a single Maven project will be used
for both the client and server. Ideally you would break your
application down into the appropriate components.

WRITING THE SERVER

Create the Spring Service
For this example the Spring service (= our business service) on the server
will be a simple multiplier which trebles in the received value.

public interface Multiplier {

/**
* Multiplies the given number by a pre-defined constant.
*
* @param originalNumber The number to be multiplied
* @return The result of the multiplication
*/

int multiply(int originalNumber);

}

And the implementation of this service is:

@Service(value = "multiplier")
public class Treble implements Multiplier {

public int multiply(final int originalNumber) {
return originalNumber * 3;

}

}

Notice that this class has been annotated with the @Service spring
annotation. This ensures that this class is registered as a bean in the registry
with the given name multiplier.

Define the Camel Routes

public class ServerRoutes extends RouteBuilder {

@Override
public void configure() throws Exception {

130 TUTORIALS

// route from the numbers queue to our business that is a spring bean
registered with the id=multiplier

// Camel will introspect the multiplier bean and find the best candidate of
the method to invoke.

// You can add annotations etc to help Camel find the method to invoke.
// As our multiplier bean only have one method its easy for Camel to find the

method to use.
from("jms:queue:numbers").to("multiplier");

// Camel has several ways to configure the same routing, we have defined some
of them here below

// as above but with the bean: prefix
//from("jms:queue:numbers").to("bean:multiplier");

// beanRef is using explicit bean bindings to lookup the multiplier bean and
invoke the multiply method

//from("jms:queue:numbers").beanRef("multiplier", "multiply");

// the same as above but expressed as a URI configuration
//from("jms:queue:numbers").to("bean:multiplier?methodName=multiply");

}

}

This defines a Camel route from the JMS queue named numbers to the
Spring bean named multiplier. Camel will create a consumer to the JMS
queue which forwards all received messages onto the the Spring bean, using
the method named multiply.

Configure Spring
The Spring config file is placed under META-INF/spring as this is the default
location used by the Camel Maven Plugin, which we will later use to run our
server.
First we need to do the standard scheme declarations in the top. In the
camel-server.xml we are using spring beans as the default bean: namespace
and springs context:. For configuring ActiveMQ we use broker: and for
Camel we of course have camel:. Notice that we don't use version numbers
for the camel-spring schema. At runtime the schema is resolved in the Camel
bundle. If we use a specific version number such as 1.4 then its IDE friendly
as it would be able to import it and provide smart completion etc. See Xml
Reference for further details.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:camel="http://camel.apache.org/schema/spring"

TUTORIALS 131

http://camel.apache.org/bean.html
http://camel.apache.org/camel-maven-plugin.html
http://camel.apache.org/xml-reference.html
http://camel.apache.org/xml-reference.html

xmlns:broker="http://activemq.apache.org/schema/core"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://www.springframework.org/schema/context http://www.springframework.org/
schema/context/spring-context.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd

http://activemq.apache.org/schema/core http://activemq.apache.org/schema/
core/activemq-core-5.5.0.xsd">

We use Spring annotations for doing IoC dependencies and its component-
scan features comes to the rescue as it scans for spring annotations in the
given package name:

<!-- let Spring do its IoC stuff in this package -->
<context:component-scan base-package="org.apache.camel.example.server"/>

Camel will of course not be less than Spring in this regard so it supports a
similar feature for scanning of Routes. This is configured as shown below.
Notice that we also have enabled the JMXAgent so we will be able to
introspect the Camel Server with a JMX Console.

<!-- declare a camel context that scans for classes that is RouteBuilder
in the package org.apache.camel.example.server -->

<camel:camelContext id="camel-server">
<camel:package>org.apache.camel.example.server</camel:package>
<!-- enable JMX connector so we can connect to the server and browse mbeans -->
<!-- Camel will log at INFO level the service URI to use for connecting with

jconsole -->
<camel:jmxAgent id="agent" createConnector="true"/>

</camel:camelContext>

The ActiveMQ JMS broker is also configured in this xml file. We set it up to
listen on TCP port 61610.

<!-- lets configure the ActiveMQ JMS broker server to listen on TCP 61610 -->
<broker:broker useJmx="true" persistent="false" brokerName="myBroker">

<broker:transportConnectors>
<!-- expose a VM transport for in-JVM transport between AMQ and Camel on the

server side -->
<broker:transportConnector name="vm" uri="vm://myBroker"/>
<!-- expose a TCP transport for clients to use -->
<broker:transportConnector name="tcp" uri="tcp://localhost:${tcp.port}"/>

</broker:transportConnectors>
</broker:broker>

132 TUTORIALS

http://camel.apache.org/camel-jmx.html

As this examples uses JMS then Camel needs a JMS component that is
connected with the ActiveMQ broker. This is configured as shown below:

<!-- lets configure the Camel ActiveMQ to use the embedded ActiveMQ broker declared
above -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="vm://myBroker"/>
</bean>

Notice: The JMS component is configured in standard Spring beans, but the
gem is that the bean id can be referenced from Camel routes - meaning we
can do routing using the JMS Component by just using jms: prefix in the
route URI. What happens is that Camel will find in the Spring Registry for a
bean with the id="jms". Since the bean id can have arbitrary name you could
have named it id="jmsbroker" and then referenced to it in the routing as
from="jmsbroker:queue:numbers).to("multiplier");
We use the vm protocol to connect to the ActiveMQ server as its embedded
in this application.
component-
scan

Defines the package to be scanned for Spring stereotype
annotations, in this case, to load the "multiplier" bean

camel-
context

Defines the package to be scanned for Camel routes. Will
find the ServerRoutes class and create the routes
contained within it

jms bean Creates the Camel JMS component

Run the Server
The Server is started using the org.apache.camel.spring.Main class that
can start camel-spring application out-of-the-box. The Server can be started
in several flavors:

▪ as a standard java main application - just start the
org.apache.camel.spring.Main class

▪ using maven jave:exec
▪ using camel:run

In this sample as there are two servers (with and without AOP) we have
prepared some profiles in maven to start the Server of your choice.
The server is started with:
mvn compile exec:java -PCamelServer

TUTORIALS 133

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/camel-run-maven-goal.html

WRITING THE CLIENTS
This sample has three clients demonstrating different Camel techniques for
communication

▪ CamelClient using the ProducerTemplate for Spring template style
coding

▪ CamelRemoting using Spring Remoting
▪ CamelEndpoint using the Message Endpoint EIP pattern using a

neutral Camel API

Client Using The ProducerTemplate
We will initially create a client by directly using ProducerTemplate. We will
later create a client which uses Spring remoting to hide the fact that
messaging is being used.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/
camel-spring.xsd">

<camel:camelContext id="camel-client">
<camel:template id="camelTemplate"/>

</camel:camelContext>

<!-- Camel JMSProducer to be able to send messages to a remote Active MQ server -->
<bean id="jms" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="brokerURL" value="tcp://localhost:61610"/>
</bean>

The client will not use the Camel Maven Plugin so the Spring XML has been
placed in src/main/resources to not conflict with the server configs.

camelContext The Camel context is defined but does not contain any
routes

template The ProducerTemplate is used to place messages onto
the JMS queue

jms bean This initialises the Camel JMS component, allowing us to
place messages onto the queue

And the CamelClient source code:

134 TUTORIALS

http://camel.apache.org/producertemplate.html
http://camel.apache.org/camel-maven-plugin.html

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

// get the camel template for Spring template style sending of messages (=
producer)

ProducerTemplate camelTemplate = context.getBean("camelTemplate",
ProducerTemplate.class);

System.out.println("Invoking the multiply with 22");
// as opposed to the CamelClientRemoting example we need to define the service

URI in this java code
int response = (Integer)camelTemplate.sendBody("jms:queue:numbers",

ExchangePattern.InOut, 22);
System.out.println("... the result is: " + response);

System.exit(0);
}

The ProducerTemplate is retrieved from a Spring ApplicationContext and
used to manually place a message on the "numbers" JMS queue. The
requestBody method will use the exchange pattern InOut, which states that
the call should be synchronous, and that the caller expects a response.

Before running the client be sure that both the ActiveMQ broker and the
CamelServer are running.

Client Using Spring Remoting
Spring Remoting "eases the development of remote-enabled services". It
does this by allowing you to invoke remote services through your regular
Java interface, masking that a remote service is being called.

<!-- Camel proxy for a given service, in this case the JMS queue -->
<camel:proxy

id="multiplierProxy"
serviceInterface="org.apache.camel.example.server.Multiplier"
serviceUrl="jms:queue:numbers"/>

The snippet above only illustrates the different and how Camel easily can
setup and use Spring Remoting in one line configurations.

The proxy will create a proxy service bean for you to use to make the
remote invocations. The serviceInterface property details which Java
interface is to be implemented by the proxy. serviceUrl defines where
messages sent to this proxy bean will be directed. Here we define the JMS
endpoint with the "numbers" queue we used when working with Camel

TUTORIALS 135

http://camel.apache.org/spring-remoting.html

template directly. The value of the id property is the name that will be the
given to the bean when it is exposed through the Spring
ApplicationContext. We will use this name to retrieve the service in our
client. I have named the bean multiplierProxy simply to highlight that it is not
the same multiplier bean as is being used by CamelServer. They are in
completely independent contexts and have no knowledge of each other. As
you are trying to mask the fact that remoting is being used in a real
application you would generally not include proxy in the name.

And the Java client source code:

public static void main(final String[] args) {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client-remoting.xml");

// just get the proxy to the service and we as the client can use the "proxy" as
it was

// a local object we are invoking. Camel will under the covers do the remote
communication

// to the remote ActiveMQ server and fetch the response.
Multiplier multiplier = context.getBean("multiplierProxy", Multiplier.class);

System.out.println("Invoking the multiply with 33");
int response = multiplier.multiply(33);
System.out.println("... the result is: " + response);

System.exit(0);
}

Again, the client is similar to the original client, but with some important
differences.

1. The Spring context is created with the new camel-client-remoting.xml
2. We retrieve the proxy bean instead of a ProducerTemplate. In a non-

trivial example you would have the bean injected as in the standard
Spring manner.

3. The multiply method is then called directly. In the client we are now
working to an interface. There is no mention of Camel or JMS inside
our Java code.

Client Using Message Endpoint EIP Pattern
This client uses the Message Endpoint EIP pattern to hide the complexity to
communicate to the Server. The Client uses the same simple API to get hold
of the endpoint, create an exchange that holds the message, set the payload
and create a producer that does the send and receive. All done using the
same neutral Camel API for all the components in Camel. So if the

136 TUTORIALS

communication was socket TCP based you just get hold of a different
endpoint and all the java code stays the same. That is really powerful.

Okay enough talk, show me the code!

public static void main(final String[] args) throws Exception {
System.out.println("Notice this client requires that the CamelServer is already

running!");

ApplicationContext context = new
ClassPathXmlApplicationContext("camel-client.xml");

CamelContext camel = context.getBean("camel-client", CamelContext.class);

// get the endpoint from the camel context
Endpoint endpoint = camel.getEndpoint("jms:queue:numbers");

// create the exchange used for the communication
// we use the in out pattern for a synchronized exchange where we expect a

response
Exchange exchange = endpoint.createExchange(ExchangePattern.InOut);
// set the input on the in body
// must you correct type to match the expected type of an Integer object
exchange.getIn().setBody(11);

// to send the exchange we need an producer to do it for us
Producer producer = endpoint.createProducer();
// start the producer so it can operate
producer.start();

// let the producer process the exchange where it does all the work in this
oneline of code

System.out.println("Invoking the multiply with 11");
producer.process(exchange);

// get the response from the out body and cast it to an integer
int response = exchange.getOut().getBody(Integer.class);
System.out.println("... the result is: " + response);

// stop and exit the client
producer.stop();
System.exit(0);

}

Switching to a different component is just a matter of using the correct
endpoint. So if we had defined a TCP endpoint as:
"mina:tcp://localhost:61610" then its just a matter of getting hold of this
endpoint instead of the JMS and all the rest of the java code is exactly the
same.

Run the Clients
The Clients is started using their main class respectively.

TUTORIALS 137

▪ as a standard java main application - just start their main class
▪ using maven jave:exec

In this sample we start the clients using maven:
mvn compile exec:java -PCamelClient
mvn compile exec:java -PCamelClientRemoting
mvn compile exec:java -PCamelClientEndpoint

Also see the Maven pom.xml file how the profiles for the clients is defined.

USING THE CAMEL MAVEN PLUGIN
The Camel Maven Plugin allows you to run your Camel routes directly from
Maven. This negates the need to create a host application, as we did with
Camel server, simply to start up the container. This can be very useful during
development to get Camel routes running quickly.

Listing 1. pom.xml

<build>
<plugins>

<plugin>
<groupId>org.apache.camel</groupId>
<artifactId>camel-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

All that is required is a new plugin definition in your Maven POM. As we have
already placed our Camel config in the default location (camel-server.xml has
been placed in META-INF/spring/) we do not need to tell the plugin where the
route definitions are located. Simply run mvn camel:run.

USING CAMEL JMX
Camel has extensive support for JMX and allows us to inspect the Camel
Server at runtime. As we have enabled the JMXAgent in our tutorial we can
fire up the jconsole and connect to the following service URI:
service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/camel. Notice
that Camel will log at INFO level the JMX Connector URI:

...
DefaultInstrumentationAgent INFO JMX connector thread started on
service:jmx:rmi:///jndi/rmi://claus-acer:1099/jmxrmi/camel
...

138 TUTORIALS

http://camel.apache.org/camel-maven-plugin.html

In the screenshot below we can see the route and its performance metrics:

SEE ALSO
• Spring Remoting with JMS Example on Amin Abbaspour's Weblog

TUTORIAL - CAMEL-EXAMPLE-REPORTINCIDENT

INTRODUCTION
Creating this tutorial was inspired by a real life use-case I discussed over the
phone with a colleague. He was working at a client whom uses a heavy-
weight integration platform from a very large vendor. He was in talks with
developer shops to implement a new integration on this platform. His trouble
was the shop tripled the price when they realized the platform of choice. So I
was wondering how we could do this integration with Camel. Can it be done,
without tripling the cost .

This tutorial is written during the development of the integration. I have
decided to start off with a sample that isn't Camel's but standard Java and
then plugin Camel as we goes. Just as when people needed to learn Spring
you could consume it piece by piece, the same goes with Camel.

The target reader is person whom hasn't experience or just started using
Camel.

MOTIVATION FOR THIS TUTORIAL
I wrote this tutorial motivated as Camel lacked an example application that
was based on the web application deployment model. The entire world hasn't
moved to pure OSGi deployments yet.

THE USE-CASE
The goal is to allow staff to report incidents into a central administration. For
that they use client software where they report the incident and submit it to
the central administration. As this is an integration in a transition phase the
administration should get these incidents by email whereas they are
manually added to the database. The client software should gather the
incident and submit the information to the integration platform that in term

TUTORIALS 139

http://aminsblog.wordpress.com/2008/05/06/15/
http://aminsblog.wordpress.com/

The full source code for this tutorial as complete is part of the
Apache Camel distribution in the examples/camel-example-
reportincident directory

will transform the report into an email and send it to the central
administrator for manual processing.

The figure below illustrates this process. The end users reports the
incidents using the client applications. The incident is sent to the central
integration platform as webservice. The integration platform will process the
incident and send an OK acknowledgment back to the client. Then the
integration will transform the message to an email and send it to the
administration mail server. The users in the administration will receive the
emails and take it from there.

In EIP patterns
We distill the use case as EIP patterns:

PARTS
This tutorial is divided into sections and parts:

Section A: Existing Solution, how to slowly use Camel
Part 1 - This first part explain how to setup the project and get a

webservice exposed using Apache CXF. In fact we don't touch Camel yet.
Part 2 - Now we are ready to introduce Camel piece by piece (without

using Spring or any XML configuration file) and create the full feature
integration. This part will introduce different Camel's concepts and How we
can build our solution using them like :

▪ CamelContext
▪ Endpoint, Exchange & Producer
▪ Components : Log, File

Part 3 - Continued from part 2 where we implement that last part of the
solution with the event driven consumer and how to send the email through
the Mail component.

Section B: The Camel Solution
Part 4 - We now turn into the path of Camel where it excels - the routing.

Part 5 - Is about how embed Camel with Spring and using CXF endpoints

140 TUTORIALS

http://www.enterpriseintegrationpatterns.com
http://cxf.apache.org/
http://camel.apache.org/cxf.html

directly in Camel
Part 6 - Showing a alternative solution primarily using XML instead of Java
code

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 1

PREREQUISITES
This tutorial uses the following frameworks:

• Maven 3.0.4
• Apache Camel 2.10.0
• Apache CXF 2.6.1
• Spring 3.0.7

Note: The sample project can be downloaded, see the resources section.

INITIAL PROJECT SETUP
We want the integration to be a standard .war application that can be
deployed in any web container such as Tomcat, Jetty or even heavy weight
application servers such as WebLogic or WebSphere. There fore we start off
with the standard Maven webapp project that is created with the following
long archetype command:

mvn archetype:create -DgroupId=org.apache.camel
-DartifactId=camel-example-reportincident -DarchetypeArtifactId=maven-archetype-webapp

Notice that the groupId etc. doens't have to be org.apache.camel it can be
com.mycompany.whatever. But I have used these package names as the
example is an official part of the Camel distribution.

TUTORIALS 141

http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

Using Axis 2
See this blog entry by Sagara demonstrating how to use Apache
Axis 2 instead of Apache CXF as the web service framework.

Then we have the basic maven folder layout. We start out with the
webservice part where we want to use Apache CXF for the webservice stuff.
So we add this to the pom.xml

<properties>
<cxf-version>2.6.1</cxf-version>

</properties>

<dependency>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-core</artifactId>
<version>${cxf-version}</version>

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>${cxf-version}</version>

</dependency>
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http</artifactId>
<version>${cxf-version}</version>

</dependency>

DEVELOPING THE WEBSERVICE
As we want to develop webservice with the contract first approach we create
our .wsdl file. As this is a example we have simplified the model of the
incident to only include 8 fields. In real life the model would be a bit more
complex, but not to much.

We put the wsdl file in the folder src/main/webapp/WEB-INF/wsdl and
name the file report_incident.wsdl.

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

142 TUTORIALS

http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://cxf.apache.org/

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>
<xs:element type="xs:string"

name="incidentDate"/>
<xs:element type="xs:string"

name="givenName"/>
<xs:element type="xs:string"

name="familyName"/>
<xs:element type="xs:string"

name="summary"/>
<xs:element type="xs:string"

name="details"/>
<xs:element type="xs:string"

name="email"/>
<xs:element type="xs:string"

name="phone"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal

TUTORIALS 143

encoding is used -->
<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>
<wsdl:output>

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">

<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">

<soap:address
location="http://reportincident.example.camel.apache.org"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

CXF wsdl2java
Then we integration the CXF wsdl2java generator in the pom.xml so we have
CXF generate the needed POJO classes for our webservice contract.
However at first we must configure maven to live in the modern world of Java
1.6 so we must add this to the pom.xml

<!-- to compile with 1.6 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.6</source>
<target>1.6</target>

</configuration>
</plugin>

And then we can add the CXF wsdl2java code generator that will hook into
the compile goal so its automatic run all the time:

144 TUTORIALS

<!-- CXF wsdl2java generator, will plugin to the compile goal
-->

<plugin>
<groupId>org.apache.cxf</groupId>
<artifactId>cxf-codegen-plugin</artifactId>
<version>${cxf-version}</version>
<executions>

<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>

<sourceRoot>${basedir}/target/
generated/src/main/java</sourceRoot>

<wsdlOptions>
<wsdlOption>

<wsdl>${basedir}/src/main/webapp/WEB-INF/wsdl/report_incident.wsdl</wsdl>
</wsdlOption>

</wsdlOptions>
</configuration>
<goals>

<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

You are now setup and should be able to compile the project. So running the
mvn compile should run the CXF wsdl2java and generate the source code in
the folder &{basedir}/target/generated/src/main/java that we specified
in the pom.xml above. Since its in the target/generated/src/main/java
maven will pick it up and include it in the build process.

Configuration of the web.xml
Next up is to configure the web.xml to be ready to use CXF so we can expose
the webservice.
As Spring is the center of the universe, or at least is a very important
framework in today's Java land we start with the listener that kick-starts
Spring. This is the usual piece of code:

<!-- the listener that kick-starts Spring -->
<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

TUTORIALS 145

And then we have the CXF part where we define the CXF servlet and its URI
mappings to which we have chosen that all our webservices should be in the
path /webservices/

<!-- CXF servlet -->
<servlet>

<servlet-name>CXFServlet</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- all our webservices are mapped under this URI pattern -->
<servlet-mapping>

<servlet-name>CXFServlet</servlet-name>
<url-pattern>/webservices/*</url-pattern>

</servlet-mapping>

Then the last piece of the puzzle is to configure CXF, this is done in a spring
XML that we link to fron the web.xml by the standard Spring
contextConfigLocation property in the web.xml

<!-- location of spring xml files -->
<context-param>

<param-name>contextConfigLocation</param-name>
<param-value>classpath:cxf-config.xml</param-value>

</context-param>

We have named our CXF configuration file cxf-config.xml and its located in
the root of the classpath. In Maven land that is we can have the cxf-
config.xml file in the src/main/resources folder. We could also have the
file located in the WEB-INF folder for instance <param-value>/WEB-INF/cxf-
config.xml</param-value>.

Getting rid of the old jsp world
The maven archetype that created the basic folder structure also created a
sample .jsp file index.jsp. This file src/main/webapp/index.jsp should be
deleted.

Configuration of CXF
The cxf-config.xml is as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

146 TUTORIALS

xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<!-- implementation of the webservice -->
<bean id="reportIncidentEndpoint"

class="org.apache.camel.example.reportincident.ReportIncidentEndpointImpl"/>

<!-- export the webservice using jaxws -->
<jaxws:endpoint id="reportIncident"

implementor="#reportIncidentEndpoint"
address="/incident"
wsdlLocation="/WEB-INF/wsdl/report_incident.wsdl"
endpointName="s:ReportIncidentPort"
serviceName="s:ReportIncidentService"
xmlns:s="http://reportincident.example.camel.apache.org"/>

</beans>

The configuration is standard CXF and is documented at the Apache CXF
website.

The 3 import elements is needed by CXF and they must be in the file.
Noticed that we have a spring bean reportIncidentEndpoint that is the

implementation of the webservice endpoint we let CXF expose.
Its linked from the jaxws element with the implementator attribute as we use
the # mark to identify its a reference to a spring bean. We could have stated
the classname directly as
implementor="org.apache.camel.example.reportincident.ReportIncidentEndpoint"
but then we lose the ability to let the ReportIncidentEndpoint be configured
by spring.
The address attribute defines the relative part of the URL of the exposed
webservice. wsdlLocation is an optional parameter but for persons like me
that likes contract-first we want to expose our own .wsdl contracts and not
the auto generated by the frameworks, so with this attribute we can link to
the real .wsdl file. The last stuff is needed by CXF as you could have several
services so it needs to know which this one is. Configuring these is quite easy
as all the information is in the wsdl already.

TUTORIALS 147

http://camel.apache.org/cxf.html
http://cxf.apache.org/
http://cxf.apache.org/

Implementing the ReportIncidentEndpoint
Phew after all these meta files its time for some java code so we should code
the implementor of the webservice. So we fire up mvn compile to let CXF
generate the POJO classes for our webservice and we are ready to fire up a
Java editor.

You can use mvn idea:idea or mvn eclipse:eclipse to create project
files for these editors so you can load the project. However IDEA has been
smarter lately and can load a pom.xml directly.

As we want to quickly see our webservice we implement just a quick and
dirty as it can get. At first beware that since its jaxws and Java 1.5 we get
annotations for the money, but they reside on the interface so we can
remove them from our implementations so its a nice plain POJO again:

package org.apache.camel.example.reportincident;

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentEndpointImpl is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

We just output the person that invokes this webservice and returns a OK
response. This class should be in the maven source root folder src/main/
java under the package name
org.apache.camel.example.reportincident. Beware that the maven
archetype tool didn't create the src/main/java folder, so you should
create it manually.

To test if we are home free we run mvn clean compile.

Running our webservice
Now that the code compiles we would like to run it inside a web container, for
this purpose we make use of Jetty which we will bootstrap using it's plugin
org.mortbay.jetty:maven-jetty-plugin:

148 TUTORIALS

<build>
<plugins>

...
<!-- so we can run mvn jetty:run -->
<plugin>

<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<version>${jetty-version}</version>

</plugin>

Notice: We make use of the Jetty version being defined inside the Camel's
Parent POM.

So to see if everything is in order we fire up jetty with mvn jetty:run and
if everything is okay you should be able to access http://localhost:8080.
Jetty is smart that it will list the correct URI on the page to our web
application, so just click on the link. This is smart as you don't have to
remember the exact web context URI for your application - just fire up the
default page and Jetty will help you.

So where is the damn webservice then? Well as we did configure the
web.xml to instruct the CXF servlet to accept the pattern /webservices/*
we should hit this URL to get the attention of CXF: http://localhost:8080/
camel-example-reportincident/webservices.

Â

Hitting the webservice
Now we have the webservice running in a standard .war application in a
standard web container such as Jetty we would like to invoke the webservice
and see if we get our code executed. Unfortunately this isn't the easiest task
in the world - its not so easy as a REST URL, so we need tools for this. So we
fire up our trusty webservice tool SoapUI and let it be the one to fire the
webservice request and see the response.

Using SoapUI we sent a request to our webservice and we got the
expected OK response and the console outputs the System.out so we are
ready to code.

Â

Remote Debugging
Okay a little sidestep but wouldn't it be cool to be able to debug your code
when its fired up under Jetty? As Jetty is started from maven, we need to
instruct maven to use debug mode.

TUTORIALS 149

https://svn.apache.org/repos/asf/camel/trunk/parent/pom.xml
https://svn.apache.org/repos/asf/camel/trunk/parent/pom.xml
http://localhost:8080
http://localhost:8080/camel-example-reportincident/webservices
http://localhost:8080/camel-example-reportincident/webservices
http://www.soapui.org/

Se we set the MAVEN_OPTS environment to start in debug mode and listen on
port 5005.

MAVEN_OPTS=-Xmx512m -XX:MaxPermSize=128m -Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

Then you need to restart Jetty so its stopped with ctrl + c. Remember to
start a new shell to pickup the new environment settings. And start jetty
again.

Then we can from our IDE attach a remote debugger and debug as we
want.
First we configure IDEA to attach to a remote debugger on port 5005:

Â
Then we set a breakpoint in our code ReportIncidentEndpoint and hit

the SoapUI once again and we are breaked at the breakpoint where we can
inspect the parameters:

Â

Adding a unit test
Oh so much hard work just to hit a webservice, why can't we just use an unit
test to invoke our webservice? Yes of course we can do this, and that's the
next step.
First we create the folder structure src/test/java and src/test/
resources. We then create the unit test in the src/test/java folder.

package org.apache.camel.example.reportincident;

import junit.framework.TestCase;

/**
* Plain JUnit test of our webservice.
*/

public class ReportIncidentEndpointTest extends TestCase {

}

Here we have a plain old JUnit class. As we want to test webservices we need
to start and expose our webservice in the unit test before we can test it. And
JAXWS has pretty decent methods to help us here, the code is simple as:

150 TUTORIALS

import javax.xml.ws.Endpoint;
...

private static String ADDRESS = "http://localhost:9090/unittest";

protected void startServer() throws Exception {
// We need to start a server that exposes or webservice during the unit

testing
// We use jaxws to do this pretty simple
ReportIncidentEndpointImpl server = new ReportIncidentEndpointImpl();
Endpoint.publish(ADDRESS, server);

}

The Endpoint class is the javax.xml.ws.Endpoint that under the covers
looks for a provider and in our case its CXF - so its CXF that does the heavy
lifting of exposing out webservice on the given URL address. Since our class
ReportIncidentEndpointImpl implements the interface
ReportIncidentEndpoint that is decorated with all the jaxws annotations it
got all the information it need to expose the webservice. Below is the CXF
wsdl2java generated interface:

/*
*
*/

package org.apache.camel.example.reportincident;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.bind.annotation.XmlSeeAlso;

/**
* This class was generated by Apache CXF 2.1.1
* Wed Jul 16 12:40:31 CEST 2008
* Generated source version: 2.1.1
*
*/

/*
*
*/

@WebService(targetNamespace = "http://reportincident.example.camel.apache.org", name
= "ReportIncidentEndpoint")
@XmlSeeAlso({ObjectFactory.class})

TUTORIALS 151

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface ReportIncidentEndpoint {

/*
*
*/

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
@WebResult(name = "outputReportIncident", targetNamespace =

"http://reportincident.example.camel.apache.org", partName = "parameters")
@WebMethod(operationName = "ReportIncident", action =

"http://reportincident.example.camel.apache.org/ReportIncident")
public OutputReportIncident reportIncident(

@WebParam(partName = "parameters", name = "inputReportIncident",
targetNamespace = "http://reportincident.example.camel.apache.org")

InputReportIncident parameters
);

}

Next up is to create a webservice client so we can invoke our webservice. For
this we actually use the CXF framework directly as its a bit more easier to
create a client using this framework than using the JAXWS style. We could
have done the same for the server part, and you should do this if you need
more power and access more advanced features.

import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
...

protected ReportIncidentEndpoint createCXFClient() {
// we use CXF to create a client for us as its easier than JAXWS and works
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
factory.setServiceClass(ReportIncidentEndpoint.class);
factory.setAddress(ADDRESS);
return (ReportIncidentEndpoint) factory.create();

}

So now we are ready for creating a unit test. We have the server and the
client. So we just create a plain simple unit test method as the usual junit
style:

public void testRendportIncident() throws Exception {
startServer();

ReportIncidentEndpoint client = createCXFClient();

InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");

152 TUTORIALS

input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong", "OK", out.getCode());

}

Now we are nearly there. But if you run the unit test with mvn test then it
will fail. Why!!! Well its because that CXF needs is missing some
dependencies during unit testing. In fact it needs the web container, so we
need to add this to our pom.xml.

<!-- cxf web container for unit testing -->
<dependency>

<groupId>org.apache.cxf</groupId>
<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>${cxf-version}</version>
<scope>test</scope>

</dependency>

Well what is that, CXF also uses Jetty for unit test - well its just shows how
agile, embedable and popular Jetty is.

So lets run our junit test with, and it reports:

mvn test
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO] BUILD SUCCESSFUL

Yep thats it for now. We have a basic project setup.

END OF PART 1
Thanks for being patient and reading all this more or less standard Maven,
Spring, JAXWS and Apache CXF stuff. Its stuff that is well covered on the net,
but I wanted a full fledged tutorial on a maven project setup that is web
service ready with Apache CXF. We will use this as a base for the next part
where we demonstrate how Camel can be digested slowly and piece by piece
just as it was back in the times when was introduced and was learning the
Spring framework that we take for granted today.

TUTORIALS 153

RESOURCES
• Apache CXF user guide

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 2

ADDING CAMEL
In this part we will introduce Camel so we start by adding Camel to our
pom.xml:

<properties>
...
<camel-version>1.4.0</camel-version>

</properties>

<!-- camel -->
<dependency>

<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>

That's it, only one dependency for now.
Now we turn towards our webservice endpoint implementation where we
want to let Camel have a go at the input we receive. As Camel is very non
invasive its basically a .jar file then we can just grap Camel but creating a
new instance of DefaultCamelContext that is the hearth of Camel its
context.

CamelContext camel = new DefaultCamelContext();

In fact we create a constructor in our webservice and add this code:

154 TUTORIALS

http://cwiki.apache.org/CXF20DOC/index.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

Synchronize IDE
If you continue from part 1, remember to update your editor project
settings since we have introduce new .jar files. For instance IDEA
has a feature to synchronize with Maven projects.

private CamelContext camel;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// add the log component
camel.addComponent("log", new LogComponent());

// start Camel
camel.start();

}

LOGGING THE "HELLO WORLD"
Here at first we want Camel to log the givenName and familyName
parameters we receive, so we add the LogComponent with the key log. And
we must start Camel before its ready to act.
Then we change the code in the method that is invoked by Apache CXF when
a webservice request arrives. We get the name and let Camel have a go at it
in the new method we create sendToCamel:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
String name = parameters.getGivenName() + " " + parameters.getFamilyName();

// let Camel do something with the name
sendToCamelLog(name);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Next is the Camel code. At first it looks like there are many code lines to do a
simple task of logging the name - yes it is. But later you will in fact realize
this is one of Camels true power. Its concise API. Hint: The same code can be
used for any component in Camel.

TUTORIALS 155

Component Documentation
The Log and File components is documented as well, just click on
the links. Just return to this documentation later when you must use
these components for real.

private void sendToCamelLog(String name) {
try {

// get the log component
Component component = camel.getComponent("log");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to

configure
// endpoints based on URI.
// com.mycompany.part2 = the log category used. Will log at INFO level as

default
Endpoint endpoint = component.createEndpoint("log:com.mycompany.part2");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the log component, that

will process
// the exchange and yes log the payload
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

Okay there are code comments in the code block above that should explain
what is happening. We run the code by invoking our unit test with maven mvn
test, and we should get this log line:

156 TUTORIALS

http://camel.apache.org/log.html
http://camel.apache.org/file2.html

INFO: Exchange[BodyType:String, Body:Claus Ibsen]

WRITE TO FILE - EASY WITH THE SAME CODE STYLE
Okay that isn't to impressive, Camel can log Well I promised that the
above code style can be used for any component, so let's store the payload
in a file. We do this by adding the file component to the Camel context

// add the file component
camel.addComponent("file", new FileComponent());

And then we let camel write the payload to the file after we have logged, by
creating a new method sendToCamelFile. We want to store the payload in
filename with the incident id so we need this parameter also:

// let Camel do something with the name
sendToCamelLog(name);
sendToCamelFile(parameters.getIncidentId(), name);

And then the code that is 99% identical. We have change the URI
configuration when we create the endpoint as we pass in configuration
parameters to the file component.
And then we need to set the output filename and this is done by adding a
special header to the exchange. That's the only difference:

private void sendToCamelFile(String incidentId, String name) {
try {

// get the file component
Component component = camel.getComponent("file");

// create an endpoint and configure it.
// Notice the URI parameters this is a common pratice in Camel to

configure
// endpoints based on URI.
// file://target instructs the base folder to output the files. We put in

the target folder
// then its actumatically cleaned by mvn clean
Endpoint endpoint = component.createEndpoint("file://target");

// create an Exchange that we want to send to the endpoint
Exchange exchange = endpoint.createExchange();
// set the in message payload (=body) with the name parameter
exchange.getIn().setBody(name);

// now a special header is set to instruct the file component what the

TUTORIALS 157

output filename
// should be
exchange.getIn().setHeader(FileComponent.HEADER_FILE_NAME, "incident-" +

incidentId + ".txt");

// now we want to send the exchange to this endpoint and we then need a
producer

// for this, so we create and start the producer.
Producer producer = endpoint.createProducer();
producer.start();
// process the exchange will send the exchange to the file component,

that will process
// the exchange and yes write the payload to the given filename
producer.process(exchange);

// stop the producer, we want to be nice and cleanup
producer.stop();

} catch (Exception e) {
// we ignore any exceptions and just rethrow as runtime
throw new RuntimeException(e);

}
}

After running our unit test again with mvn test we have a output file in the
target folder:

D:\demo\part-two>type target\incident-123.txt
Claus Ibsen

FULLY JAVA BASED CONFIGURATION OF ENDPOINTS
In the file example above the configuration was URI based. What if you want
100% java setter based style, well this is of course also possible. We just
need to cast to the component specific endpoint and then we have all the
setters available:

// create the file endpoint, we cast to FileEndpoint because then we can
do

// 100% java settter based configuration instead of the URI sting based
// must pass in an empty string, or part of the URI configuration if

wanted
FileEndpoint endpoint = (FileEndpoint)component.createEndpoint("");
endpoint.setFile(new File("target/subfolder"));
endpoint.setAutoCreate(true);

That's it. Now we have used the setters to configure the FileEndpoint that it
should store the file in the folder target/subfolder. Of course Camel now
stores the file in the subfolder.

158 TUTORIALS

D:\demo\part-two>type target\subfolder\incident-123.txt
Claus Ibsen

LESSONS LEARNED
Okay I wanted to demonstrate how you can be in 100% control of the
configuration and usage of Camel based on plain Java code with no hidden
magic or special XML or other configuration files. Just add the camel-core.jar
and you are ready to go.

You must have noticed that the code for sending a message to a given
endpoint is the same for both the log and file, in fact any Camel endpoint.
You as the client shouldn't bother with component specific code such as file
stuff for file components, jms stuff for JMS messaging etc. This is what the
Message Endpoint EIP pattern is all about and Camel solves this very very
nice - a key pattern in Camel.

REDUCING CODE LINES
Now that you have been introduced to Camel and one of its masterpiece
patterns solved elegantly with the Message Endpoint its time to give
productive and show a solution in fewer code lines, in fact we can get it down
to 5, 4, 3, 2 .. yes only 1 line of code.

The key is the ProducerTemplate that is a Spring'ish xxxTemplate based
producer. Meaning that it has methods to send messages to any Camel
endpoints. First of all we need to get hold of such a template and this is done
from the CamelContext

private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
...

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

Now we can use template for sending payloads to any endpoint in Camel.
So all the logging gabble can be reduced to:

TUTORIALS 159

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message-endpoint.html

template.sendBody("log:com.mycompany.part2.easy", name);

And the same goes for the file, but we must also send the header to instruct
what the output filename should be:

String filename = "easy-incident-" + incidentId + ".txt";
template.sendBodyAndHeader("file://target/subfolder", name,

FileComponent.HEADER_FILE_NAME, filename);

REDUCING EVEN MORE CODE LINES
Well we got the Camel code down to 1-2 lines for sending the message to the
component that does all the heavy work of wring the message to a file etc.
But we still got 5 lines to initialize Camel.

camel = new DefaultCamelContext();
camel.addComponent("log", new LogComponent());
camel.addComponent("file", new FileComponent());
template = camel.createProducerTemplate();
camel.start();

This can also be reduced. All the standard components in Camel is auto
discovered on-the-fly so we can remove these code lines and we are down to
3 lines.
Okay back to the 3 code lines:

camel = new DefaultCamelContext();
template = camel.createProducerTemplate();
camel.start();

Later will we see how we can reduce this to ... in fact 0 java code lines. But
the 3 lines will do for now.

MESSAGE TRANSLATION
Okay lets head back to the over goal of the integration. Looking at the EIP
diagrams at the introduction page we need to be able to translate the
incoming webservice to an email. Doing so we need to create the email body.
When doing the message translation we could put up our sleeves and do it
manually in pure java with a StringBuilder such as:

160 TUTORIALS

Component auto discovery
When an endpoint is requested with a scheme that Camel hasn't
seen before it will try to look for it in the classpath. It will do so by
looking for special Camel component marker files that reside in the
folder META-INF/services/org/apache/camel/component. If there
are files in this folder it will read them as the filename is the
scheme part of the URL. For instance the log component is defined
in this file META-INF/services/org/apache/component/log and its
content is:

class=org.apache.camel.component.log.LogComponent

The class property defines the component implementation.

Tip: End-users can create their 3rd party components using the same
technique and have them been auto discovered on-the-fly.

private String createMailBody(InputReportIncident parameters) {
StringBuilder sb = new StringBuilder();
sb.append("Incident ").append(parameters.getIncidentId());
sb.append(" has been reported on the ").append(parameters.getIncidentDate());
sb.append(" by ").append(parameters.getGivenName());
sb.append(" ").append(parameters.getFamilyName());

// and the rest of the mail body with more appends to the string builder

return sb.toString();
}

But as always it is a hardcoded template for the mail body and the code gets
kinda ugly if the mail message has to be a bit more advanced. But of course
it just works out-of-the-box with just classes already in the JDK.

Lets use a template language instead such as Apache Velocity. As Camel
have a component for Velocity integration we will use this component.
Looking at the Component List overview we can see that camel-velocity
component uses the artifactId camel-velocity so therefore we need to add
this to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>${camel-version}</version>

</dependency>

TUTORIALS 161

http://velocity.apache.org/
http://camel.apache.org/velocity.html
http://camel.apache.org/component.html

And now we have a Spring conflict as Apache CXF is dependent on Spring
2.0.8 and camel-velocity is dependent on Spring 2.5.5. To remedy this we
could wrestle with the pom.xml with excludes settings in the dependencies
or just bring in another dependency camel-spring:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>

</dependency>

In fact camel-spring is such a vital part of Camel that you will end up using it
in nearly all situations - we will look into how well Camel is seamless
integration with Spring in part 3. For now its just another dependency.

We create the mail body with the Velocity template and create the file
src/main/resources/MailBody.vm. The content in the MailBody.vm file is:

Incident $body.incidentId has been reported on the $body.incidentDate by
$body.givenName $body.familyName.

The person can be contact by:
- email: $body.email
- phone: $body.phone

Summary: $body.summary

Details:
$body.details

This is an auto generated email. You can not reply.

Letting Camel creating the mail body and storing it as a file is as easy as the
following 3 code lines:

private void generateEmailBodyAndStoreAsFile(InputReportIncident parameters) {
// generate the mail body using velocity template
// notice that we just pass in our POJO (= InputReportIncident) that we
// got from Apache CXF to Velocity.
Object response = template.sendBody("velocity:MailBody.vm", parameters);
// Note: the response is a String and can be cast to String if needed

// store the mail in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", response,

FileComponent.HEADER_FILE_NAME, filename);
}

What is impressive is that we can just pass in our POJO object we got from
Apache CXF to Velocity and it will be able to generate the mail body with this

162 TUTORIALS

object in its context. Thus we don't need to prepare anything before we let
Velocity loose and generate our mail body. Notice that the template method
returns a object with out response. This object contains the mail body as a
String object. We can cast to String if needed.

If we run our unit test with mvn test we can in fact see that Camel has
produced the file and we can type its content:

D:\demo\part-two>type target\subfolder\mail-incident-123.txt
Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.

FIRST PART OF THE SOLUTION
What we have seen here is actually what it takes to build the first part of the
integration flow. Receiving a request from a webservice, transform it to a
mail body and store it to a file, and return an OK response to the webservice.
All possible within 10 lines of code. So lets wrap it up here is what it takes:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

TUTORIALS 163

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Okay I missed by one, its in fact only 9 lines of java code and 2 fields.

END OF PART 2
I know this is a bit different introduction to Camel to how you can start using
it in your projects just as a plain java .jar framework that isn't invasive at all. I
took you through the coding parts that requires 6 - 10 lines to send a
message to an endpoint, buts it's important to show the Message Endpoint
EIP pattern in action and how its implemented in Camel. Yes of course Camel
also has to one liners that you can use, and will use in your projects for
sending messages to endpoints. This part has been about good old plain
java, nothing fancy with Spring, XML files, auto discovery, OGSi or other new
technologies. I wanted to demonstrate the basic building blocks in Camel and
how its setup in pure god old fashioned Java. There are plenty of eye catcher
examples with one liners that does more than you can imagine - we will
come there in the later parts.

Okay part 3 is about building the last pieces of the solution and now it gets
interesting since we have to wrestle with the event driven consumer.
Brew a cup of coffee, tug the kids and kiss the wife, for now we will have us
some fun with the Camel. See you in part 3.

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3

164 TUTORIALS

http://camel.apache.org/message-endpoint.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html

▪ Part 4
▪ Part 5
▪ Part 6

PART 3

RECAP
Lets just recap on the solution we have now:

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

private CamelContext camel;
private ProducerTemplate template;

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// start Camel
camel.start();

}

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// transform the request into a mail body
Object mailBody = template.sendBody("velocity:MailBody.vm", parameters);

// store the mail body in a file
String filename = "mail-incident-" + parameters.getIncidentId() + ".txt";
template.sendBodyAndHeader("file://target/subfolder", mailBody,

FileComponent.HEADER_FILE_NAME, filename);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

This completes the first part of the solution: receiving the message using
webservice, transform it to a mail body and store it as a text file.

TUTORIALS 165

http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html

What is missing is the last part that polls the text files and send them as
emails. Here is where some fun starts, as this requires usage of the Event
Driven Consumer EIP pattern to react when new files arrives. So lets see how
we can do this in Camel. There is a saying: Many roads lead to Rome, and
that is also true for Camel - there are many ways to do it in Camel.

ADDING THE EVENT DRIVEN CONSUMER
We want to add the consumer to our integration that listen for new files, we
do this by creating a private method where the consumer code lives. We
must register our consumer in Camel before its started so we need to add,
and there fore we call the method addMailSenderConsumer in the
constructor below:

public ReportIncidentEndpointImpl() throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

addMailSendConsumer();

// start Camel
camel.start();

}

The consumer needs to be consuming from an endpoint so we grab the
endpoint from Camel we want to consume. It's file://target/subfolder.
Don't be fooled this endpoint doesn't have to 100% identical to the producer,
i.e. the endpoint we used in the previous part to create and store the files.
We could change the URL to include some options, and to make it more clear
that it's possible we setup a delay value to 10 seconds, and the first poll
starts after 2 seconds. This is done by adding
?consumer.delay=10000&consumer.initialDelay=2000 to the URL.
When we have the endpoint we can create the consumer (just as in part 1
where we created a producer}. Creating the consumer requires a Processor
where we implement the java code what should happen when a message
arrives. To get the mail body as a String object we can use the getBody
method where we can provide the type we want in return.

166 TUTORIALS

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
/target/subfolder
http://camel.apache.org/processor.html

URL Configuration
The URL configuration in Camel endpoints is just like regular URL
we know from the Internet. You use ? and & to set the options.

Camel Type Converter
Why don't we just cast it as we always do in Java? Well the biggest
advantage when you provide the type as a parameter you tell
Camel what type you want and Camel can automatically convert it
for you, using its flexible Type Converter mechanism. This is a great
advantage, and you should try to use this instead of regular type
casting.

Sending the email is still left to be implemented, we will do this later. And
finally we must remember to start the consumer otherwise its not active and
won't listen for new files.

private void addMailSendConsumer() throws Exception {
// Grab the endpoint where we should consume. Option - the first poll starts

after 2 seconds
Endpoint endpint = camel.getEndpoint("file://target/

subfolder?consumer.initialDelay=2000");

// create the event driven consumer
// the Processor is the code what should happen when there is an event
// (think it as the onMessage method)
Consumer consumer = endpint.createConsumer(new Processor() {

public void process(Exchange exchange) throws Exception {
// get the mail body as a String
String mailBody = exchange.getIn().getBody(String.class);

// okay now we are read to send it as an email
System.out.println("Sending email..." + mailBody);

}
});

// star the consumer, it will listen for files
consumer.start();

}

Before we test it we need to be aware that our unit test is only catering for
the first part of the solution, receiving the message with webservice,
transforming it using Velocity and then storing it as a file - it doesn't test the
Event Driven Consumer we just added. As we are eager to see it in action, we
just do a common trick adding some sleep in our unit test, that gives our

TUTORIALS 167

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/type-converter.html

Event Driven Consumer time to react and print to System.out. We will later
refine the test:

public void testRendportIncident() throws Exception {
...

OutputReportIncident out = client.reportIncident(input);
assertEquals("Response code is wrong", "OK", out.getCode());

// give the event driven consumer time to react
Thread.sleep(10 * 1000);

}

We run the test with mvn clean test and have eyes fixed on the console
output.
During all the output in the console, we see that our consumer has been
triggered, as we want.

2008-07-19 12:09:24,140 [mponent@1f12c4e] DEBUG FileProcessStrategySupport - Locking
the file: target\subfolder\mail-incident-123.txt ...
Sending email...Incident 123 has been reported on the 2008-07-16 by Claus Ibsen.

The person can be contact by:
- email: davsclaus@apache.org
- phone: +45 2962 7576

Summary: bla bla

Details:
more bla bla

This is an auto generated email. You can not reply.
2008-07-19 12:09:24,156 [mponent@1f12c4e] DEBUG FileConsumer - Done processing file:
target\subfolder\mail-incident-123.txt. Status is: OK

SENDING THE EMAIL
Sending the email requires access to a SMTP mail server, but the
implementation code is very simple:

private void sendEmail(String body) {
// send the email to your mail server
String url =

"smtp://someone@localhost?password=secret&to=incident@mycompany.com";
template.sendBodyAndHeader(url, body, "subject", "New incident reported");

}

And just invoke the method from our consumer:

168 TUTORIALS

http://camel.apache.org/event-driven-consumer.html

// okay now we are read to send it as an email
System.out.println("Sending email...");
sendEmail(mailBody);
System.out.println("Email sent");

UNIT TESTING MAIL
For unit testing the consumer part we will use a mock mail framework, so we
add this to our pom.xml:

<!-- unit testing mail using mock -->
<dependency>

<groupId>org.jvnet.mock-javamail</groupId>
<artifactId>mock-javamail</artifactId>
<version>1.7</version>
<scope>test</scope>

</dependency>

Then we prepare our integration to run with or without the consumer
enabled. We do this to separate the route into the two parts:

▪ receive the webservice, transform and save mail file and return OK
as repose

▪ the consumer that listen for mail files and send them as emails
So we change the constructor code a bit:

public ReportIncidentEndpointImpl() throws Exception {
init(true);

}

public ReportIncidentEndpointImpl(boolean enableConsumer) throws Exception {
init(enableConsumer);

}

private void init(boolean enableConsumer) throws Exception {
// create the camel context that is the "heart" of Camel
camel = new DefaultCamelContext();

// get the ProducerTemplate thst is a Spring'ish xxxTemplate based producer
for very

// easy sending exchanges to Camel.
template = camel.createProducerTemplate();

// add the event driven consumer that will listen for mail files and process
them

if (enableConsumer) {
addMailSendConsumer();

}

TUTORIALS 169

// start Camel
camel.start();

}

Then remember to change the ReportIncidentEndpointTest to pass in
false in the ReportIncidentEndpointImpl constructor.
And as always run mvn clean test to be sure that the latest code changes
works.

ADDING NEW UNIT TEST
We are now ready to add a new unit test that tests the consumer part so we
create a new test class that has the following code structure:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

}

}

As we want to test the consumer that it can listen for files, read the file
content and send it as an email to our mailbox we will test it by asserting
that we receive 1 mail in our mailbox and that the mail is the one we expect.
To do so we need to grab the mailbox with the mockmail API. This is done as
simple as:

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

How do we trigger the consumer? Well by creating a file in the folder it listen
for. So we could use plain java.io.File API to create the file, but wait isn't there
an smarter solution? ... yes Camel of course. Camel can do amazing stuff in

170 TUTORIALS

one liner codes with its ProducerTemplate, so we need to get a hold of this
baby. We expose this template in our ReportIncidentEndpointImpl but adding
this getter:

protected ProducerTemplate getTemplate() {
return template;

}

Then we can use the template to create the file in one code line:

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just
// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

Then we just need to wait a little for the consumer to kick in and do its work
and then we should assert that we got the new mail. Easy as just:

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

The final class for the unit test is:

/**
* Plain JUnit test of our consumer.
*/

public class ReportIncidentConsumerTest extends TestCase {

private ReportIncidentEndpointImpl endpoint;

public void testConsumer() throws Exception {
// we run this unit test with the consumer, hence the true parameter
endpoint = new ReportIncidentEndpointImpl(true);

// get the mailbox
Mailbox box = Mailbox.get("incident@mycompany.com");
assertEquals("Should not have mails", 0, box.size());

// drop a file in the folder that the consumer listen
// here is a trick to reuse Camel! so we get the producer template and just

TUTORIALS 171

// fire a message that will create the file for us
endpoint.getTemplate().sendBodyAndHeader("file://target/

subfolder?append=false", "Hello World",
FileComponent.HEADER_FILE_NAME, "mail-incident-test.txt");

// let the consumer have time to run
Thread.sleep(3 * 1000);

// get the mock mailbox and check if we got mail ;)
assertEquals("Should have got 1 mail", 1, box.size());
assertEquals("Subject wrong", "New incident reported",

box.get(0).getSubject());
assertEquals("Mail body wrong", "Hello World", box.get(0).getContent());

}

}

END OF PART 3
Okay we have reached the end of part 3. For now we have only scratched the
surface of what Camel is and what it can do. We have introduced Camel into
our integration piece by piece and slowly added more and more along the
way. And the most important is: you as the developer never lost control.
We hit a sweet spot in the webservice implementation where we could write
our java code. Adding Camel to the mix is just to use it as a regular java
code, nothing magic. We were in control of the flow, we decided when it was
time to translate the input to a mail body, we decided when the content
should be written to a file. This is very important to not lose control, that the
bigger and heavier frameworks tend to do. No names mentioned, but boy do
developers from time to time dislike these elephants. And Camel is no
elephant.

I suggest you download the samples from part 1 to 3 and try them out. It
is great basic knowledge to have in mind when we look at some of the
features where Camel really excel - the routing domain language.

From part 1 to 3 we touched concepts such as::
▪ Endpoint
▪ URI configuration
▪ Consumer
▪ Producer
▪ Event Driven Consumer
▪ Component
▪ CamelContext
▪ ProducerTemplate
▪ Processor

172 TUTORIALS

http://camel.apache.org/endpoint.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://camel.apache.org/processor.html

▪ Type Converter

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

PART 4

INTRODUCTION
This section is about regular Camel. The examples presented here in this
section is much more in common of all the examples we have in the Camel
documentation.

ROUTING
Camel is particular strong as a light-weight and agile routing and
mediation framework. In this part we will introduce the routing concept
and how we can introduce this into our solution.
Looking back at the figure from the Introduction page we want to implement
this routing. Camel has support for expressing this routing logic using Java as
a DSL (Domain Specific Language). In fact Camel also has DSL for XML and
Scala. In this part we use the Java DSL as its the most powerful and all
developers know Java. Later we will introduce the XML version that is very
well integrated with Spring.

Before we jump into it, we want to state that this tutorial is about
Developers not loosing control. In my humble experience one of the key
fears of developers is that they are forced into a tool/framework where they
loose control and/or power, and the possible is now impossible. So in this
part we stay clear with this vision and our starting point is as follows:

▪ We have generated the webservice source code using the CXF
wsdl2java generator and we have our
ReportIncidentEndpointImpl.java file where we as a Developer feels
home and have the power.

TUTORIALS 173

http://camel.apache.org/type-converter.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/routes.html

If you have been reading the previous 3 parts then, this quote
applies:

you must unlearn what you have learned
Master Yoda, Star Wars IV

So we start all over again!

So the starting point is:

/**
* The webservice we have implemented.
*/

public class ReportIncidentEndpointImpl implements ReportIncidentEndpoint {

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// WE ARE HERE !!!
return null;

}

}

Yes we have a simple plain Java class where we have the implementation of
the webservice. The cursor is blinking at the WE ARE HERE block and this is
where we feel home. More or less any Java Developers have implemented
webservices using a stack such as: Apache AXIS, Apache CXF or some other
quite popular framework. They all allow the developer to be in control and
implement the code logic as plain Java code. Camel of course doesn't enforce
this to be any different. Okay the boss told us to implement the solution from
the figure in the Introduction page and we are now ready to code.

RouteBuilder
RouteBuilder is the hearth in Camel of the Java DSL routing. This class does
all the heavy lifting of supporting EIP verbs for end-users to express the
routing. It does take a little while to get settled and used to, but when you
have worked with it for a while you will enjoy its power and realize it is in fact
a little language inside Java itself. Camel is the only integration framework
we are aware of that has Java DSL, all the others are usually only XML based.

As an end-user you usually use the RouteBuilder as of follows:
▪ create your own Route class that extends RouteBuilder

174 TUTORIALS

▪ implement your routing DSL in the configure method
So we create a new class ReportIncidentRoutes and implement the first part
of the routing:

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// direct:start is a internal queue to kick-start the routing in our example
// we use this as the starting point where you can send messages to

direct:start
from("direct:start")

// to is the destination we send the message to our velocity endpoint
// where we transform the mail body
.to("velocity:MailBody.vm");

}

}

What to notice here is the configure method. Here is where all the action is.
Here we have the Java DSL langauge, that is expressed using the fluent
builder syntax that is also known from Hibernate when you build the
dynamic queries etc. What you do is that you can stack methods separating
with the dot.

In the example above we have a very common routing, that can be
distilled from pseudo verbs to actual code with:

▪ from A to B
▪ From Endpoint A To Endpoint B
▪ from("endpointA").to("endpointB")
▪ from("direct:start").to("velocity:MailBody.vm");

from("direct:start") is the consumer that is kick-starting our routing flow. It
will wait for messages to arrive on the direct queue and then dispatch the
message.
to("velocity:MailBody.vm") is the producer that will receive a message
and let Velocity generate the mail body response.

So what we have implemented so far with our ReportIncidentRoutes
RouteBuilder is this part of the picture:

Adding the RouteBuilder
Now we have our RouteBuilder we need to add/connect it to our
CamelContext that is the hearth of Camel. So turning back to our webservice
implementation class ReportIncidentEndpointImpl we add this constructor to

TUTORIALS 175

http://camel.apache.org/direct.html

the code, to create the CamelContext and add the routes from our route
builder and finally to start it.

private CamelContext context;

public ReportIncidentEndpointImpl() throws Exception {
// create the context
context = new DefaultCamelContext();

// append the routes to the context
context.addRoutes(new ReportIncidentRoutes());

// at the end start the camel context
context.start();

}

Okay how do you use the routes then? Well its just as before we use a
ProducerTemplate to send messages to Endpoints, so we just send to the
direct:start endpoint and it will take it from there.
So we implement the logic in our webservice operation:

/**
* This is the last solution displayed that is the most simple
*/

public OutputReportIncident reportIncident(InputReportIncident parameters) {
Object mailBody = context.createProducerTemplate().sendBody("direct:start",

parameters);
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

Notice that we get the producer template using the
createProducerTemplate method on the CamelContext. Then we send the
input parameters to the direct:start endpoint and it will route it to the
velocity endpoint that will generate the mail body. Since we use direct as
the consumer endpoint (=from) and its a synchronous exchange we will get
the response back from the route. And the response is of course the output
from the velocity endpoint.
We have now completed this part of the picture:

176 TUTORIALS

About creating ProducerTemplate
In the example above we create a new ProducerTemplate when
the reportIncident method is invoked. However in reality you
should only create the template once and re-use it. See this FAQ
entry.

UNIT TESTING
Now is the time we would like to unit test what we got now. So we call for
camel and its great test kit. For this to work we need to add it to the pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.4.0</version>
<scope>test</scope>
<type>test-jar</type>

</dependency>

After adding it to the pom.xml you should refresh your Java Editor so it
pickups the new jar. Then we are ready to create out unit test class.
We create this unit test skeleton, where we extend this class
ContextTestSupport

package org.apache.camel.example.reportincident;

import org.apache.camel.ContextTestSupport;
import org.apache.camel.builder.RouteBuilder;

/**
* Unit test of our routes
*/

public class ReportIncidentRoutesTest extends ContextTestSupport {

}

ContextTestSupport is a supporting unit test class for much easier unit
testing with Apache Camel. The class is extending JUnit TestCase itself so you
get all its glory. What we need to do now is to somehow tell this unit test
class that it should use our route builder as this is the one we gonna test. So
we do this by implementing the createRouteBuilder method.

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

TUTORIALS 177

http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html
http://camel.apache.org/why-does-camel-use-too-many-threads-with-producertemplate.html

return new ReportIncidentRoutes();
}

That is easy just return an instance of our route builder and this unit test will
use our routes.
We then code our unit test method that sends a message to the route and
assert that its transformed to the mail body using the Velocity template.

public void testTransformMailBody() throws Exception {
// create a dummy input with some input data
InputReportIncident parameters = createInput();

// send the message (using the sendBody method that takes a parameters as the
input body)

// to "direct:start" that kick-starts the route
// the response is returned as the out object, and its also the body of the

response
Object out = context.createProducerTemplate().sendBody("direct:start",

parameters);

// convert the response to a string using camel converters. However we could
also have casted it to

// a string directly but using the type converters ensure that Camel can
convert it if it wasn't a string

// in the first place. The type converters in Camel is really powerful and
you will later learn to

// appreciate them and wonder why its not build in Java out-of-the-box
String body = context.getTypeConverter().convertTo(String.class, out);

// do some simple assertions of the mail body
assertTrue(body.startsWith("Incident 123 has been reported on the 2008-07-16

by Claus Ibsen."));
}

/**
* Creates a dummy request to be used for input
*/

protected InputReportIncident createInput() {
InputReportIncident input = new InputReportIncident();
input.setIncidentId("123");
input.setIncidentDate("2008-07-16");
input.setGivenName("Claus");
input.setFamilyName("Ibsen");
input.setSummary("bla bla");
input.setDetails("more bla bla");
input.setEmail("davsclaus@apache.org");
input.setPhone("+45 2962 7576");
return input;

}

178 TUTORIALS

It is quite common in Camel itself to unit test using routes defined
as an anonymous inner class, such as illustrated below:

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// TODO: Add your routes here, such as:
from("jms:queue:inbox").to("file://target/out");

}
};

}

The same technique is of course also possible for end-users of Camel to
create parts of your routes and test them separately in many test classes.
However in this tutorial we test the real route that is to be used for
production, so we just return an instance of the real one.

ADDING THE FILE BACKUP
The next piece of puzzle that is missing is to store the mail body as a backup
file. So we turn back to our route and the EIP patterns. We use the Pipes and
Filters pattern here to chain the routing as:

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// using pipes-and-filters we send the output from the previous to the

next
.to("file://target/subfolder");

}

Notice that we just add a 2nd .to on the newline. Camel will default use the
Pipes and Filters pattern here when there are multi endpoints chained liked
this. We could have used the pipeline verb to let out stand out that its the
Pipes and Filters pattern such as:

from("direct:start")
// using pipes-and-filters we send the output from the previous to the

next
.pipeline("velocity:MailBody.vm", "file://target/subfolder");

But most people are using the multi .to style instead.
We re-run out unit test and verifies that it still passes:

TUTORIALS 179

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html

Running org.apache.camel.example.reportincident.ReportIncidentRoutesTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.157 sec

But hey we have added the file producer endpoint and thus a file should also
be created as the backup file. If we look in the target/subfolder we can
see that something happened.
On my humble laptop it created this folder: target\subfolder\ID-claus-
acer. So the file producer create a sub folder named ID-claus-acer what is
this? Well Camel auto generates an unique filename based on the unique
message id if not given instructions to use a fixed filename. In fact it creates
another sub folder and name the file as: target\subfolder\ID-claus-
acer\3750-1219148558921\1-0 where 1-0 is the file with the mail body. What
we want is to use our own filename instead of this auto generated filename.
This is archived by adding a header to the message with the filename to use.
So we need to add this to our route and compute the filename based on the
message content.

Setting the filename
For starters we show the simple solution and build from there. We start by
setting a constant filename, just to verify that we are on the right path, to
instruct the file producer what filename to use. The file producer uses a
special header FileComponent.HEADER_FILE_NAME to set the filename.

What we do is to send the header when we "kick-start" the routing as the
header will be propagated from the direct queue to the file producer. What
we need to do is to use the ProducerTemplate.sendBodyAndHeader method
that takes both a body and a header. So we change out webservice code to
include the filename also:

public OutputReportIncident reportIncident(InputReportIncident parameters) {
// create the producer template to use for sending messages
ProducerTemplate producer = context.createProducerTemplate();
// send the body and the filename defined with the special header key
Object mailBody = producer.sendBodyAndHeader("direct:start", parameters,

FileComponent.HEADER_FILE_NAME, "incident.txt");
System.out.println("Body:" + mailBody);

// return an OK reply
OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

However we could also have used the route builder itself to configure the
constant filename as shown below:

180 TUTORIALS

public void configure() throws Exception {
from("direct:start")

.to("velocity:MailBody.vm")
// set the filename to a constant before the file producer receives the

message
.setHeader(FileComponent.HEADER_FILE_NAME, constant("incident.txt"))
.to("file://target/subfolder");

}

But Camel can be smarter and we want to dynamic set the filename based
on some of the input parameters, how can we do this?
Well the obvious solution is to compute and set the filename from the
webservice implementation, but then the webservice implementation has
such logic and we want this decoupled, so we could create our own POJO
bean that has a method to compute the filename. We could then instruct the
routing to invoke this method to get the computed filename. This is a string
feature in Camel, its Bean binding. So lets show how this can be done:

Using Bean Language to compute the filename
First we create our plain java class that computes the filename, and it has
100% no dependencies to Camel what so ever.

/**
* Plain java class to be used for filename generation based on the reported incident
*/

public class FilenameGenerator {

public String generateFilename(InputReportIncident input) {
// compute the filename
return "incident-" + input.getIncidentId() + ".txt";

}

}

The class is very simple and we could easily create unit tests for it to verify
that it works as expected. So what we want now is to let Camel invoke this
class and its generateFilename with the input parameters and use the output
as the filename. Pheeeww is this really possible out-of-the-box in Camel? Yes
it is. So lets get on with the show. We have the code that computes the
filename, we just need to call it from our route using the Bean Language:

public void configure() throws Exception {
from("direct:start")

// set the filename using the bean language and call the
FilenameGenerator class.

TUTORIALS 181

http://camel.apache.org/bean.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/bean-language.html

// the 2nd null parameter is optional methodname, to be used to avoid
ambiguity.

// if not provided Camel will try to figure out the best method to
invoke, as we

// only have one method this is very simple
.setHeader(FileComponent.HEADER_FILE_NAME,

BeanLanguage.bean(FilenameGenerator.class, null))
.to("velocity:MailBody.vm")
.to("file://target/subfolder");

}

Notice that we use the bean language where we supply the class with our
bean to invoke. Camel will instantiate an instance of the class and invoke the
suited method. For completeness and ease of code readability we add the
method name as the 2nd parameter

.setHeader(FileComponent.HEADER_FILE_NAME,
BeanLanguage.bean(FilenameGenerator.class, "generateFilename"))

Then other developers can understand what the parameter is, instead of
null.

Now we have a nice solution, but as a sidetrack I want to demonstrate the
Camel has other languages out-of-the-box, and that scripting language is a
first class citizen in Camel where it etc. can be used in content based routing.
However we want it to be used for the filename generation.
Whatever worked for you we have now implemented the backup of the data
files:

SENDING THE EMAIL
What we need to do before the solution is completed is to actually send the
email with the mail body we generated and stored as a file. In the previous
part we did this with a File consumer, that we manually added to the
CamelContext. We can do this quite easily with the routing.

import org.apache.camel.builder.RouteBuilder;

public class ReportIncidentRoutes extends RouteBuilder {

public void configure() throws Exception {
// first part from the webservice -> file backup
from("direct:start")

.setHeader(FileComponent.HEADER_FILE_NAME, bean(FilenameGenerator.class,
"generateFilename"))

182 TUTORIALS

http://camel.apache.org/file2.html

Using a script language to set the filename
We could do as in the previous parts where we send the computed
filename as a message header when we "kick-start" the route. But we want
to learn new stuff so we look for a different solution using some of Camels
many Languages. As OGNL is a favorite language of mine (used by
WebWork) so we pick this baby for a Camel ride. For starters we must add
it to our pom.xml:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>${camel-version}</version>

</dependency>

And remember to refresh your editor so you got the new .jars.
We want to construct the filename based on this syntax: mail-incident-
#ID#.txt where #ID# is the incident id from the input parameters. As
OGNL is a language that can invoke methods on bean we can invoke the
getIncidentId() on the message body and then concat it with the fixed
pre and postfix strings.

In OGNL glory this is done as:

"'mail-incident-' + request.body.incidentId + '.txt'"

where request.body.incidentId computes to:
▪ request is the IN message. See the OGNL for other

predefined objects available
▪ body is the body of the in message
▪ incidentId will invoke the getIncidentId() method on the

body.
The rest is just more or less regular plain code where we
can concat strings.

Now we got the expression to dynamic compute the filename on the fly we
need to set it on our route so we turn back to our route, where we can add
the OGNL expression:

TUTORIALS 183

http://camel.apache.org/languages.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html
http://camel.apache.org/ognl.html

public void configure() throws Exception {
from("direct:start")

// we need to set the filename and uses OGNL for this
.setHeader(FileComponent.HEADER_FILE_NAME,

OgnlExpression.ognl("'mail-incident-' + request.body.incidentId + '.txt'"))
// using pipes-and-filters we send the output from the previous

to the next
.pipeline("velocity:MailBody.vm", "file://target/subfolder");

}

And since we are on Java 1.5 we can use the static import of ognl so we
have:

import static org.apache.camel.language.ognl.OgnlExpression.ognl;
...

.setHeader(FileComponent.HEADER_FILE_NAME, ognl("'mail-incident-' +
request.body.incidentId + '.txt'"))

Notice the import static also applies for all the other languages, such as the
Bean Language we used previously.

.to("velocity:MailBody.vm")

.to("file://target/subfolder");

// second part from the file backup -> send email
from("file://target/subfolder")

// set the subject of the email
.setHeader("subject", constant("new incident reported"))
// send the email
.to("smtp://someone@localhost?password=secret&to=incident@mycompany.com");

}

}

The last 3 lines of code does all this. It adds a file consumer
from("file://target/subfolder"), sets the mail subject, and finally send it as
an email.

The DSL is really powerful where you can express your routing integration
logic.
So we completed the last piece in the picture puzzle with just 3 lines of code.

We have now completed the integration:

184 TUTORIALS

http://camel.apache.org/bean-language.html

CONCLUSION
We have just briefly touched the routing in Camel and shown how to
implement them using the fluent builder syntax in Java. There is much
more to the routing in Camel than shown here, but we are learning step by
step. We continue in part 5. See you there.

LINKS
▪ Introduction
▪ Part 1
▪ Part 2
▪ Part 3
▪ Part 4
▪ Part 5
▪ Part 6

BETTER JMS TRANSPORT FOR CXF WEBSERVICE USING
APACHE CAMEL
Configuring JMS in Apache CXF before Version 2.1.3 is possible but not really
easy or nice. This article shows how to use Apache Camel to provide a better
JMS Transport for CXF.

Update: Since CXF 2.1.3 there is a new way of configuring JMS (Using the
JMSConfigFeature). It makes JMS config for CXF as easy as with Camel. Using
Camel for JMS is still a good idea if you want to use the rich feature of Camel
for routing and other Integration Scenarios that CXF does not support.

You can find the original announcement for this Tutorial and some
additional info on Christian SchneiderÂ´s Blog

So how to connect Apache Camel and CXF
The best way to connect Camel and CXF is using the Camel transport for
CXF. This is a camel module that registers with cxf as a new transport. It is
quite easy to configure.

<bean class="org.apache.camel.component.cxf.transport.CamelTransportFactory">
<property name="bus" ref="cxf" />
<property name="camelContext" ref="camelContext" />
<property name="transportIds">

<list>
<value>http://cxf.apache.org/transports/camel</value>

</list>

TUTORIALS 185

http://camel.apache.org/tutorial-example-reportincident.html
http://camel.apache.org/tutorial-example-reportincident-part1.html
http://camel.apache.org/tutorial-example-reportincident-part2.html
http://camel.apache.org/tutorial-example-reportincident-part3.html
http://camel.apache.org/tutorial-example-reportincident-part4.html
http://camel.apache.org/tutorial-example-reportincident-part5.html
http://camel.apache.org/tutorial-example-reportincident-part6.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://cxf.apache.org/docs/using-the-jmsconfigfeature.html
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://www.liquid-reality.de/display/liquid/2008/08/25/Better+JMS+Transport+for+CXF+Webservice+using+Apache+Camel
http://activemq.apache.org/camel/camel-transport-for-cxf.html
http://activemq.apache.org/camel/camel-transport-for-cxf.html

</property>
</bean>

This bean registers with CXF and provides a new transport prefix camel://
that can be used in CXF address configurations. The bean references a bean
cxf which will be already present in your config. The other refrenceis a camel
context. We will later define this bean to provide the routing config.

How is JMS configured in Camel
In camel you need two things to configure JMS. A ConnectionFactory and a
JMSComponent. As ConnectionFactory you can simply set up the normal
Factory your JMS provider offers or bind a JNDI ConnectionFactory. In this
example we use the ConnectionFactory provided by ActiveMQ.

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

Then we set up the JMSComponent. It offers a new transport prefix to camel
that we simply call jms. If we need several JMSComponents we can
differentiate them by their name.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="useMessageIDAsCorrelationID" value="true" />

</bean>

You can find more details about the JMSComponent at the Camel Wiki. For
example you find the complete configuration options and a JNDI sample
there.

Setting up the CXF client
We will configure a simple CXF webservice client. It will use stub code
generated from a wsdl. The webservice client will be configured to use JMS
directly. You can also use a direct: Endpoint and do the routing to JMS in the
Camel Context.

<client id="CustomerService" xmlns="http://cxf.apache.org/jaxws"
xmlns:customer="http://customerservice.example.com/"

serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="camel:jms:queue:CustomerService"

186 TUTORIALS

http://static.springframework.org/spring/docs/2.5.x/reference/xsd-config.html#xsd-config-body-schemas-jee-jndi-lookup-environment-single
http://activemq.apache.org/camel/jms.html

serviceClass="com.example.customerservice.CustomerService">
</client>

We explicitly configure serviceName and endpointName so they are not read
from the wsdl. The names we use are arbitrary and have no further function
but we set them to look nice. The serviceclass points to the service interface
that was generated from the wsdl. Now the important thing is address. Here
we tell cxf to use the camel transport, use the JmsComponent who registered
the prefix "jms" and use the queue "CustomerService".

Setting up the CamelContext
As we do not need additional routing an empty CamelContext bean will
suffice.

<camelContext id="camelContext" xmlns="http://activemq.apache.org/camel/schema/
spring">
</camelContext>

Running the Example
• Download the example project here
• Follow the readme.txt

Conclusion
As you have seen in this example you can use Camel to connect services to
JMS easily while being able to also use the rich integration features of Apache
Camel.

TUTORIAL USING AXIS 1.4 WITH APACHE CAMEL
• Tutorial using Axis 1.4 with Apache Camel
• Prerequisites
• Distribution
• Introduction
• Setting up the project to run Axis
• Maven 2
• wsdl
• Configuring Axis
• Running the Example
• Integrating Spring

TUTORIALS 187

http://activemq.apache.org/camel/spring.html
http://camel.apache.org/book-in-one-page.data/cxfcamelexample.zip?version=2&modificationDate=1219861188000

Removed from distribution
This example has been removed from Camel 2.9 onwards. Apache
Axis 1.4 is a very old and unsupported framework. We encourage
users to use CXF instead of Axis.

• Using Spring
• Integrating Camel
• CamelContext
• Store a file backup
• Running the example
• Unit Testing
• Smarter Unit Testing with Spring
• Unit Test calling WebService
• Annotations
• The End
• See Also

Prerequisites
This tutorial uses Maven 2 to setup the Camel project and for dependencies
for artifacts.

Distribution
This sample is distributed with the Camel 1.5 distribution as examples/
camel-example-axis.

Introduction
Apache Axis is/was widely used as a webservice framework. So in line with
some of the other tutorials to demonstrate how Camel is not an invasive
framework but is flexible and integrates well with existing solution.

We have an existing solution that exposes a webservice using Axis 1.4
deployed as web applications. This is a common solution. We use contract
first so we have Axis generated source code from an existing wsdl file. Then
we show how we introduce Spring and Camel to integrate with Axis.

This tutorial uses the following frameworks:
• Maven 2.0.9
• Apache Camel 1.5.0
• Apache Axis 1.4
• Spring 2.5.5

188 TUTORIALS

http://ws.apache.org/axis/
http://camel.apache.org/cxf.html

Setting up the project to run Axis
This first part is about getting the project up to speed with Axis. We are not
touching Camel or Spring at this time.

Maven 2
Axis dependencies is available for maven 2 so we configure our pom.xml as:

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-jaxrpc</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>org.apache.axis</groupId>
<artifactId>axis-saaj</artifactId>
<version>1.4</version>

</dependency>

<dependency>
<groupId>axis</groupId>
<artifactId>axis-wsdl4j</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupId>commons-discovery</groupId>
<artifactId>commons-discovery</artifactId>
<version>0.4</version>

</dependency>

<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>

</dependency>

Then we need to configure maven to use Java 1.5 and the Axis maven plugin
that generates the source code based on the wsdl file:

<!-- to compile with 1.5 -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>

TUTORIALS 189

<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>axistools-maven-plugin</artifactId>
<configuration>

<sourceDirectory>src/main/resources/</sourceDirectory>
<packageSpace>com.mycompany.myschema</packageSpace>
<testCases>false</testCases>
<serverSide>true</serverSide>
<subPackageByFileName>false</subPackageByFileName>

</configuration>
<executions>

<execution>
<goals>

<goal>wsdl2java</goal>
</goals>

</execution>
</executions>

</plugin>

wsdl
We use the same .wsdl file as the Tutorial-Example-ReportIncident and copy
it to src/main/webapp/WEB-INF/wsdl

<?xml version="1.0" encoding="ISO-8859-1"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://reportincident.example.camel.apache.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://reportincident.example.camel.apache.org">

<!-- Type definitions for input- and output parameters for webservice -->
<wsdl:types>
<xs:schema targetNamespace="http://reportincident.example.camel.apache.org">

<xs:element name="inputReportIncident">
<xs:complexType>

<xs:sequence>
<xs:element type="xs:string"

name="incidentId"/>
<xs:element type="xs:string"

name="incidentDate"/>
<xs:element type="xs:string"

190 TUTORIALS

http://camel.apache.org/tutorial-example-reportincident.html

name="givenName"/>
<xs:element type="xs:string"

name="familyName"/>
<xs:element type="xs:string"

name="summary"/>
<xs:element type="xs:string"

name="details"/>
<xs:element type="xs:string"

name="email"/>
<xs:element type="xs:string"

name="phone"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="outputReportIncident">

<xs:complexType>
<xs:sequence>

<xs:element type="xs:string"
name="code"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

</wsdl:types>

<!-- Message definitions for input and output -->
<wsdl:message name="inputReportIncident">

<wsdl:part name="parameters" element="tns:inputReportIncident"/>
</wsdl:message>
<wsdl:message name="outputReportIncident">

<wsdl:part name="parameters" element="tns:outputReportIncident"/>
</wsdl:message>

<!-- Port (interface) definitions -->
<wsdl:portType name="ReportIncidentEndpoint">

<wsdl:operation name="ReportIncident">
<wsdl:input message="tns:inputReportIncident"/>
<wsdl:output message="tns:outputReportIncident"/>

</wsdl:operation>
</wsdl:portType>

<!-- Port bindings to transports and encoding - HTTP, document literal
encoding is used -->

<wsdl:binding name="ReportIncidentBinding" type="tns:ReportIncidentEndpoint">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ReportIncident">

<soap:operation

soapAction="http://reportincident.example.camel.apache.org/ReportIncident"
style="document"/>

<wsdl:input>
<soap:body parts="parameters" use="literal"/>

</wsdl:input>
<wsdl:output>

TUTORIALS 191

<soap:body parts="parameters" use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<!-- Service definition -->
<wsdl:service name="ReportIncidentService">

<wsdl:port name="ReportIncidentPort"
binding="tns:ReportIncidentBinding">

<soap:address
location="http://reportincident.example.camel.apache.org"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Configuring Axis
Okay we are now setup for the contract first development and can generate
the source file. For now we are still only using standard Axis and not Spring
nor Camel. We still need to setup Axis as a web application so we configure
the web.xml in src/main/webapp/WEB-INF/web.xml as:

<servlet>
<servlet-name>axis</servlet-name>
<servlet-class>org.apache.axis.transport.http.AxisServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>axis</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

The web.xml just registers Axis servlet that is handling the incoming web
requests to its servlet mapping. We still need to configure Axis itself and this
is done using its special configuration file server-config.wsdd. We nearly
get this file for free if we let Axis generate the source code so we run the
maven goal:

mvn axistools:wsdl2java

The tool will generate the source code based on the wsdl and save the files
to the following folder:

192 TUTORIALS

.\target\generated-sources\axistools\wsdl2java\org\apache\camel\example\reportincident
deploy.wsdd
InputReportIncident.java
OutputReportIncident.java
ReportIncidentBindingImpl.java
ReportIncidentBindingStub.java
ReportIncidentService_PortType.java
ReportIncidentService_Service.java
ReportIncidentService_ServiceLocator.java
undeploy.wsdd

This is standard Axis and so far no Camel or Spring has been touched. To
implement our webservice we will add our code, so we create a new class
AxisReportIncidentService that implements the port type interface where
we can implement our code logic what happens when the webservice is
invoked.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService implements ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

System.out.println("Hello AxisReportIncidentService is called from " +
parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

Now we need to configure Axis itself and this is done using its server-
config.wsdd file. We nearly get this for for free from the auto generated
code, we copy the stuff from deploy.wsdd and made a few modifications:

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

TUTORIALS 193

<!-- global configuration -->
<globalConfiguration>

<parameter name="sendXsiTypes" value="true"/>
<parameter name="sendMultiRefs" value="true"/>
<parameter name="sendXMLDeclaration" value="true"/>
<parameter name="axis.sendMinimizedElements" value="true"/>

</globalConfiguration>
<handler name="URLMapper"

type="java:org.apache.axis.handlers.http.URLMapper"/>

<!-- this service is from deploy.wsdd -->
<service name="ReportIncidentPort" provider="java:RPC" style="document"

use="literal">
<parameter name="wsdlTargetNamespace"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServiceElement" value="ReportIncidentService"/>
<parameter name="schemaUnqualified"

value="http://reportincident.example.camel.apache.org"/>
<parameter name="wsdlServicePort" value="ReportIncidentPort"/>
<parameter name="className"

value="org.apache.camel.example.reportincident.ReportIncidentBindingImpl"/>
<parameter name="wsdlPortType" value="ReportIncidentService"/>
<parameter name="typeMappingVersion" value="1.2"/>
<operation name="reportIncident" qname="ReportIncident"

returnQName="retNS:outputReportIncident"
xmlns:retNS="http://reportincident.example.camel.apache.org"

returnType="rtns:>outputReportIncident"
xmlns:rtns="http://reportincident.example.camel.apache.org"

soapAction="http://reportincident.example.camel.apache.org/
ReportIncident" >

<parameter qname="pns:inputReportIncident"
xmlns:pns="http://reportincident.example.camel.apache.org"

type="tns:>inputReportIncident"
xmlns:tns="http://reportincident.example.camel.apache.org"/>

</operation>
<parameter name="allowedMethods" value="reportIncident"/>

<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>outputReportIncident"
type="java:org.apache.camel.example.reportincident.OutputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
<typeMapping
xmlns:ns="http://reportincident.example.camel.apache.org"
qname="ns:>inputReportIncident"
type="java:org.apache.camel.example.reportincident.InputReportIncident"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"
deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle=""

/>
</service>

194 TUTORIALS

<!-- part of Axis configuration -->
<transport name="http">

<requestFlow>
<handler type="URLMapper"/>
<handler

type="java:org.apache.axis.handlers.http.HTTPAuthHandler"/>
</requestFlow>

</transport>
</deployment>

The globalConfiguration and transport is not in the deploy.wsdd file so
you gotta write that yourself. The service is a 100% copy from deploy.wsdd.
Axis has more configuration to it than shown here, but then you should check
the Axis documentation.

What we need to do now is important, as we need to modify the above
configuration to use our webservice class than the default one, so we change
the classname parameter to our class AxisReportIncidentService:

<parameter name="className"
value="org.apache.camel.example.axis.AxisReportIncidentService"/>

Running the Example
Now we are ready to run our example for the first time, so we use Jetty as
the quick web container using its maven command:

mvn jetty:run

Then we can hit the web browser and enter this URL:
http://localhost:8080/camel-example-axis/services and you should
see the famous Axis start page with the text And now... Some Services.

Clicking on the .wsdl link shows the wsdl file, but what. It's an auto
generated one and not our original .wsdl file. So we need to fix this ASAP and
this is done by configuring Axis in the server-config.wsdd file:

<service name="ReportIncidentPort" provider="java:RPC" style="document"
use="literal">

<wsdlFile>/WEB-INF/wsdl/report_incident.wsdl</wsdlFile>
...

We do this by adding the wsdlFile tag in the service element where we can
point to the real .wsdl file.

TUTORIALS 195

http://ws.apache.org/axis/
http://localhost:8080/camel-example-axis/services

Integrating Spring
First we need to add its dependencies to the pom.xml.

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>2.5.5</version>

</dependency>

Spring is integrated just as it would like to, we add its listener to the web.xml
and a context parameter to be able to configure precisely what spring xml
files to use:

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>

classpath:axis-example-context.xml
</param-value>

</context-param>

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

Next is to add a plain spring XML file named axis-example-context.xml in
the src/main/resources folder.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

</beans>

The spring XML file is currently empty. We hit jetty again with mvn jetty:run
just to make sure Spring was setup correctly.

Using Spring
We would like to be able to get hold of the Spring ApplicationContext from
our webservice so we can get access to the glory spring, but how do we do
this? And our webservice class AxisReportIncidentService is created and
managed by Axis we want to let Spring do this. So we have two problems.

196 TUTORIALS

We solve these problems by creating a delegate class that Axis creates,
and this delegate class gets hold on Spring and then gets our real webservice
as a spring bean and invoke the service.

First we create a new class that is 100% independent from Axis and just a
plain POJO. This is our real service.

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Our real service that is not tied to Axis
*/

public class ReportIncidentService {

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

}

So now we need to get from AxisReportIncidentService to this one
ReportIncidentService using Spring. Well first of all we add our real service to
spring XML configuration file so Spring can handle its lifecycle:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

</beans>

And then we need to modify AxisReportIncidentService to use Spring to
lookup the spring bean id="incidentservice" and delegate the call. We do
this by extending the spring class
org.springframework.remoting.jaxrpc.ServletEndpointSupport so the
refactored code is:

TUTORIALS 197

package org.apache.camel.example.axis;

import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;
import org.apache.camel.example.reportincident.ReportIncidentService_PortType;
import org.springframework.remoting.jaxrpc.ServletEndpointSupport;

import java.rmi.RemoteException;

/**
* Axis webservice
*/

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// get hold of the spring bean from the application context
ReportIncidentService service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");

// delegate to the real service
return service.reportIncident(parameters);

}

}

To see if everything is okay we run mvn jetty:run.
In the code above we get hold of our service at each request by looking up

in the application context. However Spring also supports an init method
where we can do this once. So we change the code to:

public class AxisReportIncidentService extends ServletEndpointSupport implements
ReportIncidentService_PortType {

private ReportIncidentService service;

@Override
protected void onInit() throws ServiceException {

// get hold of the spring bean from the application context
service = (ReportIncidentService)

getApplicationContext().getBean("incidentservice");
}

public OutputReportIncident reportIncident(InputReportIncident parameters) throws
RemoteException {

// delegate to the real service
return service.reportIncident(parameters);

}

}

198 TUTORIALS

So now we have integrated Axis with Spring and we are ready for Camel.

Integrating Camel
Again the first step is to add the dependencies to the maven pom.xml file:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>1.5.0</version>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>1.5.0</version>

</dependency>

Now that we have integrated with Spring then we easily integrate with Camel
as Camel works well with Spring.
We choose to integrate Camel in the Spring XML file so we add the camel
namespace and the schema location:

xmlns:camel="http://activemq.apache.org/camel/schema/spring"
http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/camel/
schema/spring/camel-spring.xsd"

CamelContext
CamelContext is the heart of Camel its where all the routes, endpoints,
components, etc. is registered. So we setup a CamelContext and the spring
XML files looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://activemq.apache.org/camel/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/
schema/beans/spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring http://activemq.apache.org/
camel/schema/spring/camel-spring.xsd">

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camel">

TUTORIALS 199

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/components.html
http://camel.apache.org/camelcontext.html

Camel does not require Spring
Camel does not require Spring, we could easily have used Camel
without Spring, but most users prefer to use Spring also.

<!-- TODO: Here we can add Camel stuff -->
</camel:camelContext>

</beans>

Store a file backup
We want to store the web service request as a file before we return a
response. To do this we want to send the file content as a message to an
endpoint that produces the file. So we need to do two steps:

▪ configure the file backup endpoint
▪ send the message to the endpoint

The endpoint is configured in spring XML so we just add it as:

<camel:camelContext id="camelContext">
<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

In the CamelContext we have defined our endpoint with the id backup and
configured it use the URL notation that we know from the internet. Its a file
scheme that accepts a context and some options. The contest is target and
its the folder to store the file. The option is just as the internet with ? and &
for subsequent options. We configure it to not append, meaning than any
existing file will be overwritten. See the File component for options and how
to use the camel file endpoint.

Next up is to be able to send a message to this endpoint. The easiest way
is to use a ProducerTemplate. A ProducerTemplate is inspired by Spring
template pattern with for instance JmsTemplate or JdbcTemplate in mind. The
template that all the grunt work and exposes a simple interface to the end-
user where he/she can set the payload to send. Then the template will do
proper resource handling and all related issues in that regard. But how do we
get hold of such a template? Well the CamelContext is able to provide one.
This is done by configuring the template on the camel context in the spring
XML as:

200 TUTORIALS

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/how-do-i-configure-endpoints.html
http://camel.apache.org/file2.html
http://camel.apache.org/camelcontext.html

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

Then we can expose a ProducerTemplate property on our service with a
setter in the Java code as:

public class ReportIncidentService {

private ProducerTemplate template;

public void setTemplate(ProducerTemplate template) {
this.template = template;

}

And then let Spring handle the dependency inject as below:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService">

<!-- set the producer template to use from the camel context below -->
<property name="template" ref="camelTemplate"/>

</bean>

Now we are ready to use the producer template in our service to send the
payload to the endpoint. The template has many sendXXX methods for this
purpose. But before we send the payload to the file endpoint we must also
specify what filename to store the file as. This is done by sending meta data
with the payload. In Camel metadata is sent as headers. Headers is just a
plain Map<String, Object>. So if we needed to send several metadata then
we could construct an ordinary HashMap and put the values in there. But as
we just need to send one header with the filename Camel has a convenient
send method sendBodyAndHeader so we choose this one.

public OutputReportIncident reportIncident(InputReportIncident parameters) {
System.out.println("Hello ReportIncidentService is called from " +

parameters.getGivenName());

String data = parameters.getDetails();

// store the data as a file
String filename = parameters.getIncidentId() + ".txt";
// send the data to the endpoint and the header contains what filename it

should be stored as

TUTORIALS 201

template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",
filename);

OutputReportIncident out = new OutputReportIncident();
out.setCode("OK");
return out;

}

The template in the code above uses 4 parameters:
▪ the endpoint name, in this case the id referring to the endpoint

defined in Spring XML in the camelContext element.
▪ the payload, can be any kind of object
▪ the key for the header, in this case a Camel keyword to set the

filename
▪ and the value for the header

Running the example
We start our integration with maven using mvn jetty:run. Then we open a
browser and hit http://localhost:8080. Jetty is so smart that it display a
frontpage with links to the deployed application so just hit the link and you
get our application. Now we hit append /services to the URL to access the
Axis frontpage. The URL should be http://localhost:8080/camel-
example-axis/services.

You can then test it using a web service test tools such as SoapUI.
Hitting the service will output to the console

2008-09-06 15:01:41.718::INFO: Started SelectChannelConnector @ 0.0.0.0:8080
[INFO] Started Jetty Server
Hello ReportIncidentService is called from Ibsen

And there should be a file in the target subfolder.

dir target /b
123.txt

Unit Testing
We would like to be able to unit test our ReportIncidentService class. So
we add junit to the maven dependency:

<dependency>
<groupId>junit</groupId>

202 TUTORIALS

http://localhost:8080
http://localhost:8080/camel-example-axis/services
http://localhost:8080/camel-example-axis/services
http://www.soapui.org/

<artifactId>junit</artifactId>
<version>3.8.2</version>
<scope>test</scope>

</dependency>

And then we create a plain junit testcase for our service class.

package org.apache.camel.example.axis;

import junit.framework.TestCase;
import org.apache.camel.example.reportincident.InputReportIncident;
import org.apache.camel.example.reportincident.OutputReportIncident;

/**
* Unit test of service
*/

public class ReportIncidentServiceTest extends TestCase {

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

}

Then we can run the test with maven using: mvn test. But we will get a
failure:

Running org.apache.camel.example.axis.ReportIncidentServiceTest
Hello ReportIncidentService is called from Claus
Tests run: 1, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.235 sec <<< FAILURE!

Results :

Tests in error:

TUTORIALS 203

testIncident(org.apache.camel.example.axis.ReportIncidentServiceTest)

Tests run: 1, Failures: 0, Errors: 1, Skipped: 0

What is the problem? Well our service uses a CamelProducer (the template)
to send a message to the file endpoint so the message will be stored in a file.
What we need is to get hold of such a producer and inject it on our service,
by calling the setter.

Since Camel is very light weight and embedable we are able to create a
CamelContext and add the endpoint in our unit test code directly. We do this
to show how this is possible:

private CamelContext context;

@Override
protected void setUp() throws Exception {

super.setUp();
// CamelContext is just created like this
context = new DefaultCamelContext();

// then we can create our endpoint and set the options
FileEndpoint endpoint = new FileEndpoint();
// the endpoint must have the camel context set also
endpoint.setCamelContext(context);
// our output folder
endpoint.setFile(new File("target"));
// and the option not to append
endpoint.setAppend(false);

// then we add the endpoint just in java code just as the spring XML, we
register it with the "backup" id.

context.addSingletonEndpoint("backup", endpoint);

// finally we need to start the context so Camel is ready to rock
context.start();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
// and we are nice boys so we stop it to allow resources to clean up
context.stop();

}

So now we are ready to set the ProducerTemplate on our service, and we get
a hold of that baby from the CamelContext as:

public void testIncident() {
ReportIncidentService service = new ReportIncidentService();

204 TUTORIALS

// get a producer template from the camel context
ProducerTemplate template = context.createProducerTemplate();
// inject it on our service using the setter
service.setTemplate(template);

InputReportIncident input = createDummyIncident();
OutputReportIncident output = service.reportIncident(input);
assertEquals("OK", output.getCode());

}

And this time when we run the unit test its a success:

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

We would like to test that the file exists so we add these two lines to our test
method:

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

Smarter Unit Testing with Spring
The unit test above requires us to assemble the Camel pieces manually in
java code. What if we would like our unit test to use our spring configuration
file axis-example-context.xml where we already have setup the endpoint.
And of course we would like to test using this configuration file as this is the
real file we will use. Well hey presto the xml file is a spring
ApplicationContext file and spring is able to load it, so we go the spring path
for unit testing. First we add the spring-test jar to our maven dependency:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<scope>test</scope>

</dependency>

And then we refactor our unit test to be a standard spring unit class. What
we need to do is to extend AbstractJUnit38SpringContextTests instead of
TestCase in our unit test. Since Spring 2.5 embraces annotations we will use
one as well to instruct what our xml configuration file is located:

TUTORIALS 205

@ContextConfiguration(locations = "classpath:axis-example-context.xml")
public class ReportIncidentServiceTest extends AbstractJUnit38SpringContextTests {

What we must remember to add is the classpath: prefix as our xml file is
located in src/main/resources. If we omit the prefix then Spring will by
default try to locate the xml file in the current package and that is
org.apache.camel.example.axis. If the xml file is located outside the
classpath you can use file: prefix instead. So with these two modifications we
can get rid of all the setup and teardown code we had before and now we will
test our real configuration.

The last change is to get hold of the producer template and now we can
just refer to the bean id it has in the spring xml file:

<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

So we get hold of it by just getting it from the spring ApplicationContext as
all spring users is used to do:

// get a producer template from the the spring context
ProducerTemplate template = (ProducerTemplate)

applicationContext.getBean("camelTemplate");
// inject it on our service using the setter
service.setTemplate(template);

Now our unit test is much better, and a real power of Camel is that is fits
nicely with Spring and you can use standard Spring'ish unit test to test your
Camel applications as well.

Unit Test calling WebService
What if you would like to execute a unit test where you send a webservice
request to the AxisReportIncidentService how do we unit test this one?
Well first of all the code is merely just a delegate to our real service that we
have just tested, but nevertheless its a good question and we would like to
know how. Well the answer is that we can exploit that fact that Jetty is also a
slim web container that can be embedded anywhere just as Camel can. So
we add this to our pom.xml:

<dependency>
<groupId>org.mortbay.jetty</groupId>
<artifactId>jetty</artifactId>
<version>${jetty-version}</version>

206 TUTORIALS

<scope>test</scope>
</dependency>

Then we can create a new class AxisReportIncidentServiceTest to unit
test with Jetty. The code to setup Jetty is shown below with code comments:

public class AxisReportIncidentServiceTest extends TestCase {

private Server server;

private void startJetty() throws Exception {
// create an embedded Jetty server
server = new Server();

// add a listener on port 8080 on localhost (127.0.0.1)
Connector connector = new SelectChannelConnector();
connector.setPort(8080);
connector.setHost("127.0.0.1");
server.addConnector(connector);

// add our web context path
WebAppContext wac = new WebAppContext();
wac.setContextPath("/unittest");
// set the location of the exploded webapp where WEB-INF is located
// this is a nice feature of Jetty where we can point to src/main/webapp
wac.setWar("./src/main/webapp");
server.setHandler(wac);

// then start Jetty
server.setStopAtShutdown(true);
server.start();

}

@Override
protected void setUp() throws Exception {

super.setUp();
startJetty();

}

@Override
protected void tearDown() throws Exception {

super.tearDown();
server.stop();

}

}

Now we just need to send the incident as a webservice request using Axis. So
we add the following code:

TUTORIALS 207

public void testReportIncidentWithAxis() throws Exception {
// the url to the axis webservice exposed by jetty
URL url = new URL("http://localhost:8080/unittest/services/

ReportIncidentPort");

// Axis stuff to get the port where we can send the webservice request
ReportIncidentService_ServiceLocator locator = new

ReportIncidentService_ServiceLocator();
ReportIncidentService_PortType port = locator.getReportIncidentPort(url);

// create input to send
InputReportIncident input = createDummyIncident();
// send the webservice and get the response
OutputReportIncident output = port.reportIncident(input);
assertEquals("OK", output.getCode());

// should generate a file also
File file = new File("target/" + input.getIncidentId() + ".txt");
assertTrue("File should exists", file.exists());

}

protected InputReportIncident createDummyIncident() {
InputReportIncident input = new InputReportIncident();
input.setEmail("davsclaus@apache.org");
input.setIncidentId("12345678");
input.setIncidentDate("2008-07-13");
input.setPhone("+45 2962 7576");
input.setSummary("Failed operation");
input.setDetails("The wrong foot was operated.");
input.setFamilyName("Ibsen");
input.setGivenName("Claus");
return input;

}

And now we have an unittest that sends a webservice request using good old
Axis.

Annotations
Both Camel and Spring has annotations that can be used to configure and
wire trivial settings more elegantly. Camel has the endpoint annotation
@EndpointInjected that is just what we need. With this annotation we can
inject the endpoint into our service. The annotation takes either a name or
uri parameter. The name is the bean id in the Registry. The uri is the URI
configuration for the endpoint. Using this you can actually inject an endpoint
that you have not defined in the camel context. As we have defined our
endpoint with the id backup we use the name parameter.

208 TUTORIALS

http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html

@EndpointInject(name = "backup")
private ProducerTemplate template;

Camel is smart as @EndpointInjected supports different kinds of object
types. We like the ProducerTemplate so we just keep it as it is.
Since we use annotations on the field directly we do not need to set the
property in the spring xml file so we change our service bean:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

Running the unit test with mvn test reveals that it works nicely.
And since we use the @EndpointInjected that refers to the endpoint with

the id backup directly we can loose the template tag in the xml, so its
shorter:

<bean id="incidentservice"
class="org.apache.camel.example.axis.ReportIncidentService"/>

<camel:camelContext id="camelContext">
<!-- producer template exposed with this id -->
<camel:template id="camelTemplate"/>

<!-- endpoint named backup that is configued as a file component -->
<camel:endpoint id="backup" uri="file://target?append=false"/>

</camel:camelContext>

And the final touch we can do is that since the endpoint is injected with
concrete endpoint to use we can remove the "backup" name parameter
when we send the message. So we change from:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader("backup", data, "org.apache.camel.file.name",
filename);

To without the name:

// send the data to the endpoint and the header contains what filename it
should be stored as

template.sendBodyAndHeader(data, "org.apache.camel.file.name", filename);

Then we avoid to duplicate the name and if we rename the endpoint name
then we don't forget to change it in the code also.

TUTORIALS 209

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html

The End
This tutorial hasn't really touched the one of the key concept of Camel as a
powerful routing and mediation framework. But we wanted to demonstrate
its flexibility and that it integrates well with even older frameworks such as
Apache Axis 1.4.

Check out the other tutorials on Camel and the other examples.
Note that the code shown here also applies to Camel 1.4 so actually you

can get started right away with the released version of Camel. As this time of
writing Camel 1.5 is work in progress.

See Also
▪ Tutorials
▪ Examples

TUTORIAL ON USING CAMEL IN A WEB APPLICATION
Camel has been designed to work great with the Spring framework; so if you
are already a Spring user you can think of Camel as just a framework for
adding to your Spring XML files.

So you can follow the usual Spring approach to working with web
applications; namely to add the standard Spring hook to load a /WEB-INF/
applicationContext.xml file. In that file you can include your usual Camel
XML configuration.

Step1: Edit your web.xml
To enable spring add a context loader listener to your /WEB-INF/web.xml
file

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

</web-app>

210 TUTORIALS

http://camel.apache.org/tutorials.html
http://camel.apache.org/examples.html
http://camel.apache.org/spring.html

This will cause Spring to boot up and look for the /WEB-INF/
applicationContext.xml file.

Step 2: Create a /WEB-INF/applicationContext.xml file
Now you just need to create your Spring XML file and add your camel routes
or configuration.

For example

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="seda:foo"/>
<to uri="mock:results"/>

</route>
</camelContext>

</beans>

Then boot up your web application and you're good to go!

Hints and Tips
If you use Maven to build your application your directory tree will look like
this...

src/main/webapp/WEB-INF
web.xml
applicationContext.xml

You should update your Maven pom.xml to enable WAR packaging/naming
like this...

<project>
...
<packaging>war</packaging>
...

TUTORIALS 211

http://maven.apache.org/

<build>
<finalName>[desired WAR file name]</finalName>
...

</build>

To enable more rapid development we highly recommend the jetty:run
maven plugin.

Please refer to the help for more information on using jetty:run - but briefly
if you add the following to your pom.xml

<build>
<plugins>

<plugin>
<groupId>org.mortbay.jetty</groupId>
<artifactId>maven-jetty-plugin</artifactId>
<configuration>

<webAppConfig>
<contextPath>/</contextPath>

</webAppConfig>
<scanIntervalSeconds>10</scanIntervalSeconds>

</configuration>
</plugin>

</plugins>
</build>

Then you can run your web application as follows

mvn jetty:run

Then Jetty will also monitor your target/classes directory and your src/main/
webapp directory so that if you modify your spring XML, your web.xml or
your java code the web application will be restarted, re-creating your Camel
routes.

If your unit tests take a while to run, you could miss them out when
running your web application via

mvn -Dtest=false jetty:run

TUTORIAL BUSINESS PARTNERS

212 TUTORIALS

http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin
http://docs.codehaus.org/display/JETTY/Maven+Jetty+Plugin

Under Construction
This tutorial is a work in progress.

BACKGROUND AND INTRODUCTION

Business Background
So there's a company, which we'll call Acme. Acme sells widgets, in a fairly
unusual way. Their customers are responsible for telling Acme what they
purchased. The customer enters into their own systems (ERP or whatever)
which widgets they bought from Acme. Then at some point, their systems
emit a record of the sale which needs to go to Acme so Acme can bill them
for it. Obviously, everyone wants this to be as automated as possible, so
there needs to be integration between the customer's system and Acme.

Sadly, Acme's sales people are, technically speaking, doormats. They tell
all their prospects, "you can send us the data in whatever format, using
whatever protocols, whatever. You just can't change once it's up and
running."

The result is pretty much what you'd expect. Taking a random sample of 3
customers:

• Customer 1: XML over FTP
• Customer 2: CSV over HTTP
• Customer 3: Excel via e-mail

Now on the Acme side, all this has to be converted to a canonical XML format
and submitted to the Acme accounting system via JMS. Then the Acme
accounting system does its stuff and sends an XML reply via JMS, with a
summary of what it processed (e.g. 3 line items accepted, line item #2 in
error, total invoice $123.45). Finally, that data needs to be formatted into an
e-mail, and sent to a contact at the customer in question ("Dear Joyce, we
received an invoice on 1/2/08. We accepted 3 line items totaling $123.45,
though there was an error with line items #2 [invalid quantity ordered].
Thank you for your business. Love, Acme.").

So it turns out Camel can handle all this:
• Listen for HTTP, e-mail, and FTP files
• Grab attachments from the e-mail messages
• Convert XML, XLS, and CSV files to a canonical XML format
• read and write JMS messages
• route based on company ID
• format e-mails using Velocity templates
• send outgoing e-mail messages

TUTORIALS 213

Tutorial Background
This tutorial will cover all that, plus setting up tests along the way.

Before starting, you should be familiar with:
• Camel concepts including the CamelContext, Routes, Components

and Endpoints, and Enterprise Integration Patterns
• Configuring Camel with the XML or Java DSL

You'll learn:
• How to set up a Maven build for a Camel project
• How to transform XML, CSV, and Excel data into a standard XML

format with Camel
◦ How to write POJOs (Plain Old Java Objects), Velocity

templates, and XSLT stylesheets that are invoked by Camel
routes for message transformation

• How to configure simple and complex Routes in Camel, using either
the XML or the Java DSL format

• How to set up unit tests that load a Camel configuration and test
Camel routes

• How to use Camel's Data Formats to automatically convert data
between Java objects and XML, CSV files, etc.

• How to send and receive e-mail from Camel
• How to send and receive JMS messages from Camel
• How to use Enterprise Integration Patterns including Message Router

and Pipes and Filters
◦ How to use various languages to express content-based

routing rules in Camel
• How to deal with Camel messages, headers, and attachments

You may choose to treat this as a hands-on tutorial, and work through
building the code and configuration files yourself. Each of the sections gives
detailed descriptions of the steps that need to be taken to get the
components and routes working in Camel, and takes you through tests to
make sure they are working as expected.

But each section also links to working copies of the source and
configuration files, so if you don't want the hands-on approach, you can
simply review and/or download the finished files.

High-Level Diagram
Here's more or less what the integration process looks like.

First, the input from the customers to Acme:

And then, the output from Acme to the customers:

214 TUTORIALS

http://camel.apache.org/camelcontext.html
http://camel.apache.org/routes.html
http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/dsl.html

Tutorial Tasks
To get through this scenario, we're going to break it down into smaller pieces,
implement and test those, and then try to assemble the big scenario and test
that.

Here's what we'll try to accomplish:
1. Create a Maven build for the project
2. Get sample files for the customer Excel, CSV, and XML input
3. Get a sample file for the canonical XML format that Acme's

accounting system uses
4. Create an XSD for the canonical XML format
5. Create JAXB POJOs corresponding to the canonical XSD
6. Create an XSLT stylesheet to convert the Customer 1 (XML over FTP)

messages to the canonical format
7. Create a unit test to ensure that a simple Camel route invoking the

XSLT stylesheet works
8. Create a POJO that converts a List<List<String>> to the above

JAXB POJOs
◦ Note that Camel can automatically convert CSV input to a

List of Lists of Strings representing the rows and columns of
the CSV, so we'll use this POJO to handle Customer 2 (CSV
over HTTP)

9. Create a unit test to ensure that a simple Camel route invoking the
CSV processing works

10. Create a POJO that converts a Customer 3 Excel file to the above
JAXB POJOs (using POI to read Excel)

11. Create a unit test to ensure that a simple Camel route invoking the
Excel processing works

12. Create a POJO that reads an input message, takes an attachment off
the message, and replaces the body of the message with the
attachment

◦ This is assuming for Customer 3 (Excel over e-mail) that the
e-mail contains a single Excel file as an attachment, and the
actual e-mail body is throwaway

13. Build a set of Camel routes to handle the entire input (Customer ->
Acme) side of the scenario.

14. Build unit tests for the Camel input.
15. TODO: Tasks for the output (Acme -> Customer) side of the scenario

TUTORIALS 215

LET'S GET STARTED!

Step 1: Initial Maven build
We'll use Maven for this project as there will eventually be quite a few
dependencies and it's nice to have Maven handle them for us. You should
have a current version of Maven (e.g. 2.0.9) installed.

You can start with a pretty empty project directory and a Maven POM file,
or use a simple JAR archetype to create one.

Here's a sample POM. We've added a dependency on camel-core, and set
the compile version to 1.5 (so we can use annotations):

Listing 1. pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">

<modelVersion>4.0.0</modelVersion>
<groupId>org.apache.camel.tutorial</groupId>
<artifactId>business-partners</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Camel Business Partners Tutorial</name>
<dependencies>

<dependency>
<artifactId>camel-core</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>
</dependencies>
<build>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Step 2: Get Sample Files
You can make up your own if you like, but here are the "off the shelf" ones.
You can save yourself some time by downloading these to src/test/
resources in your Maven project.

• Customer 1 (XML): input-customer1.xml
• Customer 2 (CSV): input-customer2.csv

216 TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/input-customer2.csv?version=1&modificationDate=1221319297000

• Customer 3 (Excel): input-customer3.xls
• Canonical Acme XML Request: canonical-acme-request.xml
• Canonical Acme XML Response: TODO

If you look at these files, you'll see that the different input formats use
different field names and/or ordering, because of course the sales guys were
totally OK with that. Sigh.

Step 3: XSD and JAXB Beans for the Canonical XML Format
Here's the sample of the canonical XML file:

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns="http://activemq.apache.org/camel/tutorial/partners/invoice">

<partner-id>2</partner-id>
<date-received>9/12/2008</date-received>
<line-item>

<product-id>134</product-id>
<description>A widget</description>
<quantity>3</quantity>
<item-price>10.45</item-price>
<order-date>6/5/2008</order-date>

</line-item>
<!-- // more line-item elements here -->
<order-total>218.82</order-total>

</invoice>

If you're ambitions, you can write your own XSD (XML Schema) for files that
look like this, and save it to src/main/xsd.

Solution: If not, you can download mine, and save that to save it to src/
main/xsd.

Generating JAXB Beans
Down the road we'll want to deal with the XML as Java POJOs. We'll take a
moment now to set up those XML binding POJOs. So we'll update the Maven
POM to generate JAXB beans from the XSD file.

We need a dependency:

<dependency>
<artifactId>camel-jaxb</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

And a plugin configured:

TUTORIALS 217

http://camel.apache.org/book-in-one-page.data/input-customer3.xls?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/canonical-acme-request.xsd?version=1&modificationDate=1221569994000

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>jaxb2-maven-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>xjc</goal>
</goals>

</execution>
</executions>

</plugin>

That should do it (it automatically looks for XML Schemas in src/main/xsd to
generate beans for). Run mvn install and it should emit the beans into
target/generated-sources/jaxb. Your IDE should see them there, though
you may need to update the project to reflect the new settings in the Maven
POM.

Step 4: Initial Work on Customer 1 Input (XML over FTP)
To get a start on Customer 1, we'll create an XSLT template to convert the
Customer 1 sample file into the canonical XML format, write a small Camel
route to test it, and build that into a unit test. If we get through this, we can
be pretty sure that the XSLT template is valid and can be run safely in Camel.

Create an XSLT template
Start with the Customer 1 sample input. You want to create an XSLT template
to generate XML like the canonical XML sample above â€“ an invoice
element with line-item elements (one per item in the original XML
document). If you're especially clever, you can populate the current date and
order total elements too.

Solution: My sample XSLT template isn't that smart, but it'll get you going
if you don't want to write one of your own.

Create a unit test
Here's where we get to some meaty Camel work. We need to:

• Set up a unit test
• That loads a Camel configuration
• That has a route invoking our XSLT
• Where the test sends a message to the route
• And ensures that some XML comes out the end of the route

218 TUTORIALS

http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000
http://camel.apache.org/book-in-one-page.data/XMLConverter.xsl?version=1&modificationDate=1221329900000

The easiest way to do this is to set up a Spring context that defines the
Camel stuff, and then use a base unit test class from Spring that knows how
to load a Spring context to run tests against. So, the procedure is:

Set Up a Skeletal Camel/Spring Unit Test
1. Add dependencies on Camel-Spring, and the Spring test JAR (which

will automatically bring in JUnit 3.8.x) to your POM:

<dependency>
<artifactId>camel-spring</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>
<dependency>

<artifactId>spring-test</artifactId>
<groupId>org.springframework</groupId>
<version>2.5.5</version>
<scope>test</scope>

</dependency>

2. Create a new unit test class in src/test/java/your-package-here,
perhaps called XMLInputTest.java

3. Make the test extend Spring's AbstractJUnit38SpringContextTests
class, so it can load a Spring context for the test

4. Create a Spring context configuration file in src/test/resources,
perhaps called XMLInputTest-context.xml

5. In the unit test class, use the class-level @ContextConfiguration
annotation to indicate that a Spring context should be loaded

◦ By default, this looks for a Context configuration file called
TestClassName-context.xml in a subdirectory
corresponding to the package of the test class. For instance,
if your test class was
org.apache.camel.tutorial.XMLInputTest, it would look
for org/apache/camel/tutorial/XMLInputTest-
context.xml

◦ To override this default, use the locations attribute on the
@ContextConfiguration annotation to provide specific context
file locations (starting each path with a / if you don't want it
to be relative to the package directory). My solution does this
so I can put the context file directly in src/test/resources
instead of in a package directory under there.

6. Add a CamelContext instance variable to the test class, with the
@Autowired annotation. That way Spring will automatically pull the
CamelContext out of the Spring context and inject it into our test
class.

TUTORIALS 219

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/junit38/AbstractJUnit38SpringContextTests.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/test/context/ContextConfiguration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/beans/factory/annotation/Autowired.html

7. Add a ProducerTemplate instance variable and a setUp method that
instantiates it from the CamelContext. We'll use the
ProducerTemplate later to send messages to the route.

protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

8. Put in an empty test method just for the moment (so when we run
this we can see that "1 test succeeded")

9. Add the Spring <beans> element (including the Camel Namespace)
with an empty <camelContext> element to the Spring context, like
this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/

spring/camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/
spring">

</camelContext>
</beans>

Test it by running mvn install and make sure there are no build errors. So far
it doesn't test much; just that your project and test and source files are all
organized correctly, and the one empty test method completes successfully.

Solution: Your test class might look something like this:
• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• src/test/resources/XMLInputTest-context.xml (same as just above)

Flesh Out the Unit Test
So now we're going to write a Camel route that applies the XSLT to the
sample Customer 1 input file, and makes sure that some XML output comes
out:

1. Save the input-customer1.xml file to src/test/resources
2. Save your XSLT file (created in the previous step) to src/main/

resources

220 TUTORIALS

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ProducerTemplate.html
http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-factory-metadata
http://activemq.apache.org/camel/xml-reference.html
http://camel.apache.org/spring.html#Spring-UsingSpringtoconfiguretheCamelContext
http://camel.apache.org/book-in-one-page.data/empty-XMLInputTest.java?version=3&modificationDate=1221648819000
http://camel.apache.org/book-in-one-page.data/input-customer1.xml?version=1&modificationDate=1221319297000

3. Write a Camel Route, either right in the Spring XML, or using the Java
DSL (in another class under src/test/java somewhere). This route
should use the Pipes and Filters integration pattern to:

1. Start from the endpoint direct:start (which lets the test
conveniently pass messages into the route)

2. Call the endpoint xslt:YourXSLTFile.xsl (to transform the
message with the specified XSLT template)

3. Send the result to the endpoint mock:finish (which lets the
test verify the route output)

4. Add a test method to the unit test class that:
1. Get a reference to the Mock endpoint mock:finish using

code like this:

MockEndpoint finish = MockEndpoint.resolve(camelContext,
"mock:finish");

2. Set the expectedMessageCount on that endpoint to 1
3. Get a reference to the Customer 1 input file, using code like

this:

InputStream in =
XMLInputTest.class.getResourceAsStream("/input-partner1.xml");
assertNotNull(in);

4. Send that InputStream as a message to the direct:start
endpoint, using code like this:

template.sendBody("direct:start", in);

Note that we can send the sample file body in several
formats (File, InputStream, String, etc.) but in this case an
InputStream is pretty convenient.

5. Ensure that the message made it through the route to the
final endpoint, by testing all configured Mock endpoints like
this:

MockEndpoint.assertIsSatisfied(camelContext);

6. If you like, inspect the final message body using some code
like finish.getExchanges().get(0).getIn().getBody().

▪ If you do this, you'll need to know what format that
body is â€“ String, byte array, InputStream, etc.

5. Run your test with mvn install and make sure the build completes
successfully.

TUTORIALS 221

http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html
http://camel.apache.org/xslt.html
http://camel.apache.org/mock.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#setExpectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/XMLInputTest.java
• For XML Configuration:

◦ src/test/resources/XMLInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/XMLInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/

routes/XMLInputTestRoute.java

Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
To get a start on Customer 2, we'll create a POJO to convert the Customer 2
sample CSV data into the JAXB POJOs representing the canonical XML format,
write a small Camel route to test it, and build that into a unit test. If we get
through this, we can be pretty sure that the CSV conversion and JAXB
handling is valid and can be run safely in Camel.

Create a CSV-handling POJO
To begin with, CSV is a known data format in Camel. Camel can convert a
CSV file to a List (representing rows in the CSV) of Lists (representing cells in
the row) of Strings (the data for each cell). That means our POJO can just
assume the data coming in is of type List<List<String>>, and we can
declare a method with that as the argument.

Looking at the JAXB code in target/generated-sources/jaxb, it looks
like an Invoice object represents the whole document, with a nested list of
LineItemType objects for the line items. Therefore our POJO method will
return an Invoice (a document in the canonical XML format).

So to implement the CSV-to-JAXB POJO, we need to do something like this:
1. Create a new class under src/main/java, perhaps called

CSVConverterBean.
2. Add a method, with one argument of type List<List<String>> and

the return type Invoice
◦ You may annotate the argument with @Body to specifically

designate it as the body of the incoming message
3. In the method, the logic should look roughly like this:

1. Create a new Invoice, using the method on the generated
ObjectFactory class

2. Loop through all the rows in the incoming CSV (the outer
List)

3. Skip the first row, which contains headers (column names)
4. For the other rows:

222 TUTORIALS

http://camel.apache.org/book-in-one-page.data/XMLInputTest.java?version=3&modificationDate=1221651730000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-context.xml?version=1&modificationDate=1221574632000
http://camel.apache.org/book-in-one-page.data/XMLInputTest-dsl-context.xml?version=1&modificationDate=1221641531000
http://camel.apache.org/book-in-one-page.data/XMLInputTestRoute.java?version=1&modificationDate=1221641531000
http://camel.apache.org/csv.html
http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html

Test Base Class
Once your test class is working, you might want to extract things
like the @Autowired CamelContext, the ProducerTemplate, and the
setUp method to a custom base class that you extend with your
other tests.

1. Create a new LineItemType (using the
ObjectFactory again)

2. Pick out all the cell values (the Strings in the inner
List) and put them into the correct fields of the
LineItemType

▪ Not all of the values will actually go into the
line item in this example

▪ You may hardcode the column ordering based
on the sample data file, or else try to read it
dynamically from the headers in the first line

▪ Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB
uses for the date fields in the XML â€“ which
probably means using a SimpleDateFormat
to parse the date and setting that date on a
GregorianCalendar

3. Add the line item to the invoice
5. Populate the partner ID, date of receipt, and order total on

the Invoice
6. Throw any exceptions out of the method, so Camel knows

something went wrong
7. Return the finished Invoice

Solution: Here's an example of what the CSVConverterBean might look like.

Create a unit test
Start with a simple test class and test Spring context like last time, perhaps
based on the name CSVInputTest:

Listing 1. CSVInputTest.java

/**
* A test class the ensure we can convert Partner 2 CSV input files to the
* canonical XML output format, using JAXB POJOs.
*/

TUTORIALS 223

http://camel.apache.org/book-in-one-page.data/CSVConverterBean.java?version=1&modificationDate=1221648421000

@ContextConfiguration(locations = "/CSVInputTest-context.xml")
public class CSVInputTest extends AbstractJUnit38SpringContextTests {

@Autowired
protected CamelContext camelContext;
protected ProducerTemplate<Exchange> template;

protected void setUp() throws Exception {
super.setUp();
template = camelContext.createProducerTemplate();

}

public void testCSVConversion() {
// TODO

}
}

Listing 1. CSVInputTest-context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/
spring-beans-2.5.xsd

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/

camel-spring-1.4.0.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<!-- TODO -->

</camelContext>
</beans>

Now the meaty part is to flesh out the test class and write the Camel routes.
1. Update the Maven POM to include CSV Data Format support:

<dependency>
<artifactId>camel-csv</artifactId>
<groupId>org.apache.camel</groupId>
<version>1.4.0</version>

</dependency>

2. Write the routes (right in the Spring XML context, or using the Java
DSL) for the CSV conversion process, again using the Pipes and
Filters pattern:

1. Start from the endpoint direct:CSVstart (which lets the test
conveniently pass messages into the route). We'll name this
differently than the starting point for the previous test, in
case you use the Java DSL and put all your routes in the

224 TUTORIALS

http://camel.apache.org/csv.html
http://camel.apache.org/data-format.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/direct.html

same package (which would mean that each test would load
the DSL routes for several tests.)

2. This time, there's a little preparation to be done. Camel
doesn't know that the initial input is a CSV, so it won't be
able to convert it to the expected List<List<String>>
without a little hint. For that, we need an unmarshal
transformation in the route. The unmarshal method (in the
DSL) or element (in the XML) takes a child indicating the
format to unmarshal; in this case that should be csv.

3. Next invoke the POJO to transform the message with a
bean:CSVConverter endpoint

4. As before, send the result to the endpoint mock:finish (which
lets the test verify the route output)

5. Finally, we need a Spring <bean> element in the Spring
context XML file (but outside the <camelContext> element)
to define the Spring bean that our route invokes. This Spring
bean should have a name attribute that matches the name
used in the bean endpoint (CSVConverter in the example
above), and a class attribute that points to the CSV-to-JAXB
POJO class you wrote above (such as,
org.apache.camel.tutorial.CSVConverterBean). When
Spring is in the picture, any bean endpoints look up Spring
beans with the specified name.

3. Write a test method in the test class, which should look very similar
to the previous test class:

1. Get the MockEndpoint for the final endpoint, and tell it to
expect one message

2. Load the Partner 2 sample CSV file from the ClassPath, and
send it as the body of a message to the starting endpoint

3. Verify that the final MockEndpoint is satisfied (that is, it
received one message) and examine the message body if
you like

▪ Note that we didn't marshal the JAXB POJOs to XML in
this test, so the final message should contain an
Invoice as the body. You could write a simple line of
code to get the Exchange (and Message) from the
MockEndpoint to confirm that.

4. Run this new test with mvn install and make sure it passes and the
build completes successfully.

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/CSVInputTest.java
• For XML Configuration:

◦ src/test/resources/CSVInputTest-context.xml

TUTORIALS 225

http://camel.apache.org/data-format.html#DataFormat-Unmarshalling
http://camel.apache.org/bean.html
http://camel.apache.org/mock.html
http://camel.apache.org/data-format.html#DataFormat-Marshalling
http://camel.apache.org/book-in-one-page.data/CSVInputTest.java?version=2&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTest-context.xml?version=2&modificationDate=1221693356000

• Or, for Java DSL Configuration:
◦ src/test/resources/CSVInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/

routes/CSVInputTestRoute.java

Step 6: Initial Work on Customer 3 Input (Excel over e-mail)
To get a start on Customer 3, we'll create a POJO to convert the Customer 3
sample Excel data into the JAXB POJOs representing the canonical XML
format, write a small Camel route to test it, and build that into a unit test. If
we get through this, we can be pretty sure that the Excel conversion and
JAXB handling is valid and can be run safely in Camel.

Create an Excel-handling POJO
Camel does not have a data format handler for Excel by default. We have two
options â€“ create an Excel DataFormat (so Camel can convert Excel
spreadsheets to something like the CSV List<List<String>> automatically),
or create a POJO that can translate Excel data manually. For now, the second
approach is easier (if we go the DataFormat route, we need code to both
read and write Excel files, whereas otherwise read-only will do).

So, we need a POJO with a method that takes something like an
InputStream or byte[] as an argument, and returns in Invoice as before.
The process should look something like this:

1. Update the Maven POM to include POI support:

<dependency>
<artifactId>poi</artifactId>
<groupId>org.apache.poi</groupId>
<version>3.1-FINAL</version>

</dependency>

2. Create a new class under src/main/java, perhaps called
ExcelConverterBean.

3. Add a method, with one argument of type InputStream and the
return type Invoice

◦ You may annotate the argument with @Body to specifically
designate it as the body of the incoming message

4. In the method, the logic should look roughly like this:
1. Create a new Invoice, using the method on the generated

ObjectFactory class
2. Create a new HSSFWorkbook from the InputStream, and get

the first sheet from it

226 TUTORIALS

http://camel.apache.org/book-in-one-page.data/CSVInputTest-dsl-context.xml?version=1&modificationDate=1221693356000
http://camel.apache.org/book-in-one-page.data/CSVInputTestRoute.java?version=2&modificationDate=1221693442000
http://camel.apache.org/maven/current/camel-core/apidocs/index.html
http://poi.apache.org/
http://camel.apache.org/bean.html#Bean-UsingAnnotationstobindparameterstotheExchange
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Body.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html#getSheetAt(int)

3. Loop through all the rows in the sheet
4. Skip the first row, which contains headers (column names)
5. For the other rows:

1. Create a new LineItemType (using the
ObjectFactory again)

2. Pick out all the cell values and put them into the
correct fields of the LineItemType (you'll need some
data type conversion logic)

▪ Not all of the values will actually go into the
line item in this example

▪ You may hardcode the column ordering based
on the sample data file, or else try to read it
dynamically from the headers in the first line

▪ Note that you'll need to use a JAXB
DatatypeFactory to create the
XMLGregorianCalendar values that JAXB
uses for the date fields in the XML â€“ which
probably means setting the date from a date
cell on a GregorianCalendar

3. Add the line item to the invoice
6. Populate the partner ID, date of receipt, and order total on

the Invoice
7. Throw any exceptions out of the method, so Camel knows

something went wrong
8. Return the finished Invoice

Solution: Here's an example of what the ExcelConverterBean might look
like.

Create a unit test
The unit tests should be pretty familiar now. The test class and context for
the Excel bean should be quite similar to the CSV bean.

1. Create the basic test class and corresponding Spring Context XML
configuration file

2. The XML config should look a lot like the CSV test, except:
◦ Remember to use a different start endpoint name if you're

using the Java DSL and not use separate packages per test
◦ You don't need the unmarshal step since the Excel POJO

takes the raw InputStream from the source endpoint
◦ You'll declare a <bean> and endpoint for the Excel bean

prepared above instead of the CSV bean
3. The test class should look a lot like the CSV test, except use the right

input file name and start endpoint name.

TUTORIALS 227

http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFSheet.html#rowIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFRow.html#cellIterator()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
http://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFCell.html#getDateCellValue()
http://camel.apache.org/book-in-one-page.data/ExcelConverterBean.java?version=1&modificationDate=1221716652000

Logging
You may notice that your tests emit a lot less output all of a sudden.
The dependency on POI brought in Log4J and configured commons-
logging to use it, so now we need a log4j.properties file to configure
log output. You can use the attached one (snarfed from ActiveMQ)
or write your own; either way save it to src/main/resources to
ensure you continue to see log output.

Solution: Your finished test might look something like this:
• src/test/java/org/apache/camel/tutorial/ExcelInputTest.java
• For XML Configuration:

◦ src/test/resources/ExcelInputTest-context.xml
• Or, for Java DSL Configuration:

◦ src/test/resources/ExcelInputTest-dsl-context.xml
◦ src/test/java/org/apache/camel/tutorial/

routes/ExcelInputTestRoute.java

Step 7: Put this all together into Camel routes for the Customer
Input
With all the data type conversions working, the next step is to write the real
routes that listen for HTTP, FTP, or e-mail input, and write the final XML
output to an ActiveMQ queue. Along the way these routes will use the data
conversions we've developed above.

So we'll create 3 routes to start with, as shown in the diagram back at the
beginning:

1. Accept XML orders over FTP from Customer 1 (we'll assume the FTP
server dumps files in a local directory on the Camel machine)

2. Accept CSV orders over HTTP from Customer 2
3. Accept Excel orders via e-mail from Customer 3 (we'll assume the

messages are sent to an account we can access via IMAP)
...

Step 8: Create a unit test for the Customer Input Routes

228 TUTORIALS

http://camel.apache.org/book-in-one-page.data/ExcelInputTest.java?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-context.xml?version=1&modificationDate=1221746613000
http://camel.apache.org/book-in-one-page.data/ExcelInputTest-dsl-context.xml?version=1&modificationDate=1221746832000
http://camel.apache.org/book-in-one-page.data/ExcelInputTestRoute.java?version=1&modificationDate=1221746832000
http://camel.apache.org/book-in-one-page.data/log4j.properties?version=1&modificationDate=1221746968000

Languages Supported
Appendix

To support flexible and powerful Enterprise Integration Patterns Camel
supports various Languages to create an Expression or Predicate within
either the Routing Domain Specific Language or the Xml Configuration. The
following languages are supported

BEAN LANGUAGE
The purpose of the Bean Language is to be able to implement an Expression
or Predicate using a simple method on a bean.

So the idea is you specify a bean name which will then be resolved in the
Registry such as the Spring ApplicationContext then a method is invoked to
evaluate the Expression or Predicate.

If no method name is provided then one is attempted to be chosen using
the rules for Bean Binding; using the type of the message body and using
any annotations on the bean methods.

The Bean Binding rules are used to bind the Message Exchange to the
method parameters; so you can annotate the bean to extract headers or
other expressions such as XPath or XQuery from the message.

Using Bean Expressions from the Java DSL

from("activemq:topic:OrdersTopic").
filter().method("myBean", "isGoldCustomer").

to("activemq:BigSpendersQueue");

Using Bean Expressions from XML

<route>
<from uri="activemq:topic:OrdersTopic"/>
<filter>

<method bean="myBean" method="isGoldCustomer"/>
<to uri="activemq:BigSpendersQueue"/>

</filter>
</route>

LANGUAGES SUPPORTED APPENDIX 229

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/message.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html

Writing the expression bean
The bean in the above examples is just any old Java Bean with a method
called isGoldCustomer() that returns some object that is easily converted to a
boolean value in this case, as its used as a predicate.

So we could implement it like this...

public class MyBean {
public boolean isGoldCustomer(Exchange exchange) {

...
}

}

We can also use the Bean Integration annotations. For example you could
do...

public boolean isGoldCustomer(String body) {...}

or

public boolean isGoldCustomer(@Header(name = "foo") Integer fooHeader) {...}

So you can bind parameters of the method to the Exchange, the Message or
individual headers, properties, the body or other expressions.

Non registry beans
The Bean Language also supports invoking beans that isn't registered in the
Registry. This is usable for quickly to invoke a bean from Java DSL where you
don't need to register the bean in the Registry such as the Spring
ApplicationContext.

Camel can instantiate the bean and invoke the method if given a class or
invoke an already existing instance. This is illustrated from the example
below:

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage(MyBean.class, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

The 2nd parameter isGoldCustomer is an optional parameter to explicit set
the method name to invoke. If not provided Camel will try to invoke the best
suited method. If case of ambiguity Camel will thrown an Exception. In these
situations the 2nd parameter can solve this problem. Also the code is more
readable if the method name is provided. The 1st parameter can also be an
existing instance of a Bean such as:

230 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-language.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().expression(BeanLanguage.bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

In Camel 2.2 onwards you can avoid the BeanLanguage and have it just as:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().expression(bean(my, "isGoldCustomer")).
to("activemq:BigSpendersQueue");

Which also can be done in a bit shorter and nice way:

private MyBean my;

from("activemq:topic:OrdersTopic").
filter().method(my, "isGoldCustomer").
to("activemq:BigSpendersQueue");

Other examples
We have some test cases you can look at if it'll help

• MethodFilterTest is a JUnit test case showing the Java DSL use of the
bean expression being used in a filter

• aggregator.xml is a Spring XML test case for the Aggregator which
uses a bean method call to test for the completion of the
aggregation.

Dependencies
The Bean language is part of camel-core.

CONSTANT EXPRESSION LANGUAGE
The Constant Expression Language is really just a way to specify constant
strings as a type of expression.

Example usage
The setHeader element of the Spring DSL can utilize a constant expression
like:

LANGUAGES SUPPORTED APPENDIX 231

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/MethodFilterTest.java
http://camel.apache.org/dsl.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/aggregator.xml
http://camel.apache.org/aggregator.html

<route>
<from uri="seda:a"/>
<setHeader headerName="theHeader">

<constant>the value</constant>
</setHeader>
<to uri="mock:b"/>

</route>

in this case, the Message coming from the seda:a Endpoint will have
'theHeader' header set to the constant value 'the value'.

And the same example using Java DSL:

from("seda:a").setHeader("theHeader", constant("the value")).to("mock:b");

Dependencies
The Constant language is part of camel-core.

EL
Camel supports the unified JSP and JSF Expression Language via the JUEL to
allow an Expression or Predicate to be used in the DSL or Xml Configuration.

For example you could use EL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<el>${in.headers.foo == 'bar'}</el>
<to uri="seda:bar"/>

</filter>
</route>

You could also use slightly different syntax, e.g. if the header name is not a
valid identifier:

<route>
<from uri="seda:foo"/>
<filter>

<el>${in.headers['My Header'] == 'bar'}</el>
<to uri="seda:bar"/>

</filter>
</route>

You could use EL to create an Predicate in a Message Filter or as an
Expression for a Recipient List

232 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/message.html
http://camel.apache.org/endpoint.html
http://juel.sourceforge.net/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Variables

Variable Type Description
exchange Exchange the Exchange object
in Message the exchange.in message
out Message the exchange.out message

Samples
You can use EL dot notation to invoke operations. If you for instance have a
body that contains a POJO that has a getFamiliyName method then you can
construct the syntax as follows:

"$in.body.familyName"

Dependencies
To use EL in your camel routes you need to add the a dependency on camel-
juel which implements the EL language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-juel</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise you'll also need to include JUEL.

HEADER EXPRESSION LANGUAGE
The Header Expression Language allows you to extract values of named
headers.

Example usage
The recipientList element of the Spring DSL can utilize a header expression
like:

LANGUAGES SUPPORTED APPENDIX 233

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://repo2.maven.org/maven2/de/odysseus/juel/juel/2.1.3/juel-2.1.3.jar

<route>
<from uri="direct:a" />
<!-- use comma as a delimiter for String based values -->
<recipientList delimiter=",">

<header>myHeader</header>
</recipientList>

</route>

In this case, the list of recipients are contained in the header 'myHeader'.
And the same example in Java DSL:

from("direct:a").recipientList(header("myHeader"));

And with a slightly different syntax where you use the builder to the fullest
(i.e. avoid using parameters but using stacked operations, notice that header
is not a parameter but a stacked method call)

from("direct:a").recipientList().header("myHeader");

Dependencies
The Header language is part of camel-core.

JXPATH
Camel supports JXPath to allow XPath expressions to be used on beans in an
Expression or Predicate to be used in the DSL or Xml Configuration. For
example you could use JXPath to create an Predicate in a Message Filter or as
an Expression for a Recipient List.

You can use XPath expressions directly using smart completion in your IDE
as follows

from("queue:foo").filter().
jxpath("/in/body/foo").
to("queue:bar")

Variables

Variable Type Description
this Exchange the Exchange object

234 LANGUAGES SUPPORTED APPENDIX

http://commons.apache.org/jxpath/
http://camel.apache.org/xpath.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

in Message the exchange.in message
out Message the exchange.out message

Using XML configuration
If you prefer to configure your routes in your Spring XML file then you can
use JXPath expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<filter>

<jxpath>in/body/name = 'James'</xpath>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Examples
Here is a simple example using a JXPath expression as a predicate in a
Message Filter

from("direct:start").
filter().jxpath("in/body/name='James'").
to("mock:result");

JXPATH INJECTION
You can use Bean Integration to invoke a method on a bean and use various
languages such as JXPath to extract a value from the message and bind it to
a method parameter.

For example

LANGUAGES SUPPORTED APPENDIX 235

http://camel.apache.org/spring.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
http://camel.apache.org/message-filter.html
http://camel.apache.org/bean-integration.html

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@JXPath("in/body/foo") String correlationID, @Body String

body) {
// process the inbound message here

}
}

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").jxpath("resource:classpath:myjxpath.txt")

Dependencies
To use JXpath in your camel routes you need to add the a dependency on
camel-jxpath which implements the JXpath language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jxpath</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need Commons JXPath.

MVEL
Camel allows Mvel to be used as an Expression or Predicate the DSL or Xml
Configuration.

You could use Mvel to create an Predicate in a Message Filter or as an
Expression for a Recipient List

236 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://repo2.maven.org/maven2/commons-jxpath/commons-jxpath/1.3/commons-jxpath-1.3.jar
http://mvel.codehaus.org/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

You can use Mvel dot notation to invoke operations. If you for instance
have a body that contains a POJO that has a getFamiliyName method then
you can construct the syntax as follows:

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

Variables

Variable Type Description
this Exchange the Exchange is the root object
exchange Exchange the Exchange object
exception Throwable the Exchange exception (if any)
exchangeId String the exchange id
fault Message the Fault message (if any)
request Message the exchange.in message
response Message the exchange.out message (if any)
properties Map the exchange properties
property(name) Object the property by the given name
property(name,
type) Type the property by the given name as the

given type

Samples
For example you could use Mvel inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<mvel>request.headers.foo == 'bar'</mvel>
<to uri="seda:bar"/>

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().mvel("request.headers.foo == 'bar'").to("seda:bar");

LANGUAGES SUPPORTED APPENDIX 237

http://camel.apache.org/message-filter.html

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").mvel("resource:classpath:script.mvel")

Dependencies
To use Mvel in your camel routes you need to add the a dependency on
camel-mvel which implements the Mvel language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mvel</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need MVEL

OGNL
Camel allows OGNL to be used as an Expression or Predicate the DSL or Xml
Configuration.

You could use OGNL to create an Predicate in a Message Filter or as an
Expression for a Recipient List

You can use OGNL dot notation to invoke operations. If you for instance
have a body that contains a POJO that has a getFamiliyName method then
you can construct the syntax as follows:

"request.body.familyName"
// or

"getRequest().getBody().getFamilyName()"

238 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/mvel/mvel2/2.0.18/mvel2-2.0.18.jar
http://www.opensymphony.com/ognl/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

Variables

Variable Type Description
this Exchange the Exchange is the root object
exchange Exchange the Exchange object
exception Throwable the Exchange exception (if any)
exchangeId String the exchange id
fault Message the Fault message (if any)
request Message the exchange.in message
response Message the exchange.out message (if any)
properties Map the exchange properties
property(name) Object the property by the given name
property(name,
type) Type the property by the given name as the

given type

Samples
For example you could use OGNL inside a Message Filter in XML

<route>
<from uri="seda:foo"/>
<filter>

<ognl>request.headers.foo == 'bar'</ognl>
<to uri="seda:bar"/>

</filter>
</route>

And the sample using Java DSL:

from("seda:foo").filter().ognl("request.headers.foo == 'bar'").to("seda:bar");

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

LANGUAGES SUPPORTED APPENDIX 239

http://camel.apache.org/message-filter.html

.setHeader("myHeader").ognl("resource:classpath:myognl.txt")

Dependencies
To use OGNL in your camel routes you need to add the a dependency on
camel-ognl which implements the OGNL language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ognl</artifactId>
<version>x.x.x</version>

</dependency>

Otherwise, you'll also need OGNL

PROPERTY EXPRESSION LANGUAGE
The Property Expression Language allows you to extract values of named
exchange properties.

Example usage
The recipientList element of the Spring DSL can utilize a property expression
like:

<route>
<from uri="direct:a" />
<recipientList>

<property>myProperty</property>
</recipientList>

</route>

In this case, the list of recipients are contained in the property 'myProperty'.
And the same example in Java DSL:

from("direct:a").recipientList(property("myProperty"));

And with a slightly different syntax where you use the builder to the fullest
(i.e. avoid using parameters but using stacked operations, notice that
property is not a parameter but a stacked method call)

240 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://repo2.maven.org/maven2/org/apache/servicemix/bundles/org.apache.servicemix.bundles.ognl/2.7.3_4/org.apache.servicemix.bundles.ognl-2.7.3_4.jar

from("direct:a").recipientList().property("myProperty");

Dependencies
The Property language is part of camel-core.

SCRIPTING LANGUAGES
Camel supports a number of scripting languages which can be used to create
an Expression or Predicate via the standard JSR 223 which is a standard part
of Java 6.

The following scripting languages are integrated into the DSL:
Language DSL keyword
EL el

Groovy groovy

JavaScript javaScript

JoSQL sql

JXPath jxpath

MVEL mvel

OGNL ognl

PHP php

Python python

Ruby ruby

XPath xpath

XQuery xquery
However any JSR 223 scripting language can be used using the generic DSL
methods.

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

LANGUAGES SUPPORTED APPENDIX 241

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://jcp.org/en/jsr/detail?id=223
http://jcp.org/en/jsr/detail?id=223

context org.apache.camel.CamelContext The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

242 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

LANGUAGES SUPPORTED APPENDIX 243

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

244 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

SEE ALSO
• Languages
• DSL
• Xml Configuration

BEANSHELL
Camel supports BeanShell among other Scripting Languages to allow an
Expression or Predicate to be used in the DSL or Xml Configuration.

To use a BeanShell expression use the following Java code:

...choice()
.when(script("beanshell", "request.getHeaders().get(\"foo\").equals(\"bar\")"))

.to("...")

Or the something like this in your Spring XML:

<filter>
<language language="beanshell">request.getHeaders().get("Foo") == null</language>
...

You could follow the examples above to create an Predicate in a Message
Filter or as an Expression for a Recipient List

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:

LANGUAGES SUPPORTED APPENDIX 245

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/languages.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://www.beanshell.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

BeanShell Issues
You must use BeanShell 2.0b5 or greater. Note that as of 2.0b5
BeanShell cannot compile scripts, which causes Camel releases
before 2.6 to fail when configured with BeanShell expressions.

Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

246 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

LANGUAGES SUPPORTED APPENDIX 247

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".

248 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html

This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

JAVASCRIPT
Camel supports JavaScript/ECMAScript among other Scripting Languages to
allow an Expression or Predicate to be used in the DSL or Xml Configuration.

To use a JavaScript expression use the following Java code

... javaScript("someJavaScriptExpression") ...

For example you could use the javaScript function to create an Predicate in
a Message Filter or as an Expression for a Recipient List

Example
In the sample below we use JavaScript to create a Predicate use in the route
path, to route exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().javaScript("request.headers.get('user') ==
'admin'").to("seda:adminQueue")

.otherwise()
.to("seda:regularQueue");

And a Spring DSL sample as well:

LANGUAGES SUPPORTED APPENDIX 249

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://en.wikipedia.org/wiki/JavaScript
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

<route>
<from uri="direct:start"/>
<choice>

<when>
<javaScript>request.headers.get('user') == 'admin'</javaScript>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

250 LANGUAGES SUPPORTED APPENDIX

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 251

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

252 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 253

http://camel.apache.org/properties.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

GROOVY
Camel supports Groovy among other Scripting Languages to allow an
Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Groovy expression use the following Java code

... groovy("someGroovyExpression") ...

For example you could use the groovy function to create an Predicate in a
Message Filter or as an Expression for a Recipient List

Example

// lets route if a line item is over $100
from("queue:foo").filter(groovy("request.lineItems.any { i -> i.value > 100
}")).to("queue:bar")

And the Spring DSL:

<route>
<from uri="queue:foo"/>
<filter>

<groovy>request.lineItems.any { i -> i.value > 100 }</groovy>
<to uri="queue:bar"/>

</filter>
</route>

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

254 LANGUAGES SUPPORTED APPENDIX

http://groovy.codehaus.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 255

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

256 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 257

http://camel.apache.org/properties.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

PYTHON
Camel supports Python among other Scripting Languages to allow an
Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Python expression use the following Java code

... python("somePythonExpression") ...

For example you could use the python function to create an Predicate in a
Message Filter or as an Expression for a Recipient List

Example
In the sample below we use Python to create a Predicate use in the route
path, to route exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().python("request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>

<when>
<python>request.headers['user'] == 'admin'</python>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

258 LANGUAGES SUPPORTED APPENDIX

http://www.python.org/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

LANGUAGES SUPPORTED APPENDIX 259

http://camel.apache.org/properties.html

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

260 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX 261

http://camel.apache.org/properties.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

PHP
Camel supports PHP among other Scripting Languages to allow an Expression
or Predicate to be used in the DSL or Xml Configuration.

To use a PHP expression use the following Java code

... php("somePHPExpression") ...

For example you could use the php function to create an Predicate in a
Message Filter or as an Expression for a Recipient List

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

262 LANGUAGES SUPPORTED APPENDIX

http://www.php.net/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

LANGUAGES SUPPORTED APPENDIX 263

http://camel.apache.org/properties.html

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

264 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 265

http://camel.apache.org/properties.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

RUBY
Camel supports Ruby among other Scripting Languages to allow an
Expression or Predicate to be used in the DSL or Xml Configuration.

To use a Ruby expression use the following Java code

... ruby("someRubyExpression") ...

For example you could use the ruby function to create an Predicate in a
Message Filter or as an Expression for a Recipient List

Example
In the sample below we use Ruby to create a Predicate use in the route path,
to route exchanges from admin users to a special queue.

from("direct:start")
.choice()

.when().ruby("$request.headers['user'] == 'admin'").to("seda:adminQueue")
.otherwise()

.to("seda:regularQueue");

And a Spring DSL sample as well:

<route>
<from uri="direct:start"/>
<choice>

<when>
<ruby>$request.headers['user'] == 'admin'</ruby>
<to uri="seda:adminQueue"/>

</when>
<otherwise>

<to uri="seda:regularQueue"/>
</otherwise>

</choice>
</route>

ScriptContext
The JSR-223 scripting languages ScriptContext is pre configured with the
following attributes all set at ENGINE_SCOPE:
Attribute Type Value

context org.apache.camel.CamelContext The Camel
Context

266 LANGUAGES SUPPORTED APPENDIX

http://www.ruby-lang.org/en/
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/predicate.html

exchange org.apache.camel.Exchange
The
current
Exchange

request org.apache.camel.Message The IN
message

response org.apache.camel.Message The OUT
message

properties org.apache.camel.builder.script.PropertiesFunction

Camel
2.9:
Function
with a
resolve
method to
make it
easier to
use
Camels
Properties
component
from
scripts.
See further
below for
example.

Attributes
You can add your own attributes with the attribute(name, value) DSL
method, such as:

In the sample below we add an attribute user that is an object we already
have instantiated as myUser. This object has a getFirstName() method that
we want to set as header on the message. We use the groovy language to
concat the first and last name into a single string that is returned.

from("direct:in").setHeader("name").groovy("'$user.firstName
$user.lastName'").attribute("user", myUser).to("seda:users");

Any scripting language
Camel can run any JSR-223 scripting languages using the script DSL
method such as:

LANGUAGES SUPPORTED APPENDIX 267

http://camel.apache.org/properties.html

from("direct:in").setHeader("firstName").script("jaskel",
"user.firstName").attribute("user", myUser).to("seda:users");

This is a bit different using the Spring DSL where you use the expression
element that doesn't support setting attributes (yet):

<from uri="direct:in"/>
<setHeader headerName="firstName">

<expression language="jaskel">user.firstName</expression>
</setHeader>
<to uri="seda:users"/>

You can also use predicates e.g. in a Filter:

<filter>
<language

language="beanshell">request.getHeaders().get("Foo").equals("Bar")</language>
<to uri="direct:next" />

</filter>

See Scripting Languages for the list of languages with explicit DSL support.
Some languages without specific DSL support but known to work with

these generic methods include:
Language Implementation language="..." value
BeanShell BeanShell 2.0b5 beanshell or bsh

Additional arguments to ScriptingEngine
Available as of Camel 2.8

You can provide additional arguments to the ScriptingEngine using a
header on the Camel message with the key CamelScriptArguments.
See this example:

public void testArgumentsExample() throws Exception {
if (!ScriptTestHelper.canRunTestOnThisPlatform()) {

return;
}

getMockEndpoint("mock:result").expectedMessageCount(0);
getMockEndpoint("mock:unmatched").expectedMessageCount(1);

// additional arguments to ScriptEngine
Map<String, Object> arguments = new HashMap<String, Object>();
arguments.put("foo", "bar");
arguments.put("baz", 7);

268 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/servicemix/m2-repo/org/beanshell/bsh/2.0b5/bsh-2.0b5.jar

// those additional arguments is provided as a header on the Camel Message
template.sendBodyAndHeader("direct:start", "hello", ScriptBuilder.ARGUMENTS,

arguments);

assertMockEndpointsSatisfied();
}

Using properties function
Available as of Camel 2.9

If you need to use the Properties component from a script to lookup
property placeholders, then its a bit cumbersome to do so.
For example to set a header name myHeader with a value from a property
placeholder, which key is provided in a header named "foo".

.setHeader("myHeader").groovy("context.resolvePropertyPlaceholders('{{' +
request.headers.get('foo') + '}}')")

From Camel 2.9 onwards you can now use the properties function and the
same example is simpler:

.setHeader("myHeader").groovy("properties.resolve(request.headers.get('foo'))")

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").groovy("resource:classpath:mygroovy.groovy")

Dependencies
To use scripting languages in your camel routes you need to add the a
dependency on camel-script which integrates the JSR-223 scripting engine.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

LANGUAGES SUPPORTED APPENDIX 269

http://camel.apache.org/properties.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-script</artifactId>
<version>x.x.x</version>

</dependency>

SIMPLE EXPRESSION LANGUAGE
The Simple Expression Language was a really simple language you can use,
but has since grown more powerful. Its primarily intended for being a really
small and simple language for evaluating Expression and Predicate without
requiring any new dependencies or knowledge of XPath; so its ideal for
testing in camel-core. Its ideal to cover 95% of the common use cases when
you need a little bit of expression based script in your Camel routes.

However for much more complex use cases you are generally
recommended to choose a more expressive and powerful language such as:

• SpEL
• Mvel
• Groovy
• JavaScript
• EL
• OGNL
• one of the supported Scripting Languages

The simple language uses ${body} placeholders for complex expressions
where the expression contains constant literals. The ${ } placeholders can
be omitted if the expression is only the token itself.
To get the body of the in message: "body", or "in.body" or "${body}".

A complex expression must use ${ } placeholders, such as: "Hello
${in.header.name} how are you?".

You can have multiple functions in the same expression: "Hello
${in.header.name} this is ${in.header.me} speaking".
However you can not nest functions in Camel 2.8.x or older (i.e. having
another ${ } placeholder in an existing, is not allowed).
From Camel 2.9 onwards you can nest functions.

Variables
Variable Type Description
camelId String Camel 2.10: the CamelContext name

camelContext.OGNL Object Camel 2.11: the CamelContext invoked using a Camel OGNL expression.

exchangeId String Camel 2.3: the exchange id

id String the input message id

270 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/spel.html
http://camel.apache.org/mvel.html
http://camel.apache.org/groovy.html
http://camel.apache.org/javascript.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html
http://camel.apache.org/scripting-languages.html

Alternative syntax
From Camel 2.5 onwards you can also use the alternative syntax
which uses $simple{ } as placeholders.
This can be used in situations to avoid clashes when using for
example Spring property placeholder together with Camel.

Configuring result type
From Camel 2.8 onwards you can configure the result type of the
Simple expression. For example to set the type as a
java.lang.Boolean or a java.lang.Integer etc.

File language is now merged with Simple language
From Camel 2.2 onwards, the File Language is now merged with
Simple language which means you can use all the file syntax
directly within the simple language.

Simple Language Changes in Camel 2.9 onwards
The Simple language have been improved from Camel 2.9 onwards
to use a better syntax parser, which can do index precise error
messages, so you know exactly what is wrong and where the
problem is. For example if you have made a typo in one of the
operators, then previously the parser would not be able to detect
this, and cause the evaluation to be true. There is a few changes in
the syntax which are no longer backwards compatible. When using
Simple language as a Predicate then the literal text must be
enclosed in either single or double quotes. For example: "${body}
== 'Camel'". Notice how we have single quotes around the literal.
The old style of using "body" and "header.foo" to refer to the
message body and header is @deprecated, and its encouraged to
always use ${ } tokens for the built-in functions.
The range operator now requires the range to be in single quote as
well as shown: "${header.zip} between '30000..39999'".

body Object the input body

in.body Object the input body

LANGUAGES SUPPORTED APPENDIX 271

http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/predicate.html

body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

in.body.OGNL Object Camel 2.3: the input body invoked using a Camel OGNL expression.

bodyAs(type) Type Camel 2.3: Converts the body to the given type determined by its classname. The converted body
can be null.

mandatoryBodyAs(type) Type Camel 2.5: Converts the body to the given type determined by its classname, and expects the body
to be not null.

out.body Object the output body

header.foo Object refer to the input foo header

header[foo] Object Camel 2.9.2: refer to the input foo header

headers.foo Object refer to the input foo header

headers[foo] Object Camel 2.9.2: refer to the input foo header

in.header.foo Object refer to the input foo header

in.header[foo] Object Camel 2.9.2: refer to the input foo header

in.headers.foo Object refer to the input foo header

in.headers[foo] Object Camel 2.9.2: refer to the input foo header

header.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

in.header.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

in.headers.foo[bar] Object Camel 2.3: regard input foo header as a map and perform lookup on the map with bar as key

header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.header.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

in.headers.foo.OGNL Object Camel 2.3: refer to the input foo header and invoke its value using a Camel OGNL expression.

out.header.foo Object refer to the out header foo

out.header[foo] Object Camel 2.9.2: refer to the out header foo

out.headers.foo Object refer to the out header foo

out.headers[foo] Object Camel 2.9.2: refer to the out header foo

headerAs(key,type) Type Camel 2.5: Converts the header to the given type determined by its classname

headers Map Camel 2.9: refer to the input headers

in.headers Map Camel 2.9: refer to the input headers

property.foo Object refer to the foo property on the exchange

property[foo] Object Camel 2.9.2: refer to the foo property on the exchange

property.foo.OGNL Object Camel 2.8: refer to the foo property on the exchange and invoke its value using a Camel OGNL
expression.

sys.foo String refer to the system property

sysenv.foo String Camel 2.3: refer to the system environment

exception Object Camel 2.4: Refer to the exception object on the exchange, is null if no exception set on exchange.
Will fallback and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.OGNL Object Camel 2.4: Refer to the exchange exception invoked using a Camel OGNL expression object

exception.message String Refer to the exception.message on the exchange, is null if no exception set on exchange. Will fallback
and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange has any.

exception.stacktrace String
Camel 2.6. Refer to the exception.stracktrace on the exchange, is null if no exception set on
exchange. Will fallback and grab caught exceptions (Exchange.EXCEPTION_CAUGHT) if the Exchange
has any.

date:command:pattern String
Date formatting using the java.text.SimpleDataFormat patterns. Supported commands are: now for
current timestamp, in.header.xxx or header.xxx to use the Date object in the IN header with the key
xxx. out.header.xxx to use the Date object in the OUT header with the key xxx.

bean:bean expression Object Invoking a bean expression using the Bean language. Specifying a method name you must use dot as
separator. We also support the ?method=methodname syntax that is used by the Bean component.

properties:locations:key String Camel 2.3: Lookup a property with the given key. The locations option is optional. See more at
Using PropertyPlaceholder.

threadName String Camel 2.3: Returns the name of the current thread. Can be used for logging purpose.

ref:xxx Object Camel 2.6: To lookup a bean from the Registry with the given id.

type:name.field Object
Camel 2.11: To refer to a type or field by its FQN name. To refer to a field you can append
.FIELD_NAME. For example you can refer to the constant field from Exchange as:
org.apache.camel.Exchange.FILE_NAME

.

272 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/using-propertyplaceholder.html
http://camel.apache.org/registry.html

OGNL expression support
Available as of Camel 2.3

The Simple and Bean language now supports a Camel OGNL notation for
invoking beans in a chain like fashion.
Suppose the Message IN body contains a POJO which has a getAddress()
method.

Then you can use Camel OGNL notation to access the address object:

simple("${body.address}")
simple("${body.address.street}")
simple("${body.address.zip}")

Camel understands the shorthand names for getters, but you can invoke any
method or use the real name such as:

simple("${body.address}")
simple("${body.getAddress.getStreet}")
simple("${body.address.getZip}")
simple("${body.doSomething}")

You can also use the null safe operator (?.) to avoid NPE if for example the
body does NOT have an address

simple("${body?.address?.street}")

Its also possible to index in Map or List types, so you can do:

simple("${body[foo].name}")

To assume the body is Map based and lookup the value with foo as key, and
invoke the getName method on that value.

You can access the Map or List objects directly using their key name (with
or without dots) :

simple("${body[foo]}")
simple("${body[this.is.foo]}")

Suppose there was no value with the key foo then you can use the null safe
operator to avoid the NPE as shown:

simple("${body[foo]?.name}")

LANGUAGES SUPPORTED APPENDIX 273

http://camel.apache.org/simple.html
http://camel.apache.org/bean.html

You can also access List types, for example to get lines from the address
you can do:

simple("${body.address.lines[0]}")
simple("${body.address.lines[1]}")
simple("${body.address.lines[2]}")

There is a special last keyword which can be used to get the last value from
a list.

simple("${body.address.lines[last]}")

And to get the 2nd last you can subtract a number, so we can use last-1 to
indicate this:

simple("${body.address.lines[last-1]}")

And the 3rd last is of course:

simple("${body.address.lines[last-2]}")

And yes you can combine this with the operator support as shown below:

simple("${body.address.zip} > 1000")

Operator support
The parser is limited to only support a single operator.

To enable it the left value must be enclosed in ${ }. The syntax is:

${leftValue} OP rightValue

Where the rightValue can be a String literal enclosed in ' ', null, a
constant value or another expression enclosed in ${ }.
Camel will automatically type convert the rightValue type to the leftValue
type, so its able to eg. convert a string into a numeric so you can use >
comparison for numeric values.

The following operators are supported:
Operator Description
== equals

274 LANGUAGES SUPPORTED APPENDIX

Important
There must be spaces around the operator.

> greater than
>= greater than or equals
< less than
<= less than or equals
!= not equals
contains For testing if contains in a string based value
not
contains For testing if not contains in a string based value

regex For matching against a given regular expression pattern
defined as a String value

not regex For not matching against a given regular expression pattern
defined as a String value

in For matching if in a set of values, each element must be
separated by comma.

not in For matching if not in a set of values, each element must be
separated by comma.

is For matching if the left hand side type is an instanceof the
value.

not is For matching if the left hand side type is not an instanceof the
value.

range
For matching if the left hand side is within a range of values
defined as numbers: from..to. From Camel 2.9 onwards the
range values must be enclosed in single quotes.

not range
For matching if the left hand side is not within a range of
values defined as numbers: from..to. From Camel 2.9
onwards the range values must be enclosed in single quotes.

And the following unary operators can be used:
Operator Description

++ Camel 2.9: To increment a number by one. The left hand side
must be a function, otherwise parsed as literal.

LANGUAGES SUPPORTED APPENDIX 275

-- Camel 2.9: To decrement a number by one. The left hand
side must be a function, otherwise parsed as literal.

\

Camel 2.9.3 to 2.10.x To escape a value, eg \$, to indicate a
$ sign. Special: Use \n for new line, \t for tab, and \r for
carriage return. Notice: Escaping is not supported using the
File Language. Notice: From Camel 2.11 onwards the escape
character is no longer support, but replaced with the following
three special escaping.

\n Camel 2.11: To use newline character.
\t Camel 2.11: To use tab character.
\r Camel 2.11: To use carriage return character.
And the following logical operators can be used to group expressions:
Operator Description

and deprecated use && instead. The logical and operator is used
to group two expressions.

or deprecated use || instead. The logical or operator is used to
group two expressions.

&& Camel 2.9: The logical and operator is used to group two
expressions.

|| Camel 2.9: The logical or operator is used to group two
expressions.

The syntax for AND is:

${leftValue} OP rightValue and ${leftValue} OP rightValue

And the syntax for OR is:

${leftValue} OP rightValue or ${leftValue} OP rightValue

Some examples:

simple("${in.header.foo} == 'foo'")

// here Camel will type convert '100' into the type of in.header.bar and if its an
Integer '100' will also be converter to an Integer
simple("${in.header.bar} == '100'")

simple("${in.header.bar} == 100")

276 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/file-language.html

Using and,or operators
In Camel 2.4 or older the and or or can only be used once in a
simple language expression. From Camel 2.5 onwards you can use
these operators multiple times.

// 100 will be converter to the type of in.header.bar so we can do > comparison
simple("${in.header.bar} > 100")

// testing for null
simple("${in.header.baz} == null")

// testing for not null
simple("${in.header.baz} != null")

And a bit more advanced example where the right value is another
expression

simple("${in.header.date} == ${date:now:yyyyMMdd}")

simple("${in.header.type} == ${bean:orderService?method=getOrderType}")

And an example with contains, testing if the title contains the word Camel

simple("${in.header.title} contains 'Camel'")

And an example with regex, testing if the number header is a 4 digit value:

simple("${in.header.number} regex '\\d{4}'")

And finally an example if the header equals any of the values in the list. Each
element must be separated by comma, and no space around.
This also works for numbers etc, as Camel will convert each element into the
type of the left hand side.

simple("${in.header.type} in 'gold,silver'")

And for all the last 3 we also support the negate test using not:

simple("${in.header.type} not in 'gold,silver'")

LANGUAGES SUPPORTED APPENDIX 277

Comparing with different types
When you compare with different types such as String and int, then
you have to take a bit care. Camel will use the type from the left
hand side as 1st priority. And fallback to the right hand side type if
both values couldn't be compared based on that type.
This means you can flip the values to enforce a specific type.
Suppose the bar value above is a String. Then you can flip the
equation:

simple("100 < ${in.header.bar}")

which then ensures the int type is used as 1st priority.

This may change in the future if the Camel team improves the binary
comparison operations to prefer numeric types over String based. It's most
often the String type which causes problem when comparing with numbers.

And you can test if the type is a certain instance, eg for instance a String

simple("${in.header.type} is 'java.lang.String'")

We have added a shorthand for all java.lang types so you can write it as:

simple("${in.header.type} is 'String'")

Ranges are also supported. The range interval requires numbers and both
from and end are inclusive. For instance to test whether a value is between
100 and 199:

simple("${in.header.number} range 100..199")

Notice we use .. in the range without spaces. Its based on the same syntax
as Groovy.

From Camel 2.9 onwards the range value must be in single quotes

simple("${in.header.number} range '100..199'")

278 LANGUAGES SUPPORTED APPENDIX

Can be used in Spring XML
As the Spring XML does not have all the power as the Java DSL with
all its various builder methods, you have to resort to use some
other languages
for testing with simple operators. Now you can do this with the
simple language. In the sample below we want to test if the header
is a widget order:

<from uri="seda:orders">
<filter>

<simple>${in.header.type} == 'widget'</simple>
<to uri="bean:orderService?method=handleWidget"/>

</filter>
</from>

Using and / or
If you have two expressions you can combine them with the and or or
operator.
For instance:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold'")

And of course the or is also supported. The sample would be:

simple("${in.header.title} contains 'Camel' or ${in.header.type'} == 'gold'")

Notice: Currently and or or can only be used once in a simple language
expression. This might change in the future.
So you cannot do:

simple("${in.header.title} contains 'Camel' and ${in.header.type'} == 'gold' and
${in.header.number} range 100..200")

Samples
In the Spring XML sample below we filter based on a header value:

<from uri="seda:orders">
<filter>

LANGUAGES SUPPORTED APPENDIX 279

Camel 2.9 onwards
Use && or || from Camel 2.9 onwards.

<simple>${in.header.foo}</simple>
<to uri="mock:fooOrders"/>

</filter>
</from>

The Simple language can be used for the predicate test above in the
Message Filter pattern, where we test if the in message has a foo header (a
header with the key foo exists). If the expression evaluates to true then the
message is routed to the mock:fooOrders endpoint, otherwise its lost in the
deep blue sea .

The same example in Java DSL:

from("seda:orders")
.filter().simple("${in.header.foo}").to("seda:fooOrders");

You can also use the simple language for simple text concatenations such as:

from("direct:hello").transform().simple("Hello ${in.header.user} how are
you?").to("mock:reply");

Notice that we must use ${ } placeholders in the expression now to allow
Camel to parse it correctly.

And this sample uses the date command to output current date.

from("direct:hello").transform().simple("The today is ${date:now:yyyyMMdd} and its
a great day.").to("mock:reply");

And in the sample below we invoke the bean language to invoke a method on
a bean to be included in the returned string:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator}").to("mock:reply");

Where orderIdGenerator is the id of the bean registered in the Registry. If
using Spring then its the Spring bean id.

If we want to declare which method to invoke on the order id generator
bean we must prepend .method name such as below where we invoke the
generateId method.

280 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/message-filter.html
http://camel.apache.org/registry.html

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator.generateId}").to("mock:reply");

We can use the ?method=methodname option that we are familiar with the
Bean component itself:

from("direct:order").transform().simple("OrderId:
${bean:orderIdGenerator?method=generateId}").to("mock:reply");

And from Camel 2.3 onwards you can also convert the body to a given type,
for example to ensure its a String you can do:

<transform>
<simple>Hello ${bodyAs(String)} how are you?</simple>

</transform>

There are a few types which have a shorthand notation, so we can use
String instead of java.lang.String. These are: byte[], String,
Integer, Long. All other types must use their FQN name, e.g.
org.w3c.dom.Document.

Its also possible to lookup a value from a header Map in Camel 2.3
onwards:

<transform>
<simple>The gold value is ${header.type[gold]}</simple>

</transform>

In the code above we lookup the header with name type and regard it as a
java.util.Map and we then lookup with the key gold and return the value.
If the header is not convertible to Map an exception is thrown. If the header
with name type does not exist null is returned.

From Camel 2.9 onwards you can nest functions, such as shown below:

<setHeader headerName="myHeader">
<simple>${properties:${header.someKey}}</simple>

</setHeader>

Referring to constants or enums
Available as of Camel 2.11

Suppose you have an enum for customers

LANGUAGES SUPPORTED APPENDIX 281

http://camel.apache.org/bean.html

public enum Customer {

GOLD, SILVER, BRONZE
}

And in a Content Based Router we can use the Simple language to refer to
this enum, to check the message which enum it matches.

from("direct:start")
.choice()

.when().simple("${header.customer} ==
${type:org.apache.camel.processor.Customer.GOLD}")

.to("mock:gold")
.when().simple("${header.customer} ==

${type:org.apache.camel.processor.Customer.SILVER}")
.to("mock:silver")

.otherwise()
.to("mock:other");

Using new lines or tabs in XML DSLs
Available as of Camel 2.9.3

From Camel 2.9.3 onwards its easier to specify new lines or tabs in XML
DSLs as you can escape the value now

<transform>
<simple>The following text\nis on a new line</simple>

</transform>

Setting result type
Available as of Camel 2.8

You can now provide a result type to the Simple expression, which means
the result of the evaluation will be converted to the desired type. This is most
useable to define types such as booleans, integers, etc.

For example to set a header as a boolean type you can do:

.setHeader("cool", simple("true", Boolean.class))

And in XML DSL

<setHeader headerName="cool">
<!-- use resultType to indicate that the type should be a java.lang.Boolean

282 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/content-based-router.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

-->
<simple resultType="java.lang.Boolean">true</simple>

</setHeader>

Changing function start and end tokens
Available as of Camel 2.9.1

You can configure the function start and end tokens - ${ } using the
setters changeFunctionStartToken and changeFunctionEndToken on
SimpleLanguage, using Java code. From Spring XML you can define a
<bean> tag with the new changed tokens in the properties as shown below:

<!-- configure Simple to use custom prefix/suffix tokens -->
<bean id="simple" class="org.apache.camel.language.simple.SimpleLanguage">

<property name="functionStartToken" value="["/>
<property name="functionEndToken" value="]"/>

</bean>

In the example above we use [] as the changed tokens.
Notice by changing the start/end token you change those in all the Camel

applications which share the same camel-core on their classpath.
For example in an OSGi server this may affect many applications, where as a
Web Application as a WAR file it only affects the Web Application.

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").simple("resource:classpath:mysimple.txt")

Dependencies
The Simple language is part of camel-core.

FILE EXPRESSION LANGUAGE

LANGUAGES SUPPORTED APPENDIX 283

http://camel.apache.org/simple.html

File language is now merged with Simple language
From Camel 2.2 onwards, the file language is now merged with
Simple language which means you can use all the file syntax
directly within the simple language.

The File Expression Language is an extension to the Simple language, adding
file related capabilities. These capabilities are related to common use cases
working with file path and names. The goal is to allow expressions to be used
with the File and FTP components for setting dynamic file patterns for both
consumer and producer.

Syntax
This language is an extension to the Simple language so the Simple syntax
applies also. So the table below only lists the additional.
As opposed to Simple language File Language also supports Constant
expressions so you can enter a fixed filename.

All the file tokens use the same expression name as the method on the
java.io.File object, for instance file:absolute refers to the
java.io.File.getAbsolute() method. Notice that not all expressions are
supported by the current Exchange. For instance the FTP component
supports some of the options, where as the File component supports all of
them.

Expression Type File
Consumer

File
Producer

FTP
Consumer

FTP
Producer Description

file:name String yes no yes no
refers to the file name (is
relative to the starting
directory, see note below)

file:name.ext String yes no yes no Camel 2.3: refers to the file
extension only

file:name.noext String yes no yes no
refers to the file name with no
extension (is relative to the
starting directory, see note
below)

file:onlyname String yes no yes no refers to the file name only with
no leading paths.

file:onlyname.noext String yes no yes no
refers to the file name only with
no extension and with no
leading paths.

file:ext String yes no yes no refers to the file extension only

file:parent String yes no yes no refers to the file parent

file:path String yes no yes no refers to the file path

file:absolute Boolean yes no no no refers to whether the file is
regarded as absolute or relative

file:absolute.path String yes no no no refers to the absolute file path

file:length Long yes no yes no refers to the file length returned
as a Long type

284 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/simple.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/file-language.html
http://camel.apache.org/constant.html
absolute
http://camel.apache.org/ftp.html
http://camel.apache.org/file2.html
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
length
http://camel.apache.org/simple.html

file:size Long yes no yes no Camel 2.5: refers to the file
length returned as a Long type

file:modified Date yes no yes no efers to the file last modified
returned as a Date type

date:command:pattern String yes yes yes yes

for date formatting using the
java.text.SimepleDataFormat
patterns. Is an extension to
the Simple language. Additional
command is: file (consumers
only) for the last modified
timestamp of the file. Notice: all
the commands from the Simple
language can also be used.

File token example

Relative paths
We have a java.io.File handle for the file hello.txt in the following
relative directory: .\filelanguage\test. And we configure our endpoint to
use this starting directory .\filelanguage. The file tokens will return as:
Expression Returns
file:name test\hello.txt
file:name.ext txt
file:name.noext test\hello
file:onlyname hello.txt
file:onlyname.noext hello
file:ext txt
file:parent filelanguage\test
file:path filelanguage\test\hello.txt
file:absolute false

file:absolute.path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

Absolute paths
We have a java.io.File handle for the file hello.txt in the following
absolute directory: \workspace\camel\camel-
core\target\filelanguage\test. And we configure out endpoint to use the
absolute starting directory \workspace\camel\camel-
core\target\filelanguage. The file tokens will return as:

LANGUAGES SUPPORTED APPENDIX 285

size
modified
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path

Expression Returns
file:name test\hello.txt
file:name.ext txt
file:name.noext test\hello
file:onlyname hello.txt
file:onlyname.noext hello
file:ext txt

file:parent \workspace\camel\camel-
core\target\filelanguage\test

file:path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

file:absolute true

file:absolute.path \workspace\camel\camel-
core\target\filelanguage\test\hello.txt

Samples
You can enter a fixed Constant expression such as myfile.txt:

fileName="myfile.txt"

Lets assume we use the file consumer to read files and want to move the
read files to backup folder with the current date as a sub folder. This can be
archieved using an expression like:

fileName="backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

relative folder names are also supported so suppose the backup folder should
be a sibling folder then you can append .. as:

fileName="../backup/${date:now:yyyyMMdd}/${file:name.noext}.bak"

As this is an extension to the Simple language we have access to all the
goodies from this language also, so in this use case we want to use the
in.header.type as a parameter in the dynamic expression:

286 LANGUAGES SUPPORTED APPENDIX

name
name.ext
name.noext
onlyname
onlyname.noext
ext
parent
path
absolute
absolute.path
http://camel.apache.org/constant.html
http://camel.apache.org/simple.html

fileName="../backup/${date:now:yyyyMMdd}/type-${in.header.type}/
backup-of-${file:name.noext}.bak"

If you have a custom Date you want to use in the expression then Camel
supports retrieving dates from the message header.

fileName="orders/
order-${in.header.customerId}-${date:in.header.orderDate:yyyyMMdd}.xml"

And finally we can also use a bean expression to invoke a POJO class that
generates some String output (or convertible to String) to be used:

fileName="uniquefile-${bean:myguidgenerator.generateid}.txt"

And of course all this can be combined in one expression where you can use
the File Language, Simple and the Bean language in one combined
expression. This is pretty powerful for those common file path patterns.

Using Spring PropertyPlaceholderConfigurer together with the File
component
In Camel you can use the File Language directly from the Simple language
which makes a Content Based Router easier to do in Spring XML, where we
can route based on file extensions as shown below:

<from uri="file://input/orders"/>
<choice>

<when>
<simple>${file:ext} == 'txt'</simple>
<to uri="bean:orderService?method=handleTextFiles"/>

</when>
<when>

<simple>${file:ext} == 'xml'</simple>
<to uri="bean:orderService?method=handleXmlFiles"/>

</when>
<otherwise>

<to uri="bean:orderService?method=handleOtherFiles"/>
</otherwise>

</choice>

If you use the fileName option on the File endpoint to set a dynamic
filename using the File Language then make sure you
use the alternative syntax (available from Camel 2.5 onwards) to avoid
clashing with Springs PropertyPlaceholderConfigurer.

Listing 1. bundle-context.xml

LANGUAGES SUPPORTED APPENDIX 287

http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/bean.html
http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/file2.html
http://camel.apache.org/file-language.html

<bean id="propertyPlaceholder"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="location" value="classpath:bundle-context.cfg" />
</bean>

<bean id="sampleRoute" class="SampleRoute">
<property name="fromEndpoint" value="${fromEndpoint}" />
<property name="toEndpoint" value="${toEndpoint}" />

</bean>

Listing 1. bundle-context.cfg

fromEndpoint=activemq:queue:test
toEndpoint=file://fileRoute/out?fileName=test-$simple{date:now:yyyyMMdd}.txt

Notice how we use the $simple{ } syntax in the toEndpoint above.
If you don't do this, there is a clash and Spring will throw an exception like

org.springframework.beans.factory.BeanDefinitionStoreException:
Invalid bean definition with name 'sampleRoute' defined in class path resource
[bundle-context.xml]:
Could not resolve placeholder 'date:now:yyyyMMdd'

Dependencies
The File language is part of camel-core.

SQL LANGUAGE
The SQL support is added by JoSQL and is primarily used for performing SQL
queries on in-memory objects. If you prefer to perform actual database
queries then check out the JPA component.
To use SQL in your camel routes you need to add the a dependency on
camel-josql which implements the SQL language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-josql</artifactId>
<version>2.5.0</version>

</dependency>

288 LANGUAGES SUPPORTED APPENDIX

http://josql.sourceforge.net/
http://camel.apache.org/jpa.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

Looking for the SQL component
Camel has both a SQL language and a SQL Component. This page is
about the SQL language. Click on SQL Component if you are looking
for the component instead.

Camel supports SQL to allow an Expression or Predicate to be used in the
DSL or Xml Configuration. For example you could use SQL to create an
Predicate in a Message Filter or as an Expression for a Recipient List.

from("queue:foo").setBody().sql("select * from MyType").to("queue:bar")

And the spring DSL:

<from uri="queue:foo"/>
<setBody>

<sql>select * from MyType</sql>
</setBody>
<to uri="queue:bar"/>

Variables

Variable Type Description
exchange Exchange the Exchange object
in Message the exchange.in message
out Message the exchange.out message
the
property
key

Object the Exchange properties

the header
key Object the exchange.in headers

the variable
key Object if any additional variables is added using

setVariables method

Loading script from external resource
Available as of Camel 2.11

LANGUAGES SUPPORTED APPENDIX 289

http://en.wikipedia.org/wiki/SQL
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/sql.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/sql-component.html

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").sql("resource:classpath:mysql.sql")

XPATH
Camel supports XPath to allow an Expression or Predicate to be used in the
DSL or Xml Configuration. For example you could use XPath to create an
Predicate in a Message Filter or as an Expression for a Recipient List.

from("queue:foo").
filter().xpath("//foo")).
to("queue:bar")

from("queue:foo").
choice().xpath("//foo")).to("queue:bar").
otherwise().to("queue:others");

Namespaces
You can easily use namespaces with XPath expressions using the
Namespaces helper class.

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start").filter().
xpath("/c:person[@name='James']", ns).
to("mock:result");

Variables
Variables in XPath is defined in different namespaces. The default namespace
is http://camel.apache.org/schema/spring.

Namespace URI Local
part Type Description

http://camel.apache.org/xml/in/ in Message the exchange.in
message

290 LANGUAGES SUPPORTED APPENDIX

http://www.w3.org/TR/xpath
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/schema/spring
http://camel.apache.org/xml/in/

http://camel.apache.org/xml/out/ out Message
the
exchange.out
message

http://camel.apache.org/xml/
function/ functions Object

Camel 2.5:
Additional
functions

http://camel.apache.org/xml/
variables/environment-variables env Object OS environment

variables
http://camel.apache.org/xml/
variables/system-properties system Object Java System

properties
http://camel.apache.org/xml/
variables/exchange-property Â Object the exchange

property
Camel will resolve variables according to either:

▪ namespace given
▪ no namespace given

Namespace given
If the namespace is given then Camel is instructed exactly what to return.
However when resolving either in or out Camel will try to resolve a header
with the given local part first, and return it. If the local part has the value
body then the body is returned instead.

No namespace given
If there is no namespace given then Camel resolves only based on the local
part. Camel will try to resolve a variable in the following steps:

▪ from variables that has been set using the variable(name,
value) fluent builder

▪ from message.in.header if there is a header with the given key
▪ from exchange.properties if there is a property with the given key

Functions
Camel adds the following XPath functions that can be used to access the
exchange:
Function Argument Type Description

in:body none Object Will return the in message
body.

LANGUAGES SUPPORTED APPENDIX 291

http://camel.apache.org/xml/out/
http://camel.apache.org/xml/function/
http://camel.apache.org/xml/function/
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/environment-variables
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/system-properties
http://camel.apache.org/xml/variables/exchange-property
http://camel.apache.org/xml/variables/exchange-property

in:header the header
name Object Will return the in message

header.

out:body none Object Will return the out message
body.

out:header the header
name Object Will return the out message

header.

function:properties key for
property String

Camel 2.5: To lookup a
property using the Properties
component (property
placeholders).

function:simple simple
expression Object Camel 2.5: To evaluate a

Simple expression.
Notice: function:properties and function:simple is not supported when
the return type is a NodeSet, such as when using with a Splitter EIP.

Here's an example showing some of these functions in use.

from("direct:start").choice()
.when().xpath("in:header('foo') = 'bar'").to("mock:x")
.when().xpath("in:body() = '<two/>'").to("mock:y")
.otherwise().to("mock:z");

And the new functions introduced in Camel 2.5:

// setup properties component
PropertiesComponent properties = new PropertiesComponent();
properties.setLocation("classpath:org/apache/camel/builder/xml/myprop.properties");
context.addComponent("properties", properties);

// myprop.properties contains the following properties
// foo=Camel
// bar=Kong

from("direct:in").choice()
// $type is a variable for the header with key type
// here we use the properties function to lookup foo from the properties files
// which at runtime will be evaluted to 'Camel'
.when().xpath("$type = function:properties('foo')")

.to("mock:camel")
// here we use the simple language to evaluate the expression
// which at runtime will be evaluated to 'Donkey Kong'
.when().xpath("//name = function:simple('Donkey ${properties:bar}')")

.to("mock:donkey")
.otherwise()

.to("mock:other")
.end();

292 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/properties.html
http://camel.apache.org/simple.html
http://camel.apache.org/splitter.html

Using XML configuration
If you prefer to configure your routes in your Spring XML file then you can
use XPath expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"
xmlns:foo="http://example.com/person">

<route>
<from uri="activemq:MyQueue"/>
<filter>

<xpath>/foo:person[@name='James']</xpath>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the
XPath expression for easier namespace based XPath expressions!

See also this discussion on the mailinglist about using your own
namespaces with xpath

Setting result type
The XPath expression will return a result type using native XML objects such
as org.w3c.dom.NodeList. But many times you want a result type to be a
String. To do this you have to instruct the XPath which result type to use.

In Java DSL:

xpath("/foo:person/@id", String.class)

In Spring DSL you use the resultType attribute to provide a fully qualified
classname:

<xpath resultType="java.lang.String">/foo:person/@id</xpath>

In @XPath:
Available as of Camel 2.1

LANGUAGES SUPPORTED APPENDIX 293

http://camel.apache.org/spring.html
http://camel.465427.n5.nabble.com/fail-filter-XPATH-camel-td476424.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xpath.html

@XPath(value = "concat('foo-',//order/name/)", resultType = String.class) String name)

Where we use the xpath function concat to prefix the order name with foo-.
In this case we have to specify that we want a String as result type so the
concat function works.

Using XPath on Headers
Available as of Camel 2.11

Some users may have XML stored in a header. To apply an XPath to a
header's value you can do this by defining the 'headerName' attribute.

In XML DSL:

<camelContext id="xpathHeaderNameTest" xmlns="http://camel.apache.org/schema/
blueprint">

<route>
<from uri="direct:in"/>
<choice>

<when>
<!-- use headerName attribute to refer to a header -->
<xpath headerName="invoiceDetails">/invoice/@orderType = 'premium'</xpath>
<to uri="mock:premium"/>

</when>
<when>

<!-- use headerName attribute to refer to a header -->
<xpath headerName="invoiceDetails">/invoice/@orderType = 'standard'</xpath>
<to uri="mock:standard"/>

</when>
<otherwise>

<to uri="mock:unknown"/>
</otherwise>

</choice>
</route>

</camelContext>

Examples
Here is a simple example using an XPath expression as a predicate in a
Message Filter

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

294 LANGUAGES SUPPORTED APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/message-filter.html

If you have a standard set of namespaces you wish to work with and wish to
share them across many different XPath expressions you can use the
NamespaceBuilder as shown in this example

// lets define the namespaces we'll need in our filters
Namespaces ns = new Namespaces("c", "http://acme.com/cheese")

.add("xsd", "http://www.w3.org/2001/XMLSchema");

// now lets create an xpath based Message Filter
from("direct:start").

filter(ns.xpath("/c:person[@name='James']")).
to("mock:result");

In this sample we have a choice construct. The first choice evaulates if the
message has a header key type that has the value Camel.
The 2nd choice evaluates if the message body has a name tag <name>
which values is Kong.
If neither is true the message is routed in the otherwise block:

from("direct:in").choice()
// using $headerName is special notation in Camel to get the header key
.when().xpath("$type = 'Camel'")

.to("mock:camel")
// here we test for the body name tag
.when().xpath("//name = 'Kong'")

.to("mock:donkey")
.otherwise()

.to("mock:other")
.end();

And the spring XML equivalent of the route:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:in"/>
<choice>

<when>
<xpath>$type = 'Camel'</xpath>
<to uri="mock:camel"/>

</when>
<when>

<xpath>//name = 'Kong'</xpath>
<to uri="mock:donkey"/>

</when>
<otherwise>

<to uri="mock:other"/>
</otherwise>

</choice>
</route>

</camelContext>

LANGUAGES SUPPORTED APPENDIX 295

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathWithNamespaceBuilderFilterTest.java

XPATH INJECTION
You can use Bean Integration to invoke a method on a bean and use various
languages such as XPath to extract a value from the message and bind it to a
method parameter.

The default XPath annotation has SOAP and XML namespaces available. If
you want to use your own namespace URIs in an XPath expression you can
use your own copy of the XPath annotation to create whatever namespace
prefixes you want to use.

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.w3c.dom.NodeList;

import org.apache.camel.component.bean.XPathAnnotationExpressionFactory;
import org.apache.camel.language.LanguageAnnotation;
import org.apache.camel.language.NamespacePrefix;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.METHOD, ElementType.PARAMETER})
@LanguageAnnotation(language = "xpath", factory =
XPathAnnotationExpressionFactory.class)
public @interface MyXPath {

String value();

// You can add the namespaces as the default value of the annotation
NamespacePrefix[] namespaces() default {
@NamespacePrefix(prefix = "n1", uri = "http://example.org/ns1"),
@NamespacePrefix(prefix = "n2", uri = "http://example.org/ns2")};

Class<?> resultType() default NodeList.class;
}

i.e. cut and paste upper code to your own project in a different package and/
or annotation name then add whatever namespace prefix/uris you want in
scope when you use your annotation on a method parameter. Then when you
use your annotation on a method parameter all the namespaces you want
will be available for use in your XPath expression.

For example

public class Foo {

@MessageDriven(uri = "activemq:my.queue")
public void doSomething(@MyXPath("/ns1:foo/ns2:bar/text()") String correlationID,

@Body String body) {
// process the inbound message here

296 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/language/XPath.html

}
}

Using XPathBuilder without an Exchange
Available as of Camel 2.3

You can now use the org.apache.camel.builder.XPathBuilder without
the need for an Exchange. This comes handy if you want to use it as a helper
to do custom xpath evaluations.

It requires that you pass in a CamelContext since a lot of the moving parts
inside the XPathBuilder requires access to the Camel Type Converter and
hence why CamelContext is needed.

For example you can do something like this:

boolean matches = XPathBuilder.xpath("/foo/bar/@xyz").matches(context, "<foo><bar
xyz='cheese'/></foo>"));

This will match the given predicate.
You can also evaluate for example as shown in the following three

examples:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>", String.class);

Integer number = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>123</bar></foo>", Integer.class);

Boolean bool = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>true</bar></foo>", Boolean.class);

Evaluating with a String result is a common requirement and thus you can do
it a bit simpler:

String name = XPathBuilder.xpath("foo/bar").evaluate(context,
"<foo><bar>cheese</bar></foo>");

Using Saxon with XPathBuilder
Available as of Camel 2.3

You need to add camel-saxon as dependency to your project.
Its now easier to use Saxon with the XPathBuilder which can be done in

several ways as shown below.
Where as the latter ones are the easiest ones.

LANGUAGES SUPPORTED APPENDIX 297

http://camel.apache.org/exchange.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/camelcontext.html
http://saxon.sourceforge.net/

Using a factory

// create a Saxon factory
XPathFactory fac = new net.sf.saxon.xpath.XPathFactoryImpl();

// create a builder to evaluate the xpath using the saxon factory
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").factory(fac);

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Using ObjectModel

// create a builder to evaluate the xpath using saxon based on its object model uri
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar,
'_')[2]").objectModel("http://saxon.sf.net/jaxp/xpath/om");

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

The easy one

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]").saxon();

// evaluate as a String result
String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Setting a custom XPathFactory using System Property
Available as of Camel 2.3

Camel now supports reading the JVM system property
javax.xml.xpath.XPathFactory that can be used to set a custom
XPathFactory to use.

This unit test shows how this can be done to use Saxon instead:

// set system property with the XPath factory to use which is Saxon
System.setProperty(XPathFactory.DEFAULT_PROPERTY_NAME + ":" + "http://saxon.sf.net/
jaxp/xpath/om", "net.sf.saxon.xpath.XPathFactoryImpl");

// create a builder to evaluate the xpath using saxon
XPathBuilder builder = XPathBuilder.xpath("tokenize(/foo/bar, '_')[2]");

// evaluate as a String result

298 LANGUAGES SUPPORTED APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/xpath/XPathFactory.html#newInstance(java.lang.String)

String result = builder.evaluate(context, "<foo><bar>abc_def_ghi</bar></foo>");
assertEquals("def", result);

Camel will log at INFO level if it uses a non default XPathFactory such as:

XPathBuilder INFO Using system property
javax.xml.xpath.XPathFactory:http://saxon.sf.net/jaxp/xpath/om with value:

net.sf.saxon.xpath.XPathFactoryImpl when creating XPathFactory

To use Apache Xerces you can configure the system property

-Djavax.xml.xpath.XPathFactory=org.apache.xpath.jaxp.XPathFactoryImpl

Enabling Saxon from Spring DSL
Available as of Camel 2.10

Similarly to Java DSL, to enable Saxon from Spring DSL you have three
options:

Specifying the factory

<xpath factoryRef="saxonFactory"
resultType="java.lang.String">current-dateTime()</xpath>

Specifying the object model

<xpath objectModel="http://saxon.sf.net/jaxp/xpath/om"
resultType="java.lang.String">current-dateTime()</xpath>

Shortcut

<xpath saxon="true" resultType="java.lang.String">current-dateTime()</xpath>

Namespace auditing to aid debugging
Available as of Camel 2.10

A large number of XPath-related issues that users frequently face are
linked to the usage of namespaces. You may have some misalignment
between the namespaces present in your message and those that your XPath
expression is aware of or referencing. XPath predicates or expressions that
are unable to locate the XML elements and attributes due to namespaces

LANGUAGES SUPPORTED APPENDIX 299

issues may simply look like "they are not working", when in reality all there is
to it is a lack of namespace definition.

Namespaces in XML are completely necessary, and while we would love to
simplify their usage by implementing some magic or voodoo to wire
namespaces automatically, truth is that any action down this path would
disagree with the standards and would greatly hinder interoperability.

Therefore, the utmost we can do is assist you in debugging such issues by
adding two new features to the XPath Expression Language and are thus
accesible from both predicates and expressions.

Logging the Namespace Context of your XPath
expression/predicate
Every time a new XPath expression is created in the internal pool, Camel will
log the namespace context of the expression under the
org.apache.camel.builder.xml.XPathBuilder logger. Since Camel
represents Namespace Contexts in a hierarchical fashion (parent-child
relationships), the entire tree is output in a recursive manner with the
following format:

[me: {prefix -> namespace}, {prefix -> namespace}], [parent: [me: {prefix ->
namespace}, {prefix -> namespace}], [parent: [me: {prefix -> namespace}]]]

Any of these options can be used to activate this logging:
1. Enable TRACE logging on the

org.apache.camel.builder.xml.XPathBuilder logger, or some
parent logger such as org.apache.camel or the root logger

2. Enable the logNamespaces option as indicated in Auditing
Namespaces, in which case the logging will occur on the INFO level

Auditing namespaces
Camel is able to discover and dump all namespaces present on every
incoming message before evaluating an XPath expression, providing all the
richness of information you need to help you analyse and pinpoint possible
namespace issues.

To achieve this, it in turn internally uses another specially tailored XPath
expression to extract all namespace mappings that appear in the message,
displaying the prefix and the full namespace URI(s) for each individual
mapping.

Some points to take into account:

300 LANGUAGES SUPPORTED APPENDIX

• The implicit XML namespace (xmlns:xml="http://www.w3.org/XML/
1998/namespace") is suppressed from the output because it adds no
value

• Default namespaces are listed under the DEFAULT keyword in the
output

• Keep in mind that namespaces can be remapped under different
scopes. Think of a top-level 'a' prefix which in inner elements can be
assigned a different namespace, or the default namespace changing
in inner scopes. For each discovered prefix, all associated URIs are
listed.

You can enable this option in Java DSL and Spring DSL.
Java DSL:

XPathBuilder.xpath("/foo:person/@id", String.class).logNamespaces()

Spring DSL:

<xpath logNamespaces="true" resultType="String">/foo:person/@id</xpath>

The result of the auditing will be appear at the INFO level under the
org.apache.camel.builder.xml.XPathBuilder logger and will look like the
following:

2012-01-16 13:23:45,878 [stSaxonWithFlag] INFO XPathBuilder - Namespaces discovered
in message:
{xmlns:a=[http://apache.org/camel], DEFAULT=[http://apache.org/default],
xmlns:b=[http://apache.org/camelA, http://apache.org/camelB]}

Loading script from external resource
Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").xpath("resource:classpath:myxpath.txt", String.class)

Dependencies
The XPath language is part of camel-core.

LANGUAGES SUPPORTED APPENDIX 301

XQUERY
Camel supports XQuery to allow an Expression or Predicate to be used in the
DSL or Xml Configuration. For example you could use XQuery to create an
Predicate in a Message Filter or as an Expression for a Recipient List.

Options
Name Default Value Description
allowStAX false Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

Examples

from("queue:foo").filter().
xquery("//foo").
to("queue:bar")

You can also use functions inside your query, in which case you need an
explicit type conversion (or you will get a org.w3c.dom.DOMException:
HIERARCHY_REQUEST_ERR) by passing the Class as a second argument to
the xquery() method.

from("direct:start").
recipientList().xquery("concat('mock:foo.', /person/@city)", String.class);

Variables
The IN message body will be set as the contextItem. Besides this these
Variables is also added as parameters:
Variable Type Description
exchange Exchange The current Exchange
in.body Object The In message's body
out.body Object The OUT message's body (if any)

in.headers.* Object
You can access the value of
exchange.in.headers with key foo by using the
variable which name is in.headers.foo

302 LANGUAGES SUPPORTED APPENDIX

http://www.w3.org/TR/xquery/
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html

out.headers.* Object
You can access the value of
exchange.out.headers with key foo by using
the variable which name is out.headers.foo
variable

key name Object

Any exchange.properties and
exchange.in.headers and any additional
parameters set using setParameters(Map).
These parameters is added with they own key
name, for instance if there is an IN header with
the key name foo then its added as foo.

Using XML configuration
If you prefer to configure your routes in your Spring XML file then you can
use XPath expressions as follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:foo="http://example.com/person"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<filter>

<xquery>/foo:person[@name='James']</xquery>
<to uri="mqseries:SomeOtherQueue"/>

</filter>
</route>

</camelContext>
</beans>

Notice how we can reuse the namespace prefixes, foo in this case, in the
XPath expression for easier namespace based XQuery expressions!

When you use functions in your XQuery expression you need an explicit
type conversion which is done in the xml configuration via the @type
attribute:

<xquery type="java.lang.String">concat('mock:foo.', /person/@city)</xquery>

LANGUAGES SUPPORTED APPENDIX 303

http://camel.apache.org/spring.html

Using XQuery as an endpoint
Sometimes an XQuery expression can be quite large; it can essentally be
used for Templating. So you may want to use an XQuery Endpoint so you can
route using XQuery templates.

The following example shows how to take a message of an ActiveMQ
queue (MyQueue) and transform it using XQuery and send it to MQSeries.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="activemq:MyQueue"/>
<to uri="xquery:com/acme/someTransform.xquery"/>
<to uri="mqseries:SomeOtherQueue"/>

</route>
</camelContext>

Examples
Here is a simple example using an XQuery expression as a predicate in a
Message Filter

from("direct:start").filter().xquery("/person[@name='James']").to("mock:result");

This example uses XQuery with namespaces as a predicate in a Message
Filter

Namespaces ns = new Namespaces("c", "http://acme.com/cheese");

from("direct:start").
filter().xquery("/c:person[@name='James']", ns).
to("mock:result");

Learning XQuery
XQuery is a very powerful language for querying, searching, sorting and
returning XML. For help learning XQuery try these tutorials

• Mike Kay's XQuery Primer
• the W3Schools XQuery Tutorial

You might also find the XQuery function reference useful

Loading script from external resource
Available as of Camel 2.11

304 LANGUAGES SUPPORTED APPENDIX

http://camel.apache.org/templating.html
http://camel.apache.org/xquery-endpoint.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryFilterTest.java
http://camel.apache.org/message-filter.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-saxon/src/test/java/org/apache/camel/builder/saxon/XQueryWithNamespacesFilterTest.java
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://www.stylusstudio.com/xquery_primer.html
http://www.w3schools.com/xquery/default.asp
http://www.w3.org/TR/xpath-functions/

You can externalize the script and have Camel load it from a resource such
as "classpath:", "file:", or "http:".
This is done using the following syntax: "resource:scheme:location", eg to
refer to a file on the classpath you can do:

.setHeader("myHeader").xquery("resource:classpath:myxquery.txt", String.class)

Dependencies
To use XQuery in your camel routes you need to add the a dependency on
camel-saxon which implements the XQuery language.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>
<version>x.x.x</version>

</dependency>

LANGUAGES SUPPORTED APPENDIX 305

http://camel.apache.org/download.html
http://camel.apache.org/download.html

Data Format Appendix

DATA FORMAT
Camel supports a pluggable DataFormat to allow messages to be marshalled
to and from binary or text formats to support a kind of Message Translator.

The following data formats are currently supported:
• Standard JVM object marshalling

◦ Serialization
◦ String

• Object marshalling
◦ Avro
◦ JSON
◦ Protobuf

• Object/XML marshalling
◦ Castor
◦ JAXB
◦ XmlBeans
◦ XStream
◦ JiBX

• Object/XML/Webservice marshalling
◦ SOAP

• Direct JSON / XML marshalling
◦ XmlJson

• Flat data structure marshalling
◦ BeanIO
◦ Bindy
◦ CSV
◦ EDI
◦ Flatpack DataFormat

• Domain specific marshalling
◦ HL7 DataFormat

• Compression
◦ GZip data format
◦ Zip DataFormat
◦ Zip File DataFormat

• Security
◦ Crypto
◦ PGP
◦ XMLSecurity DataFormat

306 DATA FORMAT APPENDIX

http://camel.apache.org/message-translator.html
http://camel.apache.org/serialization.html
http://camel.apache.org/string.html
http://camel.apache.org/avro.html
http://camel.apache.org/json.html
http://camel.apache.org/protobuf.html
http://camel.apache.org/castor.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/xmlbeans.html
http://camel.apache.org/xstream.html
http://camel.apache.org/jibx.html
http://camel.apache.org/soap.html
http://camel.apache.org/xmljson.html
http://camel.apache.org/beanio.html
http://camel.apache.org/bindy.html
http://camel.apache.org/csv.html
http://camel.apache.org/edi.html
http://camel.apache.org/flatpack-dataformat.html
http://camel.apache.org/hl7-dataformat.html
http://camel.apache.org/gzip-data-format.html
http://camel.apache.org/zip-dataformat.html
http://camel.apache.org/zip-file-dataformat.html
http://camel.apache.org/crypto.html
http://camel.apache.org/crypto.html
http://camel.apache.org/xmlsecurity-dataformat.html

• Misc.
◦ Base64
◦ Custom DataFormat - to use your own custom

implementation
◦ RSS
◦ TidyMarkup
◦ Syslog

And related is the following Type Converters:
▪ Dozer Type Conversion

Unmarshalling
If you receive a message from one of the Camel Components such as File,
HTTP or JMS you often want to unmarshal the payload into some bean so that
you can process it using some Bean Integration or perform Predicate
evaluation and so forth. To do this use the unmarshal word in the DSL in
Java or the Xml Configuration.

For example

DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
unmarshal(jaxb).
to("mqseries:Another.Queue");

The above uses a named DataFormat of jaxb which is configured with a
number of Java package names. You can if you prefer use a named reference
to a data format which can then be defined in your Registry such as via your
Spring XML file.

You can also use the DSL itself to define the data format as you use it. For
example the following uses Java serialization to unmarshal a binary file then
send it as an ObjectMessage to ActiveMQ

from("file://foo/bar").
unmarshal().serialization().
to("activemq:Some.Queue");

Marshalling
Marshalling is the opposite of unmarshalling, where a bean is marshalled into
some binary or textual format for transmission over some transport via a
Camel Component. Marshalling is used in the same way as unmarshalling
above; in the DSL you can use a DataFormat instance, you can configure the

DATA FORMAT APPENDIX 307

http://camel.apache.org/base64.html
http://camel.apache.org/custom-dataformat.html
http://camel.apache.org/rss.html
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/syslog.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/dozer-type-conversion.html
http://camel.apache.org/components.html
http://camel.apache.org/file2.html
http://camel.apache.org/http.html
http://camel.apache.org/jms.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/predicate.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/activemq.html
http://camel.apache.org/component.html
http://camel.apache.org/dsl.html

DataFormat dynamically using the DSL or you can refer to a named instance
of the format in the Registry.

The following example unmarshals via serialization then marshals using a
named JAXB data format to perform a kind of Message Translator

from("file://foo/bar").
unmarshal().serialization().
marshal("jaxb").
to("activemq:Some.Queue");

Using Spring XML
This example shows how to configure the data type just once and reuse it on
multiple routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>

</route>

</camelContext>

You can also define reusable data formats as Spring beans

<bean id="myJaxb" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>

</bean>

SERIALIZATION
Serialization is a Data Format which uses the standard Java Serialization
mechanism to unmarshal a binary payload into Java objects or to marshal
Java objects into a binary blob.

308 DATA FORMAT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/data-format.html

For example the following uses Java serialization to unmarshal a binary file
then send it as an ObjectMessage to ActiveMQ

from("file://foo/bar").
unmarshal().serialization().
to("activemq:Some.Queue");

Dependencies
This data format is provided in camel-core so no additional dependencies is
needed.

JAXB
JAXB is a Data Format which uses the JAXB2 XML marshalling standard which
is included in Java 6 to unmarshal an XML payload into Java objects or to
marshal Java objects into an XML payload.

Using the Java DSL
For example the following uses a named DataFormat of jaxb which is
configured with a number of Java package names to initialize the
JAXBContext.

DataFormat jaxb = new JaxbDataFormat("com.acme.model");

from("activemq:My.Queue").
unmarshal(jaxb).
to("mqseries:Another.Queue");

You can if you prefer use a named reference to a data format which can then
be defined in your Registry such as via your Spring XML file. e.g.

from("activemq:My.Queue").
unmarshal("myJaxbDataType").
to("mqseries:Another.Queue");

Using Spring XML
The following example shows how to use JAXB to unmarshal using Spring
configuring the jaxb data type

DATA FORMAT APPENDIX 309

http://camel.apache.org/activemq.html
http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/spring.html

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<jaxb prettyPrint="true" contextPath="org.apache.camel.example"/>
</unmarshal>
<to uri="mock:result"/>

</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on
multiple routes.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<jaxb id="myJaxb" prettyPrint="true" contextPath="org.apache.camel.example"/>
</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myJaxb"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myJaxb"/>
<to uri="mock:result"/>

</route>

</camelContext>

Partial marshalling/unmarshalling
This feature is new to Camel 2.2.0.
JAXB 2 supports marshalling and unmarshalling XML tree fragments. By
default JAXB looks for @XmlRootElement annotation on given class to operate
on whole XML tree. This is useful but not always - sometimes generated code
does not have @XmlRootElement annotation, sometimes you need
unmarshall only part of tree.
In that case you can use partial unmarshalling. To enable this behaviours you
need set property partClass. Camel will pass this class to JAXB's
unmarshaler.

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:marshal"/>
<marshal>

310 DATA FORMAT APPENDIX

Multiple context paths
It is possible to use this data format with more than one context
path. You can specify context path using : as separator, for
example com.mycompany:com.mycompany2. Note that this is
handled by JAXB implementation and might change if you use
different vendor than RI.

<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.PurchaseOrder"
fragment="true"
partNamespace="{http://example.camel.org/apache}po" />

</marshal>
<to uri="mock:marshal"/>

</route>
<route>

<from uri="direct:unmarshal"/>
<unmarshal>

<jaxb prettyPrint="false" contextPath="org.apache.camel.example"
partClass="org.apache.camel.example.Partial" />

</unmarshal>
<to uri="mock:unmarshal"/>

</route>
</camelContext>

For marshalling you have to add partNamespace attribute with QName of
destination namespace. Example of Spring DSL you can find above.

Fragment
This feature is new to Camel 2.8.0.
JaxbDataFormat has new property fragment which can set the the
Marshaller.JAXB_FRAGMENT encoding property on the JAXB Marshaller. If you
don't want the JAXB Marshaller to generate the XML declaration, you can set
this option to be true. The default value of this property is fales.

Ignoring the NonXML Character
This feature is new to Camel 2.2.0.
JaxbDataFromat supports to ignore the NonXML Character, you just need to
set the filterNonXmlChars property to be true, JaxbDataFormat will replace
the NonXML character with " " when it is marshaling or unmarshaling the
message. You can also do it by setting the Exchange property
Exchange.FILTER_NON_XML_CHARS.

DATA FORMAT APPENDIX 311

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Char
http://camel.apache.org/exchange.html

Â JDK 1.5 JDK 1.6+
Filtering in use StAX API and implementation No
Filtering not in use StAX API only No
This feature has been tested with Woodstox 3.2.9 and Sun JDK 1.6 StAX
implementation.

Working with the ObjectFactory
If you use XJC to create the java class from the schema, you will get an
ObjectFactory for you JAXB context. Since the ObjectFactory uses
JAXBElement to hold the reference of the schema and element instance
value, jaxbDataformat will ignore the JAXBElement by default and you will
get the element instance value instead of the JAXBElement object form the
unmarshaled message body.
If you want to get the JAXBElement object form the unmarshaled message
body, you need to set the JaxbDataFormat object's ignoreJAXBElement
property to be false.

Setting encoding
You can set the encoding option to use when marshalling. Its the
Marshaller.JAXB_ENCODING encoding property on the JAXB Marshaller.
You can setup which encoding to use when you declare the JAXB data format.
You can also provide the encoding in the Exchange property
Exchange.CHARSET_NAME. This property will overrule the encoding set on the
JAXB data format.

In this Spring DSL we have defined to use iso-8859-1 as the encoding:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<marshal>

<jaxb prettyPrint="false" encoding="iso-8859-1"
contextPath="org.apache.camel.example"/>

</marshal>
<to uri="mock:result"/>

</route>
</camelContext>

Controlling namespace prefix mapping
Available as of Camel 2.11

312 DATA FORMAT APPENDIX

http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBElement.html
http://camel.apache.org/exchange.html

When marshalling using JAXB or SOAP then the JAXB implementation will
automatic assign namespace prefixes, such as ns2, ns3, ns4 etc. To control
this mapping, Camel allows you to refer to a map which contains the desired
mapping.

Notice this requires having JAXB-RI 2.1 or better (from SUN) on the
classpath, as the mapping functionality is dependent on the implementation
of JAXB, whether its supported.

For example in Spring XML we can define a Map with the mapping. In the
mapping file below, we map SOAP to use soap as prefix. While our custom
namespace "http://www.mycompany.com/foo/2" is not using any prefix.

<util:map id="myMap">
<entry key="http://www.w3.org/2003/05/soap-envelope" value="soap"/>
<!-- we dont want any prefix for our namespace -->
<entry key="http://www.mycompany.com/foo/2" value=""/>

</util:map>

To use this in JAXB or SOAP you refer to this map, using the
namespacePrefixRef attribute as shown below. Then Camel will lookup in
the Registry a java.util.Map with the id "myMap", which was what we
defined above.

<marshal>
<soapjaxb version="1.2" contextPath="com.mycompany.foo"

namespacePrefixRef="myMap"/>
</marshal>

Dependencies
To use JAXB in your camel routes you need to add the a dependency on
camel-jaxb which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jaxb</artifactId>
<version>x.x.x</version>

</dependency>

DATA FORMAT APPENDIX 313

http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html
http://camel.apache.org/registry.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

XMLBEANS
XmlBeans is a Data Format which uses the XmlBeans library to unmarshal an
XML payload into Java objects or to marshal Java objects into an XML
payload.

from("activemq:My.Queue").
unmarshal().xmlBeans().
to("mqseries:Another.Queue");

Dependencies
To use XmlBeans in your camel routes you need to add the dependency on
camel-xmlbeans which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmlbeans</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

XSTREAM
XStream is a Data Format which uses the XStream library to marshal and
unmarshal Java objects to and from XML.

// lets turn Object messages into XML then send to MQSeries
from("activemq:My.Queue").

marshal().xstream().
to("mqseries:Another.Queue");

XMLInputFactory and XMLOutputFactory
The XStream library uses the javax.xml.stream.XMLInputFactory and
javax.xml.stream.XMLOutputFactory, you can control which
implementation of this factory should be used.

The Factory is discovered using this algorithm:
1. Use the javax.xml.stream.XMLInputFactory ,
javax.xml.stream.XMLOutputFactory system property.

314 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://xmlbeans.apache.org/
http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://xstream.codehaus.org/
http://xstream.codehaus.org/

2. Use the lib/xml.stream.properties file in the JRE_HOME directory.
3. Use the Services API, if available, to determine the classname by looking in
the META-INF/services/javax.xml.stream.XMLInputFactory, META-INF/
services/javax.xml.stream.XMLOutputFactory files in jars available to
the JRE.
4. Use the platform default XMLInputFactory,XMLOutputFactory instance.

How to set the XML encoding in Xstream DataFormat?
From Camel 2.2.0, you can set the encoding of XML in Xstream DataFormat
by setting the Exchange's property with the key Exchange.CHARSET_NAME, or
setting the encoding property on Xstream from DSL or Spring config.

from("activemq:My.Queue").
marshal().xstream("UTF-8").
to("mqseries:Another.Queue");

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<!-- we define the json xstream data formats to be used (xstream is default) -->
<dataFormats>

<xstream id="xstream-utf8" encoding="UTF-8"/>
<xstream id="xstream-default"/>

</dataFormats>

<route>
<from uri="direct:in"/>
<marshal ref="xstream-default"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:in-UTF-8"/>
<marshal ref="xstream-utf8"/>
<to uri="mock:result"/>

</route>

</camelContext>

Dependencies
To use XStream in your camel routes you need to add the a dependency on
camel-xstream which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

DATA FORMAT APPENDIX 315

http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>x.x.x</version>

</dependency>

CSV
The CSV Data Format uses Apache Commons CSV to handle CSV payloads
(Comma Separated Values) such as those exported/imported by Excel.

Options

Option Type Description

config CSVConfig Can be used to set a custom CSVConfig
object.

strategy CSVStrategy
Can be used to set a custom
CSVStrategy; the default is
CSVStrategy.DEFAULT_STRATEGY.

autogenColumns boolean

Whether or not columns are auto-
generated in the resulting CSV. The
default value is true; subsequent
messages use the previously created
columns with new fields being added at
the end of the line.

delimiter String Camel 2.4: The column delimiter to
use; the default value is ",".

skipFirstLine boolean

Camel 2.10: Whether or not to skip the
first line of CSV input when
unmarshalling (e.g. if the content has
headers on the first line); the default
value is false.

Marshalling a Map to CSV
The component allows you to marshal a Java Map (or any other message
type that can be converted in a Map) into a CSV payload.

An example: if you send a message with this map...

316 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://commons.apache.org/sandbox/csv/
http://camel.apache.org/type-converter.html

Map<String, Object> body = new HashMap<String, Object>();
body.put("foo", "abc");
body.put("bar", 123);

... through this route ...

from("direct:start").
marshal().csv().
to("mock:result");

... you will end up with a String containing this CSV message

abc,123

Sending the Map below through this route will result in a CSV message that
looks like foo,bar

Unmarshalling a CSV message into a Java List
Unmarshalling will transform a CSV messsage into a Java List with CSV file
lines (containing another List with all the field values).

An example: we have a CSV file with names of persons, their IQ and their
current activity.

Jack Dalton, 115, mad at Averell
Joe Dalton, 105, calming Joe
William Dalton, 105, keeping Joe from killing Averell
Averell Dalton, 80, playing with Rantanplan
Lucky Luke, 120, capturing the Daltons

We can now use the CSV component to unmarshal this file:

from("file:src/test/resources/?fileName=daltons.csv&noop=true").
unmarshal().csv().
to("mock:daltons");

The resulting message will contain a List<List<String>> like...

List<List<String>> data = (List<List<String>>) exchange.getIn().getBody();
for (List<String> line : data) {

LOG.debug(String.format("%s has an IQ of %s and is currently %s",
line.get(0), line.get(1), line.get(2)));

}

DATA FORMAT APPENDIX 317

Marshalling a List<Map> to CSV
Available as of Camel 2.1

If you have multiple rows of data you want to be marshalled into CSV
format you can now store the message payload as a List<Map<String,
Object>> object where the list contains a Map for each row.

File Poller of CSV, then unmarshaling
Given a bean which can handle the incoming data...

Listing 1. MyCsvHandler.java

// Some comments here
public void doHandleCsvData(List<List<String>> csvData)
{

// do magic here
}

... your route then looks as follows

<route>
<!-- poll every 10 seconds -->
<from uri="file:///some/path/to/pickup/

csvfiles?delete=true&consumer.delay=10000" />
<unmarshal><csv /></unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsvData" />

</route>

Marshaling with a pipe as delimiter
Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<marshal>

<csv delimiter="|" />
</marshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSVConfig config = new CSVConfig();
config.setDelimiter('|');
csv.setConfig(config);

318 DATA FORMAT APPENDIX

from("direct:start")
.marshal(csv)
.convertBodyTo(String.class)

.to("bean:myCsvHandler?method=doHandleCsv");

CsvDataFormat csv = new CsvDataFormat();
csv.setDelimiter("|");

from("direct:start")
.marshal(csv)
.convertBodyTo(String.class)

.to("bean:myCsvHandler?method=doHandleCsv");

Using autogenColumns, configRef and strategyRef attributes inside
XML DSL
Available as of Camel 2.9.2 / 2.10

You can customize the CSV Data Format to make use of your own
CSVConfig and/or CSVStrategy. Also note that the default value of the
autogenColumns option is true. The following example should illustrate this
customization.

<route>
<from uri="direct:start" />
<marshal>

<!-- make use of a strategy other than the default one which is
'org.apache.commons.csv.CSVStrategy.DEFAULT_STRATEGY' -->

<csv autogenColumns="false" delimiter="|" configRef="csvConfig"
strategyRef="excelStrategy" />

</marshal>
<convertBodyTo type="java.lang.String" />
<to uri="mock:result" />

</route>

<bean id="csvConfig" class="org.apache.commons.csv.writer.CSVConfig">
<property name="fields">

<list>
<bean class="org.apache.commons.csv.writer.CSVField">

<property name="name" value="orderId" />
</bean>
<bean class="org.apache.commons.csv.writer.CSVField">

<property name="name" value="amount" />
</bean>

</list>
</property>

</bean>

<bean id="excelStrategy"

DATA FORMAT APPENDIX 319

http://camel.apache.org/data-format.html

class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
<property name="staticField"

value="org.apache.commons.csv.CSVStrategy.EXCEL_STRATEGY" />
</bean>

Using skipFirstLine option while unmarshaling
Available as of Camel 2.10

You can instruct the CSV Data Format to skip the first line which contains
the CSV headers. Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>

<csv skipFirstLine="true" />
</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
csv.setSkipFirstLine(true);

from("direct:start")
.unmarshal(csv)

.to("bean:myCsvHandler?method=doHandleCsv");

Unmarshaling with a pipe as delimiter
Using the Spring/XML DSL:

<route>
<from uri="direct:start" />
<unmarshal>

<csv delimiter="|" />
</unmarshal>
<to uri="bean:myCsvHandler?method=doHandleCsv" />

</route>

Or the Java DSL:

CsvDataFormat csv = new CsvDataFormat();
CSVStrategy strategy = CSVStrategy.DEFAULT_STRATEGY;
strategy.setDelimiter('|');

320 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html

csv.setStrategy(strategy);

from("direct:start")
.unmarshal(csv)

.to("bean:myCsvHandler?method=doHandleCsv");

CsvDataFormat csv = new CsvDataFormat();
csv.setDelimiter("|");

from("direct:start")
.unmarshal(csv)

.to("bean:myCsvHandler?method=doHandleCsv");

Dependencies
To use CSV in your Camel routes you need to add a dependency on camel-
csv, which implements this data format.

If you use Maven you can just add the following to your pom.xml,
substituting the version number for the latest and greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-csv</artifactId>
<version>x.x.x</version>

</dependency>

The String Data Format is a textual based format that supports encoding.

Options

Option Default Description

charset null To use a specific charset for encoding. If not provided
Camel will use the JVM default charset.

Marshal
In this example we marshal the file content to String object in UTF-8
encoding.

from("file://data.csv").marshal().string("UTF-8").to("jms://myqueue");

DATA FORMAT APPENDIX 321

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

Unmarshal
In this example we unmarshal the payload from the JMS queue to a String
object using UTF-8 encoding, before its processed by the newOrder
processor.

from("jms://queue/order").unmarshal().string("UTF-8").processRef("newOrder");

Dependencies
This data format is provided in camel-core so no additional dependencies is
needed.

HL7 DataFormat
The HL7 component ships with a HL7 data format that can be used to format
between String and HL7 model objects.

▪ marshal = from Message to byte stream (can be used when
returning as response using the HL7 MLLP codec)

▪ unmarshal = from byte stream to Message (can be used when
receiving streamed data from the HL7 MLLP

To use the data format, simply instantiate an instance and invoke the
marshal or unmarshal operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
...
from("direct:hl7in").marshal(hl7).to("jms:queue:hl7out");

In the sample above, the HL7 is marshalled from a HAPI Message object to a
byte stream and put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat();
...
from("jms:queue:hl7out").unmarshal(hl7).to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is
passed to our patient lookup service.
Notice there is a shorthand syntax in Camel for well-known data formats that
is commonly used.
Then you don't need to create an instance of the HL7DataFormat object:

322 DATA FORMAT APPENDIX

http://camel.apache.org/hl7.html

Segment separators
As of Camel 2.11, unmarshal does not automatically fix segment
separators anymore by converting \n to \r. If you
need this conversion,
org.apache.camel.component.hl7.HL7#convertLFToCR provides
a handy Expression for this purpose.

from("direct:hl7in").marshal().hl7().to("jms:queue:hl7out");
from("jms:queue:hl7out").unmarshal().hl7().to("patientLookupService");

EDI DATAFORMAT
We encourage end users to look at the Smooks which supports EDI and
Camel natively.

FLATPACK DATAFORMAT
The Flatpack component ships with the Flatpack data format that can be
used to format between fixed width or delimited text messages to a List of
rows as Map.

▪ marshal = from List<Map<String, Object>> to OutputStream (can
be converted to String)

▪ unmarshal = from java.io.InputStream (such as a File or String)
to a java.util.List as an
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to
process each row one by one you can split the exchange, using
Splitter.

Notice: The Flatpack library does currently not support header and trailers
for the marshal operation.

Options
The data format has the following options:
Option Default Description

definition null
The flatpack pzmap configuration file.
Can be omitted in simpler situations,
but its preferred to use the pzmap.

DATA FORMAT APPENDIX 323

http://milyn.codehaus.org/Home
http://camel.apache.org/flatpack.html
http://camel.apache.org/splitter.html

Serializable messages
As of HAPI 2.0 (used by Camel 2.11), the HL7v2 model classes are
fully serializable. So you can put HL7v2 messages directly into a
JMS queue (i.e. without calling marshal() and read them again
directly from the queue (i.e. without calling unmarshal().

fixed false Delimited or fixed.

ignoreFirstRecord true Whether the first line is ignored for
delimited files (for the column headers).

textQualifier " If the text is qualified with a char such
as ".

delimiter , The delimiter char (could be ; , or
similar)

parserFactory null Uses the default Flatpack parser factory.

allowShortLines false

Camel 2.9.5 and 2.10.3 onwards:
Allows for lines to be shorter than
expected and ignores the extra
characters.

ignoreExtraColumns false

Camel 2.9.5 and 2.10.3 onwards:
Allows for lines to be longer than
expected and ignores the extra
characters.

Usage
To use the data format, simply instantiate an instance and invoke the
marshal or unmarshal operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
...
from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the
input using the Flatpack configuration file INVENTORY-Delimited.pzmap.xml
that configures the structure of the files. The result is a DataSetList object
we store on the SEDA queue.

324 DATA FORMAT APPENDIX

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

In the code above we marshal the data from a Object representation as a
List of rows as Maps. The rows as Map contains the column name as the key,
and the the corresponding value. This structure can be created in Java code
from e.g. a processor. We marshal the data according to the Flatpack format
and convert the result as a String object and store it on a JMS queue.

Dependencies
To use Flatpack in your camel routes you need to add the a dependency on
camel-flatpack which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>

</dependency>

JSON
JSON is a Data Format to marshal and unmarshal Java objects to and from
JSON.

For JSON to object marshalling, Camel provides integration with three
popular JSON libraries:

▪ The XStream library and Jettsion
▪ The Jackson library
▪ Camel 2.10: The GSon library

By default Camel uses the XStream library.

Using JSON data format with the XStream library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

DATA FORMAT APPENDIX 325

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html
http://www.json.org/
http://xstream.codehaus.org/
http://jettison.codehaus.org/
http://xircles.codehaus.org/projects/jackson
http://code.google.com/p/google-gson/

Direct, bi-directional JSON <=> XML conversions
As of Camel 2.10, Camel supports direct, bi-directional JSON <=>
XML conversions via the camel-xmljson data format, which is
documented separately.

marshal().json().
to("mqseries:Another.Queue");

Using JSON data format with the Jackson library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

marshal().json(JsonLibrary.Jackson).
to("mqseries:Another.Queue");

Using JSON data format with the GSON library

// lets turn Object messages into json then send to MQSeries
from("activemq:My.Queue").

marshal().json(JsonLibrary.Gson).
to("mqseries:Another.Queue");

Using JSON in Spring DSL
When using Data Format in Spring DSL you need to declare the data formats
first. This is done in the DataFormats XML tag.

<dataFormats>
<!-- here we define a Json data format with the id jack and that it

should use the TestPojo as the class type when
doing unmarshal. The unmarshalTypeName is optional, if not provided

Camel will use a Map as the type -->
<json id="jack" library="Jackson"

unmarshalTypeName="org.apache.camel.component.jackson.TestPojo"/>
</dataFormats>

And then you can refer to this id in the route:

326 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/xmljson.html

<route>
<from uri="direct:back"/>
<unmarshal ref="jack"/>
<to uri="mock:reverse"/>

</route>

Excluding POJO fields from marshalling
As of Camel 2.10
When marshalling a POJO to JSON you might want to exclude certain fields
from the JSON output. With Jackson you can use JSON views to accomplish
this. First create one or more marker classes.

public class Views {

static class Weight { }
static class Age { }

}

Use the marker classes with the @JsonView annotation to include/exclude
certain fields. The annotation also works on getters.

@JsonView(Views.Age.class)
private int age = 30;

private int height = 190;

@JsonView(Views.Weight.class)
private int weight = 70;

Finally use the Camel JacksonDataFormat to marshall the above POJO to
JSON.

JacksonDataFormat ageViewFormat = new JacksonDataFormat(TestPojoView.class,
Views.Age.class);
from("direct:inPojoAgeView").marshal(ageViewFormat);

Note that the weight field is missing in the resulting JSON:

{"age":30, "height":190}

The GSON library supports a similar feature through the notion of
ExclusionStrategies:

DATA FORMAT APPENDIX 327

http://wiki.fasterxml.com/JacksonJsonViews
http://google-gson.googlecode.com/svn/trunk/gson/docs/javadocs/com/google/gson/ExclusionStrategy.html

/**
* Strategy to exclude {@link ExcludeAge} annotated fields
*/

protected static class AgeExclusionStrategy implements ExclusionStrategy {

@Override
public boolean shouldSkipField(FieldAttributes f) {

return f.getAnnotation(ExcludeAge.class) != null;
}

@Override
public boolean shouldSkipClass(Class<?> clazz) {

return false;
}

}

The GsonDataFormat accepts an ExclusionStrategy in its constructor:

GsonDataFormat ageExclusionFormat = new GsonDataFormat(TestPojoExclusion.class, new
AgeExclusionStrategy());
from("direct:inPojoExcludeAge").marshal(ageExclusionFormat);

The line above will exclude fields annotated with @ExcludeAge when
marshalling to JSON.

Dependencies for XStream
To use JSON in your camel routes you need to add the a dependency on
camel-xstream which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xstream</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for Jackson
To use JSON in your camel routes you need to add the a dependency on
camel-jackson which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

328 DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jackson</artifactId>
<version>2.9.2</version>

</dependency>

Dependencies for GSON
To use JSON in your camel routes you need to add the a dependency on
camel-gson which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-gson</artifactId>
<version>2.10.0</version>

</dependency>

The Zip Data Format is a message compression and de-compression format.
Messages marshalled using Zip compression can be unmarshalled using Zip
decompression just prior to being consumed at the endpoint. The
compression capability is quite useful when you deal with large XML and Text
based payloads. It facilitates more optimal use of network bandwidth while
incurring a small cost in order to compress and decompress payloads at the
endpoint.

Options

Option Default Description

DATA FORMAT APPENDIX 329

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/data-format.html

About using with Files
The Zip data format, does not (yet) have special support for files.
Which means that when using big files, the entire file content is
loaded into memory.
This is subject to change in the future, to allow a streaming based
solution to have a low memory footprint.

compressionLevel null

To specify a specific compression Level use
java.util.zip.Deflater settings. The
possible settings areÂ
Â Â Â Â Â Â Â Â Â - Deflater.BEST_SPEED
Â Â Â Â Â Â Â Â Â -
Deflater.BEST_COMPRESSION
Â Â Â Â Â Â Â Â Â -
Deflater.DEFAULT_COMPRESSION

If compressionLevel is not explicitly
specified the compressionLevel employed is
Deflater.DEFAULT_COMPRESSION

Marshal
In this example we marshal a regular text/XML payload to a compressed
payload employing zip compression Deflater.BEST_COMPRESSION and send
it an ActiveMQ queue called MY_QUEUE.

from("direct:start").marshal().zip(Deflater.BEST_COMPRESSION).to("activemq:queue:MY_QUEUE");

Alternatively if you would like to use the default setting you could send it as

from("direct:start").marshal().zip().to("activemq:queue:MY_QUEUE");

Unmarshal
In this example we unmarshalÂ a zippedÂ payload from an ActiveMQ queue
called MY_QUEUEÂ to its original format,Â and forward it forÂ processingÂ to
the UnZippedMessageProcessor. Note that the compression Level employed
during the marshalling should be identical to the one employed during
unmarshalling to avoid errors.

330 DATA FORMAT APPENDIX

from("activemq:queue:MY_QUEUE").unmarshal().zip().process(new
UnZippedMessageProcessor());Â

Dependencies
This data format is provided in camel-core so no additional dependencies is
needed.

TIDYMARKUP
TidyMarkup is a Data Format that uses the TagSoup to tidy up HTML. It can be
used to parse ugly HTML and return it as pretty wellformed HTML.
TidyMarkup only supports the unmarshal operation as we really don't want
to turn well formed HTML into ugly HTML

Java DSL Example
An example where the consumer provides some HTML

from("file://site/inbox").unmarshal().tidyMarkup().to("file://site/blogs");

Spring XML Example
The following example shows how to use TidyMarkup to unmarshal using
Spring

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://site/inbox"/>
<unmarshal>

<tidyMarkup/>
</unmarshal>
<to uri="file://site/blogs"/>

</route>
</camelContext>

Dependencies
To use TidyMarkup in your camel routes you need to add the a dependency
on camel-tagsoup which implements this data format.

DATA FORMAT APPENDIX 331

http://camel.apache.org/data-format.html
http://www.ccil.org/~cowan/XML/tagsoup/
http://camel.apache.org/tidymarkup.html
http://camel.apache.org/tidymarkup.html

Camel eats our own dog food soap
We had some issues in our pdf Manual where we had some strange
symbols. So Jonathan used this data format to tidy up the wiki html
pages that are used as base for rendering the pdf manuals. And
then the mysterious symbols vanished.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-tagsoup</artifactId>
<version>x.x.x</version>

</dependency>

BINDY
The goal of this component is to allow the parsing/binding of non-structured
data (or to be more precise non-XML data)
to/from Java Beans that have binding mappings defined with annotations.
Using Bindy, you can bind data from sources such as :

▪ CSV records,
▪ Fixed-length records,
▪ FIX messages,
▪ or almost any other non-structured data

to one or many Plain Old Java Object (POJO). Bindy converts the data
according to the type of the java property. POJOs can be linked together with
one-to-many relationships available in some cases. Moreover, for data type
like Date, Double, Float, Integer, Short, Long and BigDecimal, you can
provide the pattern to apply during the formatting of the property.

For the BigDecimal numbers, you can also define the precision and the
decimal or grouping separators.

Type Format Type Pattern
example Link

Date DateFormat "dd-MM-yyyy"
http://java.sun.com/j2se/
1.5.0/docs/api/java/text/
SimpleDateFormat.html

332 DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
http://camel.apache.org/manual.html
http://janstey.blogspot.com/

Decimal* Decimalformat "##.###.###"
http://java.sun.com/j2se/
1.5.0/docs/api/java/text/
DecimalFormat.html

Decimal* = Double, Integer, Float, Short, Long
To work with camel-bindy, you must first define your model in a package (e.g.
com.acme.model) and for each model class (e.g. Order, Client, Instrument,
...) add the required annotations (described hereafter) to the Class or field.

ANNOTATIONS
The annotations created allow to map different concept of your model to the
POJO like :

▪ Type of record (csv, key value pair (e.g. FIX message), fixed length
...),

▪ Link (to link object in another object),
▪ DataField and their properties (int, type, ...),
▪ KeyValuePairField (for key = value format like we have in FIX financial

messages),
▪ Section (to identify header, body and footer section),
▪ OneToMany

This section will describe them :

1. CsvRecord
The CsvRecord annotation is used to identified the root class of the model. It
represents a record = a line of a CSV file and can be linked to several
children model classes.
Annotation name Record type Level
CsvRecord csv Class

Parameter name type Info

separator string

mandatory - can be ',' or ';' or
'anything'. This value is interpreted
as a regular expression. If you want
to use a sign which has a special
meaning in regular expressions, e.g.
the '|' sign, than you have to mask it,
like '
|'

DATA FORMAT APPENDIX 333

http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html

Format supported
This first release only support comma separated values fields and
key value pair fields (e.g. : FIX messages).

skipFirstLine boolean
optional - default value = false -
allow to skip the first line of the CSV
file

crlf string
optional - possible values =
WINDOWS,UNIX,MAC; default value =
WINDOWS - allow to define the
carriage return character to use

generateHeaderColumns boolean
optional - default value = false - uses
to generate the header columns of
the CSV generates

isOrdered boolean
optional - default value = false -
allow to change the order of the
fields when CSV is generated

quote String
Camel 2.8.3/2.9: option - allow to
specify a quote character of the
fields when CSV is generated

Â Â
This annotation is associated to the
root class of the model and must be
declared one time.

case 1 : separator = ','
The separator used to segregate the fields in the CSV record is ',' :
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500,

USD,08-01-2009

@CsvRecord(separator = ",")
public Class Order {
...
}

case 2 : separator = ';'
Compare to the previous case, the separator here is ';' instead of ',' :
10; J; Pauline; M; XD12345678; Fortis Dynamic 15/15; 2500; USD;

08-01-2009

334 DATA FORMAT APPENDIX

@CsvRecord(separator = ";")
public Class Order {
...
}

case 3 : separator = '|'
Compare to the previous case, the separator here is '|' instead of ';' :
10| J| Pauline| M| XD12345678| Fortis Dynamic 15/15| 2500| USD|

08-01-2009

@CsvRecord(separator = "\\|")
public Class Order {
...
}

case 4 : separator = '\",\"'
Applies for Camel 2.8.2 or older

When the field to be parsed of the CSV record contains ',' or ';' which is
also used as separator, we whould find another strategy
to tell camel bindy how to handle this case. To define the field containing the
data with a comma, you will use simple or double quotes
as delimiter (e.g : '10', 'Street 10, NY', 'USA' or "10", "Street 10, NY", "USA").
Remark : In this case, the first and last character of the line which are a
simple or double quotes will removed by bindy

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15"
2500","USD","08-01-2009"

@CsvRecord(separator = "\",\"")
public Class Order {
...
}

From Camel 2.8.3/2.9 or never bindy will automatic detect if the record is
enclosed with either single or double quotes and automatic remove those
quotes when unmarshalling from CSV to Object. Therefore do not include the
quotes in the separator, but simple do as below:

"10","J","Pauline"," M","XD12345678","Fortis Dynamic 15,15"
2500","USD","08-01-2009"

@CsvRecord(separator = ",")
public Class Order {
...
}

DATA FORMAT APPENDIX 335

Notice that if you want to marshal from Object to CSV and use quotes, then
you need to specify which quote character to use, using the quote attribute
on the @CsvRecord as shown below:

@CsvRecord(separator = ",", quote = "\"")
public Class Order {
...
}

case 5 : separator & skipfirstline
The feature is interesting when the client wants to have in the first line of

the file, the name of the data fields :
order id, client id, first name, last name, isin code, instrument name,

quantity, currency, date
To inform bindy that this first line must be skipped during the parsing

process, then we use the attribute :

@CsvRecord(separator = ",", skipFirstLine = true)
public Class Order {
...
}

case 6 : generateHeaderColumns
To add at the first line of the CSV generated, the attribute

generateHeaderColumns must be set to true in the annotation like this :

@CsvRecord(generateHeaderColumns = true)
public Class Order {
...
}

As a result, Bindy during the unmarshaling process will generate CSV like this
:

order id, client id, first name, last name, isin code, instrument name,
quantity, currency, date
10, J, Pauline, M, XD12345678, Fortis Dynamic 15/15, 2500, USD,08-01-2009

case 7 : carriage return
If the platform where camel-bindy will run is not Windows but Macintosh or

Unix, than you can change the crlf property like this. Three values are
available : WINDOWS, UNIX or MAC

@CsvRecord(separator = ",", crlf="MAC")
public Class Order {

336 DATA FORMAT APPENDIX

...
}

case 8 : isOrdered
Sometimes, the order to follow during the creation of the CSV record from

the model is different from the order used during the parsing. Then, in this
case, we can use the attribute isOrdered = true to indicate this in
combination with attribute 'position' of the DataField annotation.

@CsvRecord(isOrdered = true)
public Class Order {

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

...
}

Remark : pos is used to parse the file, stream while positions is used to
generate the CSV

2. Link
The link annotation will allow to link objects together.
Annotation name Record type Level
Link all Class & Property

Parameter
name type Info

linkType LinkType
optional - by default the value is
LinkType.oneToOne - so you are not obliged to
mention it

Â Â Only one-to-one relation is allowed.
e.g : If the model Class Client is linked to the Order class, then use
annotation Link in the Order class like this :

Listing 1. Property Link

@CsvRecord(separator = ",")
public class Order {

DATA FORMAT APPENDIX 337

@DataField(pos = 1)
private int orderNr;

@Link
private Client client;

...

AND for the class Client :
Listing 1. Class Link

@Link
public class Client {
...
}

3. DataField
The DataField annotation defines the property of the field. Each datafield is
identified by its position in the record, a type (string, int, date, ...) and
optionally of a pattern
Annotation name Record type Level
DataField all Property

Parameter name type Info

pos int mandatory - digit number starting
from 1 to ...

pattern string optional - default value = "" - will be
used to format Decimal, Date, ...

length int optional - represents the length of
the field for fixed length format

precision int
optional - represents the precision to
be used when the Decimal number
will be formatted/parsed

pattern string
optional - default value = "" - is used
by the Java Formater
(SimpleDateFormat by example) to
format/validate data

338 DATA FORMAT APPENDIX

position int
optional - must be used when the
position of the field in the CSV
generated must be different
compare to pos

required boolean optional - default value = "false"
trim boolean optional - default value = "false"

defaultValue string
optional - default value = "" - defines
the field's default value when the
respective CSV field is empty/not
available

impliedDecimalSeparator boolean
Camel 2.11: optional - default value
= "false" - Indicates if there is a
decimal point implied at a specified
location

lengthPos int
Camel 2.11: optional - can be used
to identifyÂ a data field in a fixed-
length record that defines the fixed
length for this field

delimiter string
Camel 2.11: optional - can be used
to demarcate the end of a variable-
length field within a fixed-length
record

case 1 : pos
This parameter/attribute represents the position of the field in the csv

record
Listing 1. Position

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

...
}

As you can see in this example the position starts at '1' but continues at '5' in
the class Order. The numbers from '2' to '4' are defined in the class Client
(see here after).

DATA FORMAT APPENDIX 339

Listing 1. Position continues in another model class

public class Client {

@DataField(pos = 2)
private String clientNr;

@DataField(pos = 3)
private String firstName;

@DataField(pos = 4)
private String lastName;

...
}

case 2 : pattern
The pattern allows to enrich or validates the format of your data

Listing 1. Pattern

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 5)
private String isinCode;

@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2)
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy") -- pattern used during parsing or
when the date is created

private Date orderDate;
...
}

case 3 : precision
The precision is helpful when you want to define the decimal part of your

number
Listing 1. Precision

@CsvRecord(separator = ",")
public class Order {

340 DATA FORMAT APPENDIX

@DataField(pos = 1)
private int orderNr;

@Link
private Client client;

@DataField(pos = 5)
private String isinCode;

@DataField(name = "Name", pos = 6)
private String instrumentName;

@DataField(pos = 7, precision = 2) -- precision
private BigDecimal amount;

@DataField(pos = 8)
private String currency;

@DataField(pos = 9, pattern = "dd-MM-yyyy")
private Date orderDate;

...
}

case 4 : Position is different in output
The position attribute will inform bindy how to place the field in the CSV

record generated. By default, the position used corresponds to the position
defined with the attribute 'pos'. If the position is different (that means that
we have an asymetric processus comparing marshaling from unmarshaling)
than we can use 'position' to indicate this.

Here is an example
Listing 1. Position is different in output

@CsvRecord(separator = ",")
public class Order {
@CsvRecord(separator = ",", isOrdered = true)
public class Order {

// Positions of the fields start from 1 and not from 0

@DataField(pos = 1, position = 11)
private int orderNr;

@DataField(pos = 2, position = 10)
private String clientNr;

@DataField(pos = 3, position = 9)
private String firstName;

@DataField(pos = 4, position = 8)
private String lastName;

DATA FORMAT APPENDIX 341

@DataField(pos = 5, position = 7)
private String instrumentCode;

@DataField(pos = 6, position = 6)
private String instrumentNumber;

...
}

case 5 : required
If a field is mandatory, simply use the attribute 'required' setted to true

Listing 1. Required

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2, required = true)
private String clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, required = true)
private String lastName;

...
}

If this field is not present in the record, than an error will be raised by the
parser with the following information :

Some fields are missing (optional or mandatory), line :
case 6 : trim
If a field has leading and/or trailing spaces which should be removed

before they are processed, simply use the attribute 'trim' setted to true
Listing 1. Trim

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1, trim = true)
private int orderNr;

@DataField(pos = 2, trim = true)
private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

342 DATA FORMAT APPENDIX

This attribute of the annotation @DataField must be used in
combination with attribute isOrdered = true of the annotation
@CsvRecord

@DataField(pos = 4)
private String lastName;

...
}

case 7 : defaultValue
If a field is not defined then uses the value indicated by the defaultValue

attribute
Listing 1. Default value

@CsvRecord(separator = ",")
public class Order {

@DataField(pos = 1)
private int orderNr;

@DataField(pos = 2)
private Integer clientNr;

@DataField(pos = 3, required = true)
private String firstName;

@DataField(pos = 4, defaultValue = "Barin")
private String lastName;

...
}

4. FixedLengthRecord
The FixedLengthRecord annotation is used to identified the root class of the
model. It represents a record = a line of a file/message containing data fixed
length formatted and can be linked to several children model classes. This
format is a bit particular beause data of a field can be aligned to the right or
to the left.
When the size of the data does not fill completely the length of the field, we
can then add 'padd' characters.
Annotation name Record type Level
FixedLengthRecord fixed Class

DATA FORMAT APPENDIX 343

This attribute is only applicable to optional fields.

Parameter
name type Info

crlf string optional - default value = WINDOWS - allow to
define the carriage return character to use

paddingChar char mandatory - default value = ' '
length int mandatory = size of the fixed length record

hasHeader boolean
Camel 2.11 - optional - Indicates that the
record(s) of this type may be preceded by a
single header record at the beginning of the file /
stream

hasFooter boolean
Camel 2.11 - optional - Indicates that the
record(s) of this type may be followed by a single
footer record at the end of the file / stream

skipHeader boolean
Camel 2.11 - optional - Configures the data
format to skip marshalling / unmarshalling of the
header record. Configure this parameter on the
primary record (e.g., not the header or footer).

skipFooter boolean
Camel 2.11 - optional - Configures the data
format to skip marshalling / unmarshalling of the
footer record Configure this parameter on the
primary record (e.g., not the header or footer)..

isHeader boolean Camel 2.11 - optional - Identifies this
FixedLengthRecord as a header record

isFooter boolean Camel 2.11 - optional - Identifies this
FixedLengthRecords as a footer record

Â Â This annotation is associated to the root class of
the model and must be declared one time.

case 1 : Simple fixed length record
This simple example shows how to design the model to parse/format a

fixed message
10A9PaulineMISINXD12345678BUYShare2500.45USD01-08-2009

Listing 1. Fixed-simple

344 DATA FORMAT APPENDIX

The hasHeader/hasFooter parameters are mutually exclusive with
isHeader/isFooter. A record may not be both a header/footer and a
primary fixed-length record.

@FixedLengthRecord(length=54, paddingChar=' ')
public static class Order {

@DataField(pos = 1, length=2)
private int orderNr;

@DataField(pos = 3, length=2)
private String clientNr;

@DataField(pos = 5, length=7)
private String firstName;

@DataField(pos = 12, length=1, align="L")
private String lastName;

@DataField(pos = 13, length=4)
private String instrumentCode;

@DataField(pos = 17, length=10)
private String instrumentNumber;

@DataField(pos = 27, length=3)
private String orderType;

@DataField(pos = 30, length=5)
private String instrumentType;

@DataField(pos = 35, precision = 2, length=7)
private BigDecimal amount;

@DataField(pos = 42, length=3)
private String currency;

@DataField(pos = 45, length=10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 2 : Fixed length record with alignment and padding
This more elaborated example show how to define the alignment for a

field and how to assign a padding character which is ' ' here''
10A9 PaulineM ISINXD12345678BUYShare2500.45USD01-08-2009

Listing 1. Fixed-padding-align

DATA FORMAT APPENDIX 345

@FixedLengthRecord(length=60, paddingChar=' ')
public static class Order {

@DataField(pos = 1, length=2)
private int orderNr;

@DataField(pos = 3, length=2)
private String clientNr;

@DataField(pos = 5, length=9)
private String firstName;

@DataField(pos = 14, length=5, align="L") // align text to the LEFT zone of
the block

private String lastName;

@DataField(pos = 19, length=4)
private String instrumentCode;

@DataField(pos = 23, length=10)
private String instrumentNumber;

@DataField(pos = 33, length=3)
private String orderType;

@DataField(pos = 36, length=5)
private String instrumentType;

@DataField(pos = 41, precision = 2, length=7)
private BigDecimal amount;

@DataField(pos = 48, length=3)
private String currency;

@DataField(pos = 51, length=10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 3 : Field padding
Sometimes, the default padding defined for record cannnot be applied to

the field as we have a number format where we would like to padd with '0'
instead of ' '. In this case, you can use in the model the attribute
paddingField to set this value.

10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009
Listing 1. Fixed-padding-field

@FixedLengthRecord(length = 65, paddingChar = ' ')
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

346 DATA FORMAT APPENDIX

@DataField(pos = 3, length = 2)
private String clientNr;

@DataField(pos = 5, length = 9)
private String firstName;

@DataField(pos = 14, length = 5, align = "L")
private String lastName;

@DataField(pos = 19, length = 4)
private String instrumentCode;

@DataField(pos = 23, length = 10)
private String instrumentNumber;

@DataField(pos = 33, length = 3)
private String orderType;

@DataField(pos = 36, length = 5)
private String instrumentType;

@DataField(pos = 41, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 53, length = 3)
private String currency;

@DataField(pos = 56, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;
...

case 4: Fixed length record with delimiter
Fixed-length records sometimes have delimited content within the record.

The firstName and lastName fields are delimited with the '^' character in the
following example:

10A9Pauline^M^ISINXD12345678BUYShare000002500.45USD01-08-2009
Listing 1. Fixed-delimited

@FixedLengthRecord()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, delimiter = "^")
private String firstName;

DATA FORMAT APPENDIX 347

@DataField(pos = 4, delimiter = "^")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 5 : Fixed length record with record-defined field length
Occasionally a fixed-length record may contain a field that define the

expected length of another field within the same record. In the following
example the length of the instrumentNumber field value is defined by the
value of instrumentNumberLen field in the record.

10A9Pauline^M^ISIN10XD12345678BUYShare000002500.45USD01-08-2009
Listing 1. Fixed-delimited

@FixedLengthRecord()
public static class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, delimiter = "^")
private String firstName;

@DataField(pos = 4, delimiter = "^")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

@DataField(pos = 6, length = 2, align = "R", paddingChar = '0')

348 DATA FORMAT APPENDIX

As of Camel 2.11 the 'pos' value(s) in a fixed-length record may
optionally be defined using ordinal, sequential values instead of
precise column numbers.

private int instrumentNumberLen;

@DataField(pos = 7, lengthPos=6)
private String instrumentNumber;

@DataField(pos = 8, length = 3)
private String orderType;

@DataField(pos = 9, length = 5)
private String instrumentType;

@DataField(pos = 10, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 11, length = 3)
private String currency;

@DataField(pos = 12, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

case 6 : Fixed length record with header and footer
Bindy will discover fixed-length header and footer records that are

configured as part of the model â€“ provided that the annotated classes exist
either in the same package as the primary @FixedLengthRecord class, or
within one of the configured scan packages. The following text illustrates two
fixed-length records that are bracketed by a header record and footer record.

101-08-2009
10A9 PaulineM ISINXD12345678BUYShare000002500.45USD01-08-2009
10A9 RichN ISINXD12345678BUYShare000002700.45USD01-08-2009
9000000002

Listing 1. Fixed-header-and-footer-main-class

@FixedLengthRecord(hasHeader = true, hasFooter = true)
public class Order {

@DataField(pos = 1, length = 2)
private int orderNr;

@DataField(pos = 2, length = 2)
private String clientNr;

@DataField(pos = 3, length = 9)

DATA FORMAT APPENDIX 349

private String firstName;

@DataField(pos = 4, length = 5, align = "L")
private String lastName;

@DataField(pos = 5, length = 4)
private String instrumentCode;

@DataField(pos = 6, length = 10)
private String instrumentNumber;

@DataField(pos = 7, length = 3)
private String orderType;

@DataField(pos = 8, length = 5)
private String instrumentType;

@DataField(pos = 9, precision = 2, length = 12, paddingChar = '0')
private BigDecimal amount;

@DataField(pos = 10, length = 3)
private String currency;

@DataField(pos = 11, length = 10, pattern = "dd-MM-yyyy")
private Date orderDate;

...
}

@FixedLengthRecord(isHeader = true)
public class OrderHeader {

@DataField(pos = 1, length = 1)
private int recordType = 1;

@DataField(pos = 2, length = 10, pattern = "dd-MM-yyyy")
private Date recordDate;

...
}

@FixedLengthRecord(isFooter = true)
public class OrderFooter {

@DataField(pos = 1, length = 1)
private int recordType = 9;

@DataField(pos = 2, length = 9, align = "R", paddingChar = '0')
private int numberOfRecordsInTheFile;

...
}

350 DATA FORMAT APPENDIX

5. Message
The Message annotation is used to identified the class of your model who will
contain key value pairs fields. This kind of format is used mainly in Financial
Exchange Protocol Messages (FIX). Nevertheless, this annotation can be used
for any other format where data are identified by keys. The key pair values
are separated each other by a separator which can be a special character
like a tab delimitor (unicode representation : \u0009) or a start of heading
(unicode representation : \u0001)
Annotation name Record type Level
Message key value pair Class

Parameter name type Info
pairSeparator string mandatory - can be '=' or ';' or 'anything'

keyValuePairSeparair string mandatory - can be '\u0001', '\u0009',
'#' or 'anything'

crlf string
optional - default value = WINDOWS -
allow to define the carriage return
character to use

type string optional - define the type of message
(e.g. FIX, EMX, ...)

version string optional - version of the message (e.g.
4.1)

isOrdered boolean
optional - default value = false - allow to
change the order of the fields when FIX
message is generated

Â Â
This annotation is associated to the
message class of the model and must be
declared one time.

case 1 : separator = 'u0001'
The separator used to segregate the key value pair fields in a FIX message

is the ASCII '01' character or in unicode format '\u0001'. This character must
be escaped a second time to avoid a java runtime error. Here is an example :

8=FIX.4.1 9=20 34=1 35=0 49=INVMGR 56=BRKR 1=BE.CHM.001
11=CHM0001-01 22=4 ...

and how to use the annotation
Listing 1. FIX - message

DATA FORMAT APPENDIX 351

"FIX information"
More information about FIX can be found on this web site :
http://www.fixprotocol.org/. To work with FIX messages, the model
must contain a Header and Trailer classes linked to the root
message class which could be a Order class. This is not mandatory
but will be very helpful when you will use camel-bindy in
combination with camel-fix which is a Fix gateway based on
quickFix project http://www.quickfixj.org/.

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1")
public class Order {
...
}

6. KeyValuePairField
The KeyValuePairField annotation defines the property of a key value pair
field. Each KeyValuePairField is identified by a tag (= key) and its value
associated, a type (string, int, date, ...), optionaly a pattern and if the field is
required
Annotation name Record type Level
KeyValuePairField Key Value Pair - FIX Property

Parameter name type Info

tag int
mandatory - digit number identifying
the field in the message - must be
unique

pattern string optional - default value = "" - will be
used to format Decimal, Date, ...

precision int
optional - digit number - represents
the precision to be used when the
Decimal number will be formatted/
parsed

position int
optional - must be used when the
position of the key/tag in the FIX
message must be different

352 DATA FORMAT APPENDIX

http://www.fixprotocol.org/
http://www.quickfixj.org/

Look at test cases
The ASCII character like tab, ... cannot be displayed in WIKI page. So, have a
look to the test case of camel-bindy to see exactly how the FIX message looks
like (src\test\data\fix\fix.txt) and the Order, Trailer, Header classes
(src\test\java\org\apache\camel\dataformat\bindy\model\fix\simple\Order.java)

required boolean optional - default value = "false"

impliedDecimalSeparator boolean
Camel 2.11: optional - default value
= "false" - Indicates if there is a
decimal point implied at a specified
location

case 1 : tag
This parameter represents the key of the field in the message

Listing 1. FIX message - Tag

@Message(keyValuePairSeparator = "=", pairSeparator = "\u0001", type="FIX",
version="4.1")
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1) // Client reference
private String Account;

@KeyValuePairField(tag = 11) // Order reference
private String ClOrdId;

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String IDSource;

@KeyValuePairField(tag = 48) // Fund code
private String SecurityId;

@KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
private String Side;

@KeyValuePairField(tag = 58) // Free text
private String Text;

...
}

case 2 : Different position in output

DATA FORMAT APPENDIX 353

If the tags/keys that we will put in the FIX message must be sorted
according to a predefine order, then use the attribute 'position' of the
annotation @KeyValuePairField

Listing 1. FIX message - Tag - sort

@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX",
version = "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) // Client reference
private String account;

@KeyValuePairField(tag = 11, position = 3) // Order reference
private String clOrdId;

...
}

7. Section
In FIX message of fixed length records, it is common to have different
sections in the representation of the information : header, body and section.
The purpose of the annotation @Section is to inform bindy about which class
of the model represents the header (= section 1), body (= section 2) and
footer (= section 3)

Only one attribute/parameter exists for this annotation.
Annotation name Record type Level
Section FIX Class

Parameter name type Info
number int digit number identifying the section position
case 1 : Section

A. Definition of the header section
Listing 1. FIX message - Section - Header

@Section(number = 1)
public class Header {

@KeyValuePairField(tag = 8, position = 1) // Message Header
private String beginString;

354 DATA FORMAT APPENDIX

@KeyValuePairField(tag = 9, position = 2) // Checksum
private int bodyLength;

...
}

B. Definition of the body section
Listing 1. FIX message - Section - Body

@Section(number = 2)
@Message(keyValuePairSeparator = "=", pairSeparator = "\\u0001", type = "FIX",
version = "4.1", isOrdered = true)
public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1, position = 1) // Client reference
private String account;

@KeyValuePairField(tag = 11, position = 3) // Order reference
private String clOrdId;

C. Definition of the footer section
Listing 1. FIX message - Section - Footer

@Section(number = 3)
public class Trailer {

@KeyValuePairField(tag = 10, position = 1)
// CheckSum
private int checkSum;

public int getCheckSum() {
return checkSum;

}

8. OneToMany
The purpose of the annotation @OneToMany is to allow to work with a
List<?> field defined a POJO class or from a record containing repetitive
groups.
The relation OneToMany ONLY WORKS in the following cases :

▪ Reading a FIX message containing repetitive groups (= group of tags/
keys)

▪ Generating a CSV with repetitive data
Annotation name Record type Level

DATA FORMAT APPENDIX 355

Restrictions OneToMany
Be careful, the one to many of bindy does not allow to handle
repetitions defined on several levels of the hierarchy

OneToMany all property

Parameter
name type Info

mappedTo string optional - string - class name associated to the type
of the List<Type of the Class>

case 1 : Generating CSV with repetitive data
Here is the CSV output that we want :
Claus,Ibsen,Camel in Action 1,2010,35

Claus,Ibsen,Camel in Action 2,2012,35
Claus,Ibsen,Camel in Action 3,2013,35
Claus,Ibsen,Camel in Action 4,2014,35

Remark : the repetitive data concern the title of the book and its
publication date while first, last name and age are common

and the classes used to modeling this. The Author class contains a List of
Book.

Listing 1. Generate CSV with repetitive data

@CsvRecord(separator=",")
public class Author {

@DataField(pos = 1)
private String firstName;

@DataField(pos = 2)
private String lastName;

@OneToMany
private List<Book> books;

@DataField(pos = 5)
private String Age;

...

public class Book {

@DataField(pos = 3)
private String title;

356 DATA FORMAT APPENDIX

@DataField(pos = 4)
private String year;

Very simple isn't it !!!
case 2 : Reading FIX message containing group of tags/keys
Here is the message that we would like to process in our model :
"8=FIX 4.19=2034=135=049=INVMGR56=BRKR"

"1=BE.CHM.00111=CHM0001-0158=this is a camel - bindy test"
"22=448=BE000124567854=1"
"22=548=BE000987654354=2"
"22=648=BE000999999954=3"
"10=220"

tags 22, 48 and 54 are repeated
and the code

Listing 1. Reading FIX message containing group of tags/keys

public class Order {

@Link Header header;

@Link Trailer trailer;

@KeyValuePairField(tag = 1) // Client reference
private String account;

@KeyValuePairField(tag = 11) // Order reference
private String clOrdId;

@KeyValuePairField(tag = 58) // Free text
private String text;

@OneToMany(mappedTo =
"org.apache.camel.dataformat.bindy.model.fix.complex.onetomany.Security")

List<Security> securities;
...

public class Security {

@KeyValuePairField(tag = 22) // Fund ID type (Sedol, ISIN, ...)
private String idSource;

@KeyValuePairField(tag = 48) // Fund code
private String securityCode;

@KeyValuePairField(tag = 54) // Movement type (1 = Buy, 2 = sell)
private String side;

DATA FORMAT APPENDIX 357

Using the Java DSL
The next step consists in instantiating the DataFormat bindy class associated
with this record type and providing Java package name(s) as parameter.

For example the following uses the class BindyCsvDataFormat (who
correspond to the class associated with the CSV record type) which is
configured with "com.acme.model"
package name to initialize the model objects configured in this package.

DataFormat bindy = new BindyCsvDataFormat("com.acme.model");

Unmarshaling

from("file://inbox")
.unmarshal(bindy)
.to("direct:handleOrders");

Alternatively, you can use a named reference to a data format which can
then be defined in your Registry e.g. your Spring XML file:

from("file://inbox")
.unmarshal("myBindyDataFormat")
.to("direct:handleOrders");

The Camel route will pick-up files in the inbox directory, unmarshall CSV
records into a collection of model objects and send the collection
to the route referenced by 'handleOrders'.

The collection returned is a List of Map objects. Each Map within the list
contains the model objects that were marshalled out of each line of the CSV.
The reason behind this is that each line can correspond to more than one
object. This can be confusing when you simply expect one object to be
returned per line.

Each object can be retrieve using its class name.

List<Map<String, Object>> unmarshaledModels = (List<Map<String, Object>>)
exchange.getIn().getBody();

int modelCount = 0;
for (Map<String, Object> model : unmarshaledModels) {

for (String className : model.keySet()) {
Object obj = model.get(className);
LOG.info("Count : " + modelCount + ", " + obj.toString());

}

358 DATA FORMAT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html

modelCount++;
}

LOG.info("Total CSV records received by the csv bean : " + modelCount);

Assuming that you want to extract a single Order object from this map for
processing in a route, you could use a combination of a Splitter and a
Processor as per the following:

from("file://inbox")
.unmarshal(bindy)
.split(body())

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

Message in = exchange.getIn();
Map<String, Object> modelMap = (Map<String, Object>) in.getBody();
in.setBody(modelMap.get(Order.class.getCanonicalName()));

}
})
.to("direct:handleSingleOrder")

.end();

Marshaling
To generate CSV records from a collection of model objects, you create the
following route :

from("direct:handleOrders")
.marshal(bindy)
.to("file://outbox")

Unit test
Here is two examples showing how to marshall or unmarshall a CSV file with
Camel

Listing 1. Marshall

package org.apache.camel.dataformat.bindy.csv;

import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.HashMap;
import java.util.List;

DATA FORMAT APPENDIX 359

http://camel.apache.org/splitter.html
http://camel.apache.org/processor.html

import java.util.Map;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Client;
import org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink.Order;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;
import org.junit.Test;
import org.springframework.config.java.annotation.Bean;
import org.springframework.config.java.annotation.Configuration;
import org.springframework.config.java.test.JavaConfigContextLoader;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvMarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)
public class BindyComplexCsvMarshallTest extends AbstractJUnit4SpringContextTests {

private List<Map<String, Object>> models = new ArrayList<Map<String, Object>>();
private String result = "10,A1,Julia,Roberts,BE123456789,Belgium Ventage 10/

12,150,USD,14-01-2009";

@Produce(uri = "direct:start")
private ProducerTemplate template;

@EndpointInject(uri = "mock:result")
private MockEndpoint resultEndpoint;

@Test
public void testMarshallMessage() throws Exception {

resultEndpoint.expectedBodiesReceived(result);

template.sendBody(generateModel());

resultEndpoint.assertIsSatisfied();
}

private List<Map<String, Object>> generateModel() {
Map<String, Object> model = new HashMap<String, Object>();

Order order = new Order();
order.setOrderNr(10);
order.setAmount(new BigDecimal("150"));
order.setIsinCode("BE123456789");
order.setInstrumentName("Belgium Ventage 10/12");
order.setCurrency("USD");

Calendar calendar = new GregorianCalendar();
calendar.set(2009, 0, 14);
order.setOrderDate(calendar.getTime());

360 DATA FORMAT APPENDIX

Client client = new Client();
client.setClientNr("A1");
client.setFirstName("Julia");
client.setLastName("Roberts");

order.setClient(client);

model.put(order.getClass().getName(), order);
model.put(client.getClass().getName(), client);

models.add(0, model);

return models;
}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

BindyCsvDataFormat camelDataFormat = new
BindyCsvDataFormat("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink");

@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("direct:start").marshal(camelDataFormat).to("mock:result");
}

};
}

}

}

Listing 1. Unmarshall

package org.apache.camel.dataformat.bindy.csv;

import org.apache.camel.EndpointInject;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.spring.javaconfig.SingleRouteCamelConfiguration;
import org.junit.Test;
import org.springframework.config.java.annotation.Bean;
import org.springframework.config.java.annotation.Configuration;
import org.springframework.config.java.test.JavaConfigContextLoader;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.AbstractJUnit4SpringContextTests;

@ContextConfiguration(locations =
"org.apache.camel.dataformat.bindy.csv.BindyComplexCsvUnmarshallTest$ContextConfig",
loader = JavaConfigContextLoader.class)

DATA FORMAT APPENDIX 361

public class BindyComplexCsvUnmarshallTest extends AbstractJUnit4SpringContextTests {

@EndpointInject(uri = "mock:result")
private MockEndpoint resultEndpoint;

@Test
public void testUnMarshallMessage() throws Exception {

resultEndpoint.expectedMessageCount(1);
resultEndpoint.assertIsSatisfied();

}

@Configuration
public static class ContextConfig extends SingleRouteCamelConfiguration {

BindyCsvDataFormat csvBindyDataFormat = new
BindyCsvDataFormat("org.apache.camel.dataformat.bindy.model.complex.twoclassesandonelink");

@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("file://src/test/
data?noop=true").unmarshal(csvBindyDataFormat).to("mock:result");

}
};

}
}

}

In this example, BindyCsvDataFormat class has been instantiated in a
traditional way but it is also possible to provide information directly to the
function (un)marshal like this where BindyType corresponds to the Bindy
DataFormat class to instantiate and the parameter contains the list of
package names.

public static class ContextConfig extends SingleRouteCamelConfiguration {
@Override
@Bean
public RouteBuilder route() {

return new RouteBuilder() {
@Override
public void configure() {

from("direct:start")
.marshal().bindy(BindyType.Csv,

"org.apache.camel.dataformat.bindy.model.simple.oneclass")
.to("mock:result");

}
};

362 DATA FORMAT APPENDIX

}
}

Using Spring XML
This is really easy to use Spring as your favorite DSL language to declare the
routes to be used for camel-bindy. The following example shows two routes
where the first will pick-up records from files, unmarshal the content and bind
it to their model. The result is then send to a pojo (doing nothing special) and
place them into a queue.

The second route will extract the pojos from the queue and marshal the
content to generate a file containing the csv record

Listing 1. spring dsl

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<bean id="bindyDataformat"
class="org.apache.camel.dataformat.bindy.csv.BindyCsvDataFormat">

<constructor-arg value="org.apache.camel.bindy.model" />
</bean>

<bean id="csv" class="org.apache.camel.bindy.csv.HandleOrderBean" />

<!-- Queuing engine - ActiveMq - work locally in mode virtual memory -->
<bean id="activemq"

class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="vm://localhost:61616"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="false" />

<route>
<from uri="file://src/data/csv/?noop=true" />
<unmarshal ref="bindyDataformat" />
<to uri="bean:csv" />
<to uri="activemq:queue:in" />

</route>

DATA FORMAT APPENDIX 363

<route>
<from uri="activemq:queue:in" />
<marshal ref="bindyDataformat" />
<to uri="file://src/data/csv/out/" />

</route>
</camelContext>

</beans>

Dependencies
To use Bindy in your camel routes you need to add the a dependency on
camel-bindy which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-bindy</artifactId>
<version>x.x.x</version>

</dependency>

XMLSECURITY DATA FORMAT
The XMLSecurity DataFormat facilitates encryption and decryption of XML
payloads at the Document, Element and Element Content levels (including
simultaneous multi-node encryption/decryption using XPATH).

The encryption capability is based on formats supported using the Apache
XML Security (Santaurio) project. Symmetric encryption/cecryption is
currently supported using Triple-DES and AES (128, 192 and 256) encryption
formats. Additional formats can be easily added later as needed. Â
The capability allows Camel users to encrypt/decrypt payloads while being
dispatched or received along a route.Â

Available as of Camel 2.9
The XMLSecurity DataFormat supports asymmetric key encryption. In this
encryption model a symmetric key is generated and used to perform XML
content encryption or decryption. This "content encryption key" is then itself
encrypted using an asymmetric encryption algorithm that leverages the
recipient's public key as the "key encryption key". Use of an asymmetric key
encryption algorithm ensures that only the holder of the recipient's private
key can access the generated symmetric encryption key. Thus, only the
private key holder can decode the message. The XMLSecurity DataFormat

364 DATA FORMAT APPENDIX

http://camel.apache.org/download.html
http://camel.apache.org/download.html

Be careful
Please verify that your model classes implements serializable
otherwise the queue manager will raise an error

handles all of the logic required to encrypt and decrypt the message content
and encryption key(s) using asymmetric key encryption.

The XMLSecurity DataFormat also has improved support for namespaces
when processing the XPath queries that select content for encryption. A
namespace definition mapping can be included as part of the data format
configuration. This enables true namespace matching, even if the prefix
values in the XPath query and the target xml document are not equivalent
strings.

Basic Options

Option Default Description

secureTag null
The XPATH reference to the XML
Element selected for encryption/
decryption. If no tag is specified, the
entire payload is encrypted/decrypted.

secureTagContents false

A boolean value to specify whether the
XML Element is to be encrypted or the
contents of the XML Element

• false = Element Level
• true = Element Content Level

passPhrase null

A String used as passPhrase to encrypt/
decrypt content. The passPhrase has to
be provided. If no passPhrase is
specified, a default passPhrase is used.
The passPhrase needs to be put
together in conjunction with the
appropriate encryption algorithm. For
example using TRIPLEDES the
passPhase can be a "Only another 24
Byte key"

DATA FORMAT APPENDIX 365

xmlCipherAlgorithm TRIPLEDES

The cipher algorithm to be used for
encryption/decryption of the XML
message content. The available
choices are:

• XMLCipher.TRIPLEDES
• XMLCipher.AES_128
• XMLCipher.AES_192
• XMLCipher.AES_256

namespaces none
A map of namespace values indexed by
prefix. The index values must match
the prefixes used in the secureTag
XPath query.

Asymmetric Encryption Options
These options can be applied in addition to relevant the Basic options to use
asymmetric key encryption.
Option Default Description

recipientKeyAlias none

The key alias to be used when
retrieving the recipient's public or
private key from a KeyStore when
performing asymmetric key
encryption or decryption

keyCipherAlgorithm none

The cipher algorithm to be used
for encryption/decription of the
asymmetric key. The available
choices are:

• XMLCipher.RSA_v1dot5
• XMLCipher.RSA_OAEP

keyOrTrustStoreParameters none
Configuration options for creating
and loading a KeyStore instance
that represents the sender's
trustStore or recipient's keyStore.

keyPassword none

Camel 2.10.2 / 2.11 The
password to be used for retrieving
the private key from the KeyStore.
This key is used for asymmetric
decryption.

366 DATA FORMAT APPENDIX

Marshal
In order to encrypt the payload, the marshal processor needs to be applied
on the route followed by the secureXML() tag.

Unmarshal
In order to decrypt the payload, the unmarshal processor needs to be applied
on the route followed by the secureXML() tag.

Examples
Given below are several examples of how marshalling could be performaed
at the Document, Element and Content levels.

Full Payload encryption/decryption

from("direct:start").
marshal().secureXML().
unmarshal().secureXML().

to("direct:end");

Partial Payload Content Only encryption/decryption*

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
...
from("direct:start").

marshal().secureXML(tagXPATH , secureTagContent).
unmarshal().secureXML(tagXPATH , secureTagContent).

to("direct:end");

Partial Multi Node Payload Content Only encryption/
decryption*

String tagXPATH = "//cheesesites/*/cheese";
boolean secureTagContent = true;
....
from("direct:start").

marshal().secureXML(tagXPATH , secureTagContent).

DATA FORMAT APPENDIX 367

unmarshal().secureXML(tagXPATH , secureTagContent).
to("direct:end");

Partial Payload Content Only encryption/decryption with
choice of passPhrase(password)*

String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
....
String passPhrase = "Just another 24 Byte key";
from("direct:start").

marshal().secureXML(tagXPATH , secureTagContent , passPhrase).
unmarshal().secureXML(tagXPATH , secureTagContent, passPhrase).

to("direct:end");

Partial Payload Content Only encryption/decryption with
passPhrase(password) and Algorithm*Â

import org.apache.xml.security.encryption.XMLCipher;
....
String tagXPATH = "//cheesesites/italy/cheese";
boolean secureTagContent = true;
String passPhrase = "Just another 24 Byte key";
String algorithm= XMLCipher.TRIPLEDES;
from("direct:start").

marshal().secureXML(tagXPATH , secureTagContent , passPhrase, algorithm).
unmarshal().secureXML(tagXPATH , secureTagContent, passPhrase, algorithm).

to("direct:end");

Partial Paryload Content with Namespace support

Java DSL

final Map<String, String> namespaces = new HashMap<String, String>();
namespaces.put("cust", "http://cheese.xmlsecurity.camel.apache.org/");

final KeyStoreParameters tsParameters = new KeyStoreParameters();
tsParameters.setPassword("password");
tsParameters.setResource("sender.ts");

368 DATA FORMAT APPENDIX

context.addRoutes(new RouteBuilder() {
public void configure() {

from("direct:start")
.marshal().secureXML("//cust:cheesesites/italy", namespaces, true,

"recipient", testCypherAlgorithm, XMLCipher.RSA_v1dot5,
tsParameters).to("mock:encrypted");

}
}

Spring XML
A namespace prefix that is defined as part of the camelContext definition can
be re-used in context within the data format secureTag attribute of the
secureXML element.

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://start"/>

<marshal>
<secureXML

secureTag="//cheese:cheesesites/italy"
secureTagContents="true" />

</marshal>
...

Asymmetric Key Encryption

Spring XML Sender

<!-- trust store configuration -->
<camel:keyStoreParameters id="trustStoreParams" resource="./sender.ts"

password="password"/>

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://start"/>

<marshal>
<secureXML

secureTag="//cheese:cheesesites/italy"
secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.org/2001/04/

DATA FORMAT APPENDIX 369

xmlenc#aes128-cbc"
keyCipherAlgorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="trustStoreParams" />

</marshal>
...

Spring XML Recipient

<!-- key store configuration -->
<camel:keyStoreParameters id="keyStoreParams" resource="./recipient.ks"

password="password" />

<camelContext id="springXmlSecurityDataFormatTestCamelContext"
xmlns="http://camel.apache.org/schema/spring"
xmlns:cheese="http://cheese.xmlsecurity.camel.apache.org/">

<route>
<from uri="direct://encrypted"/>

<unmarshal>
<secureXML

secureTag="//cheese:cheesesites/italy"
secureTagContents="true"
xmlCipherAlgorithm="http://www.w3.org/2001/04/

xmlenc#aes128-cbc"
keyCipherAlgorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"
recipientKeyAlias="recipient"
keyOrTrustStoreParametersId="keyStoreParams"
keyPassword="privateKeyPassword" />

</unmarshal>
...

Dependencies
This data format is provided in the camel-xmlsecurity component.

The GZip Data Format is a message compression and de-compression
format. It uses the same deflate algorithm that is used in Zip DataFormat,
although some additional headers are provided. This format is produced by
popular gzip/gunzip tool. Messages marshalled using GZip compression can
be unmarshalled using GZip decompression just prior to being consumed at
the endpoint. The compression capability is quite useful when you deal with
large XML and Text based payloads or when you read messages previously
comressed using gzip tool.

370 DATA FORMAT APPENDIX

http://camel.apache.org/data-format.html
http://camel.apache.org/zip-dataformat.html

Options
There are no options provided for this data format.

Marshal
In this example we marshal a regular text/XML payload to a compressed
payload employing gzip compression format and send it an ActiveMQ queue
called MY_QUEUE.

from("direct:start").marshal().gzip().to("activemq:queue:MY_QUEUE");

Unmarshal
In this example we unmarshalÂ a gzippedÂ payload from an ActiveMQ queue
called MY_QUEUEÂ to its original format,Â and forward it forÂ processingÂ to
the UnGZippedMessageProcessor.

from("activemq:queue:MY_QUEUE").unmarshal().gzip().process(new
UnGZippedMessageProcessor());

Dependencies
This data format is provided in camel-core so no additional dependencies is
needed.

CASTOR
Available as of Camel 2.1

Castor is a Data Format which uses the Castor XML library to unmarshal an
XML payload into Java objects or to marshal Java objects into an XML
payload.

As usually you can use either Java DSL or Spring XML to work with Castor
Data Format.

Using the Java DSL

from("direct:order").
marshal().castor().
to("activemq:queue:order");

DATA FORMAT APPENDIX 371

http://camel.apache.org/data-format.html
http://www.castor.org/

For example the following uses a named DataFormat of Castor which uses
default Castor data binding features.

CastorDataFormat castor = new CastorDataFormat ();

from("activemq:My.Queue").
unmarshal(castor).
to("mqseries:Another.Queue");

If you prefer to use a named reference to a data format which can then be
defined in your Registry such as via your Spring XML file. e.g.

from("activemq:My.Queue").
unmarshal("mycastorType").
to("mqseries:Another.Queue");

If you want to override default mapping schema by providing a mapping file
you can set it as follows.

CastorDataFormat castor = new CastorDataFormat ();
castor.setMappingFile("mapping.xml");

Also if you want to have more control on Castor Marshaller and Unmarshaller
you can access them as below.

castor.getMarshaller();
castor.getUnmarshaller();

Using Spring XML
The following example shows how to use Castor to unmarshal using Spring
configuring the castor data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<castor validation="true" />
</unmarshal>
<to uri="mock:result"/>

</route>
</camelContext>

This example shows how to configure the data type just once and reuse it on
multiple routes. You have to set the <castor> element directly in
<camelContext>.

372 DATA FORMAT APPENDIX

<camelContext>
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<castor id="myCastor"/>

</dataFormats>

<route>
<from uri="direct:start"/>
<marshal ref="myCastor"/>
<to uri="direct:marshalled"/>

</route>
<route>

<from uri="direct:marshalled"/>
<unmarshal ref="myCastor"/>
<to uri="mock:result"/>

</route>

</camelContext>

Options
Castor supports the following options
Option Type Default Description

encoding String UTF-8 Encoding to use when marshalling an
Object to XML

validation Boolean false Whether validation is turned on or off.

mappingFile String null Path to a Castor mapping file to load
from the classpath.

packages String[] null Add additional packages to Castor
XmlContext

classNames String[] null Add additional class names to Castor
XmlContext

Dependencies
To use Castor in your camel routes you need to add the a dependency on
camel-castor which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

DATA FORMAT APPENDIX 373

http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-castor</artifactId>
<version>x.x.x</version>

</dependency>Protobuf - Protocol Buffers

"Protocol Buffers - Google's data interchange format"
Camel provides a Data Format to serialse between Java and the Protocol
Buffer protocol. The project's site details why you may wish to choose this
format over xml. Protocol Buffer is language-neutral and platform-neutral, so
messages produced by your Camel routes may be consumed by other
language implementations.

API Site
Protobuf Implementation
Protobuf Java Tutorial

PROTOBUF OVERVIEW
This quick overview of how to use Protobuf. For more detail see the complete
tutorial

Defining the proto format
The first step is to define the format for the body of your exchange. This is
defined in a .proto file as so:

Listing 1. addressbook.proto

package org.apache.camel.component.protobuf;

option java_package = "org.apache.camel.component.protobuf";
option java_outer_classname = "AddressBookProtos";

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {

374 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/docs/overview.html
http://code.google.com/apis/protocolbuffers/
http://code.google.com/p/protobuf/
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html
http://code.google.com/apis/protocolbuffers/docs/javatutorial.html

Available from Camel 2.2

MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;
}

message AddressBook {
repeated Person person = 1;

}

Generating Java classes
The Protobuf SDK provides a compiler which will generate the Java classes for
the format we defined in our .proto file. You can run the compiler for any
additional supported languages you require.

protoc --java_out=. ./addressbook.proto
This will generate a single Java class named AddressBookProtos which

contains inner classes for Person and AddressBook. Builders are also
implemented for you. The generated classes implement
com.google.protobuf.Message which is required by the serialisation
mechanism. For this reason it important that only these classes are used in
the body of your exchanges. Camel will throw an exception on route creation
if you attempt to tell the Data Format to use a class that does not implement
com.google.protobuf.Message. Use the generated builders to translate the
data from any of your existing domain classes.

JAVA DSL
You can use create the ProtobufDataFormat instance and pass it to Camel
DataFormat marshal and unmarsha API like this.

PROTOBUF - PROTOCOL BUFFERS 375

http://camel.apache.org/data-format.html

ProtobufDataFormat format = new ProtobufDataFormat(Person.getDefaultInstance());

from("direct:in").marshal(format);
from("direct:back").unmarshal(format).to("mock:reverse");

Or use the DSL protobuf() passing the unmarshal default instance or default
instance class name like this.

// You don't need to specify the default instance for protobuf
marshaling

from("direct:marshal").marshal().protobuf();
from("direct:unmarshalA").unmarshal().

protobuf("org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person").
to ("mock:reverse");

from("direct:unmarshalB").unmarshal().protobuf(Person.getDefaultInstance()).to("mock:reverse");

SPRING DSL
The following example shows how to use Castor to unmarshal using Spring
configuring the protobuf data type

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<unmarshal>

<protobuf
instanceClass="org.apache.camel.dataformat.protobuf.generated.AddressBookProtos$Person"
/>

</unmarshal>
<to uri="mock:result"/>

</route>
</camelContext>

Dependencies
To use Protobuf in your camel routes you need to add the a dependency on
camel-protobuf which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

376 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/download.html
http://camel.apache.org/download.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-protobuf</artifactId>
<version>2.2.0</version>

</dependency>

SOAP DATAFORMAT
Available as of Camel 2.3

SOAP is a Data Format which uses JAXB2 and JAX-WS annotations to
marshal and unmarshal SOAP payloads. It provides the basic features of
Apache CXF without need for the CXF Stack.

ElementNameStrategy
An element name strategy is used for two purposes. The first is to find a xml
element name for a given object and soap action when marshaling the object
into a SOAP message. The second is to find an Exception class for a given
soap fault name.
Strategy Usage

QNameStrategy Uses a fixed qName that is configured on
instantiation. Exception lookup is not supported

TypeNameStrategy
Uses the name and namespace from the
@XMLType annotation of the given type. If no
namespace is set then package-info is used.
Exception lookup is not supported

ServiceInterfaceStrategy
Uses information from a webservice interface to
determine the type name and to find the
exception class for a SOAP fault

If you have generated the web service stub code with cxf-codegen or a
similar tool then you probably will want to use the ServiceInterfaceStrategy.
In the case you have no annotated service interface you should use
QNameStrategy or TypeNameStrategy.

Using the Java DSL
The following example uses a named DataFormat of soap which is configured
with the package com.example.customerservice to initialize the JAXBContext.
The second parameter is the ElementNameStrategy. The route is able to
marshal normal objects as well as exceptions. (Note the below just sends a

PROTOBUF - PROTOCOL BUFFERS 377

http://camel.apache.org/data-format.html
http://java.sun.com/javase/6/docs/api/javax/xml/bind/JAXBContext.html

Supported SOAP versions
SOAP 1.1 is supported by default. SOAP 1.2 is supported from
Camel 2.11 onwards.

Namespace prefix mapping
See JAXB for details how you can control namespace prefix
mappings when marshalling using SOAP data format.

SOAP Envelope to a queue. A web service provider would actually need to be
listening to the queue for a SOAP call to actually occur, in which case it would
be a one way SOAP request. If you need request reply then you should look
at the next example.)

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:start")

.marshal(soap)

.to("jms:myQueue");

Using SOAP 1.2
Available as of Camel 2.11

SoapJaxbDataFormat soap = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
soap.setVersion("1.2");
from("direct:start")

.marshal(soap)

.to("jms:myQueue");

When using XML DSL there is a version attribute you can set on the <soap>
element.

<!-- Defining a ServiceInterfaceStrategy for retrieving the element name when
marshalling -->

<bean id="myNameStrategy"
class="org.apache.camel.dataformat.soap.name.ServiceInterfaceStrategy">

<constructor-arg value="com.example.customerservice.CustomerService"/>
<constructor-arg value="true"/>

</bean>

378 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/jaxb.html
http://camel.apache.org/soap.html

See also
As the SOAP dataformat inherits from the JAXB dataformat most
settings apply here as well

And in the Camel route

<route>
<from uri="direct:start"/>
<marshal>

<soap contentPath="com.example.customerservice" version="1.2"
elementNameStrategyRef="myNameStrategy"/>

</marshal>
<to uri="jms:myQueue"/>

</route>

Multi-part Messages
Available as of Camel 2.8.1

Multi-part SOAP messages are supported by the ServiceInterfaceStrategy.
The ServiceInterfaceStrategy must be initialized with a service interface
definition that is annotated in accordance with JAX-WS 2.2 and meets the
requirements of the Document Bare style. The target method must meet the
following criteria, as per the JAX-WS specification: 1) it must have at most
one in or in/out non-header parameter, 2) if it has a return type other than
void it must have no in/out or out non-header parameters, 3) if it it has a
return type of void it must have at most one in/out or out non-header
parameter.

The ServiceInterfaceStrategy should be initialized with a boolean
parameter that indicates whether the mapping strategy applies to the
request parameters or response parameters.

ServiceInterfaceStrategy strat = new
ServiceInterfaceStrategy(com.example.customerservice.multipart.MultiPartCustomerService.class,
true);
SoapJaxbDataFormat soapDataFormat = new
SoapJaxbDataFormat("com.example.customerservice.multipart", strat);

Multi-part Request
The payload parameters for a multi-part request are initiazlied using a
BeanInvocation object that reflects the signature of the target operation.

PROTOBUF - PROTOCOL BUFFERS 379

http://camel.apache.org/jaxb.html

The camel-soap DataFormat maps the content in the BeanInvocation to
fields in the SOAP header and body in accordance with the JAX-WS mapping
when the marshal() processor is invoked.

BeanInvocation beanInvocation = new BeanInvocation();

// Identify the target method
beanInvocation.setMethod(MultiPartCustomerService.class.getMethod("getCustomersByName",

GetCustomersByName.class, com.example.customerservice.multipart.Product.class));

// Populate the method arguments
GetCustomersByName getCustomersByName = new GetCustomersByName();
getCustomersByName.setName("Dr. Multipart");

Product product = new Product();
product.setName("Multiuse Product");
product.setDescription("Useful for lots of things.");

Object[] args = new Object[] {getCustomersByName, product};

// Add the arguments to the bean invocation
beanInvocation.setArgs(args);

// Set the bean invocation object as the message body
exchange.getIn().setBody(beanInvocation);

Multi-part Response
A multi-part soap response may include an element in the soap body and will
have one or more elements in the soap header. The camel-soap DataFormat
will unmarshall the element in the soap body (if it exists) and place it onto
the body of the out message in the exchange. Header elements will not be
marshaled into their JAXB mapped object types. Instead, these elements are
placed into the camel out message header
org.apache.camel.dataformat.soap.UNMARSHALLED_HEADER_LIST. The
elements will appear either as element instance values, or as JAXBElement
values, depending upon the setting for the ignoreJAXBElement property.
This property is inherited from camel-jaxb.

You can also have the camel-soap DataFormate ignore header content all-
together by setting the ignoreUnmarshalledHeaders value to true.

Holder Object mapping
JAX-WS specifies the use of a type-parameterized javax.xml.ws.Holder
object for In/Out and Out parameters. A Holder object may be used when
building the BeanInvocation, or you may use an instance of the

380 PROTOBUF - PROTOCOL BUFFERS

parameterized-type directly. The camel-soap DataFormat marshals Holder
values in accordance with the JAXB mapping for the class of the Holder's
value. No mapping is provided for Holder objects in an unmarshalled
response.

Examples

Webservice client
The following route supports marshalling the request and unmarshalling a
response or fault.

String WS_URI = "cxf://http://myserver/
customerservice?serviceClass=com.example.customerservice&dataFormat=MESSAGE";
SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
from("direct:customerServiceClient")

.onException(Exception.class)
.handled(true)
.unmarshal(soapDF)

.end()

.marshal(soapDF)

.to(WS_URI)

.unmarshal(soapDF);

The below snippet creates a proxy for the service interface and makes a
SOAP call to the above route.

import org.apache.camel.Endpoint;
import org.apache.camel.component.bean.ProxyHelper;
...

Endpoint startEndpoint = context.getEndpoint("direct:customerServiceClient");
ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
// CustomerService below is the service endpoint interface, *not* the
javax.xml.ws.Service subclass
CustomerService proxy = ProxyHelper.createProxy(startEndpoint, classLoader,
CustomerService.class);
GetCustomersByNameResponse response = proxy.getCustomersByName(new
GetCustomersByName());

Webservice Server
Using the following route sets up a webservice server that listens on jms
queue customerServiceQueue and processes requests using the class
CustomerServiceImpl. The customerServiceImpl of course should implement

PROTOBUF - PROTOCOL BUFFERS 381

the interface CustomerService. Instead of directly instantiating the server
class it could be defined in a spring context as a regular bean.

SoapJaxbDataFormat soapDF = new SoapJaxbDataFormat("com.example.customerservice", new
ServiceInterfaceStrategy(CustomerService.class));
CustomerService serverBean = new CustomerServiceImpl();
from("jms://queue:customerServiceQueue")

.onException(Exception.class)
.handled(true)
.marshal(soapDF)

.end()

.unmarshal(soapDF)

.bean(serverBean)

.marshal(soapDF);

Dependencies
To use the SOAP dataformat in your camel routes you need to add the
following dependency to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-soap</artifactId>
<version>2.3.0</version>

</dependency>

CRYPTO
Available as of Camel 2.3
PGP Available as of Camel 2.9

The Crypto Data Format integrates the Java Cryptographic Extension into
Camel, allowing simple and flexible encryption and decryption of messages
using Camel's familiar marshall and unmarshal formatting mechanism. It
assumes marshalling to mean encryption to cyphertext and unmarshalling to
mean decryption back to the original plaintext.

Options
Name Type Default Description
algorithm String DES/CBC/

PKCS5Padding
The JCE algoorithm name indicating the cryptographic algorithm that
will be used.

algorithmParamterSpec AlgorithmParameterSpec null A JCE AlgorithmParameterSpec used to initialize the Cipher.

bufferSize Integer 2048 the size of the buffer used in the signature process.

cryptoProvider String null The name of the JCE Security Provider that should be used.

382 PROTOBUF - PROTOCOL BUFFERS

http://camel.apache.org/data-format.html

initializationVector byte[] null A byte array containing the Initialization Vector that will be used to
initialize the Cipher.

inline boolean false Flag indicating that the configured IV should be inlined into the
encrypted data stream.

macAlgorithm String null The JCE algorithm name indicating the Message Authentication
algorithm.

shouldAppendHMAC boolean null Flag indicating that a Message Authentication Code should be
calculated and appended to the encrypted data.

Basic Usage
At its most basic all that is required to encrypt/decrypt an exchange is a
shared secret key. If one or more instances of the Crypto data format are
configured with this key the format can be used to encrypt the payload in
one route (or part of one) and decrypted in another. For example, using the
Java DSL as follows:

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());

from("direct:basic-encryption")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

In Spring the dataformat is configured first and then used in routes

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<dataFormats>

<crypto id="basic" algorithm="DES" keyRef="desKey" />
</dataFormats>

...
<route>

<from uri="direct:basic-encryption" />
<marshal ref="basic" />
<to uri="mock:encrypted" />
<unmarshal ref="basic" />
<to uri="mock:unencrypted" />

</route>
</camelContext>

Specifying the Encryption Algorithm
Changing the algorithm is a matter of supplying the JCE algorithm name. If
you change the algorithm you will need to use a compatible key.

PROTOBUF - PROTOCOL BUFFERS 383

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

Specifying an Initialization Vector
Some crypto algorhithms, particularly block algorithms, require configuration
with an initial block of data known as an Initialization Vector. In the JCE this is
passed as an AlgorithmParameterSpec when the Cipher is initialized. To use
such a vector with the CryptoDataFormat you can configure it with a byte[]
contianing the required data e.g.

KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07};

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding",
generator.generateKey());
cryptoFormat.setInitializationVector(initializationVector);

from("direct:init-vector")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

or with spring, suppling a reference to a byte[]

<crypto id="initvector" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector" />

The same vector is required in both the encryption and decryption phases. As
it is not necessary to keep the IV a secret, the DataFormat allows for it to be
inlined into the encrypted data and subsequently read out in the decryption
phase to initialize the Cipher. To inline the IV set the /oinline flag.

KeyGenerator generator = KeyGenerator.getInstance("DES");
byte[] initializationVector = new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,

384 PROTOBUF - PROTOCOL BUFFERS

0x07};
SecretKey key = generator.generateKey();

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
cryptoFormat.setInitializationVector(initializationVector);
cryptoFormat.setShouldInlineInitializationVector(true);
CryptoDataFormat decryptFormat = new CryptoDataFormat("DES/CBC/PKCS5Padding", key);
decryptFormat.setShouldInlineInitializationVector(true);

from("direct:inline")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(decryptFormat)
.to("mock:unencrypted");

or with spring.

<crypto id="inline" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
initVectorRef="initializationVector"

inline="true" />
<crypto id="inline-decrypt" algorithm="DES/CBC/PKCS5Padding" keyRef="desKey"
inline="true" />

For more information of the use of Initialization Vectors, consult
• http://en.wikipedia.org/wiki/Initialization_vector
• http://www.herongyang.com/Cryptography/
• http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Hashed Message Authentication Codes (HMAC)
To avoid attacks against the encrypted data while it is in transit the
CryptoDataFormat can also calculate a Message Authentication Code forthe
encrypted exchange contents based on a configurable MAC algorithm. The
calculated HMAC is appended to the stream after encryption. It is separated
from the stream in the decryption phase. The MAC is recalculated and
verified against the transmitted version to insure nothing was tampered with
in transit.For more information on Message Authentication Codes see
http://en.wikipedia.org/wiki/HMAC

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);

from("direct:hmac")
.marshal(cryptoFormat)
.to("mock:encrypted")

PROTOBUF - PROTOCOL BUFFERS 385

http://en.wikipedia.org/wiki/Initialization_vector
http://www.herongyang.com/Cryptography/
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/HMAC

.unmarshal(cryptoFormat)

.to("mock:unencrypted");

or with spring.

<crypto id="hmac" algorithm="DES" keyRef="desKey" shouldAppendHMAC="true" />

By default the HMAC is calculated using the HmacSHA1 mac algorithm
though this can be easily changed by supplying a different algorithm name.
See [here] for how to check what algorithms are available through the
configured security providers

KeyGenerator generator = KeyGenerator.getInstance("DES");

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", generator.generateKey());
cryptoFormat.setShouldAppendHMAC(true);
cryptoFormat.setMacAlgorithm("HmacMD5");

from("direct:hmac-algorithm")
.marshal(cryptoFormat)
.to("mock:encrypted")
.unmarshal(cryptoFormat)
.to("mock:unencrypted");

or with spring.

<crypto id="hmac-algorithm" algorithm="DES" keyRef="desKey" macAlgorithm="HmacMD5"
shouldAppendHMAC="true" />

Supplying Keys Dynamically
When using a Recipient list or similar EIP the recipient of an exchange can
vary dynamically. Using the same key across all recipients may neither be
feasible or desirable. It would be useful to be able to specify keys
dynamically on a per exchange basis. The exchange could then be
dynamically enriched with the key of its target recipient before being
processed by the data format. To facilitate this the DataFormat allow for keys
to be supplied dynamically via the message headers below

• CryptoDataFormat.KEY "CamelCryptoKey"

CryptoDataFormat cryptoFormat = new CryptoDataFormat("DES", null);
/**
* Note: the header containing the key should be cleared after
* marshalling to stop it from leaking by accident and

386 PROTOBUF - PROTOCOL BUFFERS

* potentially being compromised. The processor version below is
* arguably better as the key is left in the header when you use
* the DSL leaks the fact that camel encryption was used.
*/

from("direct:key-in-header-encrypt")
.marshal(cryptoFormat)
.removeHeader(CryptoDataFormat.KEY)
.to("mock:encrypted");

from("direct:key-in-header-decrypt").unmarshal(cryptoFormat).process(new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().getHeaders().remove(CryptoDataFormat.KEY);
exchange.getOut().copyFrom(exchange.getIn());

}
}).to("mock:unencrypted");

or with spring.

<crypto id="nokey" algorithm="DES" />

PGPDataFormat Options
Name Type Default Description
keyUserid String null The userid of the key in the PGP keyring.

password String null Password used when opening the private key (not used for encryption).

keyFileName String null Filename of the keyring; must be accessible as a classpath resource (but you can specify
a location in the file system by using the "file:" prefix).

signatureKeyUserid String null Since Camel 2.11.0 Optional userid of the key in the PGP keyring to use for signing
(during encryption) or signature verification (during decryption) .

signaturePassword String null Since Camel 2.11.0 Optional password used when opening the private key used for
signing (during encryption).

signatureKeyFileName String null

Since Camel 2.11.0 Optional filename of the keyring to use for signing (during
encryption) or for signature verification (during decryption); must be accessible as a
classpath resource (but you can specify a location in the file system by using the "file:"
prefix).

armored boolean false This option will cause PGP to base64 encode the encrypted text, making it available for
copy/paste, etc.

integrity boolean true Adds an integrity check/sign into the encryption file.

PGPDataFormat Message Headers
You can override the PGPDataFormat options by applying below headers into
message dynamically.
Name Type Description

PROTOBUF - PROTOCOL BUFFERS 387

CamelPGPDataFormatKeyFileName String

Since Camel
2.11.0 Filename
of the keyring;
will override
existing setting
directly on the
PGPDataFormat.

CamelPGPDataFormatKeyUserid String

Since Camel
2.11.0 The
userid of the key
in the PGP
keyring; will
override existing
setting directly
on the
PGPDataFormat.

CamelPGPDataFormatKeyPassword String

Since Camel
2.11.0 Password
used when
opening the
private key; will
override existing
setting directly
on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyFileName String

Since Camel
2.11.0 Filename
of the signature
keyring; will
override existing
setting directly
on the
PGPDataFormat.

388 PROTOBUF - PROTOCOL BUFFERS

CamelPGPDataFormatSignatureKeyUserid String

Since Camel
2.11.0 The
userid of the
signature key in
the PGP keyring;
will override
existing setting
directly on the
PGPDataFormat.

CamelPGPDataFormatSignatureKeyPassword String

Since Camel
2.11.0 Password
used when
opening the
signature private
key; will override
existing setting
directly on the
PGPDataFormat.

Encrypting with PGPDataFormat
The following sample uses the popular PGP format for encrypting/decrypting
files using the Bouncy Castle Java libraries:

// Public Key FileName
String keyFileName = getKeyFileName();
// Private Key FileName
String keyFileNameSec = getKeyFileNameSec();
// Keyring Userid Used to Encrypt
String keyUserid = getKeyUserId();
// Private key password
String keyPassword = getKeyPassword();

from("direct:inline")
.marshal().pgp(keyFileName, keyUserid)
.to("mock:encrypted")
.unmarshal().pgp(keyFileNameSec, keyUserid, keyPassword)
.to("mock:unencrypted");

The following sample performs signing + encryption, and then signature
verification + decryption. It uses the same keyring for both signing and
encryption, but you can obviously use different keys:

PGPDataFormat pgpSignAndEncrypt = new PGPDataFormat();
pgpSignAndEncrypt.setKeyFileName(keyFileName);

PROTOBUF - PROTOCOL BUFFERS 389

http://www.bouncycastle.org/java.html

pgpSignAndEncrypt.setKeyUserid(keyUserid);
pgpSignAndEncrypt.setSignatureKeyFileName(keyFileNameSec);
pgpSignAndEncrypt.setSignatureKeyUserid(keyUserid);
pgpSignAndEncrypt.setSignaturePassword(keyPassword);

PGPDataFormat pgpVerifyAndDecrypt = new PGPDataFormat();
pgpVerifyAndDecrypt.setKeyFileName(keyFileNameSec);
pgpVerifyAndDecrypt.setKeyUserid(keyUserid);
pgpVerifyAndDecrypt.setPassword(keyPassword);
pgpVerifyAndDecrypt.setSignatureKeyFileName(keyFileName);
pgpVerifyAndDecrypt.setSignatureKeyUserid(keyUserid);

from("direct:inline-sign")
.marshal(pgpSignAndEncrypt)
.to("mock:encrypted")
.unmarshal(pgpVerifyAndDecrypt)
.to("mock:unencrypted");

Or using Spring:

<dataFormats>
<!-- will load the file from classpath by default, but you can prefix with file: to

load from file system -->
<pgp id="encrypt" keyFileName="org/apache/camel/component/crypto/pubring.gpg"

keyUserid="sdude@nowhere.net"/>
<pgp id="decrypt" keyFileName="org/apache/camel/component/crypto/secring.gpg"

keyUserid="sdude@nowhere.net" password="sdude"/>
</dataFormats>

<route>
<from uri="direct:inline"/>
<marshal ref="encrypt"/>
<to uri="mock:encrypted"/>
<unmarshal ref="decrypt"/>
<to uri="mock:unencrypted"/>

</route>

To work with the previous example you need the
following

• A public keyring file which contains the public keys used to encrypt
the data

• A private keyring file which contains the keys used to decrypt the
data

• The keyring password

390 PROTOBUF - PROTOCOL BUFFERS

Managing your keyring
To manage the keyring, I use the command line tools, I find this to be the
simplest approach in managing the keys. There are also Java libraries
available from http://www.bouncycastle.org/java.html if you would prefer to
do it that way.

1. Install the command line utilities on linux

apt-get install gnupg

2. Create your keyring, entering a secure password

gpg --gen-key

3. If you need to import someone elses public key so that you can
encrypt a file for them.

gpg --import <filename.key

4. The following files should now exist and can be used to run the
example

ls -l ~/.gnupg/pubring.gpg ~/.gnupg/secring.gpg

Dependencies
To use the Crypto dataformat in your camel routes you need to add the
following dependency to your pom.

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>2.9.0</version>

</dependency>

See Also
• Data Format
• Crypto (Digital Signatures)
• http://www.bouncycastle.org/java.html

PROTOBUF - PROTOCOL BUFFERS 391

http://www.bouncycastle.org/java.html
http://camel.apache.org/crypto.html
http://camel.apache.org/data-format.html
http://camel.apache.org/crypto-digital-signatures.html
http://www.bouncycastle.org/java.html

SYSLOG DATAFORMAT
Available as of Camel 2.6

The syslog dataformat is used for working with RFC3164 messages.
This component supports the following:

▪ UDP consumption of syslog messages
▪ Agnostic data format using either plain String objects or

SyslogMessage model objects.
▪ Type Converter from/to SyslogMessage and String
▪ Integration with the camel-mina component.
▪ Integration with the camel-netty component.

Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-syslog</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

RFC3164 Syslog protocol
Syslog uses the user datagram protocol (UDP) [1] as its underlying transport
layer mechanism.
The UDP port that has been assigned to syslog is 514.

To expose a Syslog listener service we reuse the existing camel-mina
component or camel-netty where we just use the Rfc3164SyslogDataFormat
to marshal and unmarshal messages

Exposing a Syslog listener
In our Spring XML file, we configure an endpoint to listen for udp messages
on port 10514, note that in netty we disable the defaultCodec, this
will allow a fallback to a NettyTypeConverter and delivers the message as an
InputStream:

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

392 PROTOBUF - PROTOCOL BUFFERS

http://www.ietf.org/rfc/rfc3164.txt
http://camel.apache.org/type-converter.html
http://camel.apache.org/mina.html
http://camel.apache.org/netty.html
http://camel.apache.org/mina.html
http://camel.apache.org/netty.html

<route>
<from

uri="netty:udp://localhost:10514?sync=false&allowDefaultCodec=false"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stop1"/>

</route>

</camelContext>

The same route using camel-mina

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

<route>
<from uri="mina:udp://localhost:10514"/>
<unmarshal ref="mySyslog"/>
<to uri="mock:stop1"/>

</route>

</camelContext>

Sending syslog messages to a remote destination

<camelContext id="myCamel" xmlns="http://camel.apache.org/schema/spring">

<dataFormats>
<syslog id="mySyslog"/>

</dataFormats>

<route>
<from uri="direct:syslogMessages"/>
<marshal ref="mySyslog"/>
<to uri="mina:udp://remotehost:10514"/>

</route>

</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

PROTOBUF - PROTOCOL BUFFERS 393

http://camel.apache.org/mina.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CHAPTER 10

°°°°

Pattern Appendix

There now follows a breakdown of the various Enterprise Integration Patterns
that Camel supports

MESSAGING SYSTEMS

Message Channel
Camel supports the Message Channel from the EIP patterns. The Message
Channel is an internal implementation detail of the Endpoint interface and all
interactions with the Message Channel are via the Endpoint interfaces.

For more details see
• Message
• Message Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message
Camel supports the Message from the EIP patterns using the Message
interface.

394 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/toc.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/message.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html

To support various message exchange patterns like one way Event
Message and Request Reply messages Camel uses an Exchange interface
which has a pattern property which can be set to InOnly for an Event
Message which has a single inbound Message, or InOut for a Request Reply
where there is an inbound and outbound message.

Here is a basic example of sending a Message to a route in InOnly and
InOut modes

Requestor Code

//InOnly
getContext().createProducerTemplate().sendBody("direct:startInOnly", "Hello World");

//InOut
String result = (String)
getContext().createProducerTemplate().requestBody("direct:startInOut", "Hello World");

Route Using the Fluent Builders

from("direct:startInOnly").inOnly("bean:process");

from("direct:startInOut").inOut("bean:process");

Route Using the Spring XML Extensions

<route>
<from uri="direct:startInOnly"/>
<inOnly uri="bean:process"/>

</route>

<route>
<from uri="direct:startInOut"/>
<inOut uri="bean:process"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 395

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/event-message.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html
http://camel.apache.org/event-message.html
http://camel.apache.org/event-message.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Pipes and Filters
Camel supports the Pipes and Filters from the EIP patterns in various ways.

With Camel you can split your processing across multiple independent
Endpoint instances which can then be chained together.

Using Routing Logic
You can create pipelines of logic using multiple Endpoint or Message
Translator instances as follows

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", "mock:result");

Though pipeline is the default mode of operation when you specify multiple
outputs in Camel. The opposite to pipeline is multicast; which fires the same
message into each of its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element

<route>
<from uri="activemq:SomeQueue"/>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</route>

In the above the pipeline element is actually unnecessary, you could use
this...

<route>
<from uri="activemq:SomeQueue"/>
<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</route>

Its just a bit more explicit. However if you wish to use <multicast/> to avoid
a pipeline - to send the same message into multiple pipelines - then the
<pipeline/> element comes into its own.

396 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html

<route>
<from uri="activemq:SomeQueue"/>
<multicast>

<pipeline>
<bean ref="something"/>
<to uri="log:Something"/>

</pipeline>
<pipeline>

<bean ref="foo"/>
<bean ref="bar"/>
<to uri="activemq:OutputQueue"/>

</pipeline>
</multicast>

</route>

In the above example we are routing from a single Endpoint to a list of
different endpoints specified using URIs. If you find the above a bit confusing,
try reading about the Architecture or try the Examples

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message Router
The Message Router from the EIP patterns allows you to consume from an
input destination, evaluate some predicate then choose the right output
destination.

The following example shows how to route a request from an input
queue:a endpoint to either queue:b, queue:c or queue:d depending on
the evaluation of various Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

CHAPTER 10 - PATTERN APPENDIX 397

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/architecture.html
http://camel.apache.org/examples.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.choice()

.when(header("foo").isEqualTo("bar"))
.to("direct:b")

.when(header("foo").isEqualTo("cheese"))
.to("direct:c")

.otherwise()
.to("direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<choice>

<when>
<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>

</when>
<otherwise>

<to uri="direct:d"/>
</otherwise>

</choice>
</route>

</camelContext>

Choice without otherwise
If you use a choice without adding an otherwise, any unmatched exchanges
will be dropped by default.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

398 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Message Translator
Camel supports the Message Translator from the EIP patterns by using an
arbitrary Processor in the routing logic, by using a bean to perform the
transformation, or by using transform() in the DSL. You can also use a Data
Format to marshal and unmarshal messages in different encodings.

Using the Fluent Builders
You can transform a message using Camel's Bean Integration to call any

method on a bean in your Registry such as your Spring XML configuration file
as follows

from("activemq:SomeQueue").
beanRef("myTransformerBean", "myMethodName").
to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or
defined in JNDI etc. You can omit the method name parameter from
beanRef() and the Bean Integration will try to deduce the method to invoke
from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").transform(body().append(" World!")).to("mock:result");

Use Spring XML
You can also use Spring XML Extensions to do a transformation. Basically

any Expression language can be substituted inside the transform element as
shown below

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

CHAPTER 10 - PATTERN APPENDIX 399

http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/data-format.html
http://camel.apache.org/data-format.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html

<from uri="direct:start"/>
<transform>

<simple>${in.body} extra data!</simple>
</transform>
<to uri="mock:end"/>

</route>
</camelContext>

Or you can use the Bean Integration to invoke a bean

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

You can also use Templating to consume a message from one destination,
transform it with something like Velocity or XQuery and then send it on to
another destination. For example using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then
sending responses back to the JMSReplyTo Destination you could use this.

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

▪ Content Enricher
▪ Using getIn or getOut methods on Exchange

Message Endpoint
Camel supports the Message Endpoint from the EIP patterns using the
Endpoint interface.

400 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/bean-integration.html
http://camel.apache.org/templating.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/activemq.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/content-enricher.html
http://camel.apache.org/using-getin-or-getout-methods-on-exchange.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html

When using the DSL to create Routes you typically refer to Message
Endpoints by their URIs rather than directly using the Endpoint interface. Its
then a responsibility of the CamelContext to create and activate the
necessary Endpoint instances using the available Component
implementations.

For more details see
• Message

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

MESSAGING CHANNELS

Point to Point Channel
Camel supports the Point to Point Channel from the EIP patterns using the
following components

• SEDA for in-VM seda based messaging
• JMS for working with JMS Queues for high performance, clustering

and load balancing
• JPA for using a database as a simple message queue
• XMPP for point-to-point communication over XMPP (Jabber)
• and others

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of

CHAPTER 10 - PATTERN APPENDIX 401

http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html
http://camel.apache.org/message.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html

Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Publish Subscribe Channel
Camel supports the Publish Subscribe Channel from the EIP patterns using for
example the following components:

• JMS for working with JMS Topics for high performance, clustering and
load balancing

• XMPP when using rooms for group communication
• SEDA for working with SEDA in the same CamelContext which can

work in pub-sub, but allowing multiple consumers.
• VM as SEDA but for intra-JVM.

Using Routing Logic
Another option is to explicitly list the publish-subscribe relationship in your
routing logic; this keeps the producer and consumer decoupled but lets you
control the fine grained routing configuration using the DSL or Xml
Configuration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d");

}
};

Using the Spring XML Extensions

402 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/seda.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/vm.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<multicast>

<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>

</multicast>
</route>

</camelContext>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

DEAD LETTER CHANNEL
Camel supports the Dead Letter Channel from the EIP patterns using the
DeadLetterChannel processor which is an Error Handler.

Redelivery
It is common for a temporary outage or database deadlock to cause a
message to fail to process; but the chances are if its tried a few more times
with some time delay then it will complete fine. So we typically wish to use
some kind of redelivery policy to decide how many times to try redeliver a
message and how long to wait before redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You
can customize things like

CHAPTER 10 - PATTERN APPENDIX 403

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

Difference between Dead Letter Channel and Default Error
Handler
The major difference is that Dead Letter Channel has a dead letter
queue that whenever an Exchange could not be processed is
moved to. It will always move failed exchanges to this queue.

Unlike the Default Error Handler that does not have a dead letter queue.
So whenever an Exchange could not be processed the error is propagated
back to the client.

Notice: You can adjust this behavior of whether the client should be
notified or not with the handled option.

• how many times a message is attempted to be redelivered before it
is considered a failure and sent to the dead letter channel

• the initial redelivery timeout
• whether or not exponential backoff is used (i.e. the time between

retries increases using a backoff multiplier)
• whether to use collision avoidance to add some randomness to the

timings
• delay pattern (see below for details)
• Camel 2.11: whether to allow redelivery during stopping/shutdown

Once all attempts at redelivering the message fails then the message is
forwarded to the dead letter queue.

About moving Exchange to dead letter queue and using handled
Handled on Dead Letter Channel

When all attempts of redelivery have failed the Exchange is moved to the
dead letter queue (the dead letter endpoint). The exchange is then complete
and from the client point of view it was processed. As such the Dead Letter
Channel have handled the Exchange.

For instance configuring the dead letter channel as:
Using the Fluent Builders

errorHandler(deadLetterChannel("jms:queue:dead")
.maximumRedeliveries(3).redeliveryDelay(5000));

Using the Spring XML Extensions

404 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html

<route errorHandlerRef="myDeadLetterErrorHandler">
...

</route>

<bean id="myDeadLetterErrorHandler"
class="org.apache.camel.builder.DeadLetterChannelBuilder">

<property name="deadLetterUri" value="jms:queue:dead"/>
<property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>

</bean>

<bean id="myRedeliveryPolicyConfig"
class="org.apache.camel.processor.RedeliveryPolicy">

<property name="maximumRedeliveries" value="3"/>
<property name="redeliveryDelay" value="5000"/>

</bean>

The Dead Letter Channel above will clear the caused exception
(setException(null)), by moving the caused exception to a property on the
Exchange, with the key Exchange.EXCEPTION_CAUGHT. Then the Exchange is
moved to the "jms:queue:dead" destination and the client will not notice
the failure.

About moving Exchange to dead letter queue and using the original
message
The option useOriginalMessage is used for routing the original input
message instead of the current message that potentially is modified during
routing.

For instance if you have this route:

from("jms:queue:order:input")
.to("bean:validateOrder")
.to("bean:transformOrder")
.to("bean:handleOrder");

The route listen for JMS messages and validates, transforms and handle it.
During this the Exchange payload is transformed/modified. So in case
something goes wrong and we want to move the message to another JMS
destination, then we can configure our Dead Letter Channel with the
useOriginalMessage option. But when we move the Exchange to this
destination we do not know in which state the message is in. Did the error
happen in before the transformOrder or after? So to be sure we want to move
the original input message we received from jms:queue:order:input. So we
can do this by enabling the useOriginalMessage option as shown below:

CHAPTER 10 - PATTERN APPENDIX 405

http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html

// will use original body
errorHandler(deadLetterChannel("jms:queue:dead")

.useOriginalMessage().mamimumRedeliveries(5).redeliverDelay(5000);

Then the messages routed to the jms:queue:dead is the original input. If we
want to manually retry we can move the JMS message from the failed to the
input queue, with no problem as the message is the same as the original we
received.

OnRedelivery
When Dead Letter Channel is doing redeliver its possible to configure a
Processor that is executed just before every redelivery attempt. This can be
used for the situations where you need to alter the message before its
redelivered. See below for sample.

Redelivery default values
Redelivery is disabled by default.

The default redeliver policy will use the following values:
• maximumRedeliveries=0
• redeliverDelay=1000L (1 second)
• maximumRedeliveryDelay = 60 * 1000L (60 seconds)
• And the exponential backoff and collision avoidance is turned off.
• The retriesExhaustedLogLevel are set to LoggingLevel.ERROR
• The retryAttemptedLogLevel are set to LoggingLevel.DEBUG
• Stack traces is logged for exhausted messages from Camel 2.2

onwards.
• Handled exceptions is not logged from Camel 2.3 onwards

The maximum redeliver delay ensures that a delay is never longer than the
value, default 1 minute. This can happen if you turn on the exponential
backoff.

The maximum redeliveries is the number of re delivery attempts. By
default Camel will try to process the exchange 1 + 5 times. 1 time for the
normal attempt and then 5 attempts as redeliveries.
Setting the maximumRedeliveries to a negative value such as -1 will then
always redelivery (unlimited).
Setting the maximumRedeliveries to 0 will disable any re delivery attempt.

Camel will log delivery failures at the DEBUG logging level by default. You
can change this by specifying retriesExhaustedLogLevel and/or
retryAttemptedLogLevel. See ExceptionBuilderWithRetryLoggingLevelSetTest
for an example.

406 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java

onException and onRedeliver
We also support for per onException to set a onRedeliver. That
means you can do special on redelivery for different exceptions, as
opposed to onRedelivery set on Dead Letter Channel can be viewed
as a global scope.

You can turn logging of stack traces on/off. If turned off Camel will still log
the redelivery attempt. Its just much less verbose.

Redeliver Delay Pattern
Delay pattern is used as a single option to set a range pattern for delays. If
used then the following options does not apply: (delay, backOffMultiplier,
useExponentialBackOff, useCollisionAvoidance, maximumRedeliveryDelay).

The idea is to set groups of ranges using the following syntax:
limit:delay;limit 2:delay 2;limit 3:delay 3;...;limit N:delay N

Each group has two values separated with colon
▪ limit = upper limit
▪ delay = delay in millis

And the groups is again separated with semi colon.
The rule of thumb is that the next groups should have a higher limit
than the previous group.

Lets clarify this with an example:
delayPattern=5:1000;10:5000;20:20000

That gives us 3 groups:
▪ 5:1000
▪ 10:5000
▪ 20:20000

Resulting in these delays for redelivery attempt:
▪ Redelivery attempt number 1..4 = 0 millis (as the first group start

with 5)
▪ Redelivery attempt number 5..9 = 1000 millis (the first group)
▪ Redelivery attempt number 10..19 = 5000 millis (the second group)
▪ Redelivery attempt number 20.. = 20000 millis (the last group)

Note: The first redelivery attempt is 1, so the first group should start with 1
or higher.

You can start a group with limit 1 to eg have a starting delay:
delayPattern=1:1000;5:5000

▪ Redelivery attempt number 1..4 = 1000 millis (the first group)
▪ Redelivery attempt number 5.. = 5000 millis (the last group)

CHAPTER 10 - PATTERN APPENDIX 407

http://camel.apache.org/exception-clause.html
http://camel.apache.org/dead-letter-channel.html

There is no requirement that the next delay should be higher than the
previous. You can use any delay value you like. For example with
delayPattern=1:5000;3:1000 we start with 5 sec delay and then later
reduce that to 1 second.

Redelivery header
When a message is redelivered the DeadLetterChannel will append a
customizable header to the message to indicate how many times its been
redelivered.
Before Camel 2.6: The header is CamelRedeliveryCounter, which is also
defined on the Exchange.REDELIVERY_COUNTER.
Starting with 2.6: The header CamelRedeliveryMaxCounter, which is also
defined on the Exchange.REDELIVERY_MAX_COUNTER, contains the maximum
redelivery setting. This header is absent if you use retryWhile or have
unlimited maximum redelivery configured.

And a boolean flag whether it is being redelivered or not (first attempt)
The header CamelRedelivered contains a boolean if the message is
redelivered or not, which is also defined on the Exchange.REDELIVERED.

Dynamically calculated delay from the exchange
In Camel 2.9 and 2.8.2: The header is CamelRedeliveryDelay, which is also
defined on the Exchange.REDELIVERY_DELAY.
Is this header is absent, normal redelivery rules apply.

Which endpoint failed
Available as of Camel 2.1

When Camel routes messages it will decorate the Exchange with a
property that contains the last endpoint Camel send the Exchange to:

String lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT, String.class);

The Exchange.TO_ENDPOINT have the constant value CamelToEndpoint.
This information is updated when Camel sends a message to any

endpoint. So if it exists its the last endpoint which Camel send the Exchange
to.

When for example processing the Exchange at a given Endpoint and the
message is to be moved into the dead letter queue, then Camel also
decorates the Exchange with another property that contains that last
endpoint:

408 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

String failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT,
String.class);

The Exchange.FAILURE_ENDPOINT have the constant value
CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter
queue and use that for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic
Recipient List so you know which endpoints failed.

Notice: These information is kept on the Exchange even if the message
was successfully processed by a given endpoint, and then later fails for
example in a local Bean processing instead. So beware that this is a hint that
helps pinpoint errors.

from("activemq:queue:foo")
.to("http://someserver/somepath")
.beanRef("foo");

Now suppose the route above and a failure happens in the foo bean. Then
the Exchange.TO_ENDPOINT and Exchange.FAILURE_ENDPOINT will still
contain the value of http://someserver/somepath.

Which route failed
Available as of Camel 2.10.4/2.11

When Camel error handler handles an error such as Dead Letter Channel
or using Exception Clause with handled=true, then Camel will decorate
the Exchange with the route id where the error occurred.

String failedRouteId = exchange.getProperty(Exchange.FAILURE_ROUTE_ID, String.class);

The Exchange.FAILURE_ROUTE_ID have the constant value
CamelFailureRouteId.

This allows for example you to fetch this information in your dead letter
queue and use that for error reporting.

Control if redelivery is allowed during stopping/shutdown
Available as of Camel 2.11

Prior to Camel 2.10, Camel will perform redelivery while stopping a route,
or shutting down Camel. This has improved a bit in Camel 2.10 onwards, as
Camel will not perform redelivery attempts when shutting down aggressively

CHAPTER 10 - PATTERN APPENDIX 409

http://camel.apache.org/recipient-list.html
http://camel.apache.org/bean.html
http://someserver/somepath
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/exchange.html

(eg during Graceful Shutdown and timeout hit). From Camel 2.11 onwards
there is a new option allowRedeliveryWhileStopping which you can use to
control if redelivery is allowed or not; notice that any in progress redelivery
will still be executed. This option can only disallow any redelivery to be
executed after the stopping of a route/shutdown of Camel has been
triggered. If a redelivery is dissallowed then a RejectedExcutionException
is set on the Exchange and the processing of the Exchange stops. This means
any consumer will see the Exchange as failed due the
RejectedExecutionException.

The default value is true to be backwards compatible as before. For
example the following sample shows how to do this with Java DSL and XML
DSL

// this error handler will try up till 20 redelivery attempts with 1 second between.
// however if we are stopping then do not allow any redeliver attempts.
errorHandler(defaultErrorHandler()

.allowRedeliveryWhileStopping(false)

.maximumRedeliveries(20).redeliveryDelay(1000).retryAttemptedLogLevel(LoggingLevel.INFO));

from("seda:foo").routeId("foo")
.to("mock:foo")
.throwException(new IllegalArgumentException("Forced"));

And the sample sample with XML DSL

<!-- notice we use the errorHandlerRef attribute to refer to the error handler to use
as default -->

<camelContext errorHandlerRef="myErrorHandler" xmlns="http://camel.apache.org/
schema/spring">

<!-- configure error handler, to redeliver up till 10 times, with 1 sec delay
and if we are stopping then do not allow redeliveries, to stop faster -->

<errorHandler id="myErrorHandler" type="DefaultErrorHandler">
<redeliveryPolicy maximumRedeliveries="20" redeliveryDelay="1000"

allowRedeliveryWhileStopping="false" retryAttemptedLogLevel="INFO"/>
</errorHandler>

<route id="foo">
<from uri="seda:foo"/>

<to uri="mock:foo"/>
<throwException ref="forced"/>

</route>

</camelContext>

410 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/graceful-shutdown.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Samples
The following example shows how to configure the Dead Letter Channel
configuration using the DSL

RouteBuilder builder = new RouteBuilder() {
public void configure() {

// using dead letter channel with a seda queue for errors
errorHandler(deadLetterChannel("seda:errors"));

// here is our route
from("seda:a").to("seda:b");

}
};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder() {
public void configure() {

// configures dead letter channel to use seda queue for errors and use at
most 2 redelveries

// and exponential backoff

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).useExponentialBackOff());

// here is our route
from("seda:a").to("seda:b");

}
};

How can I modify the Exchange before redelivery?
We support directly in Dead Letter Channel to set a Processor that is
executed before each redelivery attempt.

When Dead Letter Channel is doing redeliver its possible to configure a
Processor that is executed just before every redelivery attempt. This can be
used for the situations where you need to alter the message before its
redelivered.

Here we configure the Dead Letter Channel to use our processor
MyRedeliveryProcessor to be executed before each redelivery.

// we configure our Dead Letter Channel to invoke
// MyRedeliveryProcessor before a redelivery is
// attempted. This allows us to alter the message before
errorHandler(deadLetterChannel("mock:error").maximumRedeliveries(5)

.onRedelivery(new MyRedeliverProcessor())
// setting delay to zero is just to make unit testing faster
.redeliveryDelay(0L));

CHAPTER 10 - PATTERN APPENDIX 411

http://camel.apache.org/dsl.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/processor.html
http://camel.apache.org/dead-letter-channel.html

And this is the processor MyRedeliveryProcessor where we alter the
message.

// This is our processor that is executed before every redelivery attempt
// here we can do what we want in the java code, such as altering the message
public class MyRedeliverProcessor implements Processor {

public void process(Exchange exchange) throws Exception {
// the message is being redelivered so we can alter it

// we just append the redelivery counter to the body
// you can of course do all kind of stuff instead
String body = exchange.getIn().getBody(String.class);
int count = exchange.getIn().getHeader(Exchange.REDELIVERY_COUNTER,

Integer.class);

exchange.getIn().setBody(body + count);

// the maximum redelivery was set to 5
int max = exchange.getIn().getHeader(Exchange.REDELIVERY_MAX_COUNTER,

Integer.class);
assertEquals(5, max);

}
}

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

▪ Error Handler
▪ Exception Clause

Guaranteed Delivery
Camel supports the Guaranteed Delivery from the EIP patterns using among
others the following components:

• File for using file systems as a persistent store of messages
• JMS when using persistent delivery (the default) for working with JMS

Queues and Topics for high performance, clustering and load
balancing

• JPA for using a database as a persistence layer, or use any of the
many other database component such as SQL, JDBC, iBATIS/MyBatis,
Hibernate

• HawtDB for a lightweight key-value persistent store

412 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/exception-clause.html
http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/file2.html
http://camel.apache.org/jms.html
http://camel.apache.org/jpa.html
http://camel.apache.org/sql.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/mybatis.html
http://camel.apache.org/hibernate.html
http://camel.apache.org/hawtdb.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message Bus
Camel supports the Message Bus from the EIP patterns. You could view
Camel as a Message Bus itself as it allows producers and consumers to be
decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish
to refer to the JMS component for traditional MOM support.
Also worthy of note is the XMPP component for supporting messaging over
XMPP (Jabber)

Of course there are also ESB products such as Apache ServiceMix which
serve as full fledged message busses.
You can interact with Apache ServiceMix from Camel in many ways, but in
particular you can use the NMR or JBI component to access the ServiceMix
message bus directly.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of

CHAPTER 10 - PATTERN APPENDIX 413

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html
http://camel.apache.org/xmpp.html
http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html
http://camel.apache.org/nmr.html
http://camel.apache.org/jbi.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html

Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message Construction

EVENT MESSAGE
Camel supports the Event Message from the EIP patterns by supporting the
Exchange Pattern on a Message which can be set to InOnly to indicate a
oneway event message. Camel Components then implement this pattern
using the underlying transport or protocols.

The default behaviour of many Components is InOnly such as for JMS, File
or SEDA

Explicitly specifying InOnly
If you are using a component which defaults to InOut you can override the
Exchange Pattern for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the
dsl.

Using the Fluent Builders

from("mq:someQueue").
inOnly().
bean(Foo.class);

or you can invoke an endpoint with an explicit pattern

414 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/components.html
http://camel.apache.org/jms.html
http://camel.apache.org/file2.html
http://camel.apache.org/seda.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/fluent-builders.html

Related
See the related Request Reply message.

from("mq:someQueue").
inOnly("mq:anotherQueue");

Using the Spring XML Extensions

<route>
<from uri="mq:someQueue"/>
<inOnly uri="bean:foo"/>

</route>

<route>
<from uri="mq:someQueue"/>
<inOnly uri="mq:anotherQueue"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

REQUEST REPLY
Camel supports the Request Reply from the EIP patterns by supporting the
Exchange Pattern on a Message which can be set to InOut to indicate a
request/reply. Camel Components then implement this pattern using the
underlying transport or protocols.

CHAPTER 10 - PATTERN APPENDIX 415

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/message.html
http://camel.apache.org/components.html
http://camel.apache.org/request-reply.html

For example when using JMS with InOut the component will by default
perform these actions

• create by default a temporary inbound queue
• set the JMSReplyTo destination on the request message
• set the JMSCorrelationID on the request message
• send the request message
• consume the response and associate the inbound message to the

request using the JMSCorrelationID (as you may be performing many
concurrent request/responses).

Explicitly specifying InOut
When consuming messages from JMS a Request-Reply is indicated by the
presence of the JMSReplyTo header.

You can explicitly force an endpoint to be in Request Reply mode by
setting the exchange pattern on the URI. e.g.

jms:MyQueue?exchangePattern=InOut

You can specify the exchange pattern in DSL rule or Spring configuration.

// Send to an endpoint using InOut
from("direct:testInOut").inOut("mock:result");

// Send to an endpoint using InOut
from("direct:testInOnly").inOnly("mock:result");

// Set the exchange pattern to InOut, then send it from direct:inOnly to mock:result
endpoint
from("direct:testSetToInOnlyThenTo")

.setExchangePattern(ExchangePattern.InOnly)

.to("mock:result");
from("direct:testSetToInOutThenTo")

.setExchangePattern(ExchangePattern.InOut)

.to("mock:result");

// Or we can pass the pattern as a parameter to the to() method
from("direct:testToWithInOnlyParam").to(ExchangePattern.InOnly, "mock:result");
from("direct:testToWithInOutParam").to(ExchangePattern.InOut, "mock:result");
from("direct:testToWithRobustInOnlyParam").to(ExchangePattern.RobustInOnly,
"mock:result");

// Set the exchange pattern to InOut, then send it on
from("direct:testSetExchangePatternInOnly")

.setExchangePattern(ExchangePattern.InOnly).to("mock:result");

416 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Related
See the related Event Message message

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- Send the exchange as InOnly -->
<route>

<from uri="direct:testInOut"/>
<inOut uri="mock:result"/>

</route>

<!-- Send the exchange as InOnly -->
<route>

<from uri="direct:testInOnly"/>
<inOnly uri="mock:result"/>

</route>

<!-- lets set the exchange pattern then send it on -->
<route>

<from uri="direct:testSetToInOnlyThenTo"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>

</route>
<route>

<from uri="direct:testSetToInOutThenTo"/>
<setExchangePattern pattern="InOut"/>
<to uri="mock:result"/>

</route>
<route>

<from uri="direct:testSetExchangePatternInOnly"/>
<setExchangePattern pattern="InOnly"/>
<to uri="mock:result"/>

</route>

<!-- Lets pass the pattern as an argument in the to element -->
<route>

<from uri="direct:testToWithInOnlyParam"/>
<to uri="mock:result" pattern="InOnly"/>

</route>
<route>

<from uri="direct:testToWithInOutParam"/>
<to uri="mock:result" pattern="InOut"/>

</route>
<route>

<from uri="direct:testToWithRobustInOnlyParam"/>
<to uri="mock:result" pattern="RobustInOnly"/>

</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX 417

http://camel.apache.org/event-message.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Correlation Identifier
Camel supports the Correlation Identifier from the EIP patterns by getting or
setting a header on a Message.

When working with the ActiveMQ or JMS components the correlation
identifier header is called JMSCorrelationID. You can add your own
correlation identifier to any message exchange to help correlate messages
together to a single conversation (or business process).

The use of a Correlation Identifier is key to working with the Camel
Business Activity Monitoring Framework and can also be highly useful when
testing with simulation or canned data such as with the Mock testing
framework

Some EIP patterns will spin off a sub message, and in those cases, Camel
will add a correlation id on the Exchange as a property with they key
Exchange.CORRELATION_ID, which links back to the source Exchange. For
example the Splitter, Multicast, Recipient List, and Wire Tap EIP does this.

See Also
• BAM

RETURN ADDRESS
Camel supports the Return Address from the EIP patterns by using the
JMSReplyTo header.

418 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/bam.html
http://camel.apache.org/bam.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/eip.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/multicast.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/bam.html
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
http://camel.apache.org/enterprise-integration-patterns.html

For example when using JMS with InOut the component will by default
return to the address given in JMSReplyTo.

Requestor Code

getMockEndpoint("mock:bar").expectedBodiesReceived("Bye World");
template.sendBodyAndHeader("direct:start", "World", "JMSReplyTo", "queue:bar");

Route Using the Fluent Builders

from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
from("activemq:queue:foo").transform(body().prepend("Bye "));
from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

Route Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="activemq:queue:foo?preserveMessageQos=true"/>

</route>

<route>
<from uri="activemq:queue:foo"/>
<transform>

<simple>Bye ${in.body}</simple>
</transform>

</route>

<route>
<from uri="activemq:queue:bar?disableReplyTo=true"/>
<to uri="mock:bar"/>

</route>

For a complete example of this pattern, see this junit test case

CHAPTER 10 - PATTERN APPENDIX 419

http://camel.apache.org/jms.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

MESSAGE ROUTING

Content Based Router
The Content Based Router from the EIP patterns allows you to route
messages to the correct destination based on the contents of the message
exchanges.

The following example shows how to route a request from an input seda:a
endpoint to either seda:b, seda:c or seda:d depending on the evaluation of
various Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.choice()

.when(header("foo").isEqualTo("bar"))
.to("direct:b")

.when(header("foo").isEqualTo("cheese"))
.to("direct:c")

.otherwise()
.to("direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>

420 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<choice>
<when>

<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</when>
<when>

<xpath>$foo = 'cheese'</xpath>
<to uri="direct:c"/>

</when>
<otherwise>

<to uri="direct:d"/>
</otherwise>

</choice>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test
case

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message Filter
The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route
consuming messages from an endpoint called queue:a, which if the
Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.filter(header("foo").isEqualTo("bar"))

.to("direct:b");

CHAPTER 10 - PATTERN APPENDIX 421

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

}
};

You can, of course, use many different Predicate languages such as XPath,
XQuery, SQL or various Scripting Languages. Here is an XPath example

from("direct:start").
filter().xpath("/person[@name='James']").
to("mock:result");

Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter().method(MyBean.class, "isGoldCustomer").to("mock:result").end()
.to("mock:end");

public static class MyBean {
public boolean isGoldCustomer(@Header("level") String level) {

return level.equals("gold");
}

}

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<to uri="direct:b"/>

</filter>
</route>

</camelContext>

For further examples of this pattern in use you could look at the junit test
case

Using stop
Available as of Camel 2.0

Stop is a bit different than a message filter as it will filter out all messages
and end the route entirely (filter only applies to its child processor). Stop is
convenient to use in a Content Based Router when you for example need to
stop further processing in one of the predicates.

422 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/content-based-router.html

filtered endpoint required inside </filter> tag
make sure you put the endpoint you want to filter (<to
uri="seda:b"/>, etc.) before the closing </filter> tag or the filter
will not be applied (in 2.8+, omitting this will result in an error)

In the example below we do not want to route messages any further that
has the word Bye in the message body. Notice how we prevent this in the
when predicate by using the .stop().

from("direct:start")
.choice()

.when(body().contains("Hello")).to("mock:hello")

.when(body().contains("Bye")).to("mock:bye").stop()

.otherwise().to("mock:other")
.end()
.to("mock:result");

Knowing if Exchange was filtered or not
Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange that states if it
was filtered or not.

The property has the key Exchange.FILTER_MATCHED, which has the String
value of CamelFilterMatched. Its value is a boolean indicating true or
false. If the value is true then the Exchange was routed in the filter block.
This property will be visible within the Message Filter block who's Predicate
matches (value set to true), and to the steps immediately following the
Message Filter with the value set based on the results of the last Message
Filter Predicate evaluated.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 423

http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

DYNAMIC ROUTER
The Dynamic Router from the EIP patterns allows you to route messages
while avoiding the dependency of the router on all possible destinations
while maintaining its efficiency.

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a
dynamic Routing Slip which evaluates the slip on-the-fly.

Options

Name Default
Value Description

uriDelimiter , Delimiter used if the Expression returned multiple endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will thrown an
exception stating the endpoint uri is not valid.

Dynamic Router in Camel 2.5 onwards
From Camel 2.5 the Dynamic Router will set a property
(Exchange.SLIP_ENDPOINT) on the Exchange which contains the current
endpoint as it advanced though the slip. This allows you to know how far we
have processed in the slip. (It's a slip because the Dynamic Router
implementation is based on top of Routing Slip).

Java DSL
In Java DSL you can use the dynamicRouter as shown below:

from("direct:start")
// use a bean as the dynamic router
.dynamicRouter(method(DynamicRouterTest.class, "slip"));

Which will leverage a Bean to compute the slip on-the-fly, which could be
implemented as follows:

424 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/expression.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/bean.html

Beware
You must ensure the expression used for the dynamicRouter such
as a bean, will return null to indicate the end. Otherwise the
dynamicRouter will keep repeating endlessly.

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @return endpoints to go, or <tt>null</tt> to indicate the end
*/

public String slip(String body) {
bodies.add(body);
invoked++;

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

}

// no more so return null
return null;

}

Mind that this example is only for show and tell. The current implementation
is not thread safe. You would have to store the state on the Exchange, to
ensure thread safety, as shown below:

/**
* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @param properties the exchange properties where we can store state between

invocations
* @return endpoints to go, or <tt>null</tt> to indicate the end
*/

public String slip(String body, @Properties Map<String, Object> properties) {
bodies.add(body);

// get the state from the exchange properties and keep track how many times
// we have been invoked
int invoked = 0;
Object current = properties.get("invoked");

CHAPTER 10 - PATTERN APPENDIX 425

http://camel.apache.org/exchange.html

if (current != null) {
invoked = Integer.valueOf(current.toString());

}
invoked++;
// and store the state back on the properties
properties.put("invoked", invoked);

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

}

// no more so return null
return null;

}

You could also store state as message headers, but they are not guaranteed
to be preserved during routing, where as properties on the Exchange are.
Although there was a bug in the method call expression, see the warning
below.

Spring XML
The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<dynamicRouter>

<!-- use a method call on a bean as dynamic router -->
<method ref="mySlip" method="slip"/>

</dynamicRouter>
</route>

<route>
<from uri="direct:foo"/>
<transform><constant>Bye World</constant></transform>
<to uri="mock:foo"/>

</route>

</camelContext>

426 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html

Using beans to store state
Mind that in Camel 2.9.2 or older, when using a Bean the state is
not propagated, so you will have to use a Processor instead. This is
fixed in Camel 2.9.3 onwards.

@DynamicRouter annotation
You can also use the @DynamicRouter annotation, for example the Camel 2.4
example below could be written as follows. The route method would then be
invoked repeatedly as the message is processed dynamically. The idea is to
return the next endpoint uri where to go. Return null to indicate the end. You
can return multiple endpoints if you like, just as the Routing Slip, where each
endpoint is separated by a delimiter.

public class MyDynamicRouter {

@Consume(uri = "activemq:foo")
@DynamicRouter
public String route(@XPath("/customer/id") String customerId, @Header("Location")

String location, Document body) {
// query a database to find the best match of the endpoint based on the input

parameteres
// return the next endpoint uri, where to go. Return null to indicate the end.

}
}

Dynamic Router in Camel 2.4 or older
The simplest way to implement this is to use the RecipientList Annotation on
a Bean method to determine where to route the message.

public class MyDynamicRouter {

@Consume(uri = "activemq:foo")
@RecipientList
public List<String> route(@XPath("/customer/id") String customerId,

@Header("Location") String location, Document body) {
// query a database to find the best match of the endpoint based on the input

parameteres
...

}
}

CHAPTER 10 - PATTERN APPENDIX 427

http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean.html
http://camel.apache.org/processor.html

In the above we can use the Parameter Binding Annotations to bind different
parts of the Message to method parameters or use an Expression such as
using XPath or XQuery.

The method can be invoked in a number of ways as described in the Bean
Integration such as

• POJO Producing
• Spring Remoting
• Bean component

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Recipient List
The Recipient List from the EIP patterns allows you to route messages to a
number of dynamically specified recipients.

The recipients will receive a copy of the same Exchange, and Camel will
execute them sequentially.

Options

Name Default
Value Description

delimiter , Delimiter used if the Expression returned multiple endpoints.

strategyRef Â An AggregationStrategy that will assemble the replies from recipients into a single outgoing
message from the Recipient List. By default Camel will use the last reply as the outgoing message.

parallelProcessing false
Camel 2.2: If enabled, messages are sent to the recipients concurrently. Note that the calling
thread will still wait until all messages have been fully processed before it continues; it's the
sending and processing of replies from recipients which happens in parallel.

executorServiceRef Â Camel 2.2: A custom Thread Pool to use for parallel processing. Note that enabling this option
implies parallel processing, so you need not enable that option as well.

428 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/parameter-binding-annotations.html
http://camel.apache.org/message.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html
http://camel.apache.org/bean.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/threading-model.html

stopOnException false

Camel 2.2: Whether to immediately stop processing when an exception occurs. If disabled, Camel
will send the message to all recipients regardless of any individual failures. You can process
exceptions in an AggregationStrategy implementation, which supports full control of error
handling.

ignoreInvalidEndpoints false Camel 2.3: Whether to ignore an endpoint URI that could not be resolved. If disabled, Camel will
throw an exception identifying the invalid endpoint URI.

streaming false
Camel 2.5: If enabled, Camel will process replies out-of-order - that is, in the order received in
reply from each recipient. If disabled, Camel will process replies in the same order as specified by
the Expression.

timeout Â

Camel 2.5: Specifies a processing timeout milliseconds. If the Recipient List hasn't been able to
send and process all replies within this timeframe, then the timeout triggers and the Recipient List
breaks out, with message flow continuing to the next element. Note that if you provide a
TimeoutAwareAggregationStrategy, its timeout method is invoked before breaking out. Beware: If
the timeout is reached with running tasks still remaining, certain tasks for which it is difficult for
Camel to shut down in a graceful manner may continue to run. So use this option with a bit of
care. We may be able to improve this functionality in future Camel releases.

onPrepareRef Â
Camel 2.8: A custom Processor to prepare the copy of the Exchange each recipient will receive.
This allows you to perform arbitrary transformations, such as deep-cloning the message payload
(or any other custom logic).

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more
details.

Static Recipient List
The following example shows how to route a request from an input queue:a
endpoint to a static list of destinations

Using Annotations
You can use the RecipientList Annotation on a POJO to create a Dynamic
Recipient List. For more details see the Bean Integration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.multicast().to("direct:b", "direct:c", "direct:d");

}
};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<multicast>

<to uri="direct:b"/>
<to uri="direct:c"/>
<to uri="direct:d"/>

</multicast>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 429

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/expression.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Dynamic Recipient List
Usually one of the main reasons for using the Recipient List pattern is that
the list of recipients is dynamic and calculated at runtime. The following
example demonstrates how to create a dynamic recipient list using an
Expression (which in this case it extracts a named header value dynamically)
to calculate the list of endpoints which are either of type Endpoint or are
converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.recipientList(header("foo"));

}
};

The above assumes that the header contains a list of endpoint URIs. The
following takes a single string header and tokenizes it

from("direct:a").recipientList(
header("recipientListHeader").tokenize(","));

Iteratable value
The dynamic list of recipients that are defined in the header must be
iteratable such as:

▪ java.util.Collection
▪ java.util.Iterator
▪ arrays
▪ org.w3c.dom.NodeList
▪ a single String with values separated with comma
▪ any other type will be regarded as a single value

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<recipientList>

<xpath>$foo</xpath>
</recipientList>

430 CHAPTER 10 - PATTERN APPENDIX

http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

</route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit
test case

Using delimiter in Spring XML
In Spring DSL you can set the delimiter attribute for setting a delimiter to
be used if the header value is a single String with multiple separated
endpoints. By default Camel uses comma as delimiter, but this option lets
you specify a customer delimiter to use instead.

<route>
<from uri="direct:a" />
<!-- use comma as a delimiter for String based values -->
<recipientList delimiter=",">

<header>myHeader</header>
</recipientList>

</route>

So if myHeader contains a String with the value "activemq:queue:foo,
activemq:topic:hello , log:bar" then Camel will split the String using
the delimiter given in the XML that was comma, resulting into 3 endpoints to
send to. You can use spaces between the endpoints as Camel will trim the
value when it lookup the endpoint to send to.

Note: In Java DSL you use the tokenizer to archive the same. The route
above in Java DSL:

from("direct:a").recipientList(header("myHeader").tokenize(","));

In Camel 2.1 its a bit easier as you can pass in the delimiter as 2nd
parameter:

from("direct:a").recipientList(header("myHeader"), "#");

Sending to multiple recipients in parallel
Available as of Camel 2.2

The Recipient List now supports parallelProcessing that for example
Splitter also supports. You can use it to use a thread pool to have concurrent
tasks sending the Exchange to multiple recipients concurrently.

CHAPTER 10 - PATTERN APPENDIX 431

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html

from("direct:a").recipientList(header("myHeader")).parallelProcessing();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList parallelProcessing="true">

<header>myHeader</header>
</recipientList>

</route>

Stop continuing in case one recipient failed
Available as of Camel 2.2

The Recipient List now supports stopOnException that for example
Splitter also supports. You can use it to stop sending to any further recipients
in case any recipient failed.

from("direct:a").recipientList(header("myHeader")).stopOnException();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList stopOnException="true">

<header>myHeader</header>
</recipientList>

</route>

Note: You can combine parallelProcessing and stopOnException and
have them both true.

Ignore invalid endpoints
Available as of Camel 2.3

The Recipient List now supports ignoreInvalidEndpoints which the
Routing Slip also supports. You can use it to skip endpoints which is invalid.

from("direct:a").recipientList(header("myHeader")).ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

432 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routing-slip.html

<route>
<from uri="direct:a"/>
<recipientList ignoreInvalidEndpoints="true">

<header>myHeader</header>
</recipientList>

</route>

Then lets say the myHeader contains the following two endpoints
direct:foo,xxx:bar. The first endpoint is valid and works. However the 2nd
is invalid and will just be ignored. Camel logs at INFO level about, so you can
see why the endpoint was invalid.

Using custom AggregationStrategy
Available as of Camel 2.2

You can now use you own AggregationStrategy with the Recipient List.
However its not that often you need that. What its good for is that in case
you are using Request Reply messaging then the replies from the recipient
can be aggregated. By default Camel uses UseLatestAggregationStrategy
which just keeps that last received reply. What if you must remember all the
bodies that all the recipients send back, then you can use your own custom
aggregator that keeps those. Its the same principle as with the Aggregator
EIP so check it out for details.

from("direct:a")
.recipientList(header("myHeader")).aggregationStrategy(new

MyOwnAggregationStrategy())
.to("direct:b");

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<recipientList strategyRef="myStrategy">

<header>myHeader</header>
</recipientList>
<to uri="direct:b"/>

</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

Using custom thread pool
Available as of Camel 2.2

CHAPTER 10 - PATTERN APPENDIX 433

http://camel.apache.org/recipient-list.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/aggregator.html

A thread pool is only used for parallelProcessing. You supply your own
custom thread pool via the ExecutorServiceStrategy (see Camel's
Threading Model), the same way you would do it for the
aggregationStrategy. By default Camel uses a thread pool with 10 threads
(subject to change in a future version).

Using method call as recipient list
You can use a Bean to provide the recipients, for example:

from("activemq:queue:test").recipientList().method(MessageRouter.class, "routeTo");

And then MessageRouter:

public class MessageRouter {

public String routeTo() {
String queueName = "activemq:queue:test2";
return queueName;

}
}

When you use a Bean then do not also use the @RecipientList annotation
as this will in fact add yet another recipient list, so you end up having two.
Do not do like this.

public class MessageRouter {

@RecipientList
public String routeTo() {

String queueName = "activemq:queue:test2";
return queueName;

}
}

Well you should only do like that above (using @RecipientList) if you route
just route to a Bean which you then want to act as a recipient list.
So the original route can be changed to:

from("activemq:queue:test").bean(MessageRouter.class, "routeTo");

Which then would invoke the routeTo method and detect its annotated with
@RecipientList and then act accordingly as if it was a recipient list EIP.

434 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/threading-model.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html

Using timeout
Available as of Camel 2.5

If you use parallelProcessing then you can configure a total timeout
value in millis. Camel will then process the messages in parallel until the
timeout is hit. This allows you to continue processing if one message is slow.
For example you can set a timeout value of 20 sec.
For example in the unit test below you can see we multicast the message to
3 destinations. We have a timeout of 2 seconds, which means only the last
two messages can be completed within the timeframe. This means we will
only aggregate the last two which yields a result aggregation which outputs
"BC".

from("direct:start")
.multicast(new AggregationStrategy() {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
if (oldExchange == null) {

return newExchange;
}

String body = oldExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(body +

newExchange.getIn().getBody(String.class));
return oldExchange;

}
})
.parallelProcessing().timeout(250).to("direct:a", "direct:b", "direct:c")

// use end to indicate end of multicast route
.end()
.to("mock:result");

from("direct:a").delay(1000).to("mock:A").setBody(constant("A"));

from("direct:b").to("mock:B").setBody(constant("B"));

from("direct:c").to("mock:C").setBody(constant("C"));

By default if a timeout occurs the AggregationStrategy is not invoked.
However you can implement a specialized version

public interface TimeoutAwareAggregationStrategy extends AggregationStrategy {

/**
* A timeout occurred
*
* @param oldExchange the oldest exchange (is <tt>null</tt> on first aggregation

as we only have the new exchange)
* @param index the index
* @param total the total
* @param timeout the timeout value in millis

CHAPTER 10 - PATTERN APPENDIX 435

Tasks may keep running
If the timeout is reached with running tasks still remaining, certain
tasks for which it is difficult for Camel to shut down in a graceful
manner may continue to run. So use this option with a bit of care.
We may be able to improve this functionality in future Camel
releases.

Timeout in other EIPs
This timeout feature is also supported by Splitter and both
multicast and recipientList.

*/
void timeout(Exchange oldExchange, int index, int total, long timeout);

This allows you to deal with the timeout in the AggregationStrategy if you
really need to.

Using onPrepare to execute custom logic when preparing messages
Available as of Camel 2.8

See details at Multicast

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Splitter
The Splitter from the EIP patterns allows you split a message into a number
of pieces and process them individually

436 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/splitter.html

Timeout is total
The timeout is total, which means that after X time, Camel will
aggregate the messages which has completed within the
timeframe. The remainders will be cancelled. Camel will also only
invoke the timeout method in the
TimeoutAwareAggregationStrategy once, for the first index which
caused the timeout.

You need to specify a Splitter as split(). In earlier versions of Camel, you
need to use splitter().

Options

Name Default
Value Description

strategyRef Â
Refers to an AggregationStrategy to be used to assemble the replies from the sub-messages, into a
single outgoing message from the Splitter. See the defaults described below in What the Splitter
returns.

parallelProcessing false If enables then processing the sub-messages occurs concurrently. Note the caller thread will still wait
until all sub-messages has been fully processed, before it continues.

executorServiceRef Â Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then
parallel processing is automatic implied, and you do not have to enable that option as well.

stopOnException false

Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If
disable, then Camel continue splitting and process the sub-messages regardless if one of them failed.
You can deal with exceptions in the AggregationStrategy class where you have full control how to
handle that.

streaming false

If enabled then Camel will split in a streaming fashion, which means it will split the input message in
chunks. This reduces the memory overhead. For example if you split big messages its recommended to
enable streaming. If streaming is enabled then the sub-message replies will be aggregated out-of-order,
eg in the order they come back. If disabled, Camel will process sub-message replies in the same order
as they where splitted.

timeout Â

Camel 2.5: Sets a total timeout specified in millis. If the Recipient List hasn't been able to split and
process all replies within the given timeframe, then the timeout triggers and the Splitter breaks out and
continues. Notice if you provide a TimeoutAwareAggregationStrategy then the timeout method is
invoked before breaking out. If the timeout is reached with running tasks still remaining, certain tasks
for which it is difficult for Camel to shut down in a graceful manner may continue to run. So use this
option with a bit of care. We may be able to improve this functionality in future Camel releases.

onPrepareRef Â
Camel 2.8: Refers to a custom Processor to prepare the sub-message of the Exchange, before its
processed. This allows you to do any custom logic, such as deep-cloning the message payload if that's
needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See further below for more details.

Exchange properties
The following properties are set on each Exchange that are split:

CHAPTER 10 - PATTERN APPENDIX 437

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/splitter.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/splitter.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html

property type description

CamelSplitIndex int
A split counter that increases for each
Exchange being split. The counter starts
from 0.

CamelSplitSize int

The total number of Exchanges that was
splitted. This header is not applied for
stream based splitting. From Camel 2.9
onwards this header is also set in stream
based splitting, but only on the
completed Exchange.

CamelSplitComplete boolean Camel 2.4: Whether or not this
Exchange is the last.

Examples
The following example shows how to take a request from the queue:a
endpoint the split it into pieces using an Expression, then forward each piece
to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.split(body(String.class).tokenize("\n"))

.to("direct:b");
}

};

The splitter can use any Expression language so you could use any of the
Languages Supported such as XPath, XQuery, SQL or one of the Scripting
Languages to perform the split. e.g.

from("activemq:my.queue").split(xpath("//foo/
bar")).convertBodyTo(String.class).to("file://some/directory")

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>

438 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/languages-supported.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

<split>
<xpath>/invoice/lineItems</xpath>
<to uri="direct:b"/>

</split>
</route>

</camelContext>

For further examples of this pattern in use you could look at one of the junit
test case

Using Tokenizer from Spring XML Extensions*
You can use the tokenizer expression in the Spring DSL to split bodies or
headers using a token. This is a common use-case, so we provided a special
tokenizer tag for this.
In the sample below we split the body using a @ as separator. You can of
course use comma or space or even a regex pattern, also set regex=true.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<split>

<tokenize token="@"/>
<to uri="mock:result"/>

</split>
</route>

</camelContext>

Splitting the body in Spring XML is a bit harder as you need to use the Simple
language to dictate this

<split>
<simple>${body}</simple>
<to uri="mock:result"/>

</split>

What the Splitter returns
Camel 2.2 or older:
The Splitter will by default return the last splitted message.

Camel 2.3 and newer
The Splitter will by default return the original input message.

For all versions
You can override this by suppling your own strategy as an
AggregationStrategy. There is a sample on this page (Split aggregate

CHAPTER 10 - PATTERN APPENDIX 439

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/simple.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html

request/reply sample). Notice its the same strategy as the Aggregator
supports. This Splitter can be viewed as having a build in light weight
Aggregator.

Parallel execution of distinct 'parts'
If you want to execute all parts in parallel you can use special notation of
split() with two arguments, where the second one is a boolean flag if
processing should be parallel. e.g.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").split(xPathBuilder, true).to("activemq:my.parts");

The boolean option has been refactored into a builder method
parallelProcessing so its easier to understand what the route does when
we use a method instead of true|false.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemq:my.queue").split(xPathBuilder).parallelProcessing().to("activemq:my.parts");

Stream based
You can split streams by enabling the streaming mode using the streaming
builder method.

from("direct:streaming").split(body().tokenize(",")).streaming().to("activemq:my.parts");

You can also supply your custom splitter to use with streaming like this:

import static org.apache.camel.builder.ExpressionBuilder.beanExpression;
from("direct:streaming")

.split(beanExpression(new MyCustomIteratorFactory(), "iterator"))

.streaming().to("activemq:my.parts")

Streaming big XML payloads using Tokenizer language
Available as of Camel 2.9
If you have a big XML payload, from a file source, and want to split it in
streaming mode, then you can use the Tokenizer language with start/end
tokens to do this with low memory footprint.
For example you may have a XML payload structured as follows

440 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/aggregator.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator.html

Splitting big XML payloads
The XPath engine in Java and saxon will load the entire XML content
into memory. And thus they are not well suited for very big XML
payloads.
Instead you can use a custom Expression which will iterate the XML
payload in a streamed fashion. From Camel 2.9 onwards you can
use the Tokenizer language
which supports this when you supply the start and end tokens.

StAX component
The Camel StAX component can also be used to split big XML files
in a streaming mode. See more details at StAX.

<orders>
<order>

<!-- order stuff here -->
</order>
<order>

<!-- order stuff here -->
</order>

...
<order>

<!-- order stuff here -->
</order>

</orders>

Now to split this big file using XPath would cause the entire content to be
loaded into memory. So instead we can use the Tokenizer language to do this
as follows:

from("file:inbox")
.split().tokenizeXML("order").streaming()

.to("activemq:queue:order");

In XML DSL the route would be as follows:

<route>
<from uri="file:inbox"/>
<split streaming="true">

<tokenize token="order" xml="true"/>
<to uri="activemq:queue:order"/>

CHAPTER 10 - PATTERN APPENDIX 441

http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/stax.html
http://camel.apache.org/stax.html

</split>
</route>

Notice the tokenizeXML method which will split the file using the tag name
of the child node, which mean it will grab the content between the <order>
and </order> tags (incl. the tokens). So for example a splitted message
would be as follows:

<order>
<!-- order stuff here -->

</order>

If you want to inherit namespaces from a root/parent tag, then you can do
this as well by providing the name of the root/parent tag:

<route>
<from uri="file:inbox"/>
<split streaming="true">

<tokenize token="order" inheritNamespaceTagName="orders" xml="true"/>
<to uri="activemq:queue:order"/>

</split>
</route>

And in Java DSL its as follows:

from("file:inbox")
.split().tokenizeXML("order", "orders").streaming()

.to("activemq:queue:order");

Splitting files by grouping N lines together
Available as of Camel 2.10

The Tokenizer language has a new option group that allows you to group N
parts together, for example to split big files into chunks of 1000 lines.

from("file:inbox")
.split().tokenize("\n", 1000).streaming()

.to("activemq:queue:order");

And in XML DSL

<route>
<from uri="file:inbox"/>

442 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/tokenizer.html

<split streaming="true">
<tokenize token="\n" group="1000"/>
<to uri="activemq:queue:order"/>

</split>
</route>

The group option is a number that must be a positive number that dictates
how many groups to combine together. Each part will be combined using the
token.
So in the example above the message being sent to the activemq order
queue, will contain 1000 lines, and each line separated by the token (which is
a new line token).
The output when using the group option is always a java.lang.String type.

Specifying a custom aggregation strategy
This is specified similar to the Aggregator.

Specifying a custom ThreadPoolExecutor
You can customize the underlying ThreadPoolExecutor used in the parallel
splitter. In the Java DSL try something like this:

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");

ExecutorService pool = ...

from("activemq:my.queue")
.split(xPathBuilder).parallelProcessing().executorService(pool)

.to("activemq:my.parts");

Using a Pojo to do the splitting
As the Splitter can use any Expression to do the actual splitting we leverage
this fact and use a method expression to invoke a Bean to get the splitted
parts.
The Bean should return a value that is iterable such as:
java.util.Collection, java.util.Iterator or an array.
So the returned value, will then be used by Camel at runtime, to split the
message.
In the route we define the Expression as a method call to invoke our Bean
that we have registered with the id mySplitterBean in the Registry.

CHAPTER 10 - PATTERN APPENDIX 443

http://camel.apache.org/aggregator.html
http://camel.apache.org/splitter.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean.html
http://camel.apache.org/registry.html

Streaming mode and using pojo
When you have enabled the streaming mode, then you should
return a Iterator to ensure streamish fashion. For example if the
message is a big file, then by using an iterator, that returns a piece
of the file in chunks, in the next method of the Iterator ensures
low memory footprint. This avoids the need for reading the entire
content into memory. For an example see the source code for the
TokenizePair implementation.

from("direct:body")
// here we use a POJO bean mySplitterBean to do the split of the payload
.split().method("mySplitterBean", "splitBody")
.to("mock:result");

from("direct:message")
// here we use a POJO bean mySplitterBean to do the split of the message
// with a certain header value
.split().method("mySplitterBean", "splitMessage")
.to("mock:result");

And the logic for our Bean is as simple as. Notice we use Camel Bean Binding
to pass in the message body as a String object.

public class MySplitterBean {

/**
* The split body method returns something that is iteratable such as a

java.util.List.
*
* @param body the payload of the incoming message
* @return a list containing each part splitted
*/

public List<String> splitBody(String body) {
// since this is based on an unit test you can of cause
// use different logic for splitting as Camel have out
// of the box support for splitting a String based on comma
// but this is for show and tell, since this is java code
// you have the full power how you like to split your messages
List<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {

answer.add(part);
}
return answer;

}

/**
* The split message method returns something that is iteratable such as a

444 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/main/java/org/apache/camel/support/TokenPairExpressionIterator.java

java.util.List.
*
* @param header the header of the incoming message with the name user
* @param body the payload of the incoming message
* @return a list containing each part splitted
*/

public List<Message> splitMessage(@Header(value = "user") String header, @Body
String body) {

// we can leverage the Parameter Binding Annotations
// http://camel.apache.org/parameter-binding-annotations.html
// to access the message header and body at same time,
// then create the message that we want, splitter will
// take care rest of them.
// *NOTE* this feature requires Camel version >= 1.6.1
List<Message> answer = new ArrayList<Message>();
String[] parts = header.split(",");
for (String part : parts) {

DefaultMessage message = new DefaultMessage();
message.setHeader("user", part);
message.setBody(body);
answer.add(message);

}
return answer;

}
}

Split aggregate request/reply sample
This sample shows how you can split an Exchange, process each splitted
message, aggregate and return a combined response to the original caller
using request/reply.

The route below illustrates this and how the split supports a
aggregationStrategy to hold the in progress processed messages:

// this routes starts from the direct:start endpoint
// the body is then splitted based on @ separator
// the splitter in Camel supports InOut as well and for that we need
// to be able to aggregate what response we need to send back, so we provide our
// own strategy with the class MyOrderStrategy.
from("direct:start")

.split(body().tokenize("@"), new MyOrderStrategy())
// each splitted message is then send to this bean where we can process it
.to("bean:MyOrderService?method=handleOrder")
// this is important to end the splitter route as we do not want to do more

routing
// on each splitted message

.end()
// after we have splitted and handled each message we want to send a single

combined

CHAPTER 10 - PATTERN APPENDIX 445

http://camel.apache.org/exchange.html

// response back to the original caller, so we let this bean build it for us
// this bean will receive the result of the aggregate strategy: MyOrderStrategy
.to("bean:MyOrderService?method=buildCombinedResponse")

And the OrderService bean is as follows:

public static class MyOrderService {

private static int counter;

/**
* We just handle the order by returning a id line for the order
*/

public String handleOrder(String line) {
LOG.debug("HandleOrder: " + line);
return "(id=" + ++counter + ",item=" + line + ")";

}

/**
* We use the same bean for building the combined response to send
* back to the original caller
*/

public String buildCombinedResponse(String line) {
LOG.debug("BuildCombinedResponse: " + line);
return "Response[" + line + "]";

}
}

And our custom aggregationStrategy that is responsible for holding the in
progress aggregated message that after the splitter is ended will be sent to
the buildCombinedResponse method for final processing before the
combined response can be returned to the waiting caller.

/**
* This is our own order aggregation strategy where we can control
* how each splitted message should be combined. As we do not want to
* loos any message we copy from the new to the old to preserve the
* order lines as long we process them
*/

public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
// put order together in old exchange by adding the order from new exchange

if (oldExchange == null) {
// the first time we aggregate we only have the new exchange,
// so we just return it
return newExchange;

}

446 CHAPTER 10 - PATTERN APPENDIX

String orders = oldExchange.getIn().getBody(String.class);
String newLine = newExchange.getIn().getBody(String.class);

LOG.debug("Aggregate old orders: " + orders);
LOG.debug("Aggregate new order: " + newLine);

// put orders together separating by semi colon
orders = orders + ";" + newLine;
// put combined order back on old to preserve it
oldExchange.getIn().setBody(orders);

// return old as this is the one that has all the orders gathered until now
return oldExchange;

}
}

So lets run the sample and see how it works.
We send an Exchange to the direct:start endpoint containing a IN body with
the String value: A@B@C. The flow is:

HandleOrder: A
HandleOrder: B
Aggregate old orders: (id=1,item=A)
Aggregate new order: (id=2,item=B)
HandleOrder: C
Aggregate old orders: (id=1,item=A);(id=2,item=B)
Aggregate new order: (id=3,item=C)
BuildCombinedResponse: (id=1,item=A);(id=2,item=B);(id=3,item=C)
Response to caller: Response[(id=1,item=A);(id=2,item=B);(id=3,item=C)]

Stop processing in case of exception
Available as of Camel 2.1

The Splitter will by default continue to process the entire Exchange even in
case of one of the splitted message will thrown an exception during routing.
For example if you have an Exchange with 1000 rows that you split and route
each sub message. During processing of these sub messages an exception is
thrown at the 17th. What Camel does by default is to process the remainder
983 messages. You have the chance to remedy or handle this in the
AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be
propagated back, and let the Camel error handler handle it. You can do this in
Camel 2.1 by specifying that it should stop in case of an exception occurred.
This is done by the stopOnException option as shown below:

CHAPTER 10 - PATTERN APPENDIX 447

http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

from("direct:start")
.split(body().tokenize(",")).stopOnException()

.process(new MyProcessor())

.to("mock:split");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<split stopOnException="true">

<tokenize token=","/>
<process ref="myProcessor"/>
<to uri="mock:split"/>

</split>
</route>

Using onPrepare to execute custom logic when preparing messages
Available as of Camel 2.8

See details at Multicast

Sharing unit of work
Available as of Camel 2.8

The Splitter will by default not share unit of work between the parent
exchange and each splitted exchange. This means each sub exchange has its
own individual unit of work.

For example you may have an use case, where you want to split a big
message. And you want to regard that process as an atomic isolated
operation that either is a success or failure. In case of a failure you want that
big message to be moved into a dead letter queue. To support this use case,
you would have to share the unit of work on the Splitter.

Here is an example in Java DSL

errorHandler(deadLetterChannel("mock:dead").useOriginalMessage()
.maximumRedeliveries(3).redeliveryDelay(0));

from("direct:start")
.to("mock:a")
// share unit of work in the splitter, which tells Camel to propagate failures

from
// processing the splitted messages back to the result of the splitter, which

allows
// it to act as a combined unit of work
.split(body().tokenize(",")).shareUnitOfWork()

448 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html
http://camel.apache.org/splitter.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/splitter.html

.to("mock:b")

.to("direct:line")
.end()
.to("mock:result");

from("direct:line")
.to("log:line")
.process(new MyProcessor())
.to("mock:line");

Now in this example what would happen is that in case there is a problem
processing each sub message, the error handler will kick in (yes error
handling still applies for the sub messages). But what doesn't happen is that
if a sub message fails all redelivery attempts (its exhausted), then its not
moved into that dead letter queue. The reason is that we have shared the
unit of work, so the sub message will report the error on the shared unit of
work. When the Splitter is done, it checks the state of the shared unit of work
and checks if any errors occurred. And if an error occurred it will set the
exception on the Exchange and mark it for rollback. The error handler will yet
again kick in, as the Exchange has been marked as rollback and it had an
exception as well. No redelivery attempts is performed (as it was marked for
rollback) and the Exchange will be moved into the dead letter queue.

Using this from XML DSL is just as easy as you just have to set the
shareUnitOfWork attribute to true:

<camelContext errorHandlerRef="dlc" xmlns="http://camel.apache.org/schema/spring">

<!-- define error handler as DLC, with use original message enabled -->
<errorHandler id="dlc" type="DeadLetterChannel" deadLetterUri="mock:dead"

useOriginalMessage="true">
<redeliveryPolicy maximumRedeliveries="3" redeliveryDelay="0"/>

</errorHandler>

<route>
<from uri="direct:start"/>
<to uri="mock:a"/>
<!-- share unit of work in the splitter, which tells Camel to propagate failures

from
processing the splitted messages back to the result of the splitter, which

allows
it to act as a combined unit of work -->

<split shareUnitOfWork="true">
<tokenize token=","/>
<to uri="mock:b"/>
<to uri="direct:line"/>

</split>
<to uri="mock:result"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 449

http://camel.apache.org/splitter.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/dead-letter-channel.html

<!-- route for processing each splitted line -->
<route>

<from uri="direct:line"/>
<to uri="log:line"/>
<process ref="myProcessor"/>
<to uri="mock:line"/>

</route>

</camelContext>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Aggregator
This applies for Camel version 2.3 or newer. If you use an older
version then use this Aggregator link instead.

The Aggregator from the EIP patterns allows you to combine a number of
messages together into a single message.

A correlation Expression is used to determine the messages which should
be aggregated together. If you want to aggregate all messages into a single
message, just use a constant expression. An AggregationStrategy is used to
combine all the message exchanges for a single correlation key into a single
message exchange.

Aggregator options
The aggregator supports the following options:
Option Default Description

correlationExpression Â
Mandatory Expression which evaluates the correlation key to use for aggregation. The
Exchange which has the same correlation key is aggregated together. If the correlation
key could not be evaluated an Exception is thrown. You can disable this by using the
ignoreBadCorrelationKeys option.

450 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/aggregator.html
http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html

Implementation of shared unit of work
So in reality the unit of work is not shared as a single object
instance. Instead SubUnitOfWork is attached to their parent, and
issues callback to the parent about their status (commit or
rollback). This may be refactored in Camel 3.0 where larger API
changes can be done.

aggregationStrategy Â

Mandatory AggregationStrategy which is used to merge the incoming Exchange with
the existing already merged exchanges. At first call the oldExchange parameter is null.
On subsequent invocations the oldExchange contains the merged exchanges and
newExchange is of course the new incoming Exchange. From Camel 2.9.2 onwards the
strategy can also be a TimeoutAwareAggregationStrategy implementation, supporting
the timeout callback, see further below for more details.

strategyRef Â A reference to lookup the AggregationStrategy in the Registry.

completionSize Â
Number of messages aggregated before the aggregation is complete. This option can be
set as either a fixed value or using an Expression which allows you to evaluate a size
dynamically - will use Integer as result. If both are set Camel will fallback to use the fixed
value if the Expression result was null or 0.

completionTimeout Â

Time in millis that an aggregated exchange should be inactive before its complete. This
option can be set as either a fixed value or using an Expression which allows you to
evaluate a timeout dynamically - will use Long as result. If both are set Camel will fallback
to use the fixed value if the Expression result was null or 0. You cannot use this option
together with completionInterval, only one of the two can be used.

completionInterval Â
A repeating period in millis by which the aggregator will complete all current aggregated
exchanges. Camel has a background task which is triggered every period. You cannot use
this option together with completionTimeout, only one of them can be used.

completionPredicate Â A Predicate to indicate when an aggregated exchange is complete.

completionFromBatchConsumer false

This option is if the exchanges are coming from a Batch Consumer. Then when enabled
the Aggregator2 will use the batch size determined by the Batch Consumer in the
message header CamelBatchSize. See more details at Batch Consumer. This can be used
to aggregate all files consumed from a File endpoint in that given poll.

forceCompletionOnStop false Camel 2.9 Indicates to complete all current aggregated exchanges when the context is
stopped

eagerCheckCompletion false

Whether or not to eager check for completion when a new incoming Exchange has been
received. This option influences the behavior of the completionPredicate option as the
Exchange being passed in changes accordingly. When false the Exchange passed in the
Predicate is the aggregated Exchange which means any information you may store on the
aggregated Exchange from the AggregationStrategy is available for the Predicate. When
true the Exchange passed in the Predicate is the incoming Exchange, which means you
can access data from the incoming Exchange.

groupExchanges false

If enabled then Camel will group all aggregated Exchanges into a single combined
org.apache.camel.impl.GroupedExchange holder class that holds all the aggregated
Exchanges. And as a result only one Exchange is being sent out from the aggregator. Can
be used to combine many incoming Exchanges into a single output Exchange without
coding a custom AggregationStrategy yourself. Important: This option does not
support persistant repository with the aggregator.

ignoreInvalidCorrelationKeys false
Whether or not to ignore correlation keys which could not be evaluated to a value. By
default Camel will throw an Exception, but you can enable this option and ignore the
situation instead.

closeCorrelationKeyOnCompletion Â

Whether or not too late Exchanges should be accepted or not. You can enable this to
indicate that if a correlation key has already been completed, then any new exchanges
with the same correlation key be denied. Camel will then throw a
closedCorrelationKeyException exception. When using this option you pass in a
integer which is a number for a LRUCache which keeps that last X number of closed
correlation keys. You can pass in 0 or a negative value to indicate a unbounded cache. By
passing in a number you are ensured that cache won't grow too big if you use a log of
different correlation keys.

discardOnCompletionTimeout false
Camel 2.5: Whether or not exchanges which complete due to a timeout should be
discarded. If enabled then when a timeout occurs the aggregated message will not be
sent out but dropped (discarded).

aggregationRepository Â
Allows you to plugin you own implementation of
org.apache.camel.spi.AggregationRepository which keeps track of the current
inflight aggregated exchanges. Camel uses by default a memory based implementation.

CHAPTER 10 - PATTERN APPENDIX 451

http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/file2.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html

aggregationRepositoryRef Â Reference to lookup a aggregationRepository in the Registry.

parallelProcessing false

When aggregated are completed they are being send out of the aggregator. This option
indicates whether or not Camel should use a thread pool with multiple threads for
concurrency. If no custom thread pool has been specified then Camel creates a default
pool with 10 concurrent threads.

executorService Â
If using parallelProcessing you can specify a custom thread pool to be used. In fact
also if you are not using parallelProcessing this custom thread pool is used to send out
aggregated exchanges as well.

executorServiceRef Â Reference to lookup a executorService in the Registry

timeoutCheckerExecutorService Â
Camel 2.9: If using either of the completionTimeout, completionTimeoutExpression,
or completionInterval options a background thread is created to check for the
completion for every aggregator. Set this option to provide a custom thread pool to be
used rather than creating a new thread for every aggregator.

timeoutCheckerExecutorServiceRef Â Camel 2.9: Reference to lookup a timeoutCheckerExecutorService in the Registry

Exchange Properties
The following properties are set on each aggregated Exchange:
header type description
CamelAggregatedSize int The total number of Exchanges aggregated into this combined Exchange.

CamelAggregatedCompletedBy String Indicator how the aggregation was completed as a value of either: predicate, size, consumer,
timeout or interval.

About AggregationStrategy
The AggregationStrategy is used for aggregating the old (lookup by its
correlation id) and the new exchanges together into a single exchange.
Possible implementations include performing some kind of combining or
delta processing, such as adding line items together into an invoice or just
using the newest exchange and removing old exchanges such as for state
tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be
provided to the aggregator.

Here are a few example AggregationStrategy implementations that should
help you create your own custom strategy.

//simply combines Exchange String body values using '+' as a delimiter
class StringAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
if (oldExchange == null) {

return newExchange;
}

String oldBody = oldExchange.getIn().getBody(String.class);
String newBody = newExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(oldBody + "+" + newBody);
return oldExchange;

}
}

452 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

//simply combines Exchange body values into an ArrayList<Object>
class ArrayListAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
Object newBody = newExchange.getIn().getBody();
ArrayList<Object> list = null;
if (oldExchange == null) {

list = new ArrayList<Object>();
list.add(newBody);
newExchange.getIn().setBody(list);
return newExchange;

} else {
list = oldExchange.getIn().getBody(ArrayList.class);
list.add(newBody);
return oldExchange;

}
}

}

About completion
When aggregation Exchanges at some point you need to indicate that the
aggregated exchanges is complete, so they can be send out of the
aggregator. Camel allows you to indicate completion in various ways as
follows:

▪ completionTimeout - Is an inactivity timeout in which is triggered if
no new exchanges have been aggregated for that particular
correlation key within the period.

▪ completionInterval - Once every X period all the current aggregated
exchanges are completed.

▪ completionSize - Is a number indicating that after X aggregated
exchanges it's complete.

▪ completionPredicate - Runs a Predicate when a new exchange is
aggregated to determine if we are complete or not

▪ completionFromBatchConsumer - Special option for Batch Consumer
which allows you to complete when all the messages from the batch
has been aggregated.

▪ forceCompletionOnStop - Camel 2.9 Indicates to complete all
current aggregated exchanges when the context is stopped

Notice that all the completion ways are per correlation key. And you can
combine them in any way you like. It's basically the first which triggers that
wins. So you can use a completion size together with a completion timeout.
Only completionTimeout and completionInterval cannot be used at the same
time.

CHAPTER 10 - PATTERN APPENDIX 453

http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html

Notice the completion is a mandatory option and must be provided to the
aggregator. If not provided Camel will thrown an Exception on startup.

Persistent AggregationRepository
The aggregator provides a pluggable repository which you can implement
your own org.apache.camel.spi.AggregationRepository.
If you need persistent repository then you can use either Camel HawtDB or
SQL Component components.

Examples
See some examples from the old Aggregator which is somewhat similar to
this new aggregator.

Using completionTimeout
In this example we want to aggregate all incoming messages and after 3
seconds of inactivity we want the aggregation to complete. This is done
using the completionTimeout option as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and after 3 seconds of inactivity them timeout and complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new BodyInAggregatingStrategy()).completionTimeout(3000)

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="3000">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

454 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/aggregator.html

Callbacks
See the TimeoutAwareAggregationStrategy and
CompletionAwareAggregationStrategy extensions to
AggregationStrategy that has callbacks when the aggregated
Exchange was completed and if a timeout occurred.

Setting options in Spring XML
Many of the options are configurable as attributes on the
<aggregate> tag when using Spring XML.

Using TimeoutAwareAggregationStrategy
Available as of Camel 2.9.2

If your aggregation strategy implements
TimeoutAwareAggregationStrategy, then Camel will invoke the timeout
method when the timeout occurs. Notice that the values for index and total
parameters will be -1, and the timeout parameter will be provided only if
configured as a fixed value. You must not throw any exceptions from the
timeout method.

Using CompletionAwareAggregationStrategy
Available as of Camel 2.9.3

If your aggregation strategy implements
CompletionAwareAggregationStrategy, then Camel will invoke the
onComplete method when the aggregated Exchange is completed. This
allows you to do any last minute custom logic such as to cleanup some
resources, or additional work on the exchange as it's now completed.
You must not throw any exceptions from the onCompletion method.

Using completionSize
In this example we want to aggregate all incoming messages and when we
have 3 messages aggregated (in the same correlation group) we want the
aggregation to complete. This is done using the completionSize option as
shown:

CHAPTER 10 - PATTERN APPENDIX 455

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and after 3 messages has been aggregated then complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new BodyInAggregatingStrategy()).completionSize(3)

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" completionSize="3">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Using completionPredicate
In this example we want to aggregate all incoming messages and use a
Predicate to determine when we are complete. The Predicate can be
evaluated using either the aggregated exchange (default) or the incoming
exchange. We will so both situations as examples. We start with the default
situation as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and when the aggregated body contains A+B+C then complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionPredicate(body().contains("A+B+C"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>

456 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html

<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>

<simple>header.id</simple>
</correlationExpression>
<completionPredicate>

<simple>${body} contains 'A+B+C'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

And the other situation where we use the eagerCheckCompletion option to
tell Camel to use the incoming Exchange. Notice how we can just test in the
completion predicate that the incoming message is the END message:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy
// do eager checking which means the completion predicate will use the incoming

exchange
// which allows us to trigger completion when a certain exchange arrived which is

the
// END message
.aggregate(header("id"), new BodyInAggregatingStrategy())

.eagerCheckCompletion().completionPredicate(body().isEqualTo("END"))

.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy" eagerCheckCompletion="true">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionPredicate>

<simple>${body} == 'END'</simple>
</completionPredicate>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

CHAPTER 10 - PATTERN APPENDIX 457

Using dynamic completionTimeout
In this example we want to aggregate all incoming messages and after a
period of inactivity we want the aggregation to complete. The period should
be computed at runtime based on the timeout header in the incoming
messages. This is done using the completionTimeout option as shown:

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and the timeout header contains the timeout in millis of inactivity them

timeout and complete the aggregation
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionTimeout(header("timeout"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionTimeout>

<header>timeout</header>
</completionTimeout>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed timeout value and Camel will fallback to use
this value if the dynamic value was null or 0.

Using dynamic completionSize
In this example we want to aggregate all incoming messages based on a
dynamic size per correlation key. The size is computed at runtime based on
the mySize header in the incoming messages. This is done using the
completionSize option as shown:

458 CHAPTER 10 - PATTERN APPENDIX

from("direct:start")
// aggregate all exchanges correlated by the id header.
// Aggregate them using the BodyInAggregatingStrategy strategy which
// and the header mySize determines the number of aggregated messages should

trigger the completion
// and send it to mock:aggregated
.aggregate(header("id"), new

BodyInAggregatingStrategy()).completionSize(header("mySize"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">

<correlationExpression>
<simple>header.id</simple>

</correlationExpression>
<completionSize>

<header>mySize</header>
</completionSize>
<to uri="mock:aggregated"/>

</aggregate>
</route>

</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.BodyInAggregatingStrategy"/>

Note: You can also add a fixed size value and Camel will fallback to use this
value if the dynamic value was null or 0.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Manually Force the Completion of All Aggregated
Exchanges Immediately
Available as of Camel 2.9
You can manually complete all current aggregated exchanges by sending in a
message containing the header

CHAPTER 10 - PATTERN APPENDIX 459

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Exchange.AGGREGATION_COMPLETE_ALL_GROUPS set to true. The message
is considered a signal message only, the message headers/contents will not
be processed otherwise.

Using a List<V> in AggregationStrategy
Available as of Camel 2.11

If you want to aggregate some value from the messages <V> into a
List<V> then we have added a
org.apache.camel.processor.aggregate.AbstractListAggregationStrategy
abstract class in Camel 2.11 that makes this easier. The completed
Exchange that is sent out of the aggregator will contain the List<V> in the
message body.

For example to aggregate a List<Integer> you can extend this class as
shown below, and implement the getValue method:

/**
* Our strategy just group a list of integers.
*/

public final class MyListOfNumbersStrategy extends
AbstractListAggregationStrategy<Integer> {

@Override
public Integer getValue(Exchange exchange) {

// the message body contains a number, so just return that as-is
return exchange.getIn().getBody(Integer.class);

}
}

See also
▪ The Loan Broker Example which uses an aggregator
▪ Blog post by Torsten Mielke about using the aggregator correctly.
▪ The old Aggregator
▪ HawtDB or SQL Component for persistence support
▪ Aggregate Example for an example application

Resequencer
The Resequencer from the EIP patterns allows you to reorganise messages
based on some comparator. By default in Camel we use an Expression to
create the comparator; so that you can compare by a message header or the
body or a piece of a message etc.

460 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/loan-broker-example.html
http://tmielke.blogspot.com/2009/01/using-camel-aggregator-correctly.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/aggregate-example.html
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/expression.html

Camel supports two resequencing algorithms:
• Batch resequencing collects messages into a batch, sorts the

messages and sends them to their output.
• Stream resequencing re-orders (continuous) message streams

based on the detection of gaps between messages.
By default the Resequencer does not support duplicate messages and will
only keep the last message, in case a message arrives with the same
message expression. However in the batch mode you can enable it to allow
duplicates.

Batch Resequencing
The following example shows how to use the batch-processing resequencer
so that messages are sorted in order of the body() expression. That is
messages are collected into a batch (either by a maximum number of
messages per batch or using a timeout) then they are sorted in order and
then sent out to their output.

Using the Fluent Builders

from("direct:start")
.resequence().body()
.to("mock:result");

This is equvalent to

from("direct:start")
.resequence(body()).batch()
.to("mock:result");

The batch-processing resequencer can be further configured via the size()
and timeout() methods.

from("direct:start")
.resequence(body()).batch().size(300).timeout(4000L)
.to("mock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default,
the batch size is 100 and the timeout is 1000 ms). Alternatively, you can
provide a configuration object.

CHAPTER 10 - PATTERN APPENDIX 461

http://camel.apache.org/resequencer.html
http://camel.apache.org/fluent-builders.html

Change in Camel 2.7
The <batch-config> and <stream-config> tags in XML DSL in the
Resequencer EIP must now be configured in the top, and not in the
bottom. So if you use those, then move them up just below the
<resequence> EIP starts in the XML. If you are using Camel older
than 2.7, then those configs should be at the bottom.

from("direct:start")
.resequence(body()).batch(new BatchResequencerConfig(300, 4000L))
.to("mock:result")

So the above example will reorder messages from endpoint direct:a in order
of their bodies, to the endpoint mock:result.
Typically you'd use a header rather than the body to order things; or maybe a
part of the body. So you could replace this expression with

resequencer(header("mySeqNo"))

for example to reorder messages using a custom sequence number in the
header mySeqNo.

You can of course use many different Expression languages such as XPath,
XQuery, SQL or various Scripting Languages.

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start" />
<resequence>

<simple>body</simple>
<to uri="mock:result" />
<!--

batch-config can be ommitted for default (batch) resequencer settings
-->
<batch-config batchSize="300" batchTimeout="4000" />

</resequence>
</route>

</camelContext>

Allow Duplicates
Available as of Camel 2.4

462 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

In the batch mode, you can now allow duplicates. In Java DSL there is a
allowDuplicates() method and in Spring XML there is an
allowDuplicates=true attribute on the <batch-config/> you can use to
enable it.

Reverse
Available as of Camel 2.4

In the batch mode, you can now reverse the expression ordering. By
default the order is based on 0..9,A..Z, which would let messages with low
numbers be ordered first, and thus also also outgoing first. In some cases
you want to reverse order, which is now possible.

In Java DSL there is a reverse() method and in Spring XML there is an
reverse=true attribute on the <batch-config/> you can use to enable it.

Resequence JMS messages based on JMSPriority
Available as of Camel 2.4

It's now much easier to use the Resequencer to resequence messages
from JMS queues based on JMSPriority. For that to work you need to use
the two new options allowDuplicates and reverse.

from("jms:queue:foo")
// sort by JMSPriority by allowing duplicates (message can have same JMSPriority)
// and use reverse ordering so 9 is first output (most important), and 0 is last
// use batch mode and fire every 3th second

.resequence(header("JMSPriority")).batch().timeout(3000).allowDuplicates().reverse()
.to("mock:result");

Notice this is only possible in the batch mode of the Resequencer.

Ignore invalid exchanges
Available as of Camel 2.9

The Resequencer EIP will from Camel 2.9 onwards throw a
CamelExchangeException if the incoming Exchange is not valid for the
resequencer - ie. the expression cannot be evaluated, such as a missing
header. You can use the option ignoreInvalidExchanges to ignore these
exceptions which means the Resequencer will then skip the invalid
Exchange.

CHAPTER 10 - PATTERN APPENDIX 463

http://camel.apache.org/resequencer.html
http://camel.apache.org/jms.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html

from("direct:start")
.resequence(header("seqno")).batch().timeout(1000)

// ignore invalid exchanges (they are discarded)
.ignoreInvalidExchanges()

.to("mock:result");

This option is available for both batch and stream resequencer.

Reject Old Exchanges
Available as of Camel 2.11

This option can be used to prevent out of order messages from being sent
regardless of the event that delivered messages downstream (capacity,
timeout, etc). If enabled using rejectOld(), the Resequencer will throw a
MessageRejectedException when an incoming Exchange is "older" (based
on the Comparator) than the last delivered message. This provides an extra
level of control with regards to delayed message ordering.

from("direct:start")
.onException(MessageRejectedException.class).handled(true).to("mock:error").end()
.resequence(header("seqno")).stream().timeout(1000).rejectOld()
.to("mock:result");

This option is available for the stream resequencer only.

Stream Resequencing
The next example shows how to use the stream-processing resequencer.
Messages are re-ordered based on their sequence numbers given by a
seqnum header using gap detection and timeouts on the level of individual
messages.

Using the Fluent Builders

from("direct:start").resequence(header("seqnum")).stream().to("mock:result");

The stream-processing resequencer can be further configured via the
capacity() and timeout() methods.

from("direct:start")
.resequence(header("seqnum")).stream().capacity(5000).timeout(4000L)
.to("mock:result")

464 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/resequencer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by
default, the capacity is 1000 and the timeout is 1000 ms). Alternatively, you
can provide a configuration object.

from("direct:start")
.resequence(header("seqnum")).stream(new StreamResequencerConfig(5000, 4000L))
.to("mock:result")

The stream-processing resequencer algorithm is based on the detection of
gaps in a message stream rather than on a fixed batch size. Gap detection in
combination with timeouts removes the constraint of having to know the
number of messages of a sequence (i.e. the batch size) in advance.
Messages must contain a unique sequence number for which a predecessor
and a successor is known. For example a message with the sequence
number 3 has a predecessor message with the sequence number 2 and a
successor message with the sequence number 4. The message sequence
2,3,5 has a gap because the sucessor of 3 is missing. The resequencer
therefore has to retain message 5 until message 4 arrives (or a timeout
occurs).

If the maximum time difference between messages (with successor/
predecessor relationship with respect to the sequence number) in a message
stream is known, then the resequencer's timeout parameter should be set to
this value. In this case it is guaranteed that all messages of a stream are
delivered in correct order to the next processor. The lower the timeout value
is compared to the out-of-sequence time difference the higher is the
probability for out-of-sequence messages delivered by this resequencer.
Large timeout values should be supported by sufficiently high capacity
values. The capacity parameter is used to prevent the resequencer from
running out of memory.

By default, the stream resequencer expects long sequence numbers but
other sequence numbers types can be supported as well by providing a
custom expression.

public class MyFileNameExpression implements Expression {

public String getFileName(Exchange exchange) {
return exchange.getIn().getBody(String.class);

}

public Object evaluate(Exchange exchange) {
// parser the file name with YYYYMMDD-DNNN pattern
String fileName = getFileName(exchange);
String[] files = fileName.split("-D");
Long answer = Long.parseLong(files[0]) * 1000 + Long.parseLong(files[1]);
return answer;

CHAPTER 10 - PATTERN APPENDIX 465

}

public <T> T evaluate(Exchange exchange, Class<T> type) {
Object result = evaluate(exchange);
return exchange.getContext().getTypeConverter().convertTo(type, result);

}

}

from("direct:start").resequence(new
MyFileNameExpression()).stream().timeout(100).to("mock:result");

or custom comparator via the comparator() method

ExpressionResultComparator<Exchange> comparator = new MyComparator();
from("direct:start")

.resequence(header("seqnum")).stream().comparator(comparator)

.to("mock:result");

or via a StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(100, 1000L, comparator);

from("direct:start")
.resequence(header("seqnum")).stream(config)
.to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<resequence>

<simple>in.header.seqnum</simple>
<to uri="mock:result" />
<stream-config capacity="5000" timeout="4000"/>

</resequence>
</route>

</camelContext>

Further Examples
For further examples of this pattern in use you could look at the batch-
processing resequencer junit test case and the stream-processing
resequencer junit test case

466 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/StreamResequencerTest.java?view=markup

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Composed Message Processor
The Composed Message Processor from the EIP patterns allows you to
process a composite message by splitting it up, routing the sub-messages to
appropriate destinations and the re-aggregating the responses back into a
single message.

In Camel we provide two solutions
▪ using both a Splitter and Aggregator EIPs
▪ using only a Splitter

The difference is when using only a Splitter it aggregates back all the splitted
messages into the same aggregation group, eg like a fork/join pattern.
Whereas using the Aggregator allows you group into multiple groups, a
pattern which provides more options.

Example using both Splitter and Aggregator
In this example we want to check that a multipart order can be filled. Each
part of the order requires a check at a different inventory.

// split up the order so individual OrderItems can be validated by the appropriate
bean
from("direct:start")

.split().body()

.choice()
.when().method("orderItemHelper", "isWidget")

.to("bean:widgetInventory")
.otherwise()

.to("bean:gadgetInventory")
.end()

CHAPTER 10 - PATTERN APPENDIX 467

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DistributionAggregate.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/aggregator2.html

Using the splitter alone is often easier and possibly a better
solution. So take a look at this first, before involving the aggregator.

.to("seda:aggregate");

// collect and re-assemble the validated OrderItems into an order again
from("seda:aggregate")

.aggregate(new
MyOrderAggregationStrategy()).header("orderId").completionTimeout(1000L)

.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<split>

<simple>body</simple>
<choice>

<when>
<method bean="orderItemHelper" method="isWidget"/>
<to uri="bean:widgetInventory"/>

</when>
<otherwise>

<to uri="bean:gadgetInventory"/>
</otherwise>

</choice>
<to uri="seda:aggregate"/>

</split>
</route>

<route>
<from uri="seda:aggregate"/>
<aggregate strategyRef="myOrderAggregatorStrategy" completionTimeout="1000">

<correlationExpression>
<simple>header.orderId</simple>

</correlationExpression>
<to uri="mock:result"/>

</aggregate>
</route>

To do this we split up the order using a Splitter. The Splitter then sends
individual OrderItems to a Content Based Router which checks the item
type. Widget items get sent for checking in the widgetInventory bean and
gadgets get sent to the gadgetInventory bean. Once these OrderItems
have been validated by the appropriate bean, they are sent on to the
Aggregator which collects and re-assembles the validated OrderItems into
an order again.

468 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/aggregator2.html

When an order is sent it contains a header with the order id. We use this
fact when we aggregate, as we configure this .header("orderId") on the
aggregate DSL to instruct Camel to use the header with the key orderId as
correlation expression.

For full details, check the example source here:
camel-core/src/test/java/org/apache/camel/processor/

ComposedMessageProcessorTest.java

Example using only Splitter
In this example we want to split an incoming order using the Splitter eip,
transform each order line, and then combine the order lines into a new order
message.

// this routes starts from the direct:start endpoint
// the body is then splitted based on @ separator
// the splitter in Camel supports InOut as well and for that we need
// to be able to aggregate what response we need to send back, so we provide our
// own strategy with the class MyOrderStrategy.
from("direct:start")

.split(body().tokenize("@"), new MyOrderStrategy())
// each splitted message is then send to this bean where we can process it
.to("bean:MyOrderService?method=handleOrder")
// this is important to end the splitter route as we do not want to do more

routing
// on each splitted message

.end()
// after we have splitted and handled each message we want to send a single

combined
// response back to the original caller, so we let this bean build it for us
// this bean will receive the result of the aggregate strategy: MyOrderStrategy
.to("bean:MyOrderService?method=buildCombinedResponse")

The bean with the methods to transform the order line and process the order
as well:

public static class MyOrderService {

private static int counter;

/**
* We just handle the order by returning a id line for the order
*/

public String handleOrder(String line) {
LOG.debug("HandleOrder: " + line);
return "(id=" + ++counter + ",item=" + line + ")";

}

/**

CHAPTER 10 - PATTERN APPENDIX 469

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ComposedMessageProcessorTest.java
http://camel.apache.org/splitter.html

Using XML
If you use XML, then the <split> tag offers the strategyRef attribute
to refer to your custom AggregationStrategy

* We use the same bean for building the combined response to send
* back to the original caller
*/

public String buildCombinedResponse(String line) {
LOG.debug("BuildCombinedResponse: " + line);
return "Response[" + line + "]";

}
}

And the AggregationStrategy we use with the Splitter eip to combine the
orders back again (eg fork/join):

/**
* This is our own order aggregation strategy where we can control
* how each splitted message should be combined. As we do not want to
* loos any message we copy from the new to the old to preserve the
* order lines as long we process them
*/

public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
// put order together in old exchange by adding the order from new exchange

if (oldExchange == null) {
// the first time we aggregate we only have the new exchange,
// so we just return it
return newExchange;

}

String orders = oldExchange.getIn().getBody(String.class);
String newLine = newExchange.getIn().getBody(String.class);

LOG.debug("Aggregate old orders: " + orders);
LOG.debug("Aggregate new order: " + newLine);

// put orders together separating by semi colon
orders = orders + ";" + newLine;
// put combined order back on old to preserve it
oldExchange.getIn().setBody(orders);

// return old as this is the one that has all the orders gathered until now
return oldExchange;

}
}

470 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/splitter.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Scatter-Gather
The Scatter-Gather from the EIP patterns allows you to route messages to a
number of dynamically specified recipients and re-aggregate the responses
back into a single message.

Dynamic Scatter-Gather Example
In this example we want to get the best quote for beer from several different
vendors. We use a dynamic Recipient List to get the request for a quote to all
vendors and an Aggregator to pick the best quote out of all the responses.
The routes for this are defined as:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<recipientList>

<header>listOfVendors</header>
</recipientList>

</route>
<route>

<from uri="seda:quoteAggregator"/>
<aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">

<correlationExpression>
<header>quoteRequestId</header>

</correlationExpression>
<to uri="mock:result"/>

</aggregate>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 471

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/aggregator.html

So in the first route you see that the Recipient List is looking at the
listOfVendors header for the list of recipients. So, we need to send a
message like

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("listOfVendors", "bean:vendor1, bean:vendor2, bean:vendor3");
headers.put("quoteRequestId", "quoteRequest-1");
template.sendBodyAndHeaders("direct:start", "<quote_request item=\"beer\"/>",
headers);

This message will be distributed to the following Endpoints: bean:vendor1,
bean:vendor2, and bean:vendor3. These are all beans which look like

public class MyVendor {
private int beerPrice;

@Produce(uri = "seda:quoteAggregator")
private ProducerTemplate quoteAggregator;

public MyVendor(int beerPrice) {
this.beerPrice = beerPrice;

}

public void getQuote(@XPath("/quote_request/@item") String item, Exchange
exchange) throws Exception {

if ("beer".equals(item)) {
exchange.getIn().setBody(beerPrice);
quoteAggregator.send(exchange);

} else {
throw new Exception("No quote available for " + item);

}
}

}

and are loaded up in Spring like

<bean id="aggregatorStrategy"
class="org.apache.camel.spring.processor.scattergather.LowestQuoteAggregationStrategy"/>

<bean id="vendor1" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>1</value>
</constructor-arg>

</bean>

<bean id="vendor2" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>2</value>
</constructor-arg>

</bean>

472 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/recipient-list.html
http://camel.apache.org/endpoint.html

<bean id="vendor3" class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>

<value>3</value>
</constructor-arg>

</bean>

Each bean is loaded with a different price for beer. When the message is sent
to each bean endpoint, it will arrive at the MyVendor.getQuote method. This
method does a simple check whether this quote request is for beer and then
sets the price of beer on the exchange for retrieval at a later step. The
message is forwarded on to the next step using POJO Producing (see the
@Produce annotation).

At the next step we want to take the beer quotes from all vendors and find
out which one was the best (i.e. the lowest!). To do this we use an Aggregator
with a custom aggregation strategy. The Aggregator needs to be able to
compare only the messages from this particular quote; this is easily done by
specifying a correlationExpression equal to the value of the quoteRequestId
header. As shown above in the message sending snippet, we set this header
to quoteRequest-1. This correlation value should be unique or you may
include responses that are not part of this quote. To pick the lowest quote out
of the set, we use a custom aggregation strategy like

public class LowestQuoteAggregationStrategy implements AggregationStrategy {
public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {

// the first time we only have the new exchange
if (oldExchange == null) {

return newExchange;
}

if (oldExchange.getIn().getBody(int.class) <
newExchange.getIn().getBody(int.class)) {

return oldExchange;
} else {

return newExchange;
}

}
}

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

result.expectedBodiesReceived(1); // expect the lowest quote

You can find the full example source here:
camel-spring/src/test/java/org/apache/camel/spring/processor/

scattergather/

CHAPTER 10 - PATTERN APPENDIX 473

http://camel.apache.org/pojo-producing.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/aggregator.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/

camel-spring/src/test/resources/org/apache/camel/spring/processor/
scattergather/scatter-gather.xml

Static Scatter-Gather Example
You can lock down which recipients are used in the Scatter-Gather by using a
static Recipient List. It looks something like this

from("direct:start").multicast().to("seda:vendor1", "seda:vendor2", "seda:vendor3");

from("seda:vendor1").to("bean:vendor1").to("seda:quoteAggregator");
from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")
.aggregate(header("quoteRequestId"), new

LowestQuoteAggregationStrategy()).to("mock:result")

A full example of the static Scatter-Gather configuration can be found in the
Loan Broker Example.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Routing Slip
The Routing Slip from the EIP patterns allows you to route a message
consecutively through a series of processing steps where the sequence of
steps is not known at design time and can vary for each message.

474 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml
http://camel.apache.org/recipient-list.html
http://camel.apache.org/loan-broker-example.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://camel.apache.org/enterprise-integration-patterns.html

Options

Name Default
Value Description

uriDelimiter , Delimiter used if the Expression returned multiple endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will throw an
exception stating the endpoint uri is not valid.

Example
The following route will take any messages sent to the Apache ActiveMQ
queue SomeQueue and pass them into the Routing Slip pattern.

from("activemq:SomeQueue").routingSlip("headerName");

Messages will be checked for the existance of the "headerName" header. The
value of this header should be a comma-delimited list of endpoint URIs you
wish the message to be routed to. The Message will be routed in a pipeline
fashion (i.e. one after the other).

From Camel 2.5 the Routing Slip will set a property
(Exchange.SLIP_ENDPOINT) on the Exchange which contains the current
endpoint as it advanced though the slip. This allows you to know how far we
have processed in the slip.

The Routing Slip will compute the slip beforehand which means, the slip
is only computed once. If you need to compute the slip on-the-fly then use
the Dynamic Router pattern instead.

Configuration options
Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders

from("direct:c").routingSlip(header("aRoutingSlipHeader"), "#");

Using the Spring XML Extensions

<camelContext id="buildRoutingSlip" xmlns="http://activemq.apache.org/camel/schema/
spring">

<route>
<from uri="direct:c"/>
<routingSlip headerName="aRoutingSlipHeader" uriDelimiter="#"/>

</route>
</camelContext>

CHAPTER 10 - PATTERN APPENDIX 475

http://camel.apache.org/expression.html
http://activemq.apache.org
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://camel.apache.org/uris.html
http://camel.apache.org/message.html
http://camel.apache.org/pipes-and-filters.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/exchange.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Ignore invalid endpoints
Available as of Camel 2.3

The Routing Slip now supports ignoreInvalidEndpoints which the
Recipient List also supports. You can use it to skip endpoints which are
invalid.

from("direct:a").routingSlip("myHeader").ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<routingSlip headerName="myHeader" ignoreInvalidEndpoints="true"/>

</route>

Then lets say the myHeader contains the following two endpoints
direct:foo,xxx:bar. The first endpoint is valid and works. However the 2nd
is invalid and will just be ignored. Camel logs at INFO level, so you can see
why the endpoint was invalid.

Expression supporting
Available as of Camel 2.4

The Routing Slip now supports to take the expression parameter as the
Recipient List does. You can tell Camel the expression that you want to use to
get the routing slip.

from("direct:a").routingSlip(header("myHeader")).ignoreInvalidEndpoints();

And in Spring XML its an attribute on the recipient list tag.

<route>
<from uri="direct:a"/>
<!--NOTE from Camel 2.4.0, you need to specify the expression element inside

of the routingSlip element -->
<routingSlip ignoreInvalidEndpoints="true">

<header>myHeader</header>
</routingSlip>

</route>

476 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/recipient-list.html

Further Examples
For further examples of this pattern in use you could look at the routing slip
test cases.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Throttler
The Throttler Pattern allows you to ensure that a specific endpoint does not
get overloaded, or that we don't exceed an agreed SLA with some external
service.

Options

Name Default
Value Description

maximumRequestsPerPeriod Â
Maximum number of requests per period to throttle. This option must be provided as a positive
number. Notice, in the XML DSL, from Camel 2.8 onwards this option is configured using an
Expression instead of an attribute.

timePeriodMillis 1000 The time period in milliseconds, in which the throttler will allow at most
maximumRequestsPerPeriod number of messages.

asyncDelayed false Camel 2.4: If enabled then any messages which is delayed happens asynchronously using a
scheduled thread pool.

executorServiceRef Â Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected true Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should
execute the task if the thread pool rejected the task.

Examples
Using the Fluent Builders

from("seda:a").throttle(3).timePeriodMillis(10000).to("log:result", "mock:result");

So the above example will throttle messages all messages received on
seda:a before being sent to mock:result ensuring that a maximum of 3
messages are sent in any 10 second window.

Note that since timePeriodMillis defaults to 1000 milliseconds, just
setting the maximumRequestsPerPeriod has the effect of setting the
maximum number of requests per second. So to throttle requests at 100
requests per second between two endpoints, it would look more like this...

CHAPTER 10 - PATTERN APPENDIX 477

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/expression.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/fluent-builders.html

from("seda:a").throttle(100).to("seda:b");

For further examples of this pattern in use you could look at the junit test
case

Using the Spring XML Extensions

Camel 2.7.x or older

<route>
<from uri="seda:a" />
<throttle maximumRequestsPerPeriod="3" timePeriodMillis="10000">

<to uri="mock:result" />
</throttle>

</route>

Camel 2.8 onwards
In Camel 2.8 onwards you must set the maximum period as an Expression as
shown below where we use a Constant expression:

<route>
<from uri="seda:a"/>
<!-- throttle 3 messages per 10 sec -->
<throttle timePeriodMillis="10000">

<constant>3</constant>
<to uri="mock:result"/>

</throttle>
</route>

Dynamically changing maximum requests per period
Available as of Camel 2.8
Since we use an Expression you can adjust this value at runtime, for example
you can provide a header with the value. At runtime Camel evaluates the
expression and converts the result to a java.lang.Long type. In the example
below we use a header from the message to determine the maximum
requests per period. If the header is absent, then the Throttler uses the old
value. So that allows you to only provide a header if the value is to be
changed:

478 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/constant.html
http://camel.apache.org/expression.html
http://camel.apache.org/throttler.html

<route>
<from uri="direct:expressionHeader"/>
<throttle timePeriodMillis="500">

<!-- use a header to determine how many messages to throttle per 0.5 sec -->
<header>throttleValue</header>
<to uri="mock:result"/>

</throttle>
</route>

Asynchronous delaying
Available as of Camel 2.4

You can let the Throttler use non blocking asynchronous delaying, which
means Camel will use a scheduler to schedule a task to be executed in the
future. The task will then continue routing. This allows the caller thread to
not block and be able to service other messages, etc.

from("seda:a").throttle(100).asyncDelayed().to("seda:b");

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

SAMPLING THROTTLER
Available as of Camel 2.1

A sampling throttler allows you to extract a sample of the exchanges from
the traffic through a route.
It is configured with a sampling period during which only a single exchange is
allowed to pass through. All other exchanges will be stopped.

Will by default use a sample period of 1 seconds.

Options
Name Default Value Description
messageFrequency Â Samples the message every N'th message. You can only use either frequency or period.

samplePeriod 1 Samples the message every N'th period. You can only use either frequency or period.

units SECOND Time unit as an enum of java.util.concurrent.TimeUnit from the JDK.

CHAPTER 10 - PATTERN APPENDIX 479

http://camel.apache.org/throttler.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Samples
You use this EIP with the sample DSL as show in these samples.

Using the Fluent Builders
These samples also show how you can use the different syntax to configure
the sampling period:

from("direct:sample")
.sample()
.to("mock:result");

from("direct:sample-configured")
.sample(1, TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-configured-via-dsl")
.sample().samplePeriod(1).timeUnits(TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-messageFrequency")
.sample(10)
.to("mock:result");

from("direct:sample-messageFrequency-via-dsl")
.sample().sampleMessageFrequency(5)
.to("mock:result");

Using the Spring XML Extensions
And the same example in Spring XML is:

<route>
<from uri="direct:sample"/>
<sample samplePeriod="1" units="seconds">

<to uri="mock:result"/>
</sample>

</route>
<route>

<from uri="direct:sample-messageFrequency"/>
<sample messageFrequency="10">

<to uri="mock:result"/>
</sample>

</route>
<route>

<from uri="direct:sample-messageFrequency-via-dsl"/>
<sample messageFrequency="5">

<to uri="mock:result"/>
</sample>

</route>

And since it uses a default of 1 second you can omit this configuration in
case you also want to use 1 second

480 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:sample"/>
<!-- will by default use 1 second period -->
<sample>

<to uri="mock:result"/>
</sample>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

See Also
▪ Throttler
▪ Aggregator

Delayer
The Delayer Pattern allows you to delay the delivery of messages to some
destination.

Options

Name Default
Value Description

asyncDelayed false Camel 2.4: If enabled then delayed messages happens asynchronously using a scheduled
thread pool.

executorServiceRef Â Camel 2.4: Refers to a custom Thread Pool to be used if asyncDelay has been enabled.

callerRunsWhenRejected true Camel 2.4: Is used if asyncDelayed was enabled. This controls if the caller thread should
execute the task if the thread pool rejected the task.

Using the Fluent Builders

from("seda:b").delay(1000).to("mock:result");

So the above example will delay all messages received on seda:b 1 second
before sending them to mock:result.

You can of course use many different Expression languages such as XPath,
XQuery, SQL or various Scripting Languages. You can just delay things a fixed
amount of time from the point at which the delayer receives the message.
For example to delay things 2 seconds

CHAPTER 10 - PATTERN APPENDIX 481

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/throttler.html
http://camel.apache.org/aggregator.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html

The expression is a value in millis to wait from the current time, so
the expression should just be 3000.
However you can use a long value for a fixed value to indicate the
delay in millis.
See the Spring DSL samples for Delayer.

Using Delayer in Java DSL
See this ticket: https://issues.apache.org/jira/browse/CAMEL-2654

delayer(2000)

The above assume that the delivery order is maintained and that the
messages are delivered in delay order. If you want to reorder the messages
based on delivery time, you can use the Resequencer with this pattern. For
example

from("activemq:someQueue").resequencer(header("MyDeliveryTime")).delay("MyRedeliveryTime").to("activemq:aDelayedQueue");

Spring DSL
The sample below demonstrates the delay in Spring DSL:

<bean id="myDelayBean" class="org.apache.camel.processor.MyDelayCalcBean"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="seda:a"/>
<delay>

<header>MyDelay</header>
</delay>
<to uri="mock:result"/>

</route>
<route>

<from uri="seda:b"/>
<delay>

<constant>1000</constant>
</delay>
<to uri="mock:result"/>

</route>
<route>

482 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/resequencer.html
https://issues.apache.org/jira/browse/CAMEL-2654

<from uri="seda:c"/>
<delay>

<method ref="myDelayBean" method="delayMe"/>
</delay>
<to uri="mock:result"/>

</route>
</camelContext>

For further examples of this pattern in use you could look at the junit test
case

Asynchronous delaying
Available as of Camel 2.4

You can let the Delayer use non blocking asynchronous delaying, which
means Camel will use a scheduler to schedule a task to be executed in the
future. The task will then continue routing. This allows the caller thread to
not block and be able to service other messages etc.

From Java DSL
You use the asyncDelayed() to enable the async behavior.

from("activemq:queue:foo").delay(1000).asyncDelayed().to("activemq:aDelayedQueue");

From Spring XML
You use the asyncDelayed="true" attribute to enable the async behavior.

<route>
<from uri="activemq:queue:foo"/>
<delay asyncDelayed="true">

<constant>1000</constant>
</delay>
<to uri="activemq:aDealyedQueue"/>

</route>

Creating a custom delay
You can use an expression to determine when to send a message using
something like this

CHAPTER 10 - PATTERN APPENDIX 483

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DelayerTest.java?view=markup
http://camel.apache.org/delayer.html

from("activemq:foo").
delay().method("someBean", "computeDelay").
to("activemq:bar");

then the bean would look like this...

public class SomeBean {
public long computeDelay() {

long delay = 0;
// use java code to compute a delay value in millis
return delay;

}
}

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

See Also
• Delay Interceptor

Load Balancer
The Load Balancer Pattern allows you to delegate to one of a number of
endpoints using a variety of different load balancing policies.

Built-in load balancing policies
Camel provides the following policies out-of-the-box:
Policy Description

Round
Robin

The exchanges are selected from in a round robin fashion. This
is a well known and classic policy, which spreads the load
evenly.

Random A random endpoint is selected for each exchange.

Sticky
Sticky load balancing using an Expression to calculate a
correlation key to perform the sticky load balancing; rather like
jsessionid in the web or JMSXGroupID in JMS.

484 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/delay-interceptor.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RoundRobinLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html

Topic Topic which sends to all destinations (rather like JMS Topics)

Failover In case of failures the exchange will be tried on the next
endpoint.

Weighted
Round-
Robin

Camel 2.5: The weighted load balancing policy allows you to
specify a processing load distribution ratio for each server with
respect to the others. In addition to the weight, endpoint
selection is then further refined using round-robin distribution
based on weight.

Weighted
Random

Camel 2.5: The weighted load balancing policy allows you to
specify a processing load distribution ratio for each server with
respect to others.In addition to the weight, endpoint selection
is then further refined using random distribution based on
weight.

Custom
Camel 2.8: From Camel 2.8 onwards the preferred way of
using a custom Load Balancer is to use this policy, instead of
using the @deprecated ref attribute.

Round Robin
The round robin load balancer is not meant to work with failover, for that you
should use the dedicated failover load balancer. The round robin load
balancer will only change to next endpoint per message.

The round robin load balancer is stateful as it keeps state of which
endpoint to use next time.

Using the Fluent Builders

from("direct:start").loadBalance().
roundRobin().to("mock:x", "mock:y", "mock:z");

Using the Spring configuration

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<loadBalance>

<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

CHAPTER 10 - PATTERN APPENDIX 485

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/FailOverLoadBalancer.html
http://camel.apache.org/load-balancer.html
http://camel.apache.org/fluent-builders.html

Load balancing HTTP endpoints
If you are proxying and load balancing HTTP, then see this page for
more details.

The above example loads balance requests from direct:start to one of the
available mock endpoint instances, in this case using a round robin policy.
For further examples of this pattern look at this junit test case

Failover
The failover load balancer is capable of trying the next processor in case
an Exchange failed with an exception during processing.
You can constrain the failover to activate only when one exception of a list
you specify occurs. If you do not specify a list any exception will cause fail
over to occur. This balancer uses the same strategy for matching exceptions
as the Exception Clause does for the onException.
Failover offers the following options:
Option Type Default Description

486 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RoundRobinLoadBalanceTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html

Enable stream caching if using streams
If you use streaming then you should enable Stream caching when
using the failover load balancer. This is needed so the stream can
be re-read after failing over to the next processor.

inheritErrorHandler boolean true

Camel 2.3: Whether or
not the Error Handler
configured on the route
should be used. Disable
this if you want failover
to transfer immediately
to the next endpoint. On
the other hand, if you
have this option
enabled, then Camel will
first let the Error Handler
try to process the
message. The Error
Handler may have been
configured to redeliver
and use delays between
attempts. If you have
enabled a number of
redeliveries then Camel
will try to redeliver to
the same endpoint, and
only fail over to the next
endpoint, when the Error
Handler is exhausted.

CHAPTER 10 - PATTERN APPENDIX 487

http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/stream-caching.html

maximumFailoverAttempts int -1

Camel 2.3: A value to
indicate after X failover
attempts we should
exhaust (give up). Use -1
to indicate never give up
and continuously try to
failover. Use 0 to never
failover. And use e.g. 3
to failover at most 3
times before giving up.
This option can be used
whether or not
roundRobin is enabled or
not.

roundRobin boolean false

Camel 2.3: Whether or
not the failover load
balancer should operate
in round robin mode or
not. If not, then it will
always start from the
first endpoint when a
new message is to be
processed. In other
words it restart from the
top for every message. If
round robin is enabled,
then it keeps state and
will continue with the
next endpoint in a round
robin fashion. When
using round robin it will
not stick to last known
good endpoint, it will
always pick the next
endpoint to use.

Camel 2.2 or older behavior
The current implementation of failover load balancer uses simple logic which
always tries the first endpoint, and in case of an exception being thrown it
tries the next in the list, and so forth. It has no state, and the next message
will thus always start with the first endpoint.

488 CHAPTER 10 - PATTERN APPENDIX

Camel 2.3 onwards behavior
The failover load balancer now supports round robin mode, which allows
you to failover in a round robin fashion. See the roundRobin option.
Here is a sample to failover only if a IOException related exception was
thrown:

from("direct:start")
// here we will load balance if IOException was thrown
// any other kind of exception will result in the Exchange as failed
// to failover over any kind of exception we can just omit the exception
// in the failOver DSL
.loadBalance().failover(IOException.class)

.to("direct:x", "direct:y", "direct:z");

You can specify multiple exceptions to failover as the option is varargs, for
instance:

// enable redelivery so failover can react
errorHandler(defaultErrorHandler().maximumRedeliveries(5));

from("direct:foo").
loadBalance().failover(IOException.class, MyOtherException.class)

.to("direct:a", "direct:b");

Using failover in Spring DSL
Failover can also be used from Spring DSL and you configure it as:

<route errorHandlerRef="myErrorHandler">
<from uri="direct:foo"/>
<loadBalance>

<failover>
<exception>java.io.IOException</exception>
<exception>com.mycompany.MyOtherException</exception>

</failover>
<to uri="direct:a"/>
<to uri="direct:b"/>

</loadBalance>
</route>

Using failover in round robin mode
An example using Java DSL:

CHAPTER 10 - PATTERN APPENDIX 489

Redelivery must be enabled
In Camel 2.2 or older the failover load balancer requires you have
enabled Camel Error Handler to use redelivery. In Camel 2.3
onwards this is not required as such, as you can mix and match.
See the inheritErrorHandler option.

from("direct:start")
// Use failover load balancer in stateful round robin mode
// which mean it will failover immediately in case of an exception
// as it does NOT inherit error handler. It will also keep retrying as
// its configured to newer exhaust.
.loadBalance().failover(-1, false, true).

to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<!-- failover using stateful round robin,
which will keep retrying forever those 4 endpoints until success.
You can set the maximumFailoverAttempt to break out after X attempts -->

<failover roundRobin="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>
<to uri="direct:good2"/>

</loadBalance>
</route>

Weighted Round-Robin and Random Load Balancing
Available as of Camel 2.5

In many enterprise environments where server nodes of unequal
processing power & performance characteristics are utilized to host services
and processing endpoints, it is frequently necessary to distribute processing
load based on their individual server capabilities so that some endpoints are
not unfairly burdened with requests. Obviously simple round-robin or random
load balancing do not alleviate problems of this nature. A Weighted Round-
Robin and/or Weighted Random load balancer can be used to address this
problem.

The weighted load balancing policy allows you to specify a processing load
distribution ratio for each server with respect to others. You can specify this

490 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/error-handler.html

Disabled inheritErrorHandler
You can configure inheritErrorHandler=false if you want to
failover to the next endpoint as fast as possible. By disabling the
Error Handler you ensure it does not intervene which allows the
failover load balancer to handle failover asap. By also enabling
roundRobin mode, then it will keep retrying until it success. You can
then configure the maximumFailoverAttempts option to a high
value to let it eventually exhaust (give up) and fail.

as a positive processing weight for each server. A larger number indicates
that the server can handle a larger load. The weight is utilized to determine
the payload distribution ratio to different processing endpoints with respect
to others.
The parameters that can be used are

In Camel 2.5
Option Type Default Description

roundRobin boolean false

The default value for round-
robin is false. In the absence
of this setting or parameter
the load balancing algorithm
used is random.

distributionRatio List<Integer> none

The distributionRatio is a list
consisting on integer weights
passed in as a parameter.
The distributionRatio must
match the number of
endpoints and/or processors
specified in the load balancer
list. In Camel 2.5 if endpoints
do not match ratios, then a
best effort distribution is
attempted.

Available In Camel 2.6
Option Type Default Description

CHAPTER 10 - PATTERN APPENDIX 491

http://camel.apache.org/error-handler.html

Disabled inheritErrorHandler
As of Camel 2.6, the Weighted Load balancer usage has been
further simplified, there is no need to send in distributionRatio as a
List<Integer>. It can be simply sent as a delimited String of integer
weights separated by a delimiter of choice.

roundRobin boolean false

The default value for
round-robin is false. In the
absence of this setting or
parameter the load
balancing algorithm used
is random.

distributionRatio String none

The distributionRatio is a
delimited String
consisting on integer
weights separated by
delimiters for example
"2,3,5". The
distributionRatio must
match the number of
endpoints and/or
processors specified in
the load balancer list.

distributionRatioDelimiter String ,

The
distributionRatioDelimiter
is the delimiter used to
specify the
distributionRatio. If this
attribute is not specified a
default delimiter "," is
expected as the delimiter
used for specifying the
distributionRatio.

Using Weighted round-robin & random load balancing
In Camel 2.5

An example using Java DSL:

492 CHAPTER 10 - PATTERN APPENDIX

ArrayList<integer> distributionRatio = new ArrayList<integer>();
distributionRatio.add(4);
distributionRatio.add(2);
distributionRatio.add(1);

// round-robin
from("direct:start")

.loadBalance().weighted(true, distributionRatio)

.to("mock:x", "mock:y", "mock:z");

//random
from("direct:start")

.loadBalance().weighted(false, distributionRatio)

.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<weighted roundRobin="false" distributionRatio="4 2 1"/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

Available In Camel 2.6
An example using Java DSL:

// round-robin
from("direct:start")

.loadBalance().weighted(true, "4:2:1" distributionRatioDelimiter=":")

.to("mock:x", "mock:y", "mock:z");

//random
from("direct:start")

.loadBalance().weighted(false, "4,2,1")

.to("mock:x", "mock:y", "mock:z");

And the same example using Spring XML:

<route>
<from uri="direct:start"/>
<loadBalance>

<weighted roundRobin="false" distributionRatio="4-2-1"
distributionRatioDelimiter="-" />

<to uri="mock:x"/>
<to uri="mock:y"/>

CHAPTER 10 - PATTERN APPENDIX 493

<to uri="mock:z"/>
</loadBalance>

</route>

Custom Load Balancer
You can use a custom load balancer (eg your own implementation) also.

An example using Java DSL:

from("direct:start")
// using our custom load balancer
.loadBalance(new MyLoadBalancer())
.to("mock:x", "mock:y", "mock:z");

And the same example using XML DSL:

<!-- this is the implementation of our custom load balancer -->
<bean id="myBalancer"
class="org.apache.camel.processor.CustomLoadBalanceTest$MyLoadBalancer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<loadBalance>

<!-- refer to my custom load balancer -->
<custom ref="myBalancer"/>
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>
</route>

</camelContext>

Notice in the XML DSL above we use <custom> which is only available in
Camel 2.8 onwards. In older releases you would have to do as follows
instead:

<loadBalance ref="myBalancer">
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

</loadBalance>

To implement a custom load balancer you can extend some support classes
such as LoadBalancerSupport and SimpleLoadBalancerSupport. The

494 CHAPTER 10 - PATTERN APPENDIX

former supports the asynchronous routing engine, and the latter does not.
Here is an example:

Listing 1. Custom load balancer implementation

public static class MyLoadBalancer extends LoadBalancerSupport {

public boolean process(Exchange exchange, AsyncCallback callback) {
String body = exchange.getIn().getBody(String.class);
try {

if ("x".equals(body)) {
getProcessors().get(0).process(exchange);

} else if ("y".equals(body)) {
getProcessors().get(1).process(exchange);

} else {
getProcessors().get(2).process(exchange);

}
} catch (Throwable e) {

exchange.setException(e);
}
callback.done(true);
return true;

}
}

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Multicast
The Multicast allows to route the same message to a number of endpoints
and process them in a different way. The main difference between the
Multicast and Splitter is that Splitter will split the message into several pieces
but the Multicast will not modify the request message.

Options

Name Default
Value Description

strategyRef Â Refers to an AggregationStrategy to be used to assemble the replies from the multicasts, into a single
outgoing message from the Multicast. By default Camel will use the last reply as the outgoing message.

parallelProcessing false
If enables then sending messages to the multicasts occurs concurrently. Note the caller thread will still
wait until all messages has been fully processed, before it continues. Its only the sending and
processing the replies from the multicasts which happens concurrently.

CHAPTER 10 - PATTERN APPENDIX 495

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/multicast.html

executorServiceRef Â Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then
parallel processing is automatic implied, and you do not have to enable that option as well.

stopOnException false
Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If
disable, then Camel will send the message to all multicasts regardless if one of them failed. You can
deal with exceptions in the AggregationStrategy class where you have full control how to handle that.

streaming false If enabled then Camel will process replies out-of-order, eg in the order they come back. If disabled,
Camel will process replies in the same order as multicasted.

timeout Â

Camel 2.5: Sets a total timeout specified in millis. If the Multicast hasn't been able to send and process
all replies within the given timeframe, then the timeout triggers and the Multicast breaks out and
continues. Notice if you provide a TimeoutAwareAggregationStrategy then the timeout method is
invoked before breaking out. If the timeout is reached with running tasks still remaining, certain tasks
for which it is difficult for Camel to shut down in a graceful manner may continue to run. So use this
option with a bit of care. We may be able to improve this functionality in future Camel releases.

onPrepareRef Â
Camel 2.8: Refers to a custom Processor to prepare the copy of the Exchange each multicast will
receive. This allows you to do any custom logic, such as deep-cloning the message payload if that's
needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more
details.

Example
The following example shows how to take a request from the direct:a
endpoint , then multicast these request to direct:x, direct:y, direct:z.

Using the Fluent Builders

from("direct:a").multicast().to("direct:x", "direct:y", "direct:z");

By default Multicast invokes each endpoint sequentially. If parallel processing
is desired, simply use

from("direct:a").multicast().parallelProcessing().to("direct:x", "direct:y",
"direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating
all reply messages. The default is to only use the latest reply message and
discard any earlier replies. The aggregation strategy is configurable:

from("direct:start")
.multicast(new MyAggregationStrategy())
.parallelProcessing().timeout(500).to("direct:a", "direct:b", "direct:c")
.end()
.to("mock:result");

Stop processing in case of exception
Available as of Camel 2.1

The Multicast will by default continue to process the entire Exchange even
in case one of the multicasted messages will thrown an exception during
routing.

496 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/threading-model.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/multicast.html
http://camel.apache.org/multicast.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/splitter.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/multicast.html
http://camel.apache.org/exchange.html

For example if you want to multicast to 3 destinations and the 2nd
destination fails by an exception. What Camel does by default is to process
the remainder destinations. You have the chance to remedy or handle this in
the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be
propagated back, and let the Camel error handler handle it. You can do this in
Camel 2.1 by specifying that it should stop in case of an exception occurred.
This is done by the stopOnException option as shown below:

from("direct:start")
.multicast()

.stopOnException().to("direct:foo", "direct:bar", "direct:baz")
.end()
.to("mock:result");

from("direct:foo").to("mock:foo");

from("direct:bar").process(new MyProcessor()).to("mock:bar");

from("direct:baz").to("mock:baz");

And using XML DSL you specify it as follows:

<route>
<from uri="direct:start"/>
<multicast stopOnException="true">

<to uri="direct:foo"/>
<to uri="direct:bar"/>
<to uri="direct:baz"/>

</multicast>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<to uri="mock:foo"/>

</route>

<route>
<from uri="direct:bar"/>
<process ref="myProcessor"/>
<to uri="mock:bar"/>

</route>

<route>
<from uri="direct:baz"/>
<to uri="mock:baz"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 497

Using onPrepare to execute custom logic when preparing messages
Available as of Camel 2.8

The Multicast will copy the source Exchange and multicast each copy.
However the copy is a shallow copy, so in case you have mutateable
message bodies, then any changes will be visible by the other copied
messages. If you want to use a deep clone copy then you need to use a
custom onPrepare which allows you to do this using the Processor interface.

Notice the onPrepare can be used for any kind of custom logic which you
would like to execute before the Exchange is being multicasted.
For example if you have a mutable message body as this Animal class:

Listing 1. Animal

public class Animal implements Serializable {
private static final long serialVersionUID = 1L;
private int id;
private String name;

public Animal() {
}

public Animal(int id, String name) {
this.id = id;
this.name = name;

}

public Animal deepClone() {
Animal clone = new Animal();
clone.setId(getId());
clone.setName(getName());
return clone;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@Override
public String toString() {

return id + " " + name;

498 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html
http://camel.apache.org/exchange.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html

Design for immutable
Its best practice to design for immutable objects.

}
}

Then we can create a deep clone processor which clones the message body:
Listing 1. AnimalDeepClonePrepare

public class AnimalDeepClonePrepare implements Processor {

public void process(Exchange exchange) throws Exception {
Animal body = exchange.getIn().getBody(Animal.class);

// do a deep clone of the body which wont affect when doing multicasting
Animal clone = body.deepClone();
exchange.getIn().setBody(clone);

}
}

Then we can use the AnimalDeepClonePrepare class in the Multicast route
using the onPrepare option as shown:

Listing 1. Multicast using onPrepare

from("direct:start")
.multicast().onPrepare(new

AnimalDeepClonePrepare()).to("direct:a").to("direct:b");

And the same example in XML DSL
Listing 1. Multicast using onPrepare

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<!-- use on prepare with multicast -->
<multicast onPrepareRef="animalDeepClonePrepare">

<to uri="direct:a"/>
<to uri="direct:b"/>

</multicast>
</route>

<route>
<from uri="direct:a"/>
<process ref="processorA"/>
<to uri="mock:a"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 499

http://camel.apache.org/multicast.html

<route>
<from uri="direct:b"/>
<process ref="processorB"/>
<to uri="mock:b"/>

</route>
</camelContext>

<!-- the on prepare Processor which performs the deep cloning -->
<bean id="animalDeepClonePrepare"
class="org.apache.camel.processor.AnimalDeepClonePrepare"/>

<!-- processors used for the last two routes, as part of unit test -->
<bean id="processorA"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorA"/>
<bean id="processorB"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorB"/>

Notice the onPrepare option is also available on other EIPs such as Splitter,
Recipient List, and Wire Tap.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

LOOP
The Loop allows for processing a message a number of times, possibly in a
different way for each iteration. Useful mostly during testing.

Options

Name Default
Value Description

copy false

Camel 2.8: Whether or not copy mode is used. If
false then the same Exchange will be used for each
iteration. So the result from the previous iteration will
be visible for the next iteration. Instead you can enable
copy mode, and then each iteration restarts with a
fresh copy of the input Exchange.

500 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/eip.html
http://camel.apache.org/splitter.html
http://camel.apache.org/recipient-list.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/exchange.html

Default mode
Notice by default the loop uses the same exchange throughout the
looping. So the result from the previous iteration will be used for
the next (eg Pipes and Filters). From Camel 2.8 onwards you can
enable copy mode instead. See the options table for more details.

Exchange properties
For each iteration two properties are set on the Exchange. Processors can
rely on these properties to process the Message in different ways.
Property Description
CamelLoopSize Total number of loops
CamelLoopIndex Index of the current iteration (0 based)

Examples
The following example shows how to take a request from the direct:x
endpoint, then send the message repetitively to mock:result. The number
of times the message is sent is either passed as an argument to loop(), or
determined at runtime by evaluating an expression. The expression must
evaluate to an int, otherwise a RuntimeCamelException is thrown.

Using the Fluent Builders
Pass loop count as an argument

from("direct:a").loop(8).to("mock:result");

Use expression to determine loop count

from("direct:b").loop(header("loop")).to("mock:result");

Use expression to determine loop count

from("direct:c").loop().xpath("/hello/@times").to("mock:result");

Using the Spring XML Extensions
Pass loop count as an argument

CHAPTER 10 - PATTERN APPENDIX 501

http://camel.apache.org/message.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/pipes-and-filters.html

<route>
<from uri="direct:a"/>
<loop>

<constant>8</constant>
<to uri="mock:result"/>

</loop>
</route>

Use expression to determine loop count

<route>
<from uri="direct:b"/>
<loop>

<header>loop</header>
<to uri="mock:result"/>

</loop>
</route>

For further examples of this pattern in use you could look at one of the junit
test case

Using copy mode
Available as of Camel 2.8

Now suppose we send a message to "direct:start" endpoint containing the
letter A.
The output of processing this route will be that, each "mock:loop" endpoint
will receive "AB" as message.

from("direct:start")
// instruct loop to use copy mode, which mean it will use a copy of the input

exchange
// for each loop iteration, instead of keep using the same exchange all over
.loop(3).copy()

.transform(body().append("B"))

.to("mock:loop")
.end()
.to("mock:result");

However if we do not enable copy mode then "mock:loop" will receive "AB",
"ABB", "ABBB", etc. messages.

from("direct:start")
// by default loop will keep using the same exchange so on the 2nd and 3rd

iteration its
// the same exchange that was previous used that are being looped all over

502 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoopTest.java?view=markup

.loop(3)
.transform(body().append("B"))
.to("mock:loop")

.end()

.to("mock:result");

The equivalent example in XML DSL in copy mode is as follows:

<route>
<from uri="direct:start"/>
<!-- enable copy mode for loop eip -->
<loop copy="true">

<constant>3</constant>
<transform>

<simple>${body}B</simple>
</transform>
<to uri="mock:loop"/>

</loop>
<to uri="mock:result"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

MESSAGE TRANSFORMATION

Content Enricher
Camel supports the Content Enricher from the EIP patterns using a Message
Translator, an arbitrary Processor in the routing logic, or using the enrich DSL
element to enrich the message.

CHAPTER 10 - PATTERN APPENDIX 503

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/processor.html

Content enrichment using a Message Translator or a
Processor
Using the Fluent Builders

You can use Templating to consume a message from one destination,
transform it with something like Velocity or XQuery, and then send it on to
another destination. For example using InOnly (one way messaging)

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the
My.Queue queue on ActiveMQ with a template generated response, then
sending responses back to the JMSReplyTo Destination you could use this:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

Here is a simple example using the DSL directly to transform the message
body

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor using explicit Java code

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Finally we can use Bean Integration to use any Java method on any bean to
act as the transformer

from("activemq:My.Queue").
beanRef("myBeanName", "myMethodName").
to("activemq:Another.Queue");

For further examples of this pattern in use you could look at one of the JUnit
tests

• TransformTest
• TransformViaDSLTest

Using Spring XML

504 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/templating.html
http://camel.apache.org/velocity.html
http://camel.apache.org/xquery.html
http://camel.apache.org/activemq.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

Content enrichment using the enrich DSL element
Camel comes with two flavors of content enricher in the DSL

▪ enrich
▪ pollEnrich

enrich uses a Producer to obtain the additional data. It is usually used for
Request Reply messaging, for instance to invoke an external web service.
pollEnrich on the other hand uses a Polling Consumer to obtain the
additional data. It is usually used for Event Message messaging, for instance
to read a file or download a FTP file.

Enrich Options

Name Default
Value Description

uri Â The endpoint uri for the external service to enrich from. You must use either uri or ref.

ref Â Refers to the endpoint for the external service to enrich from. You must use either uri or ref.

strategyRef Â Refers to an AggregationStrategy to be used to merge the reply from the external service, into a single outgoing
message. By default Camel will use the reply from the external service as outgoing message.

Using the Fluent Builders

AggregationStrategy aggregationStrategy = ...

from("direct:start")
.enrich("direct:resource", aggregationStrategy)
.to("direct:result");

from("direct:resource")
...

The content enricher (enrich) retrieves additional data from a resource
endpoint in order to enrich an incoming message (contained in the original
exchange). An aggregation strategy is used to combine the original exchange
and the resource exchange. The first parameter of the
AggregationStrategy.aggregate(Exchange, Exchange) method
corresponds to the the original exchange, the second parameter the resource
exchange. The results from the resource endpoint are stored in the resource
exchange's out-message. Here's an example template for implementing an
aggregation strategy:

CHAPTER 10 - PATTERN APPENDIX 505

http://camel.apache.org/request-reply.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/event-message.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/fluent-builders.html

public class ExampleAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange original, Exchange resource) {
Object originalBody = original.getIn().getBody();
Object resourceResponse = resource.getOut().getBody();
Object mergeResult = ... // combine original body and resource response
if (original.getPattern().isOutCapable()) {

original.getOut().setBody(mergeResult);
} else {

original.getIn().setBody(mergeResult);
}
return original;

}

}

Using this template the original exchange can be of any pattern. The
resource exchange created by the enricher is always an in-out exchange.

Using Spring XML
The same example in the Spring DSL

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
<to uri="direct:result"/>

</route>
<route>

<from uri="direct:resource"/>
...

</route>
</camelContext>

<bean id="aggregationStrategy" class="..." />

Aggregation strategy is optional
The aggregation strategy is optional. If you do not provide it Camel will by
default just use the body obtained from the resource.

from("direct:start")
.enrich("direct:resource")
.to("direct:result");

In the route above the message sent to the direct:result endpoint will
contain the output from the direct:resource as we do not use any custom
aggregation.

506 CHAPTER 10 - PATTERN APPENDIX

And for Spring DSL just omit the strategyRef attribute:

<route>
<from uri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>

</route>

Content enrichment using pollEnrich
The pollEnrich works just as the enrich however as it uses a Polling
Consumer we have 3 methods when polling

▪ receive
▪ receiveNoWait
▪ receive(timeout)

PollEnrich Options

Name Default
Value Description

uri Â The endpoint uri for the external service to enrich from. You must use either uri or ref.

ref Â Refers to the endpoint for the external service to enrich from. You must use either uri or ref.

strategyRef Â Refers to an AggregationStrategy to be used to merge the reply from the external service, into a single outgoing
message. By default Camel will use the reply from the external service as outgoing message.

timeout 0 Timeout in millis when polling from the external service. See below for important details about the timeout.

By default Camel will use the receiveNoWait.
If there is no data then the newExchange in the aggregation strategy is null.

You can pass in a timeout value that determines which method to use
▪ if timeout is -1 or other negative number then receive is selected
▪ if timeout is 0 then receiveNoWait is selected
▪ otherwise receive(timeout) is selected

The timeout values is in millis.

Example
In this example we enrich the message by loading the content from the file
named inbox/data.txt.

from("direct:start")
.pollEnrich("file:inbox?fileName=data.txt")
.to("direct:result");

And in XML DSL you do:

CHAPTER 10 - PATTERN APPENDIX 507

http://camel.apache.org/polling-consumer.html
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Data from current Exchange not used
pollEnrich does not access any data from the current Exchange
which means when polling it cannot use any of the existing headers
you may have set on the Exchange. For example you cannot set a
filename in the Exchange.FILE_NAME header and use pollEnrich
to consume only that file. For that you must set the filename in the
endpoint URI.

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt"/>
<to uri="direct:result"/>

</route>

If there is no file then the message is empty. We can use a timeout to either
wait (potentially forever) until a file exists, or use a timeout to wait a certain
period.

For example to wait up to 5 seconds you can do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt" timeout="5000"/>
<to uri="direct:result"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Content Filter
Camel supports the Content Filter from the EIP patterns using one of the
following mechanisms in the routing logic to transform content from the
inbound message.

• Message Translator
• invoking a Java bean
• Processor object

508 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

A common way to filter messages is to use an Expression in the DSL like
XQuery, SQL or one of the supported Scripting Languages.

Using the Fluent Builders
Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {

Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit
tests

• TransformTest
• TransformViaDSLTest

Using Spring XML

<route>
<from uri="activemq:Input"/>
<bean ref="myBeanName" method="doTransform"/>
<to uri="activemq:Output"/>

</route>

You can also use XPath to filter out part of the message you are interested in:

<route>
<from uri="activemq:Input"/>
<setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath></setBody>
<to uri="activemq:Output"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 509

http://camel.apache.org/expression.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Claim Check
The Claim Check from the EIP patterns allows you to replace message
content with a claim check (a unique key), which can be used to retrieve the
message content at a later time. The message content is stored temporarily
in a persistent store like a database or file system. This pattern is very useful
when message content is very large (thus it would be expensive to send
around) and not all components require all information.

It can also be useful in situations where you cannot trust the information
with an outside party; in this case, you can use the Claim Check to hide the
sensitive portions of data.

Example
In this example we want to replace a message body with a claim check, and
restore the body at a later step.

Using the Fluent Builders

from("direct:start").to("bean:checkLuggage", "mock:testCheckpoint",
"bean:dataEnricher", "mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<pipeline>

510 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/StoreInLibrary.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

<to uri="bean:checkLuggage"/>
<to uri="mock:testCheckpoint"/>
<to uri="bean:dataEnricher"/>
<to uri="mock:result"/>

</pipeline>
</route>

The example route is pretty simple - its just a Pipeline. In a real application
you would have some other steps where the mock:testCheckpoint endpoint
is in the example.

The message is first sent to the checkLuggage bean which looks like

public static final class CheckLuggageBean {
public void checkLuggage(Exchange exchange, @Body String body, @XPath("/order/

@custId") String custId) {
// store the message body into the data store, using the custId as the claim

check
dataStore.put(custId, body);
// add the claim check as a header
exchange.getIn().setHeader("claimCheck", custId);
// remove the body from the message
exchange.getIn().setBody(null);

}
}

This bean stores the message body into the data store, using the custId as
the claim check. In this example, we're just using a HashMap to store the
message body; in a real application you would use a database or file system,
etc. Next the claim check is added as a message header for use later. Finally
we remove the body from the message and pass it down the pipeline.

The next step in the pipeline is the mock:testCheckpoint endpoint which
is just used to check that the message body is removed, claim check added,
etc.

To add the message body back into the message, we use the
dataEnricher bean which looks like

public static final class DataEnricherBean {
public void addDataBackIn(Exchange exchange, @Header("claimCheck") String

claimCheck) {
// query the data store using the claim check as the key and add the data
// back into the message body
exchange.getIn().setBody(dataStore.get(claimCheck));
// remove the message data from the data store
dataStore.remove(claimCheck);
// remove the claim check header
exchange.getIn().removeHeader("claimCheck");

CHAPTER 10 - PATTERN APPENDIX 511

http://camel.apache.org/pipes-and-filters.html

}
}

This bean queries the data store using the claim check as the key and then
adds the data back into the message. The message body is then removed
from the data store and finally the claim check is removed. Now the message
is back to what we started with!

For full details, check the example source here:
camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Normalizer
Camel supports the Normalizer from the EIP patterns by using a Message
Router in front of a number of Message Translator instances.

Example
This example shows a Message Normalizer that converts two types of XML
messages into a common format. Messages in this common format are then
filtered.

Using the Fluent Builders

// we need to normalize two types of incoming messages
from("direct:start")

512 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Normalizer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/fluent-builders.html

.choice()
.when().xpath("/employee").to("bean:normalizer?method=employeeToPerson")
.when().xpath("/customer").to("bean:normalizer?method=customerToPerson")

.end()

.to("mock:result");

In this case we're using a Java bean as the normalizer. The class looks like
this

public class MyNormalizer {
public void employeeToPerson(Exchange exchange, @XPath("/employee/name/text()")

String name) {
exchange.getOut().setBody(createPerson(name));

}

public void customerToPerson(Exchange exchange, @XPath("/customer/@name") String
name) {

exchange.getOut().setBody(createPerson(name));
}

private String createPerson(String name) {
return "<person name=\"" + name + "\"/>";

}
}

Using the Spring XML Extensions
The same example in the Spring DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<choice>

<when>
<xpath>/employee</xpath>
<to uri="bean:normalizer?method=employeeToPerson"/>

</when>
<when>

<xpath>/customer</xpath>
<to uri="bean:normalizer?method=customerToPerson"/>

</when>
</choice>
<to uri="mock:result"/>

</route>
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

CHAPTER 10 - PATTERN APPENDIX 513

http://camel.apache.org/spring-xml-extensions.html

See Also
• Message Router
• Content Based Router
• Message Translator

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

SORT
Sort can be used to sort a message. Imagine you consume text files and
before processing each file you want to be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles
numeric values or uses the string representation. You can provide your own
comparator, and even an expression to return the value to be sorted. Sort
requires the value returned from the expression evaluation is convertible to
java.util.List as this is required by the JDK sort operation.

Options

Name Default
Value Description

comparatorRef Â Refers to a custom java.util.Comparator to use for sorting the message body. Camel will by default use
a comparator which does a A..Z sorting.

Using from Java DSL
In the route below it will read the file content and tokenize by line breaks so
each line can be sorted.

from("file://inbox").sort(body().tokenize("\n")).to("bean:MyServiceBean.processLine");

You can pass in your own comparator as a 2nd argument:

from("file://inbox").sort(body().tokenize("\n"), new
MyReverseComparator()).to("bean:MyServiceBean.processLine");

514 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

Using from Spring DSL
In the route below it will read the file content and tokenize by line breaks so
each line can be sorted.

Listing 1. Camel 2.7 or better

<route>
<from uri="file://inbox"/>
<sort>

<simple>body</simple>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>

</route>

Listing 1. Camel 2.6 or older

<route>
<from uri="file://inbox"/>
<sort>

<expression>
<simple>body</simple>

</expression>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>

</route>

And to use our own comparator we can refer to it as a spring bean:
Listing 1. Camel 2.7 or better

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">

<simple>body</simple>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>

</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Listing 1. Camel 2.6 or older

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">

<expression>
<simple>body</simple>

</expression>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>

</route>

CHAPTER 10 - PATTERN APPENDIX 515

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Besides <simple>, you can supply an expression using any language you
like, so long as it returns a list.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

MESSAGING ENDPOINTS

Messaging Mapper
Camel supports the Messaging Mapper from the EIP patterns by using either
Message Translator pattern or the Type Converter module.

See also
• Message Translator
• Type Converter
• CXF for JAX-WS support for binding business logic to messaging &

web services
• Pojo
• Bean

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of

516 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/languages.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/cxf.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html

Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Event Driven Consumer
Camel supports the Event Driven Consumer from the EIP patterns. The
default consumer model is event based (i.e. asynchronous) as this means
that the Camel container can then manage pooling, threading and
concurrency for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing
the Processor interface which is invoked by the Message Endpoint when a
Message is available for processing.

For more details see
• Message
• Message Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Polling Consumer
Camel supports implementing the Polling Consumer from the EIP patterns
using the PollingConsumer interface which can be created via the
Endpoint.createPollingConsumer() method.

So in your Java code you can do

CHAPTER 10 - PATTERN APPENDIX 517

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/message.html
http://camel.apache.org/message.html
http://camel.apache.org/message-endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

The ConsumerTemplate (discussed below) is also available.
There are 3 main polling methods on PollingConsumer

Method name Description

receive() Waits until a message is available and then returns it;
potentially blocking forever

receive(long)
Attempts to receive a message exchange, waiting up to
the given timeout and returning null if no message
exchange could be received within the time available

receiveNoWait()
Attempts to receive a message exchange immediately
without waiting and returning null if a message
exchange is not available yet

ConsumerTemplate
The ConsumerTemplate is a template much like Spring's JmsTemplate or
JdbcTemplate supporting the Polling Consumer EIP. With the template you can
consume Exchanges from an Endpoint.

The template supports the 3 operations above, but also including
convenient methods for returning the body, etc consumeBody.
The example from above using ConsumerTemplate is:

Exchange exchange = consumerTemplate.receive("activemq:my.queue");

Or to extract and get the body you can do:

Object body = consumerTemplate.receiveBody("activemq:my.queue");

And you can provide the body type as a parameter and have it returned as
the type:

String body = consumerTemplate.receiveBody("activemq:my.queue", String.class);

You get hold of a ConsumerTemplate from the CamelContext with the
createConsumerTemplate operation:

518 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()
http://camel.apache.org/polling-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

ConsumerTemplate consumer = context.createConsumerTemplate();

Using ConsumerTemplate with Spring DSL
With the Spring DSL we can declare the consumer in the CamelContext with
the consumerTemplate tag, just like the ProducerTemplate. The example
below illustrates this:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define a producer template -->
<template id="producer"/>
<!-- define a consumer template -->
<consumerTemplate id="consumer"/>

<route>
<from uri="seda:foo"/>
<to id="result" uri="mock:result"/>

</route>
</camelContext>

Then we can get leverage Spring to inject the ConsumerTemplate in our java
class. The code below is part of an unit test but it shows how the consumer
and producer can work together.

@ContextConfiguration
public class SpringConsumerTemplateTest extends SpringRunWithTestSupport {

@Autowired
private ProducerTemplate producer;

@Autowired
private ConsumerTemplate consumer;

@EndpointInject(ref = "result")
private MockEndpoint mock;

@Test
public void testConsumeTemplate() throws Exception {

// we expect Hello World received in our mock endpoint
mock.expectedBodiesReceived("Hello World");

// we use the producer template to send a message to the seda:start endpoint
producer.sendBody("seda:start", "Hello World");

// we consume the body from seda:start
String body = consumer.receiveBody("seda:start", String.class);
assertEquals("Hello World", body);

CHAPTER 10 - PATTERN APPENDIX 519

// and then we send the body again to seda:foo so it will be routed to the
mock

// endpoint so our unit test can complete
producer.sendBody("seda:foo", body);

// assert mock received the body
mock.assertIsSatisfied();

}

}

Timer based polling consumer
In this sample we use a Timer to schedule a route to be started every 5th
second and invoke our bean MyCoolBean where we implement the business
logic for the Polling Consumer. Here we want to consume all messages from
a JMS queue, process the message and send them to the next queue.

First we setup our route as:

MyCoolBean cool = new MyCoolBean();
cool.setProducer(template);
cool.setConsumer(consumer);

from("timer://foo?period=5000").bean(cool, "someBusinessLogic");

from("activemq:queue.foo").to("mock:result");

And then we have out logic in our bean:

public static class MyCoolBean {

private int count;
private ConsumerTemplate consumer;
private ProducerTemplate producer;

public void setConsumer(ConsumerTemplate consumer) {
this.consumer = consumer;

}

public void setProducer(ProducerTemplate producer) {
this.producer = producer;

}

public void someBusinessLogic() {
// loop to empty queue
while (true) {

// receive the message from the queue, wait at most 3 sec
String msg = consumer.receiveBody("activemq:queue.inbox", 3000,

520 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/timer.html
http://camel.apache.org/polling-consumer.html

String.class);
if (msg == null) {

// no more messages in queue
break;

}

// do something with body
msg = "Hello " + msg;

// send it to the next queue
producer.sendBodyAndHeader("activemq:queue.foo", msg, "number", count++);

}
}

}

Scheduled Poll Components
Quite a few inbound Camel endpoints use a scheduled poll pattern to receive
messages and push them through the Camel processing routes. That is to
say externally from the client the endpoint appears to use an Event Driven
Consumer but internally a scheduled poll is used to monitor some kind of
state or resource and then fire message exchanges.

Since this a such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this
pattern.

There is also the Quartz Component which provides scheduled delivery of
messages using the Quartz enterprise scheduler.

For more details see:
• PollingConsumer
• Scheduled Polling Components

◦ ScheduledPollConsumer
◦ Atom
◦ File
◦ FTP
◦ hbase
◦ iBATIS
◦ JPA
◦ Mail
◦ MyBatis
◦ Quartz
◦ SNMP
◦ AWS-S3
◦ AWS-SQS

CHAPTER 10 - PATTERN APPENDIX 521

http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/event-driven-consumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/atom.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/hbase.html
http://camel.apache.org/ibatis.html
http://camel.apache.org/jpa.html
http://camel.apache.org/mail.html
http://camel.apache.org/mybatis.html
http://camel.apache.org/quartz.html
http://camel.apache.org/snmp.html
http://camel.apache.org/aws-s3.html
http://camel.apache.org/aws-sqs.html

ScheduledPollConsumer Options
The ScheduledPollConsumer supports the following options:
Option Default Description

pollStrategy ▪

A pluggable org.apache.camel.PollingConsumerPollingStrategy allowing you to
provide your custom implementation to control error handling usually occurred
during the poll operation before an Exchange have been created and being routed
in Camel. In other words the error occurred while the polling was gathering
information, for instance access to a file network failed so Camel cannot access it to
scan for files. The default implementation will log the caused exception at WARN level
and ignore it.

sendEmptyMessageWhenIdle false Camel 2.9: If the polling consumer did not poll any files, you can enable this option
to send an empty message (no body) instead.

startScheduler true Whether the scheduler should be auto started.

initialDelay 1000 Milliseconds before the first poll starts.

delay 500 Milliseconds before the next poll.

useFixedDelay Â
Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for
details. In Camel 2.7.x or older the default value is false. From Camel 2.8 onwards
the default value is true.

timeUnit TimeUnit.MILLISECONDS time unit for initialDelay and delay options.

runLoggingLevel TRACE Camel 2.8: The consumer logs a start/complete log line when it polls. This option
allows you to configure the logging level for that.

scheduledExecutorService null
Camel 2.10: Allows for configuring a custom/shared thread pool to use for the
consumer. By default each consumer has its own single threaded thread pool. This
option allows you to share a thread pool among multiple consumers.

About error handling and scheduled polling consumers
ScheduledPollConsumer is scheduled based and its run method is invoked
periodically based on schedule settings. But errors can also occur when a poll
is being executed. For instance if Camel should poll a file network, and this
network resource is not available then a java.io.IOException could occur.
As this error happens before any Exchange has been created and prepared
for routing, then the regular Error handling in Camel does not apply. So what
does the consumer do then? Well the exception is propagated back to the
run method where its handled. Camel will by default log the exception at
WARN level and then ignore it. At next schedule the error could have been
resolved and thus being able to poll the endpoint successfully.

Controlling the error handling using
PollingConsumerPollStrategy
org.apache.camel.PollingConsumerPollStrategy is a pluggable strategy
that you can configure on the ScheduledPollConsumer. The default
implementation
org.apache.camel.impl.DefaultPollingConsumerPollStrategy will log
the caused exception at WARN level and then ignore this issue.

The strategy interface provides the following 3 methods
▪ begin

▪ void begin(Consumer consumer, Endpoint endpoint)

522 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html

▪ begin (Camel 2.3)
▪ boolean begin(Consumer consumer, Endpoint endpoint)

▪ commit
▪ void commit(Consumer consumer, Endpoint endpoint)

▪ commit (Camel 2.6)
▪ void commit(Consumer consumer, Endpoint endpoint,

int polledMessages)
▪ rollback

▪ boolean rollback(Consumer consumer, Endpoint
endpoint, int retryCounter, Exception e) throws
Exception

In Camel 2.3 onwards the begin method returns a boolean which indicates
whether or not to skipping polling. So you can implement your custom logic
and return false if you do not want to poll this time.

In Camel 2.6 onwards the commit method has an additional parameter
containing the number of message that was actually polled. For example if
there was no messages polled, the value would be zero, and you can react
accordingly.

The most interesting is the rollback as it allows you do handle the caused
exception and decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer
we can implement the PollingConsumerPollStrategy method and put the
retry logic in the rollback method. Lets just retry up till 3 times:

public boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter,
Exception e) throws Exception {

if (retryCounter < 3) {
// return true to tell Camel that it should retry the poll immediately
return true;

}
// okay we give up do not retry anymore
return false;

}

Notice that we are given the Consumer as a parameter. We could use this to
restart the consumer as we can invoke stop and start:

// error occurred lets restart the consumer, that could maybe resolve the issue
consumer.stop();
consumer.start();

Notice: If you implement the begin operation make sure to avoid throwing
exceptions as in such a case the poll operation is not invoked and Camel will
invoke the rollback directly.

CHAPTER 10 - PATTERN APPENDIX 523

Configuring an Endpoint to use
PollingConsumerPollStrategy
To configure an Endpoint to use a custom PollingConsumerPollStrategy
you use the option pollStrategy. For example in the file consumer below we
want to use our custom strategy defined in the Registry with the bean id
myPoll:

from("file://inbox/?pollStrategy=#myPoll").to("activemq:queue:inbox")

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

See Also
▪ POJO Consuming
▪ Batch Consumer

Competing Consumers
Camel supports the Competing Consumers from the EIP patterns using a few
different components.

You can use the following components to implement competing
consumers:-

524 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/batch-consumer.html
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html
http://camel.apache.org/enterprise-integration-patterns.html

• SEDA for SEDA based concurrent processing using a thread pool
• JMS for distributed SEDA based concurrent processing with queues

which support reliable load balancing, failover and clustering.

Enabling Competing Consumers with JMS
To enable Competing Consumers you just need to set the
concurrentConsumers property on the JMS endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5").bean(SomeBean.class);

or in Spring DSL

<route>
<from uri="jms:MyQueue?concurrentConsumers=5"/>
<to uri="bean:someBean"/>

</route>

Or just run multiple JVMs of any ActiveMQ or JMS route

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Message Dispatcher
Camel supports the Message Dispatcher from the EIP patterns using various
approaches.

CHAPTER 10 - PATTERN APPENDIX 525

http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://camel.apache.org/enterprise-integration-patterns.html

You can use a component like JMS with selectors to implement a Selective
Consumer as the Message Dispatcher implementation. Or you can use an
Endpoint as the Message Dispatcher itself and then use a Content Based
Router as the Message Dispatcher.

See Also
• JMS
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Selective Consumer
The Selective Consumer from the EIP patterns can be implemented in two
ways

526 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/jms.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://camel.apache.org/enterprise-integration-patterns.html

The first solution is to provide a Message Selector to the underlying URIs
when creating your consumer. For example when using JMS you can specify a
selector parameter so that the message broker will only deliver messages
matching your criteria.

The other approach is to use a Message Filter which is applied; then if the
filter matches the message your consumer is invoked as shown in the
following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.filter(header("foo").isEqualTo("bar"))

.process(myProcessor);
}

};

Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext errorHandlerRef="errorHandler" xmlns="http://camel.apache.org/schema/
spring">

<route>
<from uri="direct:a"/>
<filter>

<xpath>$foo = 'bar'</xpath>
<process ref="myProcessor"/>

</filter>
</route>

</camelContext>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Durable Subscriber
Camel supports the Durable Subscriber from the EIP patterns using the JMS
component which supports publish & subscribe using Topics with support for
non-durable and durable subscribers.

CHAPTER 10 - PATTERN APPENDIX 527

http://camel.apache.org/uris.html
http://camel.apache.org/jms.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/jms.html

Another alternative is to combine the Message Dispatcher or Content
Based Router with File or JPA components for durable subscribers then
something like SEDA for non-durable.

Here is a simple example of creating durable subscribers to a JMS topic
Using the Fluent Builders

from("direct:start").to("activemq:topic:foo");

from("activemq:topic:foo?clientId=1&durableSubscriptionName=bar1").to("mock:result1");

from("activemq:topic:foo?clientId=2&durableSubscriptionName=bar2").to("mock:result2");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="activemq:topic:foo"/>

</route>

<route>
<from uri="activemq:topic:foo?clientId=1&durableSubscriptionName=bar1"/>
<to uri="mock:result1"/>

</route>

<route>
<from uri="activemq:topic:foo?clientId=2&durableSubscriptionName=bar2"/>
<to uri="mock:result2"/>

</route>

Here is another example of JMS durable subscribers, but this time using
virtual topics (recommended by AMQ over durable subscriptions)

Using the Fluent Builders

from("direct:start").to("activemq:topic:VirtualTopic.foo");

from("activemq:queue:Consumer.1.VirtualTopic.foo").to("mock:result1");

528 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/seda.html
http://camel.apache.org/jms.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/jms.html
http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/fluent-builders.html

from("activemq:queue:Consumer.2.VirtualTopic.foo").to("mock:result2");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="activemq:topic:VirtualTopic.foo"/>

</route>

<route>
<from uri="activemq:queue:Consumer.1.VirtualTopic.foo"/>
<to uri="mock:result1"/>

</route>

<route>
<from uri="activemq:queue:Consumer.2.VirtualTopic.foo"/>
<to uri="mock:result2"/>

</route>

See Also
• JMS
• File
• JPA
• Message Dispatcher
• Selective Consumer
• Content Based Router
• Endpoint

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Idempotent Consumer
The Idempotent Consumer from the EIP patterns is used to filter out
duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This
uses an Expression to calculate a unique message ID string for a given
message exchange; this ID can then be looked up in the

CHAPTER 10 - PATTERN APPENDIX 529

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/jms.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/message-dispatcher.html
http://camel.apache.org/selective-consumer.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://camel.apache.org/expression.html

IdempotentRepository to see if it has been seen before; if it has the message
is consumed; if its not then the message is processed and the ID is added to
the repository.

The Idempotent Consumer essentially acts like a Message Filter to filter
out duplicates.

Camel will add the message id eagerly to the repository to detect
duplication also for Exchanges currently in progress.
On completion Camel will remove the message id from the repository if the
Exchange failed, otherwise it stays there.

Camel provides the following Idempotent Consumer implementations:
▪ MemoryIdempotentRepository
▪ FileIdempotentRepository
▪ HazelcastIdempotentRepository (Available as of Camel 2.8)
▪ JdbcMessageIdRepository (Available as of Camel 2.7)
▪ JpaMessageIdRepository

Options
The Idempotent Consumer has the following options:
Option Default Description

eager true

Eager controls whether Camel adds
the message to the repository before
or after the exchange has been
processed. If enabled before then
Camel will be able to detect
duplicate messages even when
messages are currently in progress.
By disabling Camel will only detect
duplicates when a message has
successfully been processed.

messageIdRepositoryRef null

A reference to a
IdempotentRepository to lookup in
the registry. This option is mandatory
when using XML DSL.

530 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/file2.html
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/jpa.html

skipDuplicate true

Camel 2.8: Sets whether to skip
duplicate messages. If set to false
then the message will be continued.
However the Exchange has been
marked as a duplicate by having the
Exchange.DUPLICATE_MESSAG
exchange property set to a
Boolean.TRUE value.

removeOnFailure true Camel 2.9: Sets whether to remove
the id of an Exchange that failed.

Using the Fluent Builders
The following example will use the header myMessageId to filter out
duplicates

RouteBuilder builder = new RouteBuilder() {
public void configure() {

errorHandler(deadLetterChannel("mock:error"));

from("direct:a")
.idempotentConsumer(header("myMessageId"),

MemoryIdempotentRepository.memoryIdempotentRepository(200))
.to("direct:b");

}
};

The above example will use an in-memory based MessageIdRepository which
can easily run out of memory and doesn't work in a clustered environment.
So you might prefer to use the JPA based implementation which uses a
database to store the message IDs which have been processed

from("direct:start").idempotentConsumer(
header("messageId"),
jpaMessageIdRepository(lookup(JpaTemplate.class), PROCESSOR_NAME)

).to("mock:result");

In the above example we are using the header messageId to filter out
duplicates and using the collection myProcessorName to indicate the
Message ID Repository to use. This name is important as you could process
the same message by many different processors; so each may require its
own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test
case

CHAPTER 10 - PATTERN APPENDIX 531

http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Spring XML example
The following example will use the header myMessageId to filter out
duplicates

<!-- repository for the idempotent consumer -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<idempotentConsumer messageIdRepositoryRef="myRepo">

<!-- use the messageId header as key for identifying duplicate messages
-->

<header>messageId</header>
<!-- if not a duplicate send it to this mock endpoint -->
<to uri="mock:result"/>

</idempotentConsumer>
</route>

</camelContext>

How to handle duplicate messages in the route
Available as of Camel 2.8

You can now set the skipDuplicate option to false which instructs the
idempotent consumer to route duplicate messages as well. However the
duplicate message has been marked as duplicate by having a property on
the Exchange set to true. We can leverage this fact by using a Content Based
Router or Message Filter to detect this and handle duplicate messages.

For example in the following example we use the Message Filter to send
the message to a duplicate endpoint, and then stop continue routing that
message.

Listing 1. Filter duplicate messages

from("direct:start")
// instruct idempotent consumer to not skip duplicates as we will filter then our

self

.idempotentConsumer(header("messageId")).messageIdRepository(repo).skipDuplicate(false)
.filter(property(Exchange.DUPLICATE_MESSAGE).isEqualTo(true))

// filter out duplicate messages by sending them to someplace else and then
stop

.to("mock:duplicate")

.stop()
.end()
// and here we process only new messages (no duplicates)
.to("mock:result");

532 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/content-based-router.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html

The sample example in XML DSL would be:
Listing 1. Filter duplicate messages

<!-- idempotent repository, just use a memory based for testing -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<!-- we do not want to skip any duplicate messages -->
<idempotentConsumer messageIdRepositoryRef="myRepo" skipDuplicate="false">

<!-- use the messageId header as key for identifying duplicate messages
-->

<header>messageId</header>
<!-- we will to handle duplicate messages using a filter -->
<filter>

<!-- the filter will only react on duplicate messages, if this
property is set on the Exchange -->

<property>CamelDuplicateMessage</property>
<!-- and send the message to this mock, due its part of an unit test

-->
<!-- but you can of course do anything as its part of the route -->
<to uri="mock:duplicate"/>
<!-- and then stop -->
<stop/>

</filter>
<!-- here we route only new messages -->
<to uri="mock:result"/>

</idempotentConsumer>
</route>

</camelContext>

How to handle duplicate message in a clustered environment with a
data grid
Available as of Camel 2.8

If you have running Camel in a clustered environment, a in memory
idempotent repository doesn't work (see above). You can setup either a
central database or use the idempotent consumer implementation based on
the Hazelcast data grid. Hazelcast finds the nodes over multicast (which is
default - configure Hazelcast for tcp-ip) and creates automatically a map
based repository:

HazelcastIdempotentRepository idempotentRepo = new
HazelcastIdempotentRepository("myrepo");

from("direct:in").idempotentConsumer(header("messageId"),
idempotentRepo).to("mock:out");

CHAPTER 10 - PATTERN APPENDIX 533

http://www.hazelcast.com/

You have to define how long the repository should hold each message id
(default is to delete it never). To avoid that you run out of memory you
should create an eviction strategy based on the Hazelcast configuration. For
additional information see camel-hazelcast.

See this little tutorial, how setup such an idempotent repository on two
cluster nodes using Apache Karaf.

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Transactional Client
Camel recommends supporting the Transactional Client from the EIP patterns
using spring transactions.

Transaction Oriented Endpoints (Camel Toes) like JMS support using a
transaction for both inbound and outbound message exchanges. Endpoints
that support transactions will participate in the current transaction context
that they are called from.
You should use the SpringRouteBuilder to setup the routes since you will
need to setup the spring context with the TransactionTemplates that will
define the transaction manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be
configured to use a Spring PlatformTransactionManager. In the case of the
JMS component, this can be done by looking it up in the spring context.

You first define needed object in the spring configuration.

<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

<property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">

534 CHAPTER 10 - PATTERN APPENDIX

http://www.hazelcast.com/documentation.jsp#MapEviction
http://camel.apache.org/hazelcast-component.html
http://camel.apache.org/hazelcast-idempotent-repository-tutorial.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/what-is-a-camel-toe.html
http://camel.apache.org/jms.html
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html

Configuration of Redelivery
The redelivery in transacted mode is not handled by Camel but by
the backing system (the transaction manager). In such cases you
should resort to the backing system how to configure the redelivery.

<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = (PlatformTransactionManager)
spring.getBean("jmsTransactionManager");

ConnectionFactory connectionFactory = (ConnectionFactory)
spring.getBean("jmsConnectionFactory");

JmsComponent component = JmsComponent.jmsComponentTransacted(connectionFactory,
transactionManager);

component.getConfiguration().setConcurrentConsumers(1);
ctx.addComponent("activemq", component);

Transaction Policies
Outbound endpoints will automatically enlist in the current transaction
context. But what if you do not want your outbound endpoint to enlist in the
same transaction as your inbound endpoint? The solution is to add a
Transaction Policy to the processing route. You first have to define transaction
policies that you will be using. The policies use a spring TransactionTemplate
under the covers for declaring the transaction demarcation to use. So you
will need to add something like the following to your spring xml:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

Then in your SpringRouteBuilder, you just need to create new
SpringTransactionPolicy objects for each of the templates.

CHAPTER 10 - PATTERN APPENDIX 535

http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html

public void configure() {
...
Policy requried = bean(SpringTransactionPolicy.class, "PROPAGATION_REQUIRED"));
Policy requirenew = bean(SpringTransactionPolicy.class,

"PROPAGATION_REQUIRES_NEW"));
...

}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

// Send to bar without a transaction.
from("activemq:queue:foo").policy(notsupported).to("activemq:queue:bar");

OSGi Blueprint
If you are using OSGi Blueprint then you most likely have to explicit declare a
policy and refer to the policy from the transacted in the route.

<bean id="required" class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="jmsTransactionManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

And then refer to "required" from the route:

<route>
<from uri="activemq:queue:foo"/>
<transacted ref="required"/>
<to uri="activemq:queue:bar"/>

</route>

Database Sample
In this sample we want to ensure that two endpoints is under transaction
control. These two endpoints inserts data into a database.
The sample is in its full as a unit test.

First of all we setup the usual spring stuff in its configuration file. Here we
have defined a DataSource to the HSQLDB and a most importantly
the Spring DataSoruce TransactionManager that is doing the heavy lifting of

536 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/using-osgi-blueprint-with-camel.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log

ensuring our transactional policies. You are of course free to use any
of the Spring based TransactionMananger, eg. if you are in a full blown J2EE
container you could use JTA or the WebLogic or WebSphere specific
managers.

As we use the new convention over configuration we do not need to
configure a transaction policy bean, so we do not have any
PROPAGATION_REQUIRED beans.
All the beans needed to be configured is standard Spring beans only, eg.
there are no Camel specific configuration at all.

<!-- this example uses JDBC so we define a data source -->
<jdbc:embedded-database id="dataSource" type="DERBY">

<jdbc:script location="classpath:sql/init.sql" />
</jdbc:embedded-database>

<!-- spring transaction manager -->
<!-- this is the transaction manager Camel will use for transacted routes -->
<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

<!-- bean for book business logic -->
<bean id="bookService" class="org.apache.camel.spring.interceptor.BookService">

<property name="dataSource" ref="dataSource"/>
</bean>

Then we are ready to define our Camel routes. We have two routes: 1 for
success conditions, and 1 for a forced rollback condition.
This is after all based on a unit test. Notice that we mark each route as
transacted using the transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:okay"/>
<!-- we mark this route as transacted. Camel will lookup the spring

transaction manager
and use it by default. We can optimally pass in arguments to specify a

policy to use
that is configured with a spring transaction manager of choice. However

Camel supports
convention over configuration as we can just use the defaults out of the

box and Camel
that suites in most situations -->

<transacted/>
<setBody>

<constant>Tiger in Action</constant>
</setBody>
<bean ref="bookService"/>

CHAPTER 10 - PATTERN APPENDIX 537

<setBody>
<constant>Elephant in Action</constant>

</setBody>
<bean ref="bookService"/>

</route>

<route>
<from uri="direct:fail"/>
<!-- we mark this route as transacted. See comments above. -->
<transacted/>
<setBody>

<constant>Tiger in Action</constant>
</setBody>
<bean ref="bookService"/>
<setBody>

<constant>Donkey in Action</constant>
</setBody>
<bean ref="bookService"/>

</route>
</camelContext>

That is all that is needed to configure a Camel route as being transacted. Just
remember to use the transacted DSL. The rest is standard Spring XML to
setup the transaction manager.

JMS Sample
In this sample we want to listen for messages on a queue and process the
messages with our business logic java code and send them along. Since its
based on a unit test the destination is a mock endpoint.

First we configure the standard Spring XML to declare a JMS connection
factory, a JMS transaction manager and our ActiveMQ component that we use
in our routing.

<!-- setup JMS connection factory -->
<bean id="poolConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory">

<property name="maxConnections" value="8"/>
<property name="connectionFactory" ref="jmsConnectionFactory"/>

</bean>

<bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

<!-- setup spring jms TX manager -->
<bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">

538 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log

<property name="connectionFactory" ref="poolConnectionFactory"/>
</bean>

<!-- define our activemq component -->
<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">

<property name="connectionFactory" ref="poolConnectionFactory"/>
<!-- define the jms consumer/producer as transacted -->
<property name="transacted" value="true"/>
<!-- setup the transaction manager to use -->
<!-- if not provided then Camel will automatic use a JmsTransactionManager,

however if you
for instance use a JTA transaction manager then you must configure it -->

<property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

And then we configure our routes. Notice that all we have to do is mark the
route as transacted using the transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- disable JMX during testing -->
<jmxAgent id="agent" disabled="true"/>
<route>

<!-- 1: from the jms queue -->
<from uri="activemq:queue:okay"/>
<!-- 2: mark this route as transacted -->
<transacted/>
<!-- 3: call our business logic that is myProcessor -->
<process ref="myProcessor"/>
<!-- 4: if success then send it to the mock -->
<to uri="mock:result"/>

</route>
</camelContext>

<bean id="myProcessor"
class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest$MyProcessor"/>

USING MULTIPLE ROUTES WITH DIFFERENT PROPAGATION
BEHAVIORS
Available as of Camel 2.2
Suppose you want to route a message through two routes and by which the
2nd route should run in its own transaction. How do you do that? You use
propagation behaviors for that where you configure it as follows:

▪ The first route use PROPAGATION_REQUIRED
▪ The second route use PROPAGATION_REQUIRES_NEW

This is configured in the Spring XML file:

CHAPTER 10 - PATTERN APPENDIX 539

Transaction error handler
When a route is marked as transacted using transacted Camel will
automatic use the TransactionErrorHandler as Error Handler. It
supports basically the same feature set as the DefaultErrorHandler,
so you can for instance use Exception Clause as well.

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>

</bean>

Then in the routes you use transacted DSL to indicate which of these two
propagations it uses.

from("direct:mixed")
// using required
.transacted("PROPAGATION_REQUIRED")
// all these steps will be okay
.setBody(constant("Tiger in Action")).beanRef("bookService")
.setBody(constant("Elephant in Action")).beanRef("bookService")
// continue on route 2
.to("direct:mixed2");

from("direct:mixed2")
// tell Camel that if this route fails then only rollback this last route
// by using (rollback only *last*)
.onException(Exception.class).markRollbackOnlyLast().end()
// using a different propagation which is requires new
.transacted("PROPAGATION_REQUIRES_NEW")
// this step will be okay
.setBody(constant("Lion in Action")).beanRef("bookService")
// this step will fail with donkey
.setBody(constant("Donkey in Action")).beanRef("bookService");

Notice how we have configured the onException in the 2nd route to indicate
in case of any exceptions we should handle it and just rollback this
transaction.
This is done using the markRollbackOnlyLast which tells Camel to only do it
for the current transaction and not globally.

540 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exception-clause.html

See Also
• Error handling in Camel
• TransactionErrorHandler
• Error Handler
• JMS

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Messaging Gateway
Camel has several endpoint components that support the Messaging
Gateway from the EIP patterns.

Components like Bean and CXF provide a a way to bind a Java interface to
the message exchange.

However you may want to read the Using CamelProxy documentation as a
true Messaging Gateway EIP solution.
Another approach is to use @Produce which you can read about in POJO
Producing which also can be used as a Messaging Gateway EIP solution.

See Also
• Bean
• CXF
• Using CamelProxy
• POJO Producing
• Spring Remoting

CHAPTER 10 - PATTERN APPENDIX 541

http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/jms.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/messaging-gateway.html
http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/spring-remoting.html

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Service Activator
Camel has several endpoint components that support the Service Activator
from the EIP patterns.

Components like Bean, CXF and Pojo provide a a way to bind the message
exchange to a Java interface/service where the route defines the endpoints
and wires it up to the bean.

In addition you can use the Bean Integration to wire messages to a bean
using annotation.

Here is a simple example of using a Direct endpoint to create a messaging
interface to a Pojo Bean service.

Using the Fluent Builders

from("direct:invokeMyService").to("bean:myService");

Using the Spring XML Extensions

<route>
<from uri="direct:invokeMyService"/>
<to uri="bean:myService"/>

</route>

See Also
• Bean
• Pojo

542 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/bean.html
http://camel.apache.org/cxf.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/direct.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/bean.html
http://camel.apache.org/pojo.html

• CXF

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

SYSTEM MANAGEMENT

Detour
The Detour from the EIP patterns allows you to send messages through
additional steps if a control condition is met. It can be useful for turning on
extra validation, testing, debugging code when needed.

Example
In this example we essentially have a route like
from("direct:start").to("mock:result") with a conditional detour to the
mock:detour endpoint in the middle of the route..

from("direct:start").choice()
.when().method("controlBean", "isDetour").to("mock:detour").end()
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>

<choice>
<when>

<method bean="controlBean" method="isDetour"/>

CHAPTER 10 - PATTERN APPENDIX 543

http://camel.apache.org/cxf.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/Detour.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/spring-xml-extensions.html

<to uri="mock:detour"/>
</when>

</choice>
<to uri="mock:result"/>

</route>

whether the detour is turned on or off is decided by the ControlBean. So,
when the detour is on the message is routed to mock:detour and then
mock:result. When the detour is off, the message is routed to mock:result.

For full details, check the example source here:
camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of
Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

Wire Tap
Wire Tap (from the EIP patterns) allows you to route messages to a separate
location while they are being forwarded to the ultimate destination.

Options

Name Default
Value Description

uri Â The URI of the endpoint to which the wire-tapped message will be sent. You should use either uri or
ref.

ref Â Reference identifier of the endpoint to which the wire-tapped message will be sent. You should use
either uri or ref.

executorServiceRef Â Reference identifier of a custom Thread Pool to use when processing the wire-tapped messages. If not
set, Camel will use a default thread pool.

processorRef Â Reference identifier of a custom Processor to use for creating a new message (e.g., the "send a new
message" mode). See below.

copy true Camel 2.3: Whether to copy the Exchange before wire-tapping the message.

544 CHAPTER 10 - PATTERN APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://www.enterpriseintegrationpatterns.com/WireTap.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html

Streams
If you Wire Tap a stream message body then you should consider
enabling Stream caching to ensure the message body can be read
at each endpoint. See more details at Stream caching.

onPrepareRef Â Camel 2.8: Reference identifier of a custom Processor to prepare the copy of the Exchange to be wire-
tapped. This allows you to do any custom logic, such as deep-cloning the message payload.

WireTap thread pool
The Wire Tap uses a thread pool to process the tapped messages. This thread
pool will by default use the settings detailed at Threading Model. In
particular, when the pool is exhausted (with all threads utilized), further
wiretaps will be executed synchronously by the calling thread. To remedy
this, you can configure an explicit thread pool on the Wire Tap having either a
different rejection policy, a larger worker queue, or more worker threads.

WireTap node
Camel's Wire Tap node supports two flavors when tapping an Exchange:

-With the traditional Wire Tap, Camel will copy the original Exchange and
set its Exchange Pattern to InOnly, as we want the tapped Exchange to be
sent in a fire and forget style. The tapped Exchange is then sent in a
separate thread so it can run in parallel with the original.

-Camel also provides an option of sending a new Exchange allowing you to
populate it with new values.

Sending a copy (traditional wiretap)
Using the Fluent Builders

from("direct:start")
.to("log:foo")
.wireTap("direct:tap")
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<to uri="log:foo"/>

CHAPTER 10 - PATTERN APPENDIX 545

http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/threading-model.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/stream-caching.html

<wireTap uri="direct:tap"/>
<to uri="mock:result"/>

</route>

Sending a new Exchange
Using the Fluent Builders
Camel supports either a processor or an Expression to populate the new
Exchange. Using a processor gives you full power over how the Exchange is
populated as you can set properties, headers, et cetera. An Expression can
only be used to set the IN body.

From Camel 2.3 onwards the Expression or Processor is pre-populated
with a copy of the original Exchange, which allows you to access the original
message when you prepare a new Exchange to be sent. You can use the copy
option (enabled by default) to indicate whether you want this. If you set
copy=false, then it works as in Camel 2.2 or older where the Exchange will
be empty.

Below is the processor variation. This example is from Camel 2.3, where
we disable copy by passing in false to create a new, empty Exchange.

from("direct:start")
.wireTap("direct:foo", false, new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getIn().setBody("Bye World");
exchange.getIn().setHeader("foo", "bar");

}
}).to("mock:result");

from("direct:foo").to("mock:foo");

Here is the Expression variation. This example is from Camel 2.3, where we
disable copy by passing in false to create a new, empty Exchange.

from("direct:start")
.wireTap("direct:foo", false, constant("Bye World"))
.to("mock:result");

from("direct:foo").to("mock:foo");

Using the Spring XML Extensions
The processor variation, which uses a processorRef attribute to refer to a
Spring bean by ID:

546 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/exchange.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/processor.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:start2"/>
<wireTap uri="direct:foo" processorRef="myProcessor"/>
<to uri="mock:result"/>

</route>

Here is the Expression variation, where the expression is defined in the body
tag:

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

<body><constant>Bye World</constant></body>
</wireTap>
<to uri="mock:result"/>

</route>

This variation accesses the body of the original message and creates a new
Exchange based on the Expression. It will create a new Exchange and have
the body contain "Bye ORIGINAL BODY MESSAGE HERE"

<route>
<from uri="direct:start"/>
<wireTap uri="direct:foo">

<body><simple>Bye ${body}</simple></body>
</wireTap>
<to uri="mock:result"/>

</route>

Further Example
For another example of this pattern, refer to the wire tap test case.

Sending a new Exchange and set headers in DSL
Available as of Camel 2.8

If you send a new message using Wire Tap, then you could only set the
message body using an Expression from the DSL. If you also need to set
headers, you would have to use a Processor. In Camel 2.8 onwards, you can
now set headers as well in the DSL.

The following example sends a new message which has
▪ "Bye World" as message body
▪ a header with key "id" with the value 123
▪ a header with key "date" which has current date as value

CHAPTER 10 - PATTERN APPENDIX 547

http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/expression.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/WireTapTest.java
http://camel.apache.org/exchange.html
http://camel.apache.org/wire-tap.html
http://camel.apache.org/expression.html
http://camel.apache.org/processor.html

Java DSL

from("direct:start")
// tap a new message and send it to direct:tap
// the new message should be Bye World with 2 headers
.wireTap("direct:tap")

// create the new tap message body and headers
.newExchangeBody(constant("Bye World"))
.newExchangeHeader("id", constant(123))
.newExchangeHeader("date", simple("${date:now:yyyyMMdd}"))

.end()
// here we continue routing the original messages
.to("mock:result");

// this is the tapped route
from("direct:tap")

.to("mock:tap");

XML DSL
The XML DSL is slightly different than Java DSL in how you configure the
message body and headers using <body> and <setHeader>:

<route>
<from uri="direct:start"/>
<!-- tap a new message and send it to direct:tap -->
<!-- the new message should be Bye World with 2 headers -->
<wireTap uri="direct:tap">

<!-- create the new tap message body and headers -->
<body><constant>Bye World</constant></body>
<setHeader headerName="id"><constant>123</constant></setHeader>
<setHeader headerName="date"><simple>${date:now:yyyyMMdd}</simple></setHeader>

</wireTap>
<!-- here we continue routing the original message -->
<to uri="mock:result"/>

</route>

Using onPrepare to execute custom logic when preparing messages
Available as of Camel 2.8

See details at Multicast

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of

548 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/multicast.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html

Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

LOG
How can I log processing a Message?

Camel provides many ways to log processing a message. Here is just some
examples:

▪ You can use the Log component which logs the Message content.
▪ You can use the Tracer which trace logs message flow.
▪ You can also use a Processor or Bean and log from Java code.
▪ You can use the log DSL.

Using log DSL
And in Camel 2.2 you can use the log DSL which allows you to use Simple
language to construct a dynamic message which gets logged.
For example you can do

from("direct:start").log("Processing ${id}").to("bean:foo");

Which will construct a String message at runtime using the Simple language.
The log message will by logged at INFO level using the route id as the log
name. By default a route is named route-1, route-2 etc. But you can use
the routeId("myCoolRoute") to set a route name of choice.
The log DSL have overloaded methods to set the logging level and/or name
as well.

from("direct:start").log(LoggingLevel.DEBUG, "Processing ${id}").to("bean:foo");

For example you can use this to log the file name being processed if you
consume files.

from("file://target/files").log(LoggingLevel.DEBUG, "Processing file
${file:name}").to("bean:foo");

Using log DSL from Spring
In Spring DSL its also easy to use log DSL as shown below:

CHAPTER 10 - PATTERN APPENDIX 549

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html
http://camel.apache.org/message.html
http://camel.apache.org/log.html
http://camel.apache.org/tracer.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Difference between log in the DSL and Log component
The log DSL is much lighter and meant for logging human logs
such as Starting to do ... etc. It can only log a message based
on the Simple language. On the other hand Log component is a full
fledged component which involves using endpoints and etc. The
Log component is meant for logging the Message itself and you
have many URI options to control what you would like to be logged.

<route id="foo">
<from uri="direct:foo"/>
<log message="Got ${body}"/>
<to uri="mock:foo"/>

</route>

The log tag has attributes to set the message, loggingLevel and logName.
For example:

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
<to uri="mock:baz"/>

</route>

Using slf4j Marker
Available as of Camel 2.9

You can specify a marker name in the DSL

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"

marker="myMarker"/>
<to uri="mock:baz"/>

</route>

Using This Pattern
If you would like to use this EIP Pattern then please read the Getting Started,
you may also find the Architecture useful particularly the description of

550 CHAPTER 10 - PATTERN APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/architecture.html
http://camel.apache.org/log.html
http://camel.apache.org/simple.html
http://camel.apache.org/log.html
http://camel.apache.org/log.html

Endpoint and URIs. Then you could try out some of the Examples first before
trying this pattern out.

CHAPTER 10 - PATTERN APPENDIX 551

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/examples.html

CHAPTER 11

°°°°

Component Appendix

There now follows the documentation on each Camel component.

ACTIVEMQ COMPONENT
The ActiveMQ component allows messages to be sent to a JMS Queue or
Topic or messages to be consumed from a JMS Queue or Topic using Apache
ActiveMQ.

This component is based on JMS Component and uses Spring's JMS support
for declarative transactions, using Spring's JmsTemplate for sending and a
MessageListenerContainer for consuming. All the options from the JMS
component also applies for this component.

To use this component make sure you have the activemq.jar or
activemq-core.jar on your classpath along with any Camel dependencies
such as camel-core.jar, camel-spring.jar and camel-jms.jar.

URI format

activemq:[queue:|topic:]destinationName

Where destinationName is an ActiveMQ queue or topic name. By default,
the destinationName is interpreted as a queue name. For example, to
connect to the queue, FOO.BAR, use:

activemq:FOO.BAR

You can include the optional queue: prefix, if you prefer:

activemq:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to
connect to the topic, Stocks.Prices, use:

552 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://activemq.apache.org/
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Transacted and caching
See section Transactions and Cache Levels below on JMS page if
you are using transactions with JMS as it can impact performance.

activemq:topic:Stocks.Prices

Options
See Options on the JMS component as all these options also apply for this
component.

Configuring the Connection Factory
This test case shows how to add an ActiveMQComponent to the
CamelContext using the activeMQComponent() method while specifying the
brokerURL used to connect to ActiveMQ.

camelContext.addComponent("activemq",
activeMQComponent("vm://localhost?broker.persistent=false"));

Configuring the Connection Factory using Spring XML
You can configure the ActiveMQ broker URL on the ActiveMQComponent as
follows

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
</camelContext>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>

</bean>

</beans>

CHAPTER 11 - COMPONENT APPENDIX 553

http://camel.apache.org/jms.html
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://camel.apache.org/camelcontext.html
http://activemq.apache.org/maven/5.5.0/activemq-camel/apidocs/org/apache/activemq/camel/component/ActiveMQComponent.html#activeMQComponent%28java.lang.String%29
http://activemq.apache.org/configuring-transports.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Using connection pooling
When sending to an ActiveMQ broker using Camel it's recommended to use a
pooled connection factory to efficiently handle pooling of JMS connections,
sessions and producers. This is documented on the ActiveMQ Spring Support
page.

You can grab ActiveMQ's
org.apache.activemq.pool.PooledConnectionFactory with Maven:

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-pool</artifactId>
<version>5.6.0</version>

</dependency>

And then setup the activemq Camel component as follows:

<bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />

</bean>

<bean id="pooledConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory" init-method="start"

destroy-method="stop">
<property name="maxConnections" value="8" />
<property name="connectionFactory" ref="jmsConnectionFactory" />

</bean>

<bean id="jmsConfig"
class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="pooledConnectionFactory"/>
<property name="concurrentConsumers" value="10"/>

</bean>

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="configuration" ref="jmsConfig"/>

</bean>

The PooledConnectionFactory will then create a connection pool with up to
8 connections in use at the same time. Each connection can be shared by
many sessions. There is an option named maxActive you can use to
configure the maximum number of sessions per connection; the default value
is 500. From ActiveMQ 5.7 onwards the option has been renamed to better
reflect its purpose, being named as maxActiveSessionPerConnection.
Notice the concurrentConsumers is set to a higher value than
maxConnections is. This is okay, as each consumer is using a session, and as

554 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/spring-support.html

Notice the init and destroy methods on the pooled connection
factory. This is important to ensure the connection pool is properly
started and shutdown.

a session can share the same connection, we are in the safe. In this example
we can have 8 * 500 = 4000 active sessions at the same time.

Invoking MessageListener POJOs in a Camel route
The ActiveMQ component also provides a helper Type Converter from a JMS
MessageListener to a Processor. This means that the Bean component is
capable of invoking any JMS MessageListener bean directly inside any route.

So for example you can create a MessageListener in JMS like this:

public class MyListener implements MessageListener {
public void onMessage(Message jmsMessage) {

// ...
}

}

Then use it in your Camel route as follows

from("file://foo/bar").
bean(MyListener.class);

That is, you can reuse any of the Camel Components and easily integrate
them into your JMS MessageListener POJO!

Using ActiveMQ Destination Options
Available as of ActiveMQ 5.6

You can configure the Destination Options in the endpoint uri, using the
"destination." prefix. For example to mark a consumer as exclusive, and set
its prefetch size to 50, you can do as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://src/test/data?noop=true"/>
<to uri="activemq:queue:foo"/>

</route>
<route>

<!-- use consumer.exclusive ActiveMQ destination option, notice we have to prefix
with destination. -->

CHAPTER 11 - COMPONENT APPENDIX 555

http://camel.apache.org/type-converter.html
http://camel.apache.org/processor.html
http://camel.apache.org/bean.html
http://camel.apache.org/components.html
http://activemq.apache.org/destination-options.html

<from
uri="activemq:foo?destination.consumer.exclusive=true&destination.consumer.prefetchSize=50"/>

<to uri="mock:results"/>
</route>

</camelContext>

Consuming Advisory Messages
ActiveMQ can generate Advisory messages which are put in topics that you
can consume. Such messages can help you send alerts in case you detect
slow consumers or to build statistics (number of messages/produced per day,
etc.) The following Spring DSL example shows you how to read messages
from a topic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection.
To watch another topic, simply change the name according to the name
provided in ActiveMQ Advisory Messages documentation. The parameter
mapJmsMessage=false allows for converting the
org.apache.activemq.command.ActiveMqMessage object from the jms queue.
Next, the body received is converted into a String for the purposes of this
example and a carriage return is added. Finally, the string is added to a file

<route>
<from uri="activemq:topic:ActiveMQ.Advisory.Connection?mapJmsMessage=false" />
<convertBodyTo type="java.lang.String"/>
<transform>

<simple>${in.body}</simple>
</transform>
<to uri="file://data/activemq/

?fileExist=Append&fileName=advisoryConnection-${date:now:yyyyMMdd}.txt" />
</route>

If you consume a message on a queue, you should see the following files
under the data/activemq folder :

advisoryConnection-20100312.txt
advisoryProducer-20100312.txt

and containing string:

ActiveMQMessage {commandId = 0, responseRequired = false,
messageId = ID:dell-charles-3258-1268399815140
-1:0:0:0:221, originalDestination = null, originalTransactionId = null,
producerId = ID:dell-charles-3258-1268399815140-1:0:0:0,
destination = topic://ActiveMQ.Advisory.Connection, transactionId = null,
expiration = 0, timestamp = 0, arrival = 0, brokerInTime = 1268403383468,
brokerOutTime = 1268403383468, correlationId = null, replyTo = null,
persistent = false, type = Advisory, priority = 0, groupID = null, groupSequence = 0,

556 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/advisory-message.html

targetConsumerId = null, compressed = false, userID = null, content = null,
marshalledProperties = org.apache.activemq.util.ByteSequence@17e2705,
dataStructure = ConnectionInfo {commandId = 1, responseRequired = true,
connectionId = ID:dell-charles-3258-1268399815140-2:50,
clientId = ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****,
brokerPath = null, brokerMasterConnector = false, manageable = true,
clientMaster = true}, redeliveryCounter = 0, size = 0, properties =
{originBrokerName=master, originBrokerId=ID:dell-charles-3258-1268399815140-0:0,
originBrokerURL=vm://master}, readOnlyProperties = true, readOnlyBody = true,
droppable = false}

Getting Component JAR
You will need this dependency

▪ activemq-camel
ActiveMQ is an extension of the JMS component released with the ActiveMQ
project.

<dependency>
<groupId>org.apache.activemq</groupId>
<artifactId>activemq-camel</artifactId>
<version>5.6.0</version>

</dependency>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

ACTIVEMQ JOURNAL COMPONENT
The ActiveMQ Journal Component allows messages to be stored in a rolling
log file and then consumed from that log file. The journal aggregates and
batches up concurrent writes so that the overhead of writing and waiting for
the disk sync is relatively constant regardless of how many concurrent writes
are being done. Therefore, this component supports and encourages you to
use multiple concurrent producers to the same journal endpoint.

Each journal endpoint uses a different log file and therefore write batching
(and the associated performance boost) does not occur between multiple
endpoints.

CHAPTER 11 - COMPONENT APPENDIX 557

http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html
http://activemq.apache.org
http://activemq.apache.org
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

This component only supports one active consumer on the endpoint. After
the message is processed by the consumer's processor, the log file is marked
and only subsequent messages in the log file will get delivered to consumers.

URI format

activemq.journal:directoryName[?options]

So for example, to send to the journal located in the /tmp/data directory you
would use the following URI:

activemq.journal:/tmp/data

Options

Name Default
Value Description

syncConsume false If set to true, when the journal is marked after a message is consumed, wait till the Operating System has
verified the mark update is safely stored on disk.

syncProduce true If set to true, wait till the Operating System has verified the message is safely stored on disk.

You can append query options to the URI in the following format,
?option=value&option=value&...

Expected Exchange Data Types
The consumer of a Journal endpoint generates DefaultExchange objects with
the in message :

• header "journal" : set to the endpoint uri of the journal the message
came from

• header "location" : set to a Location which identifies where the
recored was stored on disk

• body : set to ByteSequence which contains the byte array data of the
stored message

The producer to a Journal endpoint expects an Exchange with an In message
where the body can be converted to a ByteSequence or a byte[].

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

558 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/impl/DefaultExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html#getIn()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://camel.apache.org/maven/current//camel-core/apidocs/org/apache/camel/Message.html#getHeader(java.lang.String)
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/kaha/impl/async/Location.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html#getBody()
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Exchange.html
http://activemq.apache.org/maven/activemq-core/apidocs/org/apache/activemq/util/ByteSequence.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

AMQP
The amqp: component supports the AMQP protocol using the Client API of
the Qpid project.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-amqp</artifactId>
<version>${camel.version}</version> <!-- use the same version as your Camel core

version -->
</dependency>

URI format

amqp:[queue:|topic:]destinationName[?options]

You can specify all of the various configuration options of the JMS component
after the destination name.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SQS COMPONENT
Available as of Camel 2.6

The sqs component supports sending and receiving messages to Amazon's
SQS service.

URI Format

aws-sqs://queue-name[?options]

The queue will be created if they don't already exists.
You can append query options to the URI in the following format,
?options=value&option2=value&...

CHAPTER 11 - COMPONENT APPENDIX 559

http://www.amqp.org/
http://qpid.apache.org/
http://camel.apache.org/jms.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://aws.amazon.com/sqs
http://aws.amazon.com/sqs

Prerequisites
You must have a valid Amazon Web Services developer account,
and be signed up to use Amazon SQS. More information are
available at Amazon SQS.

URI Options

Name Default
Value Context Description

amazonSQSClient null Shared Reference to a com.amazonaws.services.sqs.AmazonSQSClient in the
Registry.

accessKey null Shared Amazon AWS Access Key

secretKey null Shared Amazon AWS Secret Key

amazonSQSEndpoint null Shared The region with which the AWS-SQS client wants to work with.

attributeNames null Consumer A list of attributes to set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest.

defaultVisibilityTimeout null Shared The visibility timeout (in seconds) to set in the
com.amazonaws.services.sqs.model.CreateQueueRequest.

deleteAfterRead true Consumer Delete message from SQS after it has been read

maxMessagesPerPoll null Consumer
The maximum number of messages which can be received in one poll to
set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest.

visibilityTimeout null Shared

The duration (in seconds) that the received messages are hidden from
subsequent retrieve requests after being retrieved by a ReceiveMessage
request to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.
This only make sense if its different from defaultVisibilityTimeout. It
changes the queue visibility timeout attribute permanently.

messageVisibilityTimeout null Consumer

Camel 2.8: The duration (in seconds) that the received messages are
hidden from subsequent retrieve requests after being retrieved by a
ReceiveMessage request to set in the
com.amazonaws.services.sqs.model.ReceiveMessageRequest. It does
NOT change the queue visibility timeout attribute permanently.

extendMessageVisibility false Consumer
Camel 2.10: If enabled then a scheduled background task will keep
extending the message visibility on SQS. This is needed if it taks a long
time to process the message. If set to true defaultVisibilityTimeout
must be set. See details at Amazon docs.

maximumMessageSize null Shared
Camel 2.8: The maximumMessageSize (in bytes) an SQS message can
contain for this queue, to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

messageRetentionPeriod null Shared
Camel 2.8: The messageRetentionPeriod (in seconds) a message will be
retained by SQS for this queue, to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

policy null Shared Camel 2.8: The policy for this queue to set in the
com.amazonaws.services.sqs.model.SetQueueAttributesRequest.

delaySeconds null Producer Camel 2.9.3: Delay sending messages for a number of seconds.

waitTimeSeconds 0 Producer
Camel 2.11: Duration in seconds (0 to 20) that the ReceiveMessage
action call will wait until a message is in the queue to include in the
response.

receiveMessageWaitTimeSeconds 0 Shared
Camel 2.11: If you do not specify WaitTimeSeconds in the request, the
queue attribute ReceiveMessageWaitTimeSeconds is used to determine
how long to wait.

Batch Consumer
This component implements the Batch Consumer.

560 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://docs.amazonwebservices.com/AWSSimpleQueueService/latest/APIReference/Query_QueryChangeMessageVisibility.html
http://camel.apache.org/batch-consumer.html
http://aws.amazon.com/sqs

Required SQS component options
You have to provide the amazonSQSClient in the Registry or your
accessKey and secretKey to access the Amazon's SQS.

This allows you for instance to know how many messages exists in this
batch and for instance let the Aggregator aggregate this number of
messages.

Usage

Message headers set by the SQS producer
Header Type Description
CamelAwsSqsMD5OfBody String The MD5 checksum of the Amazon SQS message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

Message headers set by the SQS consumer
Header Type Description
CamelAwsSqsMD5OfBody String The MD5 checksum of the Amazon SQS message.

CamelAwsSqsMessageId String The Amazon SQS message ID.

CamelAwsSqsReceiptHandle String The Amazon SQS message receipt handle.

CamelAwsSqsAttributes Map<String, String> The Amazon SQS message attributes.

Advanced AmazonSQSClient configuration
If your Camel Application is running behind a firewall or if you need to have
more control over the AmazonSQSClient configuration, you can create your
own instance:

AWSCredentials awsCredentials = new BasicAWSCredentials("myAccessKey", "mySecretKey");

ClientConfiguration clientConfiguration = new ClientConfiguration();
clientConfiguration.setProxyHost("http://myProxyHost");
clientConfiguration.setProxyPort(8080);

AmazonSQSClient client = new AmazonSQSClient(awsCredentials, clientConfiguration);

and refer to it in your Camel aws-sqs component configuration:

CHAPTER 11 - COMPONENT APPENDIX 561

http://camel.apache.org/aggregator.html
http://camel.apache.org/registry.html
http://aws.amazon.com/sqs

from("aws-sqs://MyQueue?amazonSQSClient=#amazonSQSClient&delay=5000&maxMessagesPerPoll=5")
.to("mock:result");

Dependencies
Maven users will need to add the following dependency to their pom.xml.

Listing 1. pom.xml

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-aws</artifactId>
<version>${camel-version}</version>

</dependency>

where ${camel-version} must be replaced by the actual version of Camel
(2.6 or higher).

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ AWS Component

ATOM COMPONENT
The atom: component is used for polling Atom feeds.

Camel will poll the feed every 60 seconds by default.
Note: The component currently only supports polling (consuming) feeds.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-atom</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

562 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/aws.html

URI format

atom://atomUri[?options]

Where atomUri is the URI to the Atom feed to poll.

Options
Property Default Description

splitEntries true

If true Camel will poll the feed and for the subsequent polls return each entry poll by poll. If the
feed contains 7 entries then Camel will return the first entry on the first poll, the 2nd entry on the
next poll, until no more entries where as Camel will do a new update on the feed. If false then
Camel will poll a fresh feed on every invocation.

filter true

Is only used by the split entries to filter the entries to return. Camel will default use the
UpdateDateFilter that only return new entries from the feed. So the client consuming from the
feed never receives the same entry more than once. The filter will return the entries ordered by
the newest last.

lastUpdate null
Is only used by the filter, as the starting timestamp for selection never entries (uses the
entry.updated timestamp). Syntax format is: yyyy-MM-ddTHH:MM:ss. Example:
2007-12-24T17:45:59.

throttleEntries true
Camel 2.5: Sets whether all entries identified in a single feed poll should be delivered
immediately. If true, only one entry is processed per consumer.delay. Only applicable when
splitEntries is set to true.

feedHeader true Sets whether to add the Abdera Feed object as a header.

sortEntries false If splitEntries is true, this sets whether to sort those entries by updated date.

consumer.delay 60000 Delay in millis between each poll.

consumer.initialDelay 1000 Millis before polling starts.

consumer.userFixedDelay false If true, use fixed delay between pools, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

You can append query options to the URI in the following format,
?option=value&option=value&...

Exchange data format
Camel will set the In body on the returned Exchange with the entries.
Depending on the splitEntries flag Camel will either return one Entry or a
List<Entry>.
Option Value Behavior
splitEntries true Only a single entry from the currently being processed feed is set: exchange.in.body(Entry)

splitEntries false The entire list of entries from the feed is set: exchange.in.body(List<Entry>)

Camel can set the Feed object on the In header (see feedHeader option to
disable this):

Message Headers
Camel atom uses these headers.
Header Description
CamelAtomFeed When consuming the org.apache.abdera.model.Feed object is set to this header.

CHAPTER 11 - COMPONENT APPENDIX 563

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Samples
In this sample we poll James Strachan's blog.

from("atom://http://macstrac.blogspot.com/feeds/posts/default").to("seda:feeds");

In this sample we want to filter only good blogs we like to a SEDA queue. The
sample also shows how to setup Camel standalone, not running in any
Container or using Spring.

// This is the CamelContext that is the heart of Camel
private CamelContext context;

protected CamelContext createCamelContext() throws Exception {

// First we register a blog service in our bean registry
SimpleRegistry registry = new SimpleRegistry();
registry.put("blogService", new BlogService());

// Then we create the camel context with our bean registry
context = new DefaultCamelContext(registry);

// Then we add all the routes we need using the route builder DSL syntax
context.addRoutes(createMyRoutes());

return context;
}

/**
* This is the route builder where we create our routes using the Camel DSL
*/

protected RouteBuilder createMyRoutes() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// We pool the atom feeds from the source for further processing in the

seda queue
// we set the delay to 1 second for each pool as this is a unit test also

and we can
// not wait the default poll interval of 60 seconds.
// Using splitEntries=true will during polling only fetch one Atom Entry

at any given time.
// As the feed.atom file contains 7 entries, using this will require 7

polls to fetch the entire
// content. When Camel have reach the end of entries it will refresh the

atom feed from URI source
// and restart - but as Camel by default uses the UpdatedDateFilter it

will only deliver new
// blog entries to "seda:feeds". So only when James Straham updates his

blog with a new entry
// Camel will create an exchange for the seda:feeds.
from("atom:file:src/test/data/

feed.atom?splitEntries=true&consumer.delay=1000").to("seda:feeds");

564 CHAPTER 11 - COMPONENT APPENDIX

// From the feeds we filter each blot entry by using our blog service
class

from("seda:feeds").filter().method("blogService",
"isGoodBlog").to("seda:goodBlogs");

// And the good blogs is moved to a mock queue as this sample is also
used for unit testing

// this is one of the strengths in Camel that you can also use the mock
endpoint for your

// unit tests
from("seda:goodBlogs").to("mock:result");

}
};

}

/**
* This is the actual junit test method that does the assertion that our routes is

working as expected
*/

@Test
public void testFiltering() throws Exception {

// create and start Camel
context = createCamelContext();
context.start();

// Get the mock endpoint
MockEndpoint mock = context.getEndpoint("mock:result", MockEndpoint.class);

// There should be at least two good blog entries from the feed
mock.expectedMinimumMessageCount(2);

// Asserts that the above expectations is true, will throw assertions exception
if it failed

// Camel will default wait max 20 seconds for the assertions to be true, if the
conditions

// is true sooner Camel will continue
mock.assertIsSatisfied();

// stop Camel after use
context.stop();

}

/**
* Services for blogs
*/

public class BlogService {

/**
* Tests the blogs if its a good blog entry or not
*/

public boolean isGoodBlog(Exchange exchange) {
Entry entry = exchange.getIn().getBody(Entry.class);
String title = entry.getTitle();

CHAPTER 11 - COMPONENT APPENDIX 565

// We like blogs about Camel
boolean good = title.toLowerCase().contains("camel");
return good;

}

}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ RSS

BEAN COMPONENT
The bean: component binds beans to Camel message exchanges.

URI format

bean:beanID[?options]

Where beanID can be any string which is used to look up the bean in the
Registry

Options
Name Type Default Description

method String null

The method name from the bean that will be invoked. If not provided, Camel will try to
determine the method itself. In case of ambiguity an exception will be thrown. See Bean
Binding for more details. From Camel 2.8 onwards you can specify type qualifiers to pin-
point the exact method to use for overloaded methods. From Camel 2.9 onwards you can
specify parameter values directly in the method syntax. See more details at Bean Binding.

cache boolean false If enabled, Camel will cache the result of the first Registry look-up. Cache can be enabled
if the bean in the Registry is defined as a singleton scope.

multiParameterArray boolean false How to treat the parameters which are passed from the message body; if it is true, the In
message body should be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

566 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/rss.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Using
The object instance that is used to consume messages must be explicitly
registered with the Registry. For example, if you are using Spring you must
define the bean in the Spring configuration, spring.xml; or if you don't use
Spring, by registering the bean in JNDI.

// lets populate the context with the services we need
// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();
context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);

Once an endpoint has been registered, you can build Camel routes that use it
to process exchanges.

// lets add simple route
camelContext.addRoutes(new RouteBuilder() {

public void configure() {
from("direct:hello").to("bean:bye");

}
});

A bean: endpoint cannot be defined as the input to the route; i.e. you cannot
consume from it, you can only route from some inbound message Endpoint
to the bean endpoint as output. So consider using a direct: or queue:
endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy
that will generate BeanExchanges and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint("direct:hello");
ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

And the same route using Spring DSL:

<route>
<from uri="direct:hello">
<to uri="bean:bye"/>

</route>

Bean as endpoint
Camel also supports invoking Bean as an Endpoint. In the route below:

CHAPTER 11 - COMPONENT APPENDIX 567

http://camel.apache.org/registry.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html
http://camel.apache.org/bean.html

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<to uri="myBean"/>
<to uri="mock:results"/>

</route>
</camelContext>

<bean id="myBean" class="org.apache.camel.spring.bind.ExampleBean"/>

What happens is that when the exchange is routed to the myBean Camel will
use the Bean Binding to invoke the bean.
The source for the bean is just a plain POJO:

public class ExampleBean {

public String sayHello(String name) {
return "Hello " + name + "!";

}
}

Camel will use Bean Binding to invoke the sayHello method, by converting
the Exchange's In body to the String type and storing the output of the
method on the Exchange Out body.

Java DSL bean syntax
Java DSL comes with syntactic sugar for the Bean component. Instead of
specifying the bean explicitly as the endpoint (i.e. to("bean:beanName"))
you can use the following syntax:

// Send message to the bean endpoint
// and invoke method resolved using Bean Binding.
from("direct:start").beanRef("beanName");

// Send message to the bean endpoint
// and invoke given method.
from("direct:start").beanRef("beanName", "methodName");

Instead of passing name of the reference to the bean (so that Camel will
lookup for it in the registry), you can specify the bean itself:

// Send message to the given bean instance.
from("direct:start").bean(new ExampleBean());

// Explicit selection of bean method to be invoked.
from("direct:start").bean(new ExampleBean(), "methodName");

568 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html

// Camel will create the instance of bean and cache it for you.
from("direct:start").bean(ExampleBean.class);

Bean Binding
How bean methods to be invoked are chosen (if they are not specified
explicitly through the method parameter) and how parameter values are
constructed from the Message are all defined by the Bean Binding
mechanism which is used throughout all of the various Bean Integration
mechanisms in Camel.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Class component
• Bean Binding
• Bean Integration

BEAN VALIDATION COMPONENT
Available as of Camel 2.3

The Validation component performs bean validation of the message body
using the Java Bean Validation API (JSR 303). Camel uses the reference
implementation, which is Hibernate Validator.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-bean-validator</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 569

http://camel.apache.org/message.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/class.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://jcp.org/en/jsr/detail?id=303
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html_single/

URI format

bean-validator:something[?options]

or

bean-validator://something[?options]

Where something must be present to provide a valid url
You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options
Option Default Description
group javax.validation.groups.Default The custom validation group to use.

messageInterpolator org.hibernate.validator.engine.
ResourceBundleMessageInterpolator

Reference to a custom
javax.validation.MessageInterpolator in the Registry.

traversableResolver org.hibernate.validator.engine.resolver.
DefaultTraversableResolver

Reference to a custom
javax.validation.TraversableResolver in the Registry.

constraintValidatorFactory org.hibernate.validator.engine.
ConstraintValidatorFactoryImpl

Reference to a custom
javax.validation.ConstraintValidatorFactory in the
Registry.

ServiceMix4/OSGi Deployment.
The bean-validator when deployed in an OSGi environment requires a little
help to accommodate the resource loading specified in JSR303, this was fixed
in Servicemix-Specs 1.6-SNAPSHOT.

Example
Assumed we have a java bean with the following annotations

Listing 1. Car.java

public class Car {

@NotNull
private String manufacturer;

@NotNull
@Size(min = 5, max = 14, groups = OptionalChecks.class)
private String licensePlate;

// getter and setter
}

570 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

and an interface definition for our custom validation group
Listing 1. OptionalChecks.java

public interface OptionalChecks {
}

with the following Camel route, only the @NotNull constraints on the
attributes manufacturer and licensePlate will be validated (Camel uses the
default group javax.validation.groups.Default).

from("direct:start")
.to("bean-validator://x")
.to("mock:end")

If you want to check the constraints from the group OptionalChecks, you
have to define the route like this

from("direct:start")
.to("bean-validator://x?group=OptionalChecks")
.to("mock:end")

If you want to check the constraints from both groups, you have to define a
new interface first

Listing 1. AllChecks.java

@GroupSequence({Default.class, OptionalChecks.class})
public interface AllChecks {
}

and then your route definition should looks like this

from("direct:start")
.to("bean-validator://x?group=AllChecks")
.to("mock:end")

And if you have to provide your own message interpolator, traversable
resolver and constraint validator factory, you have to write a route like this

<bean id="myMessageInterpolator" class="my.ConstraintValidatorFactory" />
<bean id="myTraversableResolver" class="my.TraversableResolver" />
<bean id="myConstraintValidatorFactory" class="my.ConstraintValidatorFactory" />

from("direct:start")
.to("bean-validator://x?group=AllChecks&messageInterpolator=#myMessageInterpolator
&traversableResolver=#myTraversableResolver&constraintValidatorFactory=#myConstraintValidatorFactory")
.to("mock:end")

CHAPTER 11 - COMPONENT APPENDIX 571

It's also possible to describe your constraints as XML and not as Java
annotations. In this case, you have to provide the file META-INF/
validation.xml which could looks like this

Listing 1. validation.xml

<?xml version="1.0" encoding="UTF-8"?>
<validation-config

xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration">

<default-provider>org.hibernate.validator.HibernateValidator</default-provider>

<message-interpolator>org.hibernate.validator.engine.ResourceBundleMessageInterpolator</message-interpolator>

<traversable-resolver>org.hibernate.validator.engine.resolver.DefaultTraversableResolver</traversable-resolver>

<constraint-validator-factory>org.hibernate.validator.engine.ConstraintValidatorFactoryImpl</constraint-validator-factory>

<constraint-mapping>/constraints-car.xml</constraint-mapping>
</validation-config>

and the constraints-car.xml file
Listing 1. constraints-car.xml

<?xml version="1.0" encoding="UTF-8"?>
<constraint-mappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/mapping
validation-mapping-1.0.xsd"

xmlns="http://jboss.org/xml/ns/javax/validation/mapping">
<default-package>org.apache.camel.component.bean.validator</default-package>

<bean class="CarWithoutAnnotations" ignore-annotations="true">
<field name="manufacturer">

<constraint annotation="javax.validation.constraints.NotNull"
/>

</field>

<field name="licensePlate">
<constraint annotation="javax.validation.constraints.NotNull"

/>

<constraint annotation="javax.validation.constraints.Size">
<groups>

<value>org.apache.camel.component.bean.validator.OptionalChecks</value>
</groups>
<element name="min">5</element>
<element name="max">14</element>

</constraint>
</field>

572 CHAPTER 11 - COMPONENT APPENDIX

</bean>
</constraint-mappings>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

BROWSE COMPONENT
The Browse component provides a simple BrowsableEndpoint which can be
useful for testing, visualisation tools or debugging. The exchanges sent to
the endpoint are all available to be browsed.

URI format

browse:someName

Where someName can be any string to uniquely identify the endpoint.

Sample
In the route below, we insert a browse: component to be able to browse the
Exchanges that are passing through:

from("activemq:order.in").to("browse:orderReceived").to("bean:processOrder");

We can now inspect the received exchanges from within the Java code:

private CamelContext context;

public void inspectRecievedOrders() {
BrowsableEndpoint browse = context.getEndpoint("browse:orderReceived",

BrowsableEndpoint.class);
List<Exchange> exchanges = browse.getExchanges();
...
// then we can inspect the list of received exchanges from Java
for (Exchange exchange : exchanges) {

String payload = exchange.getIn().getBody();
...

CHAPTER 11 - COMPONENT APPENDIX 573

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/browsableendpoint.html

}
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

CACHE COMPONENT
Available as of Camel 2.1

The cache component enables you to perform caching operations using
EHCache as the Cache Implementation. The cache itself is created on
demand or if a cache of that name already exists then it is simply utilized
with its original settings.

This component supports producer and event based consumer endpoints.
The Cache consumer is an event based consumer and can be used to

listen and respond to specific cache activities. If you need to perform
selections from a pre-existing cache, use the processors defined for the
cache component.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cache</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

cache://cacheName[?options]

You can append query options to the URI in the following format,
?option=value&option=#beanRef&...

574 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Options
Name Default Value Description
maxElementsInMemory 1000 The number of elements that may be stored in the defined cache

memoryStoreEvictionPolicy MemoryStoreEvictionPolicy.LFU

The number of elements that may be stored in the defined cache.
Options include

▪ MemoryStoreEvictionPolicy.LFU - Least frequently
used

▪ MemoryStoreEvictionPolicy.LRU - Least recently used
▪ MemoryStoreEvictionPolicy.FIFO - first in first out,

the oldest element by creation time

overflowToDisk true Specifies whether cache may overflow to disk

eternal false
Sets whether elements are eternal. If eternal, timeouts are ignored
and the
element never expires.

timeToLiveSeconds 300
The maximum time between creation time and when an element
expires.
Is used only if the element is not eternal

timeToIdleSeconds 300 The maximum amount of time between accesses before an
element expires

diskPersistent false Whether the disk store persists between restarts of the Virtual
Machine.

diskExpiryThreadIntervalSeconds 120 The number of seconds between runs of the disk expiry thread.

cacheManagerFactory null

Camel 2.8: If you want to use a custom factory which instantiates
and creates the EHCache net.sf.ehcache.CacheManager.

Type: abstract
org.apache.camel.component.cache.CacheManagerFactory

eventListenerRegistry null

Camel 2.8: Sets a list of EHCache
net.sf.ehcache.event.CacheEventListener for all new caches-
no need to define it per cache in EHCache xml config anymore.

Type:
org.apache.camel.component.cache.CacheEventListenerRegistry

cacheLoaderRegistry null

Camel 2.8: Sets a list of
org.apache.camel.component.cache.CacheLoaderWrapper that
extends EHCache net.sf.ehcache.loader.CacheLoader for all
new caches- no need to define it per cache in EHCache xml config
anymore.

Type: org.apache.camel.component.cache.CacheLoaderRegistry

key null
Camel 2.10: To configure using a cache key by default. If a key is
provided in the message header, then the key from the header
takes precedence.

operation null
Camel 2.10: To configure using an cache operation by default. If
an operation in the message header, then the operation from the
header takes precedence.

Sending/Receiving Messages to/from the cache

Message Headers up to Camel 2.7
Header Description

CACHE_OPERATION

The operation to be performed on the cache. Valid options are
▪ GET
▪ CHECK
▪ ADD
▪ UPDATE
▪ DELETE
▪ DELETEALL

GET and CHECK requires Camel 2.3 onwards.

CACHE_KEY The cache key used to store the Message in the cache. The cache key is optional if the CACHE_OPERATION is DELETEALL

CHAPTER 11 - COMPONENT APPENDIX 575

Message Headers Camel 2.8+
Header Description

CamelCacheOperation

The operation to be performed on the cache. The valid options are
▪ CamelCacheGet
▪ CamelCacheCheck
▪ CamelCacheAdd
▪ CamelCacheUpdate
▪ CamelCacheDelete
▪ CamelCacheDeleteAll

CamelCacheKey The cache key used to store the Message in the cache. The cache key is optional if the CamelCacheOperation is
CamelCacheDeleteAll

The CamelCacheAdd and CamelCacheUpdate operations support additional
headers:
Header Type Description
CamelCacheTimeToLive Integer Camel 2.11: Time to live in seconds.

CamelCacheTimeToIdle Integer Camel 2.11: Time to idle in seconds.

CamelCacheEternal Boolean Camel 2.11: Whether the content is eternal.

Cache Producer
Sending data to the cache involves the ability to direct payloads in
exchanges to be stored in a pre-existing or created-on-demand cache. The
mechanics of doing this involve

▪ setting the Message Exchange Headers shown above.
▪ ensuring that the Message Exchange Body contains the message

directed to the cache

Cache Consumer
Receiving data from the cache involves the ability of the CacheConsumer to
listen on a pre-existing or created-on-demand Cache using an event Listener
and receive automatic notifications when any cache activity take place (i.e
CamelCacheGet/CamelCacheUpdate/CamelCacheDelete/
CamelCacheDeleteAll). Upon such an activity taking place

▪ an exchange containing Message Exchange Headers and a Message
Exchange Body containing the just added/updated payload is placed
and sent.

▪ in case of a CamelCacheDeleteAll operation, the Message Exchange
Header CamelCacheKey and the Message Exchange Body are not
populated.

576 CHAPTER 11 - COMPONENT APPENDIX

Header changes in Camel 2.8
The header names and supported values have changed to be
prefixed with 'CamelCache' and use mixed case. This makes them
easier to identify and keep separate from other headers. The
CacheConstants variable names remain unchanged, just their
values have been changed. Also, these headers are now removed
from the exchange after the cache operation is performed.

Cache Processors
There are a set of nice processors with the ability to perform cache lookups
and selectively replace payload content at the

▪ body
▪ token
▪ xpath level

Cache Usage Samples

Example 1: Configuring the cache

from("cache://MyApplicationCache" +
"?maxElementsInMemory=1000" +
"&memoryStoreEvictionPolicy=" +

"MemoryStoreEvictionPolicy.LFU" +
"&overflowToDisk=true" +
"&eternal=true" +
"&timeToLiveSeconds=300" +
"&timeToIdleSeconds=true" +
"&diskPersistent=true" +
"&diskExpiryThreadIntervalSeconds=300")

Example 2: Adding keys to the cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

CHAPTER 11 - COMPONENT APPENDIX 577

}
};

Example 2: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_UPDATE))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

}
};

Example 3: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION, constant(CacheConstants.CACHE_DELETE))
.setHeader(CacheConstants.CACHE_KEY", constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

}
};

Example 4: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start")
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_DELETEALL))
.to("cache://TestCache1");

}
};

578 CHAPTER 11 - COMPONENT APPENDIX

Example 5: Notifying any changes registering in a Cache
to Processors and other Producers

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("cache://TestCache1")
.process(new Processor() {

public void process(Exchange exchange)
throws Exception {

String operation = (String)
exchange.getIn().getHeader(CacheConstants.CACHE_OPERATION);

String key = (String) exchange.getIn().getHeader(CacheConstants.CACHE_KEY);
Object body = exchange.getIn().getBody();
// Do something

}
})

}
};

Example 6: Using Processors to selectively replace
payload with cache values

RouteBuilder builder = new RouteBuilder() {
public void configure() {

//Message Body Replacer
from("cache://TestCache1")
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("greeting"))
.process(new CacheBasedMessageBodyReplacer("cache://TestCache1","farewell"))
.to("direct:next");

//Message Token replacer
from("cache://TestCache1")
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("quote"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","novel","#novel#"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","author","#author#"))
.process(new CacheBasedTokenReplacer("cache://TestCache1","number","#number#"))
.to("direct:next");

//Message XPath replacer
from("cache://TestCache1").
.filter(header(CacheConstants.CACHE_KEY).isEqualTo("XML_FRAGMENT"))
.process(new CacheBasedXPathReplacer("cache://TestCache1","book1","/books/book1"))
.process (new CacheBasedXPathReplacer("cache://TestCache1","book2","/books/

book2"))
.to("direct:next");

}
};

CHAPTER 11 - COMPONENT APPENDIX 579

Example 7: Getting an entry from the Cache

from("direct:start")
// Prepare headers
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_GET))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
.to("cache://TestCache1").
// Check if entry was not found
.choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).

// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

.end()

.to("direct:nextPhase");

Example 8: Checking for an entry in the Cache
Note: The CHECK command tests existence of an entry in the cache but
doesn't place a message in the body.

from("direct:start")
// Prepare headers
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_CHECK))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
.to("cache://TestCache1").
// Check if entry was not found
.choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).

// If not found, get the payload and put it to cache
.to("cxf:bean:someHeavyweightOperation").
.setHeader(CacheConstants.CACHE_OPERATION,

constant(CacheConstants.CACHE_OPERATION_ADD))
.setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
.to("cache://TestCache1")

.end();

Management of EHCache
EHCache has its own statistics and management from JMX.

Here's a snippet on how to expose them via JMX in a Spring application
context:

580 CHAPTER 11 - COMPONENT APPENDIX

http://ehcache.org/
http://camel.apache.org/camel-jmx.html

<bean id="ehCacheManagementService"
class="net.sf.ehcache.management.ManagementService" init-method="init"
lazy-init="false">

<constructor-arg>
<bean class="net.sf.ehcache.CacheManager" factory-method="getInstance"/>

</constructor-arg>
<constructor-arg>

<bean class="org.springframework.jmx.support.JmxUtils"
factory-method="locateMBeanServer"/>

</constructor-arg>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>
<constructor-arg value="true"/>

</bean>

Of course you can do the same thing in straight Java:

ManagementService.registerMBeans(CacheManager.getInstance(), mbeanServer, true, true,
true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way.
You can also change CacheConfiguration parameters on the fly.

Cache replication Camel 2.8+
The Camel Cache component is able to distribute a cache across server
nodes using several different replication mechanisms including: RMI, JGroups,
JMS and Cache Server.

There are two different ways to make it work:
1. You can configure ehcache.xml manually
OR
2. You can configure these three options:

▪ cacheManagerFactory
▪ eventListenerRegistry
▪ cacheLoaderRegistry

Configuring Camel Cache replication using the first option is a bit of hard
work as you have to configure all caches separately. So in a situation when
the all names of caches are not known, using ehcache.xml is not a good
idea.

The second option is much better when you want to use many different
caches as you do not need to define options per cache. This is because
replication options are set per CacheManager and per CacheEndpoint. Also it
is the only way when cache names are not know at the development phase.

CHAPTER 11 - COMPONENT APPENDIX 581

It might be useful to read the EHCache manual to get a better
understanding of the Camel Cache replication mechanism.

Example: JMS cache replication
JMS replication is the most powerful and secured replication method. Used
together with Camel Cache replication makes it also rather simple.
An example is available on a separate page.

CLASS COMPONENT
Available as of Camel 2.4

The class: component binds beans to Camel message exchanges. It works
in the same way as the Bean component but instead of looking up beans
from a Registry it creates the bean based on the class name.

URI format

class:className[?options]

Where className is the fully qualified class name to create and use as
bean.

Options
Name Type Default Description

method String null
The method name that bean will be invoked. If not provided, Camel will try to pick the
method itself. In case of ambiguity an exception is thrown. See Bean Binding for more
details.

multiParameterArray boolean false How to treat the parameters which are passed from the message body; if it is true, the In
message body should be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

Using
You simply use the class component just as the Bean component but by
specifying the fully qualified classname instead.
For example to use the MyFooBean you have to do as follows:

582 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/cachereplicationjmsexample.html
http://camel.apache.org/bean.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean.html
http://ehcache.org/documentation

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean").to("mock:result");

You can also specify which method to invoke on the MyFooBean, for example
hello:

from("direct:start").to("class:org.apache.camel.component.bean.MyFooBean?method=hello").to("mock:result");

SETTING PROPERTIES ON THE CREATED INSTANCE
In the endpoint uri you can specify properties to set on the created instance,
for example if it has a setPrefix method:

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
.to("mock:result");

And you can also use the # syntax to refer to properties to be looked up in
the Registry.

from("direct:start")
.to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#foo")
.to("mock:result");

Which will lookup a bean from the Registry with the id foo and invoke the
setCool method on the created instance of the MyPrefixBean class.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Bean
• Bean Binding
• Bean Integration

COMETD COMPONENT
The cometd: component is a transport for working with the jetty
implementation of the cometd/bayeux protocol.

CHAPTER 11 - COMPONENT APPENDIX 583

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://www.mortbay.org/jetty
http://docs.codehaus.org/display/JETTY/Cometd+%28aka+Bayeux%29

See more
See more details at the Bean component as the class component
works in much the same way.

Using this component in combination with the dojo toolkit library it's possible
to push Camel messages directly into the browser using an AJAX based
mechanism.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cometd</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

cometd://host:port/channelName[?options]

The channelName represents a topic that can be subscribed to by the
Camel endpoints.

Examples

cometd://localhost:8080/service/mychannel
cometds://localhost:8443/service/mychannel

where cometds: represents an SSL configured endpoint.
See this blog entry by David Greco who contributed this component to

Apache Camel, for a full sample.

Options

Name Default
Value Description

resourceBase Â
The root directory for the web resources or classpath. Use the protocol file: or classpath: depending if
you want that the component loads the resource from file system or classpath. Classpath is required
for OSGI deployment where the resources are packaged in the jar. Notice this option has been
renamed to baseResource from Camel 2.7 onwards.

584 CHAPTER 11 - COMPONENT APPENDIX

http://www.davidgreco.it/MySite/Blog/Entries/2008/12/4_Camel,_Cometd_and_Bayeux_what_a_nice_combination.html
http://camel.apache.org/bean.html

baseResource Â
Camel 2.7: The root directory for the web resources or classpath. Use the protocol file: or classpath:
depending if you want that the component loads the resource from file system or classpath. Classpath
is required for OSGI deployment where the resources are packaged in the jar

timeout 240000 The server side poll timeout in milliseconds. This is how long the server will hold a reconnect request
before responding.

interval 0 The client side poll timeout in milliseconds. How long a client will wait between reconnects

maxInterval 30000 The max client side poll timeout in milliseconds. A client will be removed if a connection is not
received in this time.

multiFrameInterval 1500 The client side poll timeout, if multiple connections are detected from the same browser.

jsonCommented true If true, the server will accept JSON wrapped in a comment and will generate JSON wrapped in a
comment. This is a defence against Ajax Hijacking.

logLevel 1 0=none, 1=info, 2=debug.

sslContextParameters Â
Camel 2.9: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the Registry.Â
This reference overrides any configured SSLContextParameters at the component level.Â See Using
the JSSE Configuration Utility.

crossOriginFilterOn false Camel 2.10: If true, the server will support for cross-domain filtering

allowedOrigins * Camel 2.10: The origins domain that support to cross, if the crosssOriginFilterOn is true

filterPath Â Camel 2.10: The filterPath will be used by the CrossOriginFilter, if the crosssOriginFilterOn is true

You can append query options to the URI in the following format,
?option=value&option=value&...

Here is some examples on How to pass the parameters
For file (for webapp resources located in the Web Application directory -->

cometd://localhost:8080?resourceBase=file./webapp
For classpath (when by example the web resources are packaged inside the
webapp folder --> cometd://localhost:8080?resourceBase=classpath:webapp

Authentication
Available as of Camel 2.8

You can configure custom SecurityPolicy and Extension's to the
CometdComponent which allows you to use authentication as documented
here

Setting up SSL for Cometd Component

Using the JSSE Configuration Utility
As of Camel 2.9, the Cometd component supports SSL/TLS configuration
through the Camel JSSE Configuration Utility.Â This utility greatly decreases
the amount of component specific code you need to write and is configurable
at the endpoint and component levels.Â The following examples
demonstrate how to use the utility with the Cometd component.

CHAPTER 11 - COMPONENT APPENDIX 585

http://camel.apache.org/registry.html
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html
http://cometd.org/documentation/howtos/authentication
http://cometd.org/documentation/howtos/authentication
http://camel.apache.org/camel-configuration-utilities.html

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);
scp.setTrustManagers(tmp);

CometdComponent commetdComponent = getContext().getComponent("cometds",
CometdComponent.class);
commetdComponent.setSslContextParameters(scp);

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
<camel:trustManagers>

<camel:keyStore
resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to uri="cometds://127.0.0.1:443/service/test?baseResource=file:./target/

test-classes/
webapp&timeout=240000&interval=0&maxInterval=30000&multiFrameInterval=1500&jsonCommented=true&logLevel=2&sslContextParameters=#sslContextParameters"/>...

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

586 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CONTEXT COMPONENT
Available as of Camel 2.7

The context component allows you to create new Camel Components
from a CamelContext with a number of routes which is then treated as a
black box, allowing you to refer to the local endpoints within the component
from other CamelContexts.

It is similar to the Routebox component in idea, though the Context
component tries to be really simple for end users; just a simple convention
over configuration approach to refer to local endpoints inside the
CamelContext Component.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-context</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

context:camelContextId:localEndpointName[?options]

Or you can omit the "context:" prefix.

camelContextId:localEndpointName[?options]

• camelContextId is the ID you used to register the CamelContext
into the Registry.

• localEndpointName can be a valid Camel URI evaluated within the
black box CamelContext. Or it can be a logical name which is
mapped to any local endpoints. For example if you locally have
endpoints like direct:invoices and seda:purchaseOrders inside a
CamelContext of id supplyChain, then you can just use the URIs
supplyChain:invoices or supplyChain:purchaseOrders to omit
the physical endpoint kind and use pure logical URIs.

You can append query options to the URI in the following format,
?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 587

http://camel.apache.org/routebox.html
http://camel.apache.org/registry.html

Example
In this example we'll create a black box context, then we'll use it from
another CamelContext.

Defining the context component
First you need to create a CamelContext, add some routes in it, start it and
then register the CamelContext into the Registry (JNDI, Spring, Guice or OSGi
etc).

This can be done in the usual Camel way from this test case (see the
createRegistry() method); this example shows Java and JNDI being used...

// lets create our black box as a camel context and a set of routes
DefaultCamelContext blackBox = new DefaultCamelContext(registry);
blackBox.setName("blackBox");
blackBox.addRoutes(new RouteBuilder() {

@Override
public void configure() throws Exception {

// receive purchase orders, lets process it in some way then send an invoice
// to our invoice endpoint
from("direct:purchaseOrder").

setHeader("received").constant("true").
to("direct:invoice");

}
});
blackBox.start();

registry.bind("accounts", blackBox);

Notice in the above route we are using pure local endpoints (direct and
seda). Also note we expose this CamelContext using the accounts ID. We
can do the same thing in Spring via

<camelContext id="accounts" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:purchaseOrder"/>
...
<to uri="direct:invoice"/>

</route>
</camelContext>

588 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-context/src/test/java/org/apache/camel/component/context/JavaDslBlackBoxTest.java?revision=1069442&view=markup

Using the context component
Then in another CamelContext we can then refer to this "accounts black box"
by just sending to accounts:purchaseOrder and consuming from
accounts:invoice.

If you prefer to be more verbose and explicit you could use
context:accounts:purchaseOrder or even
context:accounts:direct://purchaseOrder if you prefer. But using logical
endpoint URIs is preferred as it hides the implementation detail and provides
a simple logical naming scheme.

For example if we wish to then expose this accounts black box on some
middleware (outside of the black box) we can do things like...

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- consume from an ActiveMQ into the black box -->
<from uri="activemq:Accounts.PurchaseOrders"/>
<to uri="accounts:purchaseOrders"/>

</route>
<route>

<!-- lets send invoices from the black box to a different ActiveMQ Queue -->
<from uri="accounts:invoice"/>
<to uri="activemq:UK.Accounts.Invoices"/>

</route>
</camelContext>

Naming endpoints
A context component instance can have many public input and output
endpoints that can be accessed from outside it's CamelContext. When there
are many it is recommended that you use logical names for them to hide the
middleware as shown above.

However when there is only one input, output or error/dead letter endpoint
in a component we recommend using the common posix shell names in, out
and err

CRYPTO COMPONENT FOR DIGITAL SIGNATURES
Available as of Camel 2.3

With Camel cryptographic endpoints and Java's Cryptographic extension it
is easy to create Digital Signatures for Exchanges. Camel provides a pair of
flexible endpoints which get used in concert to create a signature for an
exchange in one part of the exchange's workflow and then verify the
signature in a later part of the workflow.

CHAPTER 11 - COMPONENT APPENDIX 589

http://camel.apache.org/exchange.html

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-crypto</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Introduction
Digital signatures make use of Asymmetric Cryptographic techniques to sign
messages. From a (very) high level, the algorithms use pairs of
complimentary keys with the special property that data encrypted with one
key can only be decrypted with the other. One, the private key, is closely
guarded and used to 'sign' the message while the other, public key, is shared
around to anyone interested in verifying the signed messages. Messages are
signed by using the private key to encrypting a digest of the message. This
encrypted digest is transmitted along with the message. On the other side
the verifier recalculates the message digest and uses the public key to
decrypt the the digest in the signature. If both digests match the verifier
knows only the holder of the private key could have created the signature.

Camel uses the Signature service from the Java Cryptographic Extension
to do all the heavy cryptographic lifting required to create exchange
signatures. The following are some excellent resources for explaining the
mechanics of Cryptography, Message digests and Digital Signatures and how
to leverage them with the JCE.

▪ Bruce Schneier's Applied Cryptography
▪ Beginning Cryptography with Java by David Hook
▪ The ever insightful Wikipedia Digital_signatures

URI format
As mentioned Camel provides a pair of crypto endpoints to create and verify
signatures

crypto:sign:name[?options]
crypto:verify:name[?options]

• crypto:sign creates the signature and stores it in the Header keyed
by the constant Exchange.SIGNATURE, i.e.
"CamelDigitalSignature".

590 CHAPTER 11 - COMPONENT APPENDIX

http://en.wikipedia.org/wiki/Digital_signature

• crypto:verify will read in the contents of this header and do the
verification calculation.

In order to correctly function, the sign and verify process needs a pair of keys
to be shared, signing requiring a PrivateKey and verifying a PublicKey (or a
Certificate containing one). Using the JCE it is very simple to generate
these key pairs but it is usually most secure to use a KeyStore to house and
share your keys. The DSL is very flexible about how keys are supplied and
provides a number of mechanisms.

Note a crypto:sign endpoint is typically defined in one route and the
complimentary crypto:verify in another, though for simplicity in the
examples they appear one after the other. It goes without saying that both
signing and verifying should be configured identically.

Options
Name Type Default Description
algorithm String DSA The name of the JCE Signature algorithm that will be used.

alias String null An alias name that will be used to select a key from the keystore.

bufferSize Integer 2048 the size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the exchange's payload. Either this or a Public Key
is required.

keystore KeyStore null A reference to a JCE Keystore that stores keys and certificates used to sign and verify.

provider String null The name of the JCE Security Provider that should be used.

privateKey PrivatKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the exchange's payload.

secureRandom secureRandom null A reference to a SecureRandom object that will be used to initialize the Signature service.

password char[] null The password for the keystore.

clearHeaders String true Remove camel crypto headers from Message after a verify operation (value can be
"true"/"false").

Using

1) Raw keys
The most basic way to way to sign and verify an exchange is with a KeyPair
as follows.

from("direct:keypair").to("crypto:sign://basic?privateKey=#myPrivateKey",
"crypto:verify://basic?publicKey=#myPublicKey", "mock:result");

The same can be achieved with the Spring XML Extensions using references
to keys

CHAPTER 11 - COMPONENT APPENDIX 591

http://camel.apache.org/spring-xml-extensions.html

<route>
<from uri="direct:keypair"/>
<to uri="crypto:sign://basic?privateKey=#myPrivateKey" />
<to uri="crypto:verify://basic?publicKey=#myPublicKey" />
<to uri="mock:result"/>

</route>

2) KeyStores and Aliases.
The JCE provides a very versatile keystore concept for housing pairs of
private keys and certificates, keeping them encrypted and password
protected. They can be retrieved by applying an alias to the retrieval APIs.
There are a number of ways to get keys and Certificates into a keystore,
most often this is done with the external 'keytool' application. This is a good
example of using keytool to create a KeyStore with a self signed Cert and
Private key.

The examples use a Keystore with a key and cert aliased by 'bob'. The
password for the keystore and the key is 'letmein'

The following shows how to use a Keystore via the Fluent builders, it also
shows how to load and initialize the keystore.

from("direct:keystore").to("crypto:sign://keystore?keystore=#keystore&alias=bob&password=letmein",
"crypto:verify://keystore?keystore=#keystore&alias=bob", "mock:result");

Again in Spring a ref is used to lookup an actual keystore instance.

<route>
<from uri="direct:keystore"/>
<to

uri="crypto:sign://keystore?keystore=#keystore&alias=bob&password=letmein" />
<to uri="crypto:verify://keystore?keystore=#keystore&alias=bob" />
<to uri="mock:result"/>

</route>

3) Changing JCE Provider and Algorithm
Changing the Signature algorithm or the Security provider is a simple matter
of specifying their names. You will need to also use Keys that are compatible
with the algorithm you choose.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(512, new SecureRandom());

592 CHAPTER 11 - COMPONENT APPENDIX

http://www.exampledepot.com/egs/java.security.cert/CreateCert.html

keyPair = keyGen.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey publicKey = keyPair.getPublic();

// we can set the keys explicitly on the endpoint instances.
context.getEndpoint("crypto:sign://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class).setPrivateKey(privateKey);
context.getEndpoint("crypto:verify://rsa?algorithm=MD5withRSA",
DigitalSignatureEndpoint.class).setPublicKey(publicKey);
from("direct:algorithm").to("crypto:sign://rsa?algorithm=MD5withRSA",
"crypto:verify://rsa?algorithm=MD5withRSA", "mock:result");

from("direct:provider").to("crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN",
"crypto:verify://provider?publicKey=#myPublicKey&provider=SUN", "mock:result");

or

<route>
<from uri="direct:algorithm"/>
<to uri="crypto:sign://rsa?algorithm=MD5withRSA&privateKey=#rsaPrivateKey" />
<to uri="crypto:verify://rsa?algorithm=MD5withRSA&publicKey=#rsaPublicKey" />
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:provider"/>
<to uri="crypto:sign://provider?privateKey=#myPrivateKey&provider=SUN" />
<to uri="crypto:verify://provider?publicKey=#myPublicKey&provider=SUN" />
<to uri="mock:result"/>

</route>

4) Changing the Signature Mesasge Header
It may be desirable to change the message header used to store the
signature. A different header name can be specified in the route definition as
follows

from("direct:signature-header").to("crypto:sign://another?privateKey=#myPrivateKey&signatureHeader=AnotherDigitalSignature",

"crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSignature",
"mock:result");

or

CHAPTER 11 - COMPONENT APPENDIX 593

<route>
<from uri="direct:signature-header"/>
<to

uri="crypto:sign://another?privateKey=#myPrivateKey&signatureHeader=AnotherDigitalSignature"
/>

<to
uri="crypto:verify://another?publicKey=#myPublicKey&signatureHeader=AnotherDigitalSignature"
/>

<to uri="mock:result"/>
</route>

5) Changing the buffersize
In case you need to update the size of the buffer...

from("direct:buffersize").to("crypto:sign://buffer?privateKey=#myPrivateKey&buffersize=1024",
"crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024", "mock:result");

or

<route>
<from uri="direct:buffersize" />
<to uri="crypto:sign://buffer?privateKey=#myPrivateKey&buffersize=1024" />
<to uri="crypto:verify://buffer?publicKey=#myPublicKey&buffersize=1024" />
<to uri="mock:result"/>

</route>

6) Supplying Keys dynamically.
When using a Recipient list or similar EIP the recipient of an exchange can
vary dynamically. Using the same key across all recipients may be neither
feasible nor desirable. It would be useful to be able to specify signature keys
dynamically on a per-exchange basis. The exchange could then be
dynamically enriched with the key of its target recipient prior to signing. To
facilitate this the signature mechanisms allow for keys to be supplied
dynamically via the message headers below

• Exchange.SIGNATURE_PRIVATE_KEY, "CamelSignaturePrivateKey"
• Exchange.SIGNATURE_PUBLIC_KEY_OR_CERT,

"CamelSignaturePublicKeyOrCert"

from("direct:headerkey-sign").to("crypto:sign://alias");
from("direct:headerkey-verify").to("crypto:verify://alias", "mock:result");

594 CHAPTER 11 - COMPONENT APPENDIX

or

<route>
<from uri="direct:headerkey-sign"/>
<to uri="crypto:sign://headerkey" />

</route>
<route>

<from uri="direct:headerkey-verify"/>
<to uri="crypto:verify://headerkey" />
<to uri="mock:result"/>

</route>

Even better would be to dynamically supply a keystore alias. Again the alias
can be supplied in a message header

• Exchange.KEYSTORE_ALIAS, "CamelSignatureKeyStoreAlias"

from("direct:alias-sign").to("crypto:sign://alias?keystore=#keystore");
from("direct:alias-verify").to("crypto:verify://alias?keystore=#keystore",
"mock:result");

or

<route>
<from uri="direct:alias-sign"/>
<to uri="crypto:sign://alias?keystore=#keystore" />

</route>
<route>

<from uri="direct:alias-verify"/>
<to uri="crypto:verify://alias?keystore=#keystore" />
<to uri="mock:result"/>

</route>

The header would be set as follows

Exchange unsigned = getMandatoryEndpoint("direct:alias-sign").createExchange();
unsigned.getIn().setBody(payload);
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_ALIAS, "bob");
unsigned.getIn().setHeader(DigitalSignatureConstants.KEYSTORE_PASSWORD,
"letmein".toCharArray());
template.send("direct:alias-sign", unsigned);
Exchange signed = getMandatoryEndpoint("direct:alias-sign").createExchange();
signed.getIn().copyFrom(unsigned.getOut());
signed.getIn().setHeader(KEYSTORE_ALIAS, "bob");
template.send("direct:alias-verify", signed);

See Also
• Configuring Camel

CHAPTER 11 - COMPONENT APPENDIX 595

http://camel.apache.org/configuring-camel.html

• Component
• Endpoint
• Getting Started
• Crypto Crypto is also available as a Data Format

CXF COMPONENT
The cxf: component provides integration with Apache CXF for connecting to
JAX-WS services hosted in CXF.

• CXF Component
• URI format
• Options
• The descriptions of the dataformats
• How to enable CXF's LoggingOutInterceptor in MESSAGE mode
• Description of relayHeaders option
• Available only in POJO mode
• Changes since Release 2.0
• Configure the CXF endpoints with Spring
• Configuring the CXF Endpoints with Apache Aries Blueprint.
• How to make the camel-cxf component use log4j instead of

java.util.logging
• How to let camel-cxf response message with xml start document
• How to consume a message from a camel-cxf endpoint in POJO data

format
• How to prepare the message for the camel-cxf endpoint in POJO data

format
• How to deal with the message for a camel-cxf endpoint in PAYLOAD

data format
• How to get and set SOAP headers in POJO mode
• How to get and set SOAP headers in PAYLOAD mode
• SOAP headers are not available in MESSAGE mode
• How to throw a SOAP Fault from Camel
• How to propagate a camel-cxf endpoint's request and response

context
• Attachment Support
• Streaming Support in PAYLOAD mode
• See Also

Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>

596 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/crypto.html
http://camel.apache.org/data-format.html
http://cxf.apache.org

When using CXF as a consumer, the CXF Bean Component allows
you to factor out how message payloads are received from their
processing as a RESTful or SOAP web service. This has the potential
of using a multitude of transports to consume web services. The
bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

When using CXF in streaming modes (see DataFormat option), then
also read about Stream caching.

<artifactId>camel-cxf</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

cxf:bean:cxfEndpoint[?options]

Where cxfEndpoint represents a bean ID that references a bean in the
Spring bean registry. With this URI format, most of the endpoint details are
specified in the bean definition.

cxf://someAddress[?options]

Where someAddress specifies the CXF endpoint's address. With this URI
format, most of the endpoint details are specified using options.

For either style above, you can append options to the URI as follows:

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

Options
Name Required Description

wsdlURL No
The location of the WSDL. It is obtained from endpoint address by default.

Example: file://local/wsdl/hello.wsdl or wsdl/hello.wsdl

CHAPTER 11 - COMPONENT APPENDIX 597

/local/wsdl/hello.wsdl
http://camel.apache.org/cxf-bean-component.html
http://camel.apache.org/stream-caching.html

CXF dependencies
If you want to learn about CXF dependencies you can checkout the
WHICH-JARS text file.

serviceClass Yes

The name of the SEI (Service Endpoint Interface) class. This class can have, but does not
require, JSR181 annotations.
This option is only required by POJO mode. If the wsdlURL option is provided, serviceClass is
not required for PAYLOAD and MESSAGE mode. When wsdlURL option is used without
serviceClass, the serviceName and portName (endpointName for Spring configuration)
options MUST be provided. It is possible to use # notation to reference a serviceClass
object instance from the registry. E.g. serviceClass=#beanName. The serviceClass for a
CXF producer (that is, the to endpoint) should be a Java interface.
Since 2.8, it is possible to omit both wsdlURL and serviceClass options for PAYLOAD and
MESSAGE mode. When they are omitted, arbitrary XML elements can be put in CxfPayload's
body in PAYLOAD mode to facilitate CXF Dispatch Mode.

Please be advised that the referenced object cannot be a Proxy (Spring AOP Proxy is
OK) as it relies on Object.getClass().getName() method for non Spring AOP Proxy.

Example: org.apache.camel.Hello

serviceName No

The service name this service is implementing, it maps to the wsdl:service@name.

Required for camel-cxf consumer since camel-2.2.0 or if more than one serviceName is
present in WSDL.

Example: {http:Â//org.apache.camel}ServiceName

portName No

The port name this service is implementing, it maps to the wsdl:port@name.

Required for camel-cxf consumer since camel-2.2.0 or if more than one portName is
present under serviceName.

Example: {http:Â//org.apache.camel}PortName

dataFormat No
The data type messages supported by the CXF endpoint.

Default: POJO
Example: POJO, PAYLOAD, MESSAGE

relayHeaders No

Please see the Description of relayHeaders option section for this option. Should a CXF
endpoint relay headers along the route. Currently only available when dataFormat=POJO

Default: true
Example: true, false

wrapped No
Which kind of operation that CXF endpoint producer will invoke

Default: false
Example: true, false

wrappedStyle No

New in 2.5.0 The WSDL style that describes how parameters are represented in the SOAP
body. If the value is false, CXF will chose the document-literal unwrapped style, If the value
is true, CXF will chose the document-literal wrapped style

Default: Null
Example: true, false

setDefaultBus No
Will set the default bus when CXF endpoint create a bus by itself

Default: false
Example: true, false

bus No
A default bus created by CXF Bus Factory. Use # notation to reference a bus object from the
registry. The referenced object must be an instance of org.apache.cxf.Bus.

Example: bus=#busName

cxfBinding No

Use # notation to reference a CXF binding object from the registry. The referenced object
must be an instance of org.apache.camel.component.cxf.CxfBinding (use an instance of
org.apache.camel.component.cxf.DefaultCxfBinding).

Example: cxfBinding=#bindingName

598 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

headerFilterStrategy No

Use # notation to reference a header filter strategy object from the registry. The referenced
object must be an instance of org.apache.camel.spi.HeaderFilterStrategy (use an
instance of org.apache.camel.component.cxf.CxfHeaderFilterStrategy).

Example: headerFilterStrategy=#strategyName

loggingFeatureEnabled No

New in 2.3. This option enables CXF Logging Feature which writes inbound and outbound
SOAP messages to log.

Default: false
Example: loggingFeatureEnabled=true

defaultOperationName No

New in 2.4, this option will set the default operationName that will be used by the
CxfProducer which invokes the remote service.

Default: null
Example: defaultOperationName=greetMe

defaultOperationNamespace No

New in 2.4. This option will set the default operationNamespace that will be used by the
CxfProducer which invokes the remote service.

Default: null
Example: defaultOperationNamespace=http://apache.org/hello_world_soap_http

synchronous No

New in 2.5. This option will let cxf endpoint decide to use sync or async API to do the
underlying work. The default value is false which means camel-cxf endpoint will try to use
async API by default.

Default: false
Example: synchronous=true

publishedEndpointUrl No

New in 2.5. This option can override the endpointUrl that published from the WSDL which
can be accessed with service address url plus ?wsdl.

Default: null
Example: publshedEndpointUrl=http://example.com/service

properties.XXX No Camel 2.8: Allows to set custom properties to CXF in the endpoint uri. For example setting
properties.mtom-enabled=true to enable MTOM.

allowStreaming No
New in 2.8.2. This option controls whether the CXF component, when running in PAYLOAD
mode (see below), will DOM parse the incoming messages into DOM Elements or keep the
payload as a javax.xml.transform.Source object that would allow streaming in some cases.

skipFaultLogging No New in 2.11. This option controls whether the PhaseInterceptorChain skips logging the Fault
that it catches.

The serviceName and portName are QNames, so if you provide them be sure
to prefix them with their {namespace} as shown in the examples above.

The descriptions of the dataformats
DataFormat Description
POJO POJOs (Plain old Java objects) are the Java parameters to the method being invoked on the target server. Both Protocol

and Logical JAX-WS handlers are supported.

PAYLOAD PAYLOAD is the message payload (the contents of the soap:body) after message configuration in the CXF endpoint is
applied. Only Protocol JAX-WS handler is supported. Logical JAX-WS handler is not supported.

MESSAGE
MESSAGE is the raw message that is received from the transport layer. It is not suppose to touch or change Stream,
some of the CXF interceptor will be removed if you are using this kind of DataFormat so you can't see any soap headers
after the camel-cxf consumer and JAX-WS handler is not supported.

CXF_MESSAGE New in Camel 2.8.2, CXF_MESSAGE allows for invoking the full capabilities of CXF interceptors by converting the
message from the transport layer into a raw SOAP message

You can determine the data format mode of an exchange by retrieving the
exchange property, CamelCXFDataFormat. The exchange key constant is
defined in
org.apache.camel.component.cxf.CxfConstants.DATA_FORMAT_PROPERTY.

CHAPTER 11 - COMPONENT APPENDIX 599

http://apache.org/hello_world_soap_http
http://example.com/service
http://en.wikipedia.org/wiki/QName

How to enable CXF's LoggingOutInterceptor in MESSAGE mode
CXF's LoggingOutInterceptor outputs outbound message that goes on the
wire to logging system (Java Util Logging). Since the
LoggingOutInterceptor is in PRE_STREAM phase (but PRE_STREAM phase is
removed in MESSAGE mode), you have to configure LoggingOutInterceptor
to be run during the WRITE phase. The following is an example.

<bean id="loggingOutInterceptor"
class="org.apache.cxf.interceptor.LoggingOutInterceptor">

<!-- it really should have been user-prestream but CXF does have such phase!
-->

<constructor-arg value="target/write"/>
</bean>

<cxf:cxfEndpoint id="serviceEndpoint"
address="http://localhost:${CXFTestSupport.port2}/LoggingInterceptorInMessageModeTest/
helloworld"

serviceClass="org.apache.camel.component.cxf.HelloService">
<cxf:outInterceptors>

<ref bean="loggingOutInterceptor"/>
</cxf:outInterceptors>
<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>
</cxf:properties>

</cxf:cxfEndpoint>

Description of relayHeaders option
There are in-band and out-of-band on-the-wire headers from the perspective
of a JAXWS WSDL-first developer.

The in-band headers are headers that are explicitly defined as part of the
WSDL binding contract for an endpoint such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but
are not explicitly part of the WSDL binding contract.

Headers relaying/filtering is bi-directional.
When a route has a CXF endpoint and the developer needs to have on-the-

wire headers, such as SOAP headers, be relayed along the route to be
consumed say by another JAXWS endpoint, then relayHeaders should be set
to true, which is the default value.

Available only in POJO mode
The relayHeaders=true express an intent to relay the headers. The actual
decision on whether a given header is relayed is delegated to a pluggable
instance that implements the MessageHeadersRelay interface. A concrete

600 CHAPTER 11 - COMPONENT APPENDIX

implementation of MessageHeadersRelay will be consulted to decide if a
header needs to be relayed or not. There is already an implementation of
SoapMessageHeadersRelay which binds itself to well-known SOAP name
spaces. Currently only out-of-band headers are filtered, and in-band headers
will always be relayed when relayHeaders=true. If there is a header on the
wire, whose name space is unknown to the runtime, then a fall back
DefaultMessageHeadersRelay will be used, which simply allows all headers
to be relayed.

The relayHeaders=false setting asserts that all headers in-band and out-
of-band will be dropped.

You can plugin your own MessageHeadersRelay implementations
overriding or adding additional ones to the list of relays. In order to override
a preloaded relay instance just make sure that your MessageHeadersRelay
implementation services the same name spaces as the one you looking to
override. Also note, that the overriding relay has to service all of the name
spaces as the one you looking to override, or else a runtime exception on
route start up will be thrown as this would introduce an ambiguity in name
spaces to relay instance mappings.

<cxf:cxfEndpoint ...>
<cxf:properties>

<entry key="org.apache.camel.cxf.message.headers.relays">
<list>

<ref bean="customHeadersRelay"/>
</list>

</entry>
</cxf:properties>

</cxf:cxfEndpoint>
<bean id="customHeadersRelay"

class="org.apache.camel.component.cxf.soap.headers.CustomHeadersRelay"/>

Take a look at the tests that show how you'd be able to relay/drop headers
here:

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/
camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/
CxfMessageHeadersRelayTest.java

Changes since Release 2.0
• POJO and PAYLOAD modes are supported. In POJO mode, only out-of-

band message headers are available for filtering as the in-band
headers have been processed and removed from header list by CXF.
The in-band headers are incorporated into the MessageContentList
in POJO mode. The camel-cxf component does make any attempt to
remove the in-band headers from the MessageContentList. If

CHAPTER 11 - COMPONENT APPENDIX 601

https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java
https://svn.apache.org/repos/asf/camel/branches/camel-1.x/components/camel-cxf/src/test/java/org/apache/camel/component/cxf/soap/headers/CxfMessageHeadersRelayTest.java

filtering of in-band headers is required, please use PAYLOAD mode or
plug in a (pretty straightforward) CXF interceptor/JAXWS Handler to
the CXF endpoint.

• The Message Header Relay mechanism has been merged into
CxfHeaderFilterStrategy. The relayHeaders option, its semantics,
and default value remain the same, but it is a property of
CxfHeaderFilterStrategy.
Here is an example of configuring it.

<bean id="dropAllMessageHeadersStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">

<!-- Set relayHeaders to false to drop all SOAP headers -->
<property name="relayHeaders" value="false"/>

</bean>

Then, your endpoint can reference the CxfHeaderFilterStrategy.

<route>
<from

uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
<to

uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
</route>

• The MessageHeadersRelay interface has changed slightly and has
been renamed to MessageHeaderFilter. It is a property of
CxfHeaderFilterStrategy. Here is an example of configuring user
defined Message Header Filters:

<bean id="customMessageFilterStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrategy">

<property name="messageHeaderFilters">
<list>

<!-- SoapMessageHeaderFilter is the built in filter. It can be
removed by omitting it. -->

<bean
class="org.apache.camel.component.cxf.common.header.SoapMessageHeaderFilter"/>

<!-- Add custom filter here -->
<bean

class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
</list>

</property>
</bean>

• Other than relayHeaders, there are new properties that can be
configured in CxfHeaderFilterStrategy.

602 CHAPTER 11 - COMPONENT APPENDIX

Name Required Description

relayHeaders No
All message headers will be processed by Message Header Filters

Type: boolean
Default: true

relayAllMessageHeaders No

All message headers will be propagated (without processing by Message
Header Filters)

Type: boolean
Default: false

allowFilterNamespaceClash No

If two filters overlap in activation namespace, the property control how it
should be handled. If the value is true, last one wins. If the value is false, it
will throw an exception

Type: boolean
Default: false

Configure the CXF endpoints with Spring
You can configure the CXF endpoint with the Spring configuration file
shown below, and you can also embed the endpoint into the
camelContext tags. When you are invoking the service endpoint, you
can set the operationName and operationNamespace headers to
explicitly state which operation you are calling.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/

cxf/camel-cxf.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">
<cxf:cxfEndpoint id="routerEndpoint" address="http://localhost:9003/

CamelContext/RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>
<cxf:cxfEndpoint id="serviceEndpoint" address="http://localhost:9000/

SoapContext/SoapPort"
wsdlURL="testutils/hello_world.wsdl"
serviceClass="org.apache.hello_world_soap_http.Greeter"
endpointName="s:SoapPort"
serviceName="s:SOAPService"

xmlns:s="http://apache.org/hello_world_soap_http" />
<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/

spring">
<route>

<from uri="cxf:bean:routerEndpoint" />
<to uri="cxf:bean:serviceEndpoint" />

</route>
</camelContext>

</beans>

CHAPTER 11 - COMPONENT APPENDIX 603

Be sure to include the JAX-WS schemaLocation attribute specified on
the root beans element. This allows CXF to validate the file and is
required. Also note the namespace declarations at the end of the
<cxf:cxfEndpoint/> tag--these are required because the combined
{namespace}localName syntax is presently not supported for this
tag's attribute values.

The cxf:cxfEndpoint element supports many additional
attributes:
Name Value
PortName The endpoint name this service is implementing, it maps to the wsdl:port@name. In the format of ns:PORT_NAME

where ns is a namespace prefix valid at this scope.

serviceName The service name this service is implementing, it maps to the wsdl:service@name. In the format of
ns:SERVICE_NAME where ns is a namespace prefix valid at this scope.

wsdlURL The location of the WSDL. Can be on the classpath, file system, or be hosted remotely.

bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could have JSR181 annotation or not.

It also supports many child elements:
Name Value
cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref>.

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of <bean> or <ref>.

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See below.

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint. See below.

cxf:dataBinding You can specify the which DataBinding will be use in the endpoint. This can be supplied using the
Spring <bean class="MyDataBinding"/> syntax.

cxf:binding You can specify the BindingFactory for this endpoint to use. This can be supplied using the
Spring <bean class="MyBindingFactory"/> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of {{<bean>}}s or {{<ref>}}s

cxf:schemaLocations The schema locations for endpoint to use. A list of {{<schemaLocation>}}s

cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the Spring <bean
class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide
interceptors , properties and handlers here:
http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

NOTE
You can use cxf:properties to set the camel-cxf endpoint's dataFormat and
setDefaultBus properties from spring configuration file.

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
serviceClass="org.apache.camel.component.cxf.HelloService"
endpointName="s:PortName"
serviceName="s:ServiceName"
xmlns:s="http://www.example.com/test">
<cxf:properties>

<entry key="dataFormat" value="MESSAGE"/>

604 CHAPTER 11 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

<entry key="setDefaultBus" value="true"/>
</cxf:properties>

</cxf:cxfEndpoint>

Configuring the CXF Endpoints with Apache Aries Blueprint.
Since camel 2.8 there is support for utilizing aries blueprint dependency
injection for your CXF endpoints.
The schema utilized is very similar to the spring schema so the transition is
fairly transparent.

Example

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xmlns:camel-cxf="http://camel.apache.org/schema/blueprint/cxf"
xmlns:cxfcore="http://cxf.apache.org/blueprint/core"
xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<camel-cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:9001/router"
serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">

<camel-cxf:properties>
<entry key="dataFormat" value="MESSAGE"/>

</camel-cxf:properties>
</camel-cxf:cxfEndpoint>

<camel-cxf:cxfEndpoint id="serviceEndpoint"
address="http://localhost:9000/SoapContext/SoapPort"

serviceClass="org.apache.servicemix.examples.cxf.HelloWorld">
</camel-cxf:cxfEndpoint>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>

<from uri="routerEndpoint"/>
<to uri="log:request"/>

</route>
</camelContext>

</blueprint>

Currently the endpoint element is the first supported CXF namespacehandler.
You can also use the bean references just as in spring

CHAPTER 11 - COMPONENT APPENDIX 605

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
xmlns:cxf="http://cxf.apache.org/blueprint/core"
xmlns:camel="http://camel.apache.org/schema/blueprint"
xmlns:camelcxf="http://camel.apache.org/schema/blueprint/cxf"
xsi:schemaLocation="

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd

http://cxf.apache.org/blueprint/jaxws http://cxf.apache.org/schemas/
blueprint/jaxws.xsd

http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/
blueprint/core.xsd

">

<camelcxf:cxfEndpoint id="reportIncident"
address="/camel-example-cxf-blueprint/webservices/incident"
wsdlURL="META-INF/wsdl/report_incident.wsdl"

serviceClass="org.apache.camel.example.reportincident.ReportIncidentEndpoint">
</camelcxf:cxfEndpoint>

<bean id="reportIncidentRoutes"
class="org.apache.camel.example.reportincident.ReportIncidentRoutes" />

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<routeBuilder ref="reportIncidentRoutes"/>

</camelContext>

</blueprint>

How to make the camel-cxf component use log4j instead of
java.util.logging
CXF's default logger is java.util.logging. If you want to change it to log4j,
proceed as follows. Create a file, in the classpath, named META-INF/cxf/
org.apache.cxf.logger. This file should contain the fully-qualified name of
the class, org.apache.cxf.common.logging.Log4jLogger, with no
comments, on a single line.

How to let camel-cxf response message with xml start document
If you are using some soap client such as PHP, you will get this kind of error,
because CXF doesn't add the XML start document "<?xml version="1.0"
encoding="utf-8"?>"

606 CHAPTER 11 - COMPONENT APPENDIX

Error:sendSms: SoapFault exception: [Client] looks like we got no XML document in
[...]

To resolved this issue, you just need to tell StaxOutInterceptor to write the
XML start document for you.

public class WriteXmlDeclarationInterceptor extends
AbstractPhaseInterceptor<SoapMessage> {

public WriteXmlDeclarationInterceptor() {
super(Phase.PRE_STREAM);
addBefore(StaxOutInterceptor.class.getName());

}

public void handleMessage(SoapMessage message) throws Fault {
message.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);

}

}

You can add a customer interceptor like this and configure it into you camel-
cxf endpont

<cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:${CXFTestSupport.port2}/CXFGreeterRouterTest/CamelContext/
RouterPort"

serviceClass="org.apache.hello_world_soap_http.GreeterImpl"
skipFaultLogging="true">

<cxf:outInterceptors>
<!-- This interceptor will force the CXF server send the XML start document

to client -->
<bean class="org.apache.camel.component.cxf.WriteXmlDeclarationInterceptor"/>

</cxf:outInterceptors>
<cxf:properties>

<!-- Set the publishedEndpointUrl which could override the service address
from generated WSDL as you want -->

<entry key="publishedEndpointUrl" value="http://www.simple.com/services/
test" />

</cxf:properties>
</cxf:cxfEndpoint>

Or adding a message header for it like this if you are using Camel 2.4.

// set up the response context which force start document
Map<String, Object> map = new HashMap<String, Object>();
map.put("org.apache.cxf.stax.force-start-document", Boolean.TRUE);
exchange.getOut().setHeader(Client.RESPONSE_CONTEXT, map);

CHAPTER 11 - COMPONENT APPENDIX 607

How to consume a message from a camel-cxf endpoint in POJO data
format
The camel-cxf endpoint consumer POJO data format is based on the cxf
invoker, so the message header has a property with the name of
CxfConstants.OPERATION_NAME and the message body is a list of the SEI
method parameters.

public class PersonProcessor implements Processor {

private static final transient Logger LOG =
LoggerFactory.getLogger(PersonProcessor.class);

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

LOG.info("processing exchange in camel");

BindingOperationInfo boi =
(BindingOperationInfo)exchange.getProperty(BindingOperationInfo.class.toString());

if (boi != null) {
LOG.info("boi.isUnwrapped" + boi.isUnwrapped());

}
// Get the parameters list which element is the holder.
MessageContentsList msgList = (MessageContentsList)exchange.getIn().getBody();
Holder<String> personId = (Holder<String>)msgList.get(0);
Holder<String> ssn = (Holder<String>)msgList.get(1);
Holder<String> name = (Holder<String>)msgList.get(2);

if (personId.value == null || personId.value.length() == 0) {
LOG.info("person id 123, so throwing exception");
// Try to throw out the soap fault message
org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =

new org.apache.camel.wsdl_first.types.UnknownPersonFault();
personFault.setPersonId("");
org.apache.camel.wsdl_first.UnknownPersonFault fault =

new org.apache.camel.wsdl_first.UnknownPersonFault("Get the null
value of person name", personFault);

// Since camel has its own exception handler framework, we can't throw
the exception to trigger it

// We just set the fault message in the exchange for camel-cxf component
handling and return

exchange.getOut().setFault(true);
exchange.getOut().setBody(fault);
return;

}

name.value = "Bonjour";
ssn.value = "123";
LOG.info("setting Bonjour as the response");
// Set the response message, first element is the return value of the

operation,
// the others are the holders of method parameters
exchange.getOut().setBody(new Object[] {null, personId, ssn, name});

608 CHAPTER 11 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/invokers.html
http://cwiki.apache.org/CXF20DOC/invokers.html

}

}

How to prepare the message for the camel-cxf endpoint in POJO
data format
The camel-cxf endpoint producer is based on the cxf client API. First you
need to specify the operation name in the message header, then add the
method parameters to a list, and initialize the message with this parameter
list. The response message's body is a messageContentsList, you can get the
result from that list.

If you want to get the object array from the message body, you can get
the body using message.getbody(Object[].class), as follows:

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();
// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();
// The response message's body is an MessageContentsList which first element is the
return value of the operation,
// If there are some holder parameters, the holder parameter will be filled in the
reset of List.
// The result will be extract from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList)out.getBody();
LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = CastUtils.cast((Map<?,
?>)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-8",
responseContext.get(org.apache.cxf.message.Message.ENCODING));
assertEquals("Reply body on Camel is wrong", "echo " + TEST_MESSAGE, result.get(0));

How to deal with the message for a camel-cxf endpoint in PAYLOAD
data format
PAYLOAD means that you process the payload message from the SOAP
envelope. You can use the Header.HEADER_LIST as the key to set or get the
SOAP headers and use the List<Element> to set or get SOAP body elements.
Message.getBody() will return an

CHAPTER 11 - COMPONENT APPENDIX 609

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

org.apache.camel.component.cxf.CxfPayload object, which has getters
for SOAP message headers and Body elements. This change enables
decoupling the native CXF message from the Camel message.

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from(simpleEndpointURI +

"&dataFormat=PAYLOAD").to("log:info").process(new Processor() {
@SuppressWarnings("unchecked")
public void process(final Exchange exchange) throws Exception {

CxfPayload<SoapHeader> requestPayload =
exchange.getIn().getBody(CxfPayload.class);

List<Source> inElements = requestPayload.getBodySources();
List<Source> outElements = new ArrayList<Source>();
// You can use a customer toStringConverter to turn a CxfPayLoad

message into String as you want
String request = exchange.getIn().getBody(String.class);
XmlConverter converter = new XmlConverter();
String documentString = ECHO_RESPONSE;

Element in = new XmlConverter().toDOMElement(inElements.get(0));
// Just check the element namespace
if (!in.getNamespaceURI().equals(ELEMENT_NAMESPACE)) {

throw new IllegalArgumentException("Wrong element namespace");
}
if (in.getLocalName().equals("echoBoolean")) {

documentString = ECHO_BOOLEAN_RESPONSE;
checkRequest("ECHO_BOOLEAN_REQUEST", request);

} else {
documentString = ECHO_RESPONSE;
checkRequest("ECHO_REQUEST", request);

}
Document outDocument = converter.toDOMDocument(documentString);
outElements.add(new DOMSource(outDocument.getDocumentElement()));
// set the payload header with null
CxfPayload<SoapHeader> responsePayload = new

CxfPayload<SoapHeader>(null, outElements, null);
exchange.getOut().setBody(responsePayload);

}
});

}
};

}

How to get and set SOAP headers in POJO mode
POJO means that the data format is a "list of Java objects" when the Camel-
cxf endpoint produces or consumes Camel exchanges. Even though Camel
expose message body as POJOs in this mode, Camel-cxf still provides access
to read and write SOAP headers. However, since CXF interceptors remove in-

610 CHAPTER 11 - COMPONENT APPENDIX

band SOAP headers from Header list after they have been processed, only
out-of-band SOAP headers are available to Camel-cxf in POJO mode.

The following example illustrate how to get/set SOAP headers. Suppose we
have a route that forwards from one Camel-cxf endpoint to another. That is,
SOAP Client -> Camel -> CXF service. We can attach two processors to
obtain/insert SOAP headers at (1) before request goes out to the CXF service
and (2) before response comes back to the SOAP Client. Processor (1) and (2)
in this example are InsertRequestOutHeaderProcessor and
InsertResponseOutHeaderProcessor. Our route looks like this:

<route>
<from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
<process ref="InsertRequestOutHeaderProcessor" />
<to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
<process ref="InsertResponseOutHeaderProcessor" />

</route>

SOAP headers are propagated to and from Camel Message headers. The
Camel message header name is "org.apache.cxf.headers.Header.list" which is
a constant defined in CXF (org.apache.cxf.headers.Header.HEADER_LIST).
The header value is a List of CXF SoapHeader objects
(org.apache.cxf.binding.soap.SoapHeader). The following snippet is the
InsertResponseOutHeaderProcessor (that insert a new SOAP header in the
response message). The way to access SOAP headers in both
InsertResponseOutHeaderProcessor and InsertRequestOutHeaderProcessor
are actually the same. The only difference between the two processors is
setting the direction of the inserted SOAP header.

public static class InsertResponseOutHeaderProcessor implements Processor {

public void process(Exchange exchange) throws Exception {
List<SoapHeader> soapHeaders =

CastUtils.cast((List<?>)exchange.getIn().getHeader(Header.HEADER_LIST));

// Insert a new header
String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "

+ "xmlns=\"http://cxf.apache.org/outofband/Header\"
hdrAttribute=\"testHdrAttribute\" "

+ "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"
soap:mustUnderstand=\"1\">"

+
"<name>New_testOobHeader</name><value>New_testOobHeaderValue</value></outofbandHeader>";

SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
DOMUtils.readXml(new StringReader(xml)).getDocumentElement());

// make sure direction is OUT since it is a response message.
newHeader.setDirection(Direction.DIRECTION_OUT);
//newHeader.setMustUnderstand(false);
soapHeaders.add(newHeader);

CHAPTER 11 - COMPONENT APPENDIX 611

}

}

How to get and set SOAP headers in PAYLOAD mode
We've already shown how to access SOAP message (CxfPayload object) in
PAYLOAD mode (See "How to deal with the message for a camel-cxf endpoint
in PAYLOAD data format").

Once you obtain a CxfPayload object, you can invoke the
CxfPayload.getHeaders() method that returns a List of DOM Elements (SOAP
headers).

from(getRouterEndpointURI()).process(new Processor() {
@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

CxfPayload<SoapHeader> payload = exchange.getIn().getBody(CxfPayload.class);
List<Source> elements = payload.getBodySources();
assertNotNull("We should get the elements here", elements);
assertEquals("Get the wrong elements size", 1, elements.size());

Element el = new XmlConverter().toDOMElement(elements.get(0));
elements.set(0, new DOMSource(el));
assertEquals("Get the wrong namespace URI", "http://camel.apache.org/pizza/

types",
el.getNamespaceURI());

List<SoapHeader> headers = payload.getHeaders();
assertNotNull("We should get the headers here", headers);
assertEquals("Get the wrong headers size", headers.size(), 1);
assertEquals("Get the wrong namespace URI",

((Element)(headers.get(0).getObject())).getNamespaceURI(),
"http://camel.apache.org/pizza/types");

}

})
.to(getServiceEndpointURI());

SOAP headers are not available in MESSAGE mode
SOAP headers are not available in MESSAGE mode as SOAP processing is
skipped.

612 CHAPTER 11 - COMPONENT APPENDIX

How to throw a SOAP Fault from Camel
If you are using a camel-cxf endpoint to consume the SOAP request, you
may need to throw the SOAP Fault from the camel context.
Basically, you can use the throwFault DSL to do that; it works for POJO,
PAYLOAD and MESSAGE data format.
You can define the soap fault like this

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);
Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

Then throw it as you like

from(routerEndpointURI).setFaultBody(constant(SOAP_FAULT));

If your CXF endpoint is working in the MESSAGE data format, you could set the
the SOAP Fault message in the message body and set the response code in
the message header.

from(routerEndpointURI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message out = exchange.getOut();
// Set the message body with the
out.setBody(this.getClass().getResourceAsStream("SoapFaultMessage.xml"));
// Set the response code here
out.setHeader(org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));

}

});

Same for using POJO data format. You can set the SOAPFault on the out body
and also indicate it's a fault by calling Message.setFault(true):

from("direct:start").onException(SoapFault.class).maximumRedeliveries(0).handled(true)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
SoapFault fault = exchange

.getProperty(Exchange.EXCEPTION_CAUGHT, SoapFault.class);
exchange.getOut().setFault(true);
exchange.getOut().setBody(fault);

}

}).end().to(serviceURI);

CHAPTER 11 - COMPONENT APPENDIX 613

How to propagate a camel-cxf endpoint's request and response
context
cxf client API provides a way to invoke the operation with request and
response context. If you are using a camel-cxf endpoint producer to invoke
the outside web service, you can set the request context and get response
context with the following code:

CxfExchange exchange = (CxfExchange)template.send(getJaxwsEndpointUri(), new
Processor() {

public void process(final Exchange exchange) {
final List<String> params = new ArrayList<String>();
params.add(TEST_MESSAGE);
// Set the request context to the inMessage
Map<String, Object> requestContext = new HashMap<String, Object>();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

JAXWS_SERVER_ADDRESS);
exchange.getIn().setBody(params);
exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext);
exchange.getIn().setHeader(CxfConstants.OPERATION_NAME,

GREET_ME_OPERATION);
}

});
org.apache.camel.Message out = exchange.getOut();
// The output is an object array, the first element of the array is the

return value
Object\[\] output = out.getBody(Object\[\].class);
LOG.info("Received output text: " + output\[0\]);
// Get the response context form outMessage
Map<String, Object> responseContext =

CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("Get the wrong wsdl opertion name", "{http://apache.org/

hello_world_soap_http}greetMe",
responseContext.get("javax.xml.ws.wsdl.operation").toString());

Attachment Support
POJO Mode: Both SOAP with Attachment and MTOM are supported (see
example in Payload Mode for enabling MTOM).Â However, SOAP with
Attachment is not tested.Â Since attachments are marshalled and
unmarshalled into POJOs, users typically do not need to deal with the
attachment themself.Â Attachments are propagated to Camel message's
attachments since 2.1.Â So, it is possible to retreive attachments by Camel
Message API

DataHandler Message.getAttachment(String id)

.

614 CHAPTER 11 - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

Payload Mode: MTOM is supported since 2.1. Attachments can be
retrieved by Camel Message APIs mentioned above. SOAP with Attachment
(SwA) is supported and attachments can be retrieved since 2.5. SwA is the
default (same as setting the CXF endpoint property "mtom_enabled" to
false).Â

To enable MTOM, set the CXF endpoint property "mtom_enabled" to true. (I
believe you can only do it with Spring.)

<cxf:cxfEndpoint id="routerEndpoint"
address="http://localhost:${CXFTestSupport.port1}/CxfMtomRouterPayloadModeTest/
jaxws-mtom/hello"

wsdlURL="mtom.wsdl"
serviceName="ns:HelloService"
endpointName="ns:HelloPort"
xmlns:ns="http://apache.org/camel/cxf/mtom_feature">

<cxf:properties>
<!-- enable mtom by setting this property to true -->
<entry key="mtom-enabled" value="true"/>

<!-- set the camel-cxf endpoint data fromat to PAYLOAD mode -->
<entry key="dataFormat" value="PAYLOAD"/>

</cxf:properties>

You can produce a Camel message with attachment to send to a CXF
endpoint in Payload mode.

Exchange exchange = context.createProducerTemplate().send("direct:testEndpoint", new
Processor() {

public void process(Exchange exchange) throws Exception {
exchange.setPattern(ExchangePattern.InOut);
List<Source> elements = new ArrayList<Source>();
elements.add(new DOMSource(DOMUtils.readXml(new

StringReader(MtomTestHelper.REQ_MESSAGE)).getDocumentElement()));
CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(new

ArrayList<SoapHeader>(),
elements, null);

exchange.getIn().setBody(body);
exchange.getIn().addAttachment(MtomTestHelper.REQ_PHOTO_CID,

new DataHandler(new ByteArrayDataSource(MtomTestHelper.REQ_PHOTO_DATA,
"application/octet-stream")));

exchange.getIn().addAttachment(MtomTestHelper.REQ_IMAGE_CID,
new DataHandler(new ByteArrayDataSource(MtomTestHelper.requestJpeg,

"image/jpeg")));

}

});

CHAPTER 11 - COMPONENT APPENDIX 615

// process response

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element oute = new XmlConverter().toDOMElement(out.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:DetailResponse/ns:photo/xop:Include", oute,

XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue("//ns:DetailResponse/ns:image/xop:Include", oute,
XPathConstants.NODE);

String imageId = ele.getAttribute("href").substring(4); // skip "cid:"

DataHandler dr = exchange.getOut().getAttachment(photoId);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.RESP_PHOTO_DATA,
IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getOut().getAttachment(imageId);
Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

You can also consume a Camel message received from a CXF endpoint in
Payload mode.

public static class MyProcessor implements Processor {

@SuppressWarnings("unchecked")
public void process(Exchange exchange) throws Exception {

CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);

// verify request
assertEquals(1, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element body = new XmlConverter().toDOMElement(in.getBody().get(0));
Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", body,

616 CHAPTER 11 - COMPONENT APPENDIX

XPathConstants.NODE);
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"
assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", body,
XPathConstants.NODE);

String imageId = ele.getAttribute("href").substring(4); // skip "cid:"
assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageId);

DataHandler dr = exchange.getIn().getAttachment(photoId);
assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA,

IOUtils.readBytesFromStream(dr.getInputStream()));

dr = exchange.getIn().getAttachment(imageId);
assertEquals("image/jpeg", dr.getContentType());
MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg,

IOUtils.readBytesFromStream(dr.getInputStream()));

// create response
List<Source> elements = new ArrayList<Source>();
elements.add(new DOMSource(DOMUtils.readXml(new

StringReader(MtomTestHelper.RESP_MESSAGE)).getDocumentElement()));
CxfPayload<SoapHeader> sbody = new CxfPayload<SoapHeader>(new

ArrayList<SoapHeader>(),
elements, null);

exchange.getOut().setBody(sbody);
exchange.getOut().addAttachment(MtomTestHelper.RESP_PHOTO_CID,

new DataHandler(new ByteArrayDataSource(MtomTestHelper.RESP_PHOTO_DATA,
"application/octet-stream")));

exchange.getOut().addAttachment(MtomTestHelper.RESP_IMAGE_CID,
new DataHandler(new ByteArrayDataSource(MtomTestHelper.responseJpeg,

"image/jpeg")));

}
}

Message Mode: Attachments are not supported as it does not process the
message at all.

Streaming Support in PAYLOAD mode
In 2.8.2, the camel-cxf component now supports streaming of incoming
messages when using PAYLOAD mode. Previously, the incoming messages
would have been completely DOM parsed. For large messages, this is time
consuming and uses a significant amount of memory. Starting in 2.8.2, the
incoming messages can remain as a javax.xml.transform.Source while being
routed and, if nothing modifies the payload, can then be directly streamed
out to the target destination. For common "simple proxy" use cases
(example: from("cxf:...").to("cxf:...")), this can provide very significant

CHAPTER 11 - COMPONENT APPENDIX 617

performance increases as well as significantly lowered memory
requirements.

However, there are cases where streaming may not be appropriate or
desired. Due to the streaming nature, invalid incoming XML may not be
caught until later in the processing chain. Also, certain actions may require
the message to be DOM parsed anyway (like WS-Security or message tracing
and such) in which case the advantages of the streaming is limited. At this
point, there are two ways to control the streaming:

• Endpoint property: you can add "allowStreaming=false" as an
endpoint property to turn the streaming on/off.

• Component property: the CxfComponent object also has an
allowStreaming property that can set the default for endpoints
created from that component.

• Global system property: you can add a system property of
"org.apache.camel.component.cxf.streaming" to "false" to turn if off.
That sets the global default, but setting the endpoint property above
will override this value for that endpoint.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

CXF BEAN COMPONENT
The cxfbean: component allows other Camel endpoints to send exchange
and invoke Web service bean objects. (Currently, it only supports JAXRS,
JAXWS(new to camel2.1) annotated service bean.)

URI format

cxfbean:serviceBeanRef

Where serviceBeanRef is a registry key to look up the service bean object.
If serviceBeanRef references a List object, elements of the List are the
service bean objects accepted by the endpoint.

618 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CxfBeanEndpoint is a ProcessorEndpoint so it has no consumers.
It works similarly to a Bean component.

Options
Name Description Example Required? Default Value

cxfBeanBinding
CXF bean binding specified by the # notation. The referenced
object must be an instance of
org.apache.camel.component.cxf.cxfbean.CxfBeanBinding.

cxfBinding=#bindingName No DefaultCxfBeanBinding

bus CXF bus reference specified by the # notation. The referenced
object must be an instance of org.apache.cxf.Bus. bus=#busName No Default bus created by CXF

Bus Factory

headerFilterStrategy
Header filter strategy specified by the # notation. The
referenced object must be an instance of
org.apache.camel.spi.HeaderFilterStrategy.

headerFilterStrategy=#strategyName No CxfHeaderFilterStrategy

setDefaultBus Will set the default bus when CXF endpoint create a bus by
itself. true, false No false

populateFromClass

Since 2.3, the wsdlLocation annotated in the POJO is ignored
(by default) unless this option is set toÂ false. Prior to 2.3,
the wsdlLocation annotated in the POJO is always honored and
it is not possible to ignore.

true, false No true

providers Since 2.5, setting the providers for the CXFRS endpoint. providers=#providerRef1,#providerRef2 No null

Headers

Name Description Type Required? Default
Value

In/
Out Examples

CamelHttpCharacterEncoding
(before 2.0-m2:
CamelCxfBeanCharacterEncoding)

Character encoding String No None In ISO-8859-1

CamelContentType (before 2.0-m2:
CamelCxfBeanContentType) Content type String No */* In text/xml

CamelHttpBaseUri
(2.0-m3 and before:
CamelCxfBeanRequestBasePath)

The value of this
header will be set in
the CXF message as
the
Message.BASE_PATH
property. It is needed
by CXF JAX-RS
processing. Basically, it
is the scheme, host
and port portion of the
request URI.

String Yes

The Endpoint
URI of the
source
endpoint in
the Camel
exchange

In http://localhost:9000

CamelHttpPath (before 2.0-m2:
CamelCxfBeanRequestPath) Request URI's path String Yes None In consumer/123

CamelHttpMethod (before 2.0-m2:
CamelCxfBeanVerb) RESTful request verb String Yes None In GET, PUT, POST,

DELETE

CamelHttpResponseCode HTTP response code Integer No None Out 200

A Working Sample
This sample shows how to create a route that starts a Jetty HTTP server. The
route sends requests to a CXF Bean and invokes a JAXRS annotated service.

First, create a route as follows. The from endpoint is a Jetty HTTP endpoint
that is listening on port 9000. Notice that the matchOnUriPrefix option must

CHAPTER 11 - COMPONENT APPENDIX 619

http://localhost:9000

Currently, CXF Bean component has (only) been tested with Jetty
HTTP component it can understand headers from Jetty HTTP
component without requiring conversion.

be set to true because RESTful request URI will not match the endpoint's URI
http:Â//localhost:9000 exactly.

<route>
<from ref="ep1" />
<to uri="cxfbean:customerServiceBean" />
<to uri="mock:endpointA" />

</route>

The to endpoint is a CXF Bean with bean name customerServiceBean. The
name will be looked up from the registry. Next, we make sure our service
bean is available in Spring registry. We create a bean definition in the Spring
configuration. In this example, we create a List of service beans (of one
element). We could have created just a single bean without a List.

<util:list id="customerServiceBean">
<bean class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

</util:list>

<bean class="org.apache.camel.wsdl_first.PersonImpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A
HTTP client can make a request and receive response.

CXFRS COMPONENT
The cxfrs: component provides integration with Apache CXF for connecting
to JAX-RS services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-cxf</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->

</dependency>

620 CHAPTER 11 - COMPONENT APPENDIX

http://incubator.apache.org/cxf/

When using CXF as a consumer, the CXF Bean Component allows
you to factor out how message payloads are received from their
processing as a RESTful or SOAP web service. This has the potential
of using a multitude of transports to consume web services. The
bean component's configuration is also simpler and provides the
fastest method to implement web services using Camel and CXF.

URI format

cxfrs://address?options

Where address represents the CXF endpoint's address

cxfrs:bean:rsEndpoint

Where rsEndpoint represents the spring bean's name which presents the
CXFRS client or server

For either style above, you can append options to the URI as follows:

cxfrs:bean:cxfEndpoint?resourceClasses=org.apache.camel.rs.Example

Options

Name Description Example Required? default
value

resourceClasses

The resource classes which
you want to export as REST
service. Multiple classes can
be separated by comma.

resourceClasses
=org.apache.camel.rs.Example1,org.apache.camel.rs.Exchange2 No None

resourceClass

Deprecated: Use
resourceClasses The
resource class which you
want to export as REST
service.

resourceClass =org.apache.camel.rs.Example1 No None

httpClientAPI

new to Camel 2.1 If it is
true, the CxfRsProducer will
use the HttpClientAPI to
invoke the service
If it is false, the
CxfRsProducer will use the
ProxyClientAPI to invoke the
service

httpClientAPI=true No true

synchronous

New in 2.5, this option will
let CxfRsConsumer decide to
use sync or async API to do
the underlying work. The
default value is false which
means it will try to use async
API by default.

synchronous=true No false

CHAPTER 11 - COMPONENT APPENDIX 621

http://camel.apache.org/cxf-bean-component.html

throwExceptionOnFailure

New in 2.6, this option tells
the CxfRsProducer to inspect
return codes and will
generate an Exception if the
return code is larger than
207.

throwExceptionOnFailure=true No true

maxClientCacheSize

New in 2.6, you can set a IN
message header
CamelDestinationOverrideUrl
to dynamically override the
target destination Web
Service or REST Service
defined in your routes.Â The
implementation caches CXF
clients or ClientFactoryBean
in CxfProvider and
CxfRsProvider.Â This option
allows you to configure the
maximum size of the cache.

maxClientCacheSize=5 No 10

setDefaultBus

New in 2.9.0. Will set the
default bus when CXF
endpoint create a bus by
itself

setDefaultBus=true No false

bus

New in 2.9.0. A default bus
created by CXF Bus Factory.
Use # notation to reference a
bus object from the registry.
The referenced object must
be an instance of
org.apache.cxf.Bus.

bus=#busName No None

You can also configure the CXF REST endpoint through the spring
configuration. Since there are lots of difference between the CXF REST client
and CXF REST Server, we provide different configuration for them.
Please check out the schema file and CXF REST user guide for more
information.

How to configure the REST endpoint in Camel
In camel-cxf schema file, there are two elements for the REST endpoint
definition. cxf:rsServer for REST consumer, cxf:rsClient for REST producer.
You can find an camel REST service route configuration example here.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cxf="http://camel.apache.org/schema/cxf"
xmlns:jaxrs="http://cxf.apache.org/jaxrs"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/

camel-cxf.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>

622 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd

<!-- Defined the real JAXRS back end service -->
<jaxrs:server id="restService"

address="http://localhost:${CXFTestSupport.port2}/
CxfRsRouterTest/rest"

staticSubresourceResolution="true">
<jaxrs:serviceBeans>

<ref bean="customerService"/>
</jaxrs:serviceBeans>

</jaxrs:server>

<!-- bean id="jsonProvider" class="org.apache.cxf.jaxrs.provider.JSONProvider"/-->

<bean id="customerService"
class="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService" />

<!-- Defined the server endpoint to create the cxf-rs consumer -->
<cxf:rsServer id="rsServer" address="http://localhost:${CXFTestSupport.port1}/

CxfRsRouterTest/route"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"
loggingFeatureEnabled="true" loggingSizeLimit="20" skipFaultLogging="true"/>

<!-- Defined the client endpoint to create the cxf-rs consumer -->
<cxf:rsClient id="rsClient" address="http://localhost:${CXFTestSupport.port2}/

CxfRsRouterTest/rest"
serviceClass="org.apache.camel.component.cxf.jaxrs.testbean.CustomerService"
loggingFeatureEnabled="true" skipFaultLogging="true"/>

<!-- The camel route context -->
<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="cxfrs://bean://rsServer"/>
<!-- We can remove this configure as the CXFRS producer is using the HttpAPI

by default -->
<setHeader headerName="CamelCxfRsUsingHttpAPI">

<constant>True</constant>
</setHeader>
<to uri="cxfrs://bean://rsClient"/>

</route>
</camelContext>

</beans>

How to consume the REST request in Camel
CXF JAXRS front end implements the JAXRS(JSR311) API, so we can export the
resources classes as a REST service. And we leverage the CXF Invoker API to
turn a REST request into a normal Java object method invocation.
Unlike the camel-restlet, you don't need to specify the URI template within
your restlet endpoint, CXF take care of the REST request URI to resource
class method mapping according to the JSR311 specification. All you need to
do in Camel is delegate this method request to a right processor or endpoint.

CHAPTER 11 - COMPONENT APPENDIX 623

http://cwiki.apache.org/CXF20DOC/jax-rs.html
https://jsr311.dev.java.net/
http://cwiki.apache.org/confluence/display/CXF20DOC/Invokers

Here is an example of a CXFRS route...

private static final String CXF_RS_ENDPOINT_URI = "cxfrs://http://localhost:" + CXT +
"/rest?resourceClasses=org.apache.camel.component.cxf.jaxrs.testbean.CustomerServiceResource";

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() {
errorHandler(new NoErrorHandlerBuilder());
from(CXF_RS_ENDPOINT_URI).process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message inMessage = exchange.getIn();
// Get the operation name from in message
String operationName =

inMessage.getHeader(CxfConstants.OPERATION_NAME, String.class);
if ("getCustomer".equals(operationName)) {

String httpMethod = inMessage.getHeader(Exchange.HTTP_METHOD,
String.class);

assertEquals("Get a wrong http method", "GET", httpMethod);
String path = inMessage.getHeader(Exchange.HTTP_PATH,

String.class);
// The parameter of the invocation is stored in the body of

in message
String id = inMessage.getBody(String.class);
if ("/customerservice/customers/126".equals(path))

{
Customer customer = new Customer();
customer.setId(Long.parseLong(id));
customer.setName("Willem");
// We just put the response Object into the out message

body
exchange.getOut().setBody(customer);

} else {
if ("/customerservice/customers/400".equals(path)) {

// We return the remote client IP address this time
org.apache.cxf.message.Message cxfMessage =

inMessage.getHeader(CxfConstants.CAMEL_CXF_MESSAGE,
org.apache.cxf.message.Message.class);

ServletRequest request = (ServletRequest)
cxfMessage.get("HTTP.REQUEST");

String remoteAddress = request.getRemoteAddr();
Response r = Response.status(200).entity("The

remoteAddress is " + remoteAddress).build();
exchange.getOut().setBody(r);
return;

}
if ("/customerservice/customers/123".equals(path)) {

// send a customer response back
Response r = Response.status(200).entity("customer

response back!").build();
exchange.getOut().setBody(r);
return;

}

624 CHAPTER 11 - COMPONENT APPENDIX

if ("/customerservice/customers/456".equals(path)) {
Response r = Response.status(404).entity("Can't found

the customer with uri " + path).build();
throw new WebApplicationException(r);

} else {
throw new RuntimeCamelException("Can't found the

customer with uri " + path);
}

}
}
if ("updateCustomer".equals(operationName)) {

assertEquals("Get a wrong customer message header",
"header1;header2", inMessage.getHeader("test"));

String httpMethod = inMessage.getHeader(Exchange.HTTP_METHOD,
String.class);

assertEquals("Get a wrong http method", "PUT", httpMethod);
Customer customer = inMessage.getBody(Customer.class);
assertNotNull("The customer should not be null.", customer);
// Now you can do what you want on the customer object
assertEquals("Get a wrong customer name.", "Mary",

customer.getName());
// set the response back
exchange.getOut().setBody(Response.ok().build());

}

}

});
}

};
}

And the corresponding resource class used to configure the endpoint...

@Path("/customerservice/")
public interface CustomerServiceResource {

@GET
@Path("/customers/{id}/")
Customer getCustomer(@PathParam("id") String id);

@PUT
@Path("/customers/")
Response updateCustomer(Customer customer);

}

How to invoke the REST service through camel-cxfrs producer
CXF JAXRS front end implements a proxy based client API, with this API you
can invoke the remote REST service through a proxy.
camel-cxfrs producer is based on this proxy API.

CHAPTER 11 - COMPONENT APPENDIX 625

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI
http://cwiki.apache.org/CXF20DOC/jax-rs.html#JAX-RS-ProxybasedAPI

note about the resource class
This class is used to configure the JAXRS properties ONLY. The
methods will NOT be executed during the routing of messages to
the endpoint, the route itself is responsible for ALL processing
instead.

So, you just need to specify the operation name in the message header and
prepare the parameter in the message body, camel-cxfrs producer will
generate right REST request for you.

Here is an example

Exchange exchange = template.send("direct://proxy", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
setupDestinationURL(inMessage);
// set the operation name
inMessage.setHeader(CxfConstants.OPERATION_NAME, "getCustomer");
// using the proxy client API
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.FALSE);
// set a customer header
inMessage.setHeader("key", "value");
// set the parameters , if you just have one parameter
// camel will put this object into an Object[] itself
inMessage.setBody("123");

}
});

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");
assertEquals("Get a wrong customer name", response.getName(), "John");
assertEquals("Get a wrong response code", 200,
exchange.getOut().getHeader(Exchange.HTTP_RESPONSE_CODE));
assertEquals("Get a wrong header value", "value", exchange.getOut().getHeader("key"));

CXF JAXRS front end also provides a http centric client API, You can also
invoke this API from camel-cxfrs producer. You need to specify the
HTTP_PATH and Http method and let the the producer know to use the http
centric client by using the URI option httpClientAPI or set the message
header with CxfConstants.CAMEL_CXF_RS_USING_HTTP_API. You can turn the
response object to the type class that you specify with
CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS.

626 CHAPTER 11 - COMPONENT APPENDIX

http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-HTTPcentricclients

Exchange exchange = template.send("direct://http", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.setPattern(ExchangePattern.InOut);
Message inMessage = exchange.getIn();
setupDestinationURL(inMessage);
// using the http central client API
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_USING_HTTP_API, Boolean.TRUE);
// set the Http method
inMessage.setHeader(Exchange.HTTP_METHOD, "GET");
// set the relative path
inMessage.setHeader(Exchange.HTTP_PATH, "/customerservice/customers/

123");
// Specify the response class , cxfrs will use InputStream as the response

object type
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_RESPONSE_CLASS, Customer.class);
// set a customer header
inMessage.setHeader("key", "value");
// since we use the Get method, so we don't need to set the message body
inMessage.setBody(null);

}
});

// get the response message
Customer response = (Customer) exchange.getOut().getBody();

assertNotNull("The response should not be null ", response);
assertEquals("Get a wrong customer id ", String.valueOf(response.getId()), "123");
assertEquals("Get a wrong customer name", response.getName(), "John");
assertEquals("Get a wrong response code", 200,
exchange.getOut().getHeader(Exchange.HTTP_RESPONSE_CODE));
assertEquals("Get a wrong header value", "value", exchange.getOut().getHeader("key"));

From Camel 2.1, we also support to specify the query parameters from cxfrs
URI for the CXFRS http centric client.

Exchange exchange = template.send("cxfrs://http://localhost:" + getPort2() + "/" +
getClass().getSimpleName() + "/testQuery?httpClientAPI=true&q1=12&q2=13"

To support the Dynamical routing, you can override the URI's query
parameters by using the CxfConstants.CAMEL_CXF_RS_QUERY_MAP header to
set the parameter map for it.

Map<String, String> queryMap = new LinkedHashMap<String,
String>();
queryMap.put("q1", "new");
queryMap.put("q2", "world");
inMessage.setHeader(CxfConstants.CAMEL_CXF_RS_QUERY_MAP, queryMap);

CHAPTER 11 - COMPONENT APPENDIX 627

DATASET COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult.
The Mock, Test and DataSet endpoints work great with the Camel Testing
Framework to simplify your unit and integration testing using Enterprise
Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.
The DataSet component provides a mechanism to easily perform load & soak
testing of your system. It works by allowing you to create DataSet instances
both as a source of messages and as a way to assert that the data set is
received.

Camel will use the throughput logger when sending dataset's.

URI format

dataset:name[?options]

Where name is used to find the DataSet instance in the Registry
Camel ships with a support implementation of

org.apache.camel.component.dataset.DataSet, the
org.apache.camel.component.dataset.DataSetSupport class, that can be
used as a base for implementing your own DataSet. Camel also ships with a
default implementation, the
org.apache.camel.component.dataset.SimpleDataSet that can be used
for testing.

Options
Option Default Description
produceDelay 3 Allows a delay in ms to be specified, which causes producers to pause in order to simulate slow producers.

Uses a minimum of 3 ms delay unless you set this option to -1 to force no delay at all.

consumeDelay 0 Allows a delay in ms to be specified, which causes consumers to pause in order to simulate slow consumers.

preloadSize 0 Sets how many messages should be preloaded (sent) before the route completes its initialization.

initialDelay 1000 Camel 2.1: Time period in millis to wait before starting sending messages.

minRate 0 Wait until the DataSet contains at least this number of messages

You can append query options to the URI in the following format,
?option=value&option=value&...

Configuring DataSet
Camel will lookup in the Registry for a bean implementing the DataSet
interface. So you can register your own DataSet as:

628 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/log.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/dataset/DataSet.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

<bean id="myDataSet" class="com.mycompany.MyDataSet">
<property name="size" value="100"/>

</bean>

Example
For example, to test that a set of messages are sent to a queue and then
consumed from the queue without losing any messages:

// send the dataset to a queue
from("dataset:foo").to("activemq:SomeQueue");

// now lets test that the messages are consumed correctly
from("activemq:SomeQueue").to("dataset:foo");

The above would look in the Registry to find the foo DataSet instance which
is used to create the messages.

Then you create a DataSet implementation, such as using the
SimpleDataSet as described below, configuring things like how big the data
set is and what the messages look like etc.

Properties on SimpleDataSet
Property Type Description
defaultBody Object Specifies the default message body. For SimpleDataSet it is a constant payload; though if you want to create

custom payloads per message, create your own derivation of DataSetSupport.

reportGroup long Specifies the number of messages to be received before reporting progress. Useful for showing progress of a
large load test.

size long Specifies how many messages to send/consume.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

DB4O COMPONENT
Available as of Camel 2.5

CHAPTER 11 - COMPONENT APPENDIX 629

http://camel.apache.org/registry.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html

The db4o: component allows you to work with db4o NoSQL database. The
camel-db4o library is provided by the Camel Extra project which hosts all
*GPL related components for Camel.

Sending to the endpoint
Sending POJO object to the db4o endpoint adds and saves object into the
database. The body of the message is assumed to be a POJO that has to be
saved into the db40 database store.

Consuming from the endpoint
Consuming messages removes (or updates) POJO objects in the database.
This allows you to use a Db4o datastore as a logical queue; consumers take
messages from the queue and then delete them to logically remove them
from the queue.

If you do not wish to delete the object when it has been processed, you
can specify consumeDelete=false on the URI. This will result in the POJO
being processed each poll.

URI format

db4o:className[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

consumeDelete true Option for Db4oConsumer only. Specifies whether or not the entity is deleted after it is consumed.

consumer.delay 500 Option for HibernateConsumer only. Delay in millis between each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

consumer.userFixedDelay false Option for HibernateConsumer only. Set to true to use fixed delay between polls, otherwise fixed
rate is used. See ScheduledExecutorService in JDK for details.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

630 CHAPTER 11 - COMPONENT APPENDIX

http://www.db4o.com
http://code.google.com/p/camel-extra/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

DIRECT COMPONENT
The direct: component provides direct, synchronous invocation of any
consumers when a producer sends a message exchange.
This endpoint can be used to connect existing routes in the same camel
context.

URI format

direct:someName[?options]

Where someName can be any string to uniquely identify the endpoint

Options

Name Default
Value Description

allowMultipleConsumers true
@deprecated If set to false, then when a second consumer is started on the endpoint, an
IllegalStateException is thrown. Will be removed in Camel 2.1: Direct endpoint does not
support multiple consumers.

You can append query options to the URI in the following format,
?option=value&option=value&...

Samples
In the route below we use the direct component to link the two routes
together:

from("activemq:queue:order.in")
.to("bean:orderServer?method=validate")
.to("direct:processOrder");

from("direct:processOrder")
.to("bean:orderService?method=process")
.to("activemq:queue:order.out");

And the sample using spring DSL:

<route>
<from uri="activemq:queue:order.in"/>
<to uri="bean:orderService?method=validate"/>
<to uri="direct:processOrder"/>

</route>

<route>
<from uri="direct:processOrder"/>

CHAPTER 11 - COMPONENT APPENDIX 631

Asynchronous
The SEDA component provides asynchronous invocation of any
consumers when a producer sends a message exchange.

Connection to other camel contexts
The VM component provides connections between Camel contexts
as long they run in the same JVM.

<to uri="bean:orderService?method=process"/>
<to uri="activemq:queue:order.out"/>

</route>

See also samples from the SEDA component, how they can be used together.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ SEDA
▪ VM

DNS
Available as of Camel 2.7

This is an additional component for Camel to run DNS queries, using
DNSJava. The component is a thin layer on top of DNSJava.
The component offers the following operations:

▪ ip, to resolve a domain by its ip
▪ lookup, to lookup information about the domain
▪ dig, to run DNS queries

Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-dns</artifactId>

632 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/seda.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html
http://www.xbill.org/dnsjava/
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html

Requires SUN JVM
The DNSJava library requires running on the SUN JVM.
If you use Apache ServiceMix or Apache Karaf, you'll need to adjust
the etc/jre.properties file, to add sun.net.spi.nameservice to
the list of Java platform packages exported. The server will need
restarting before this change takes effect.

<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
The URI scheme for a DNS component is as follows

dns://operation

This component only supports producers.

Options
None.

Headers
Header Type Operations Description
dns.domain String ip The domain name. Mandatory.

dns.name String lookup The name to lookup. Mandatory.

dns.type ▪ lookup, dig The type of the lookup. Should match the values of org.xbill.dns.Type. Optional.

dns.class ▪ lookup, dig he DNS class of the lookup. Should match the values of org.xbill.dns.DClass.
Optional.

dns.query String dig The query itself. Mandatory.

dns.server String dig The server in particular for the query. If none is given, the default one specified by the
OS will be used. Optional.

CHAPTER 11 - COMPONENT APPENDIX 633

Examples

IP lookup

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:ip"/>

</route>

This looks up a domain's IP. For example, www.example.com resolves to
192.0.32.10.
The IP address to lookup must be provided in the header with key
"dns.domain".

DNS lookup

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:lookup"/>

</route>

This returns a set of DNS records associated with a domain.
The name to lookup must be provided in the header with key "dns.name".

DNS Dig
Dig is a Unix command-line utility to run DNS queries.

<route id="IPCheck">
<from uri="direct:start"/>
<to uri="dns:dig"/>

</route>

The query must be provided in the header with key "dns.query".

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

634 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

EJB COMPONENT
Available as of Camel 2.4

The ejb: component binds EJBs to Camel message exchanges.
Maven users will need to add the following dependency to their pom.xml

for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ejb</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ejb:ejbName[?options]

Where ejbName can be any string which is used to look up the EJB in the
Application Server JNDI Registry

Options
Name Type Default Description

method String null
The method name that bean will be invoked. If not provided, Camel will try to pick the
method itself. In case of ambiguity an exception is thrown. See Bean Binding for more
details.

multiParameterArray boolean false How to treat the parameters which are passed from the message body; if it is true, the In
message body should be an array of parameters.

You can append query options to the URI in the following format,
?option=value&option=value&...

The EJB component extends the Bean component in which most of the
details from the Bean component applies to this component as well.

Bean Binding
How bean methods to be invoked are chosen (if they are not specified
explicitly through the method parameter) and how parameter values are
constructed from the Message are all defined by the Bean Binding
mechanism which is used throughout all of the various Bean Integration
mechanisms in Camel.

CHAPTER 11 - COMPONENT APPENDIX 635

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/ejb.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean.html
http://camel.apache.org/message.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html

Examples
In the following examples we use the Greater EJB which is defined as follows:

Listing 1. GreaterLocal.java

public interface GreaterLocal {

String hello(String name);

String bye(String name);

}

And the implementation
Listing 1. GreaterImpl.java

@Stateless
public class GreaterImpl implements GreaterLocal {

public String hello(String name) {
return "Hello " + name;

}

public String bye(String name) {
return "Bye " + name;

}

}

Using Java DSL
In this example we want to invoke the hello method on the EJB. Since this
example is based on an unit test using Apache OpenEJB we have to set a
JndiContext on the EJB component with the OpenEJB settings.

@Override
protected CamelContext createCamelContext() throws Exception {

CamelContext answer = new DefaultCamelContext();

// enlist EJB component using the JndiContext
EjbComponent ejb = answer.getComponent("ejb", EjbComponent.class);
ejb.setContext(createEjbContext());

return answer;
}

private static Context createEjbContext() throws NamingException {
// here we need to define our context factory to use OpenEJB for our testing
Properties properties = new Properties();

636 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/ejb.html

properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.openejb.client.LocalInitialContextFactory");

return new InitialContext(properties);
}

Then we are ready to use the EJB in the Camel route:

from("direct:start")
// invoke the greeter EJB using the local interface and invoke the hello method
.to("ejb:GreaterImplLocal?method=hello")
.to("mock:result");

Using Spring XML
And this is the same example using Spring XML instead:

Again since this is based on an unit test we need to setup the EJB
component:

<!-- setup Camel EJB component -->
<bean id="ejb" class="org.apache.camel.component.ejb.EjbComponent">

<property name="properties" ref="jndiProperties"/>
</bean>

<!-- use OpenEJB context factory -->
<p:properties id="jndiProperties">

<prop
key="java.naming.factory.initial">org.apache.openejb.client.LocalInitialContextFactory</prop>
</p:properties>

Before we are ready to use EJB in the Camel routes:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<to uri="ejb:GreaterImplLocal?method=hello"/>
<to uri="mock:result"/>

</route>
</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint

CHAPTER 11 - COMPONENT APPENDIX 637

http://camel.apache.org/ejb.html
http://camel.apache.org/ejb.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html

In a real application server
In a real application server you most likely do not have to setup a
JndiContext on the EJB component as it will create a default
JndiContext on the same JVM as the application server, which
usually allows it to access the JNDI registry and lookup the EJBs.
However if you need to access a application server on a remote JVM
or the likes, you have to prepare the properties beforehand.

• Getting Started
• Bean
• Bean Binding
• Bean Integration

ESPER
The Esper component supports the Esper Library for Event Stream
Processing. The camel-esper library is provided by the Camel Extra project
which hosts all *GPL related components for Camel.

URI format

esper:name[?options]

When consuming from an Esper endpoint you must specify a pattern or eql
statement to query the event stream.

For example

from("esper://cheese?pattern=every event=MyEvent(bar=5)").
to("activemq:Foo");

Options
Name Default Value Description
pattern Â The Esper Pattern expression as a String to filter events

eql Â The Esper EQL expression as a String to filter events

You can append query options to the URI in the following format,
?option=value&option=value&...

638 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/bean.html
http://camel.apache.org/bean-binding.html
http://camel.apache.org/bean-integration.html
http://esper.codehaus.org
http://code.google.com/p/camel-extra/
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/event_patterns.html
http://esper.codehaus.org/esper-1.11.0/doc/reference/en/html/eql_clauses.html
http://camel.apache.org/ejb.html
http://camel.apache.org/ejb.html

Demo
There is a demo which shows how to work with ActiveMQ, Camel and Esper in
the Camel Extra project

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Esper Camel Demo

EVENT COMPONENT
The event: component provides access to the Spring ApplicationEvent
objects. This allows you to publish ApplicationEvent objects to a Spring
ApplicationContext or to consume them. You can then use Enterprise
Integration Patterns to process them such as Message Filter.

URI format

spring-event://default

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FILE COMPONENT
The File component provides access to file systems, allowing files to be
processed by any other Camel Components or messages from other
components to be saved to disk.

URI format

file:directoryName[?options]

CHAPTER 11 - COMPONENT APPENDIX 639

http://code.google.com/p/camel-extra/wiki/EsperDemo
http://code.google.com/p/camel-extra/
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://code.google.com/p/camel-extra/wiki/EsperDemo
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/message-filter.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/components.html

or

file://directoryName[?options]

Where directoryName represents the underlying file directory.
You can append query options to the URI in the following format,

?option=value&option=value&...

URI Options

Common

Name Default
Value Description

autoCreate true
Automatically create missing directories in the file's pathname. For the file consumer, that
means creating the starting directory. For the file producer, it means the directory the files
should be written to.

bufferSize 128kb Write buffer sized in bytes.

fileName null

Use Expression such as File Language to dynamically set the filename. For consumers, it's used
as a filename filter. For producers, it's used to evaluate the filename to write. If an expression is
set, it take precedence over the CamelFileName header. (Note: The header itself can also be
an Expression). The expression options support both String and Expression types. If the
expression is a String type, it is always evaluated using the File Language. If the expression is
an Expression type, the specified Expression type is used - this allows you, for instance, to
use OGNL expressions. For the consumer, you can use it to filter filenames, so you can for
instance consume today's file using the File Language syntax: mydata-
${date:now:yyyyMMdd}.txt. From Camel 2.11 onwards the producers support the
CamelOverruleFileName header which takes precedence over any existing CamelFileName
header; the CamelOverruleFileName is a header that is used only once, and makes it easier as
this avoids to temporary store CamelFileName and have to restore it afterwards.

flatten false

Flatten is used to flatten the file name path to strip any leading paths, so it's just the file name.
This allows you to consume recursively into sub-directories, but when you eg write the files to
another directory they will be written in a single directory. Setting this to true on the producer
enforces that any file name recived in CamelFileName header will be stripped for any leading
paths.

charset null

Camel 2.9.3: this option is used to specify the encoding of the file, and camel will set the
Exchange property with Exchange.CHARSET_NAME with the value of this option. You can use this
on the consumer, to specify the encodings of the files, which allow Camel to know the charset
it should load the file content in case the file content is being accessed. Likewise when writing
a file, you can use this option to specify which charset to write the file as well. See further
below for a examples and more important details.

copyAndDeleteOnRenameFail true Camel 2.9: whether to fallback and do a copy and delete file, in case the file could not be
renamed directly. This option is not available for the FTP component.

Consumer

Name Default
Value Description

initialDelay 1000 Milliseconds before polling the file/directory starts.

delay 500 Milliseconds before the next poll of the file/directory.

useFixedDelay Â
Controls if fixed delay or fixed rate is used. See ScheduledExecutorService in JDK for
details. In Camel 2.7.x or older the default value is false. From Camel 2.8 onwards
the default value is true.

runLoggingLevel TRACE Camel 2.8: The consumer logs a start/complete log line when it polls. This option
allows you to configure the logging level for that.

640 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ognl.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Only directories
Camel supports only endpoints configured with a starting directory.
So the directoryName must be a directory.
If you want to consume a single file only, you can use the fileName
option, e.g. by setting fileName=thefilename.
Also, the starting directory must not contain dynamic expressions
with ${ } placeholders. Again use the fileName option to specify
the dynamic part of the filename.

Avoid reading files currently being written by another
application
Beware the JDK File IO API is a bit limited in detecting whether
another application is currently writing/copying a file. And the
implementation can be different depending on OS platform as well.
This could lead to that Camel thinks the file is not locked by another
process and start consuming it. Therefore you have to do you own
investigation what suites your environment. To help with this Camel
provides different readLock options and doneFileName option that
you can use. See also the section Consuming files from folders
where others drop files directly.

recursive false If a directory, will look for files in all the sub-directories as well.

delete false If true, the file will be deleted after it is processed

noop false
If true, the file is not moved or deleted in any way. This option is good for readonly
data, or for ETL type requirements. If noop=true, Camel will set idempotent=true as
well, to avoid consuming the same files over and over again.

preMove null
Expression (such as File Language) used to dynamically set the filename when moving
it before processing. For example to move in-progress files into the order directory
set this value to order.

move .camel Expression (such as File Language) used to dynamically set the filename when moving
it after processing. To move files into a .done subdirectory just enter .done.

moveFailed null

Expression (such as File Language) used to dynamically set a different target directory
when moving files after processing (configured via move defined above) failed. For
example, to move files into a .error subdirectory use: .error. Note: When moving
the files to the â€œfailâ€? location Camel will handle the error and will not pick up
the file again.

include null Is used to include files, if filename matches the regex pattern.

exclude null Is used to exclude files, if filename matches the regex pattern.

antInclude null
Camel 2.10: Ant style filter inclusion, for example antInclude=*/.txt. Multiple
inclusions may be specified in comma-delimited format. See below for more details
about ant path filters.

antExclude null
Camel 2.10: Ant style filter exclusion. If both antInclude and antExclude are used,
antExclude takes precedence over antInclude. Multiple exclusions may be specified
in comma-delimited format. See below for more details about ant path filters.

antFilterCaseSensitive true Camel 2.11: Ant style filter which is case sensitive or not.

CHAPTER 11 - COMPONENT APPENDIX 641

http://camel.apache.org/etl.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html

idempotent false

Option to use the Idempotent Consumer EIP pattern to let Camel skip already
processed files. Will by default use a memory based LRUCache that holds 1000
entries. If noop=true then idempotent will be enabled as well to avoid consuming the
same files over and over again.

idempotentKey Expression

Camel 2.11: To use a custom idempotent key. By default the absolute path of the file
is used. You can use the File Language, for example to use the file name and file size,
you can do:

idempotentKey=${file:name}-${file:size}

.

idempotentRepository null A pluggable repository org.apache.camel.spi.IdempotentRepository which by default
use MemoryMessageIdRepository if none is specified and idempotent is true.

inProgressRepository memory
A pluggable in-progress repository org.apache.camel.spi.IdempotentRepository. The
in-progress repository is used to account the current in progress files being consumed.
By default a memory based repository is used.

filter null
Pluggable filter as a org.apache.camel.component.file.GenericFileFilter class.
Will skip files if filter returns false in its accept() method. More details in section
below.

sorter null Pluggable sorter as a
java.util.Comparator<org.apache.camel.component.file.GenericFile> class.

sortBy null
Built-in sort using the File Language. Supports nested sorts, so you can have a sort by
file name and as a 2nd group sort by modified date. See sorting section below for
details.

readLock markerFile

Used by consumer, to only poll the files if it has exclusive read-lock on the file (i.e. the
file is not in-progress or being written). Camel will wait until the file lock is granted.
This option provides the build in strategies:
markerFile Camel creates a marker file and then holds a lock on it. This option is not
available for the FTP component.
changed is using file length/modification timestamp to detect whether the file is
currently being copied or not. Will at least use 1 sec. to determine this, so this option
cannot consume files as fast as the others, but can be more reliable as the JDK IO API
cannot always determine whether a file is currently being used by another process.
The option readLockCheckInterval can be used to set the check frequency. This
option is only avail for the FTP component from Camel 2.8 onwards. Notice that from
Camel 2.10.1 onwards the FTP option fastExistsCheck can be enabled to speedup
this readLock strategy, if the FTP server support the LIST operation with a full file
name (some servers may not).
fileLock is for using java.nio.channels.FileLock. This option is not avail for the
FTP component. This approach should be avoided when accessing a remote file
system via a mount/share unless that file system supports distributed file locks.
rename is for using a try to rename the file as a test if we can get exclusive read-lock.
none is for no read locks at all.
Notice from Camel 2.10 onwards the read locks changed, fileLock and rename will
also use a markerFile as well, to ensure not picking up files that may be in process by
another Camel consumer running on another node (eg cluster). This is only supported
by the file component (not the ftp component).

readLockTimeout 10000

Optional timeout in millis for the read-lock, if supported by the read-lock. If the read-
lock could not be granted and the timeout triggered, then Camel will skip the file. At
next poll Camel, will try the file again, and this time maybe the read-lock could be
granted. Use a value of 0 or lower to indicate forever. In Camel 2.0 the default value
is 0. Starting with Camel 2.1 the default value is 10000. Currently fileLock, changed
and rename support the timeout. Notice: For FTP the default readLockTimeout value
is 20000 instead of 10000.

readLockCheckInterval 1000

Camel 2.6: Interval in millis for the read-lock, if supported by the read lock. This
interval is used for sleeping between attempts to acquire the read lock. For example
when using the changed read lock, you can set a higher interval period to cater for
slow writes. The default of 1 sec. may be too fast if the producer is very slow writing
the file. For FTP the default readLockCheckInterval is 5000.

readLockMinLength 1

Camel 2.10.1: This option applied only for readLock=changed. This option allows you
to configure a minimum file length. By default Camel expects the file to contain data,
and thus the default value is 1. You can set this option to zero, to allow consuming
zero-length files.

directoryMustExist false Camel 2.5: Similar to startingDirectoryMustExist but this applies during polling
recursive sub directories.

doneFileName null

Camel 2.6: If provided, Camel will only consume files if a done file exists. This option
configures what file name to use. Either you can specify a fixed name. Or you can use
dynamic placeholders. The done file is always expected in the same folder as the
original file. See using done file and writing done file sections for examples.

642 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/file-language.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html

exclusiveReadLockStrategy null
Pluggable read-lock as a
org.apache.camel.component.file.GenericFileExclusiveReadLockStrategy
implementation.

maxMessagesPerPoll 0

An integer to define a maximum messages to gather per poll. By default no maximum
is set. Can be used to set a limit of e.g. 1000 to avoid when starting up the server that
there are thousands of files. Set a value of 0 or negative to disabled it. See more
details at Batch Consumer. Notice: If this option is in use then the File and FTP
components will limit before any sorting. For example if you have 100000 files and
use maxMessagesPerPoll=500, then only the first 500 files will be picked up, and then
sorted. You can use the eagerMaxMessagesPerPoll option and set this to false to
allow to scan all files first and then sort afterwards.

eagerMaxMessagesPerPoll true

Camel 2.9.3: Allows for controlling whether the limit from maxMessagesPerPoll is
eager or not. If eager then the limit is during the scanning of files. Where as false
would scan all files, and then perform sorting. Setting this option to false allows for
sorting all files first, and then limit the poll. Mind that this requires a higher memory
usage as all file details are in memory to perform the sorting.

minDepth 0
Camel 2.8: The minimum depth to start processing when recursively processing a
directory. Using minDepth=1 means the base directory. Using minDepth=2 means the
first sub directory. This option is supported by FTP consumer from Camel 2.8.2, 2.9
onwards.

maxDepth Integer.MAX_VALUE Camel 2.8: The maximum depth to traverse when recursively processing a directory.
This option is supported by FTP consumer from Camel 2.8.2, 2.9 onwards.

processStrategy null

A pluggable org.apache.camel.component.file.GenericFileProcessStrategy
allowing you to implement your own readLock option or similar. Can also be used
when special conditions must be met before a file can be consumed, such as a special
ready file exists. If this option is set then the readLock option does not apply.

startingDirectoryMustExist false

Camel 2.5: Whether the starting directory must exist. Mind that the autoCreate
option is default enabled, which means the starting directory is normally auto created
if it doesn't exist. You can disable autoCreate and enable this to ensure the starting
directory must exist. Will thrown an exception if the directory doesn't exist.

pollStrategy null

A pluggable org.apache.camel.PollingConsumerPollStrategy allowing you to
provide your custom implementation to control error handling usually occurred during
the poll operation before an Exchange have been created and being routed in
Camel. In other words the error occurred while the polling was gathering information,
for instance access to a file network failed so Camel cannot access it to scan for files.
The default implementation will log the caused exception at WARN level and ignore it.

sendEmptyMessageWhenIdle false Camel 2.9: If the polling consumer did not poll any files, you can enable this option to
send an empty message (no body) instead.

consumer.bridgeErrorHandler false

Camel 2.10: Allows for bridging the consumer to the Camel routing Error Handler,
which mean any exceptions occurred while trying to pickup files, or the likes, will now
be processed as a message and handled by the routing Error Handler. By default the
consumer will use the org.apache.camel.spi.ExceptionHandler to deal with
exceptions, that by default will be logged at WARN/ERROR level and ignored. See
further below on this page fore more details, at section How to use the Camel error
handler to deal with exceptions triggered outside the routing engine.

scheduledExecutorService null
Camel 2.10: Allows for configuring a custom/shared thread pool to use for the
consumer. By default each consumer has its own single threaded thread pool. This
option allows you to share a thread pool among multiple file consumers.

Default behavior for file consumer
• By default the file is locked for the duration of the processing.
• After the route has completed, files are moved into the .camel

subdirectory, so that they appear to be deleted.
• The File Consumer will always skip any file whose name starts with a

dot, such as ., .camel, .m2 or .groovy.
• Only files (not directories) are matched for valid filename, if options

such as: include or exclude are used.

CHAPTER 11 - COMPONENT APPENDIX 643

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/file2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html

Producer

Name Default
Value Description

fileExist Override

What to do if a file already exists with the same name. The following values can be specified:
Override, Append, Fail, Ignore, and Move. Override, which is the default, replaces the existing
file. Append adds content to the existing file. Fail throws a GenericFileOperationException,
indicating that there is already an existing file. Ignore silently ignores the problem and does not
override the existing file, but assumes everything is okay. The Move option requires Camel 2.10.1
onwards, and the corresponding moveExisting option to be configured as well. The option
eagerDeleteTargetFile can be used to control what to do if an moving the file, and there exists
already an existing file, otherwise causing the move operation to fail. The Move option will move any
existing files, before writing the target file.

tempPrefix null

This option is used to write the file using a temporary name and then, after the write is complete,
rename it to the real name. Can be used to identify files being written and also avoid consumers
(not using exclusive read locks) reading in progress files. Is often used by FTP when uploading big
files.

tempFileName null Camel 2.1: The same as tempPrefix option but offering a more fine grained control on the naming
of the temporary filename as it uses the File Language.

moveExisting null

Camel 2.10.1: Expression (such as File Language) used to compute file name to use when
fileExist=Move is configured. To move files into a backup subdirectory just enter backup. This
option only supports the following File Language tokens: "file:name", "file:name.ext",
"file:name.noext", "file:onlyname", "file:onlyname.noext", "file:ext", and "file:parent". Notice the
"file:parent" is not supported by the FTP component, as the FTP component can only move any
existing files to a relative directory based on current dir as base.

keepLastModified false

Camel 2.2: Will keep the last modified timestamp from the source file (if any). Will use the
Exchange.FILE_LAST_MODIFIED header to located the timestamp. This header can contain either a
java.util.Date or long with the timestamp. If the timestamp exists and the option is enabled it
will set this timestamp on the written file. Note: This option only applies to the file producer. You
cannot use this option with any of the ftp producers.

eagerDeleteTargetFile true

Camel 2.3: Whether or not to eagerly delete any existing target file. This option only applies when
you use fileExists=Override and the tempFileName option as well. You can use this to disable
(set it to false) deleting the target file before the temp file is written. For example you may write big
files and want the target file to exists during the temp file is being written. This ensure the target
file is only deleted until the very last moment, just before the temp file is being renamed to the
target filename. From Camel 2.10.1 onwards this option is also used to control whether to delete
any existing files when fileExist=Move is enabled, and an existing file exists. If this option is false,
then an exception will be thrown if an existing file existed, if its true, then the existing file is deleted
before the move operation.

doneFileName null

Camel 2.6: If provided, then Camel will write a 2nd done file when the original file has been
written. The done file will be empty. This option configures what file name to use. Either you can
specify a fixed name. Or you can use dynamic placeholders. The done file will always be written in
the same folder as the original file. See writing done file section for examples.

allowNullBody false

Camel 2.10.1: Used to specify if a null body is allowed during file writing. If set to true then an
empty file will be created, when set to false, and attempting to send a null body to the file
component, a GenericFileWriteException of 'Cannot write null body to file.' will be thrown. If the
`fileExist` option is set to 'Override', then the file will be truncated, and if set to `append` the file
will remain unchanged.

Default behavior for file producer
• By default it will override any existing file, if one exist with the same

name.

Move and Delete operations
Any move or delete operations is executed after (post command) the routing
has completed; so during processing of the Exchange the file is still located in
the inbox folder.

Lets illustrate this with an example:

644 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/ftp2.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html

from("file://inbox?move=.done").to("bean:handleOrder");

When a file is dropped in the inbox folder, the file consumer notices this and
creates a new FileExchange that is routed to the handleOrder bean. The
bean then processes the File object. At this point in time the file is still
located in the inbox folder. After the bean completes, and thus the route is
completed, the file consumer will perform the move operation and move the
file to the .done sub-folder.

The move and preMove options should be a directory name, which can
be either relative or absolute. If relative, the directory is created as a sub-
folder from within the folder where the file was consumed.

By default, Camel will move consumed files to the .camel sub-folder
relative to the directory where the file was consumed.

If you want to delete the file after processing, the route should be:

from("file://inobox?delete=true").to("bean:handleOrder");

We have introduced a pre move operation to move files before they are
processed. This allows you to mark which files have been scanned as they
are moved to this sub folder before being processed.

from("file://inbox?preMove=inprogress").to("bean:handleOrder");

You can combine the pre move and the regular move:

from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

So in this situation, the file is in the inprogress folder when being processed
and after it's processed, it's moved to the .done folder.

Fine grained control over Move and PreMove option
The move and preMove option is Expression-based, so we have the full
power of the File Language to do advanced configuration of the directory and
name pattern.
Camel will, in fact, internally convert the directory name you enter into a File
Language expression. So when we enter move=.done Camel will convert this
into: ${file:parent}/.done/${file:onlyname}. This is only done if Camel
detects that you have not provided a ${ } in the option value yourself. So
when you enter a ${ } Camel will not convert it and thus you have the full
power.

CHAPTER 11 - COMPONENT APPENDIX 645

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
parent
onlyname

So if we want to move the file into a backup folder with today's date as the
pattern, we can do:

move=backup/${date:now:yyyyMMdd}/${file:name}

About moveFailed
The moveFailed option allows you to move files that could not be processed
succesfully to another location such as a error folder of your choice. For
example to move the files in an error folder with a timestamp you can use
moveFailed=/error/${file:name.noext}-
${date:now:yyyyMMddHHmmssSSS}.${file:ext}.

See more examples at File Language

Message Headers
The following headers are supported by this component:

File producer only
Header Description

CamelFileName
Specifies the name of the file to write (relative to the endpoint directory). The name can be a String; a String with
a File Language or Simple expression; or an Expression object. If it's null then Camel will auto-generate a filename
based on the message unique ID.

CamelFileNameProduced The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its
purpose is providing end-users with the name of the file that was written.

CamelOverruleFileName
Camel 2.11: Is used for overruling CamelFileName header and use the value instead (but only once, as the
producer will remove this header after writing the file). The value can be only be a String. Notice that if the option
fileName has been configured, then this is still being evaluated.

File consumer only
Header Description
CamelFileName Name of the consumed file as a relative file path with offset from the starting directory configured on the endpoint.

CamelFileNameOnly Only the file name (the name with no leading paths).

CamelFileAbsolute
A boolean option specifying whether the consumed file denotes an absolute path or not. Should normally be false
for relative paths. Absolute paths should normally not be used but we added to the move option to allow moving
files to absolute paths. But can be used elsewhere as well.

CamelFileAbsolutePath The absolute path to the file. For relative files this path holds the relative path instead.

CamelFilePath The file path. For relative files this is the starting directory + the relative filename. For absolute files this is the
absolute path.

CamelFileRelativePath The relative path.

CamelFileParent The parent path.

CamelFileLength A long value containing the file size.

CamelFileLastModified A Date value containing the last modified timestamp of the file.

646 CHAPTER 11 - COMPONENT APPENDIX

name.noext
ext
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/expression.html

Batch Consumer
This component implements the Batch Consumer.

Exchange Properties, file consumer only
As the file consumer is BatchConsumer it supports batching the files it polls.
By batching it means that Camel will add some properties to the Exchange so
you know the number of files polled the current index in that order.
Property Description
CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only true for the last entry.

This allows you for instance to know how many files exists in this batch and
for instance let the Aggregator2 aggregate this number of files.

Using charset
Available as of Camel 2.9.3
The charset option allows for configuring an encoding of the files on both the
consumer and producer endpoints. For example if you read utf-8 files, and
want to convert the files to iso-8859-1, you can do:

from("file:inbox?charset=utf-8")
.to("file:outbox?charset=iso-8859-1")

You can also use the convertBodyTo in the route. In the example below we
have still input files in utf-8 format, but we want to convert the file content to
a byte array in iso-8859-1 format. And then let a bean process the data.
Before writing the content to the outbox folder using the current charset.

from("file:inbox?charset=utf-8")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.to("file:outbox");

If you omit the charset on the consumer endpoint, then Camel does not know
the charset of the file, and would by default use "UTF-8". However you can
configure a JVM system property to override and use a different default
encoding with the key org.apache.camel.default.charset.

In the example below this could be a problem if the files is not in UTF-8
encoding, which would be the default encoding for read the files.
In this example when writing the files, the content has already been

CHAPTER 11 - COMPONENT APPENDIX 647

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/aggregator2.html

converted to a byte array, and thus would write the content directly as is
(without any further encodings).

from("file:inbox")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.to("file:outbox");

You can also override and control the encoding dynamic when writing files,
by setting a property on the exchange with the key Exchange.CHARSET_NAME.
For example in the route below we set the property with a value from a
message header.

from("file:inbox")
.convertBodyTo(byte[].class, "iso-8859-1")
.to("bean:myBean")
.setProperty(Exchange.CHARSET_NAME, header("someCharsetHeader"))
.to("file:outbox");

We suggest to keep things simpler, so if you pickup files with the same
encoding, and want to write the files in a specific encoding, then favor to use
the charset option on the endpoints.

Notice that if you have explicit configured a charset option on the
endpoint, then that configuration is used, regardless of the
Exchange.CHARSET_NAME property.

If you have some issues then you can enable DEBUG logging on
org.apache.camel.component.file, and Camel logs when it reads/write a
file using a specific charset.
For example the route below will log the following:

from("file:inbox?charset=utf-8")
.to("file:outbox?charset=iso-8859-1")

And the logs:

DEBUG GenericFileConverter - Read file /Users/davsclaus/workspace/camel/
camel-core/target/charset/input/input.txt with charset utf-8
DEBUG FileOperations - Using Reader to write file: target/charset/
output.txt with charset: iso-8859-1

Common gotchas with folder and filenames
When Camel is producing files (writing files) there are a few gotchas affecting
how to set a filename of your choice. By default, Camel will use the message

648 CHAPTER 11 - COMPONENT APPENDIX

ID as the filename, and since the message ID is normally a unique generated
ID, you will end up with filenames such as: ID-
MACHINENAME-2443-1211718892437-1-0. If such a filename is not desired,
then you must provide a filename in the CamelFileName message header.
The constant, Exchange.FILE_NAME, can also be used.

The sample code below produces files using the message ID as the
filename:

from("direct:report").to("file:target/reports");

To use report.txt as the filename you have to do:

from("direct:report").setHeader(Exchange.FILE_NAME, constant("report.txt")).to(
"file:target/reports");

... the same as above, but with CamelFileName:

from("direct:report").setHeader("CamelFileName", constant("report.txt")).to(
"file:target/reports");

And a syntax where we set the filename on the endpoint with the fileName
URI option.

from("direct:report").to("file:target/reports/?fileName=report.txt");

Filename Expression
Filename can be set either using the expression option or as a string-based
File Language expression in the CamelFileName header. See the File
Language for syntax and samples.

Consuming files from folders where others drop files directly
Beware if you consume files from a folder where other applications write files
directly. Take a look at the different readLock options to see what suits your
use cases. The best approach is however to write to another folder and after
the write move the file in the drop folder. However if you write files directly to
the drop folder then the option changed could better detect whether a file is
currently being written/copied as it uses a file changed algorithm to see
whether the file size / modification changes over a period of time. The other
read lock options rely on Java File API that sadly is not always very good at
detecting this. You may also want to look at the doneFileName option, which

CHAPTER 11 - COMPONENT APPENDIX 649

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

uses a marker file (done) to signal when a file is done and ready to be
consumed.

Using done files
Available as of Camel 2.6

See also section writing done files below.
If you want only to consume files when a done file exists, then you can use

the doneFileName option on the endpoint.

from("file:bar?doneFileName=done");

Will only consume files from the bar folder, if a file name done exists in the
same directory as the target files. Camel will automatically delete the done
file when it's done consuming the files. From Camel 2.9.3 onwards Camel will
not automatic delete the done file if noop=true is configured.

However its more common to have one done file per target file. This
means there is a 1:1 correlation. To do this you must use dynamic
placeholders in the doneFileName option. Currently Camel supports the
following two dynamic tokens: file:name and file:name.noext which must
be enclosed in ${ }. The consumer only supports the static part of the done
file name as either prefix or suffix (not both).

from("file:bar?doneFileName=${file:name}.done");

In this example only files will be polled if there exists a done file with the
name file name.done. For example

▪ hello.txt - is the file to be consumed
▪ hello.txt.done - is the associated done file

You can also use a prefix for the done file, such as:

from("file:bar?doneFileName=ready-${file:name}");

▪ hello.txt - is the file to be consumed
▪ ready-hello.txt - is the associated done file

Writing done files
Available as of Camel 2.6

After you have written af file you may want to write an additional done file
as a kinda of marker, to indicate to others that the file is finished and has

650 CHAPTER 11 - COMPONENT APPENDIX

name
name.noext

been written. To do that you can use the doneFileName option on the file
producer endpoint.

.to("file:bar?doneFileName=done");

Will simply create a file named done in the same directory as the target file.
However its more common to have one done file per target file. This

means there is a 1:1 correlation. To do this you must use dynamic
placeholders in the doneFileName option. Currently Camel supports the
following two dynamic tokens: file:name and file:name.noext which must
be enclosed in ${ }.

.to("file:bar?doneFileName=done-${file:name}");

Will for example create a file named done-foo.txt if the target file was
foo.txt in the same directory as the target file.

.to("file:bar?doneFileName=${file:name}.done");

Will for example create a file named foo.txt.done if the target file was
foo.txt in the same directory as the target file.

.to("file:bar?doneFileName=${file:name.noext}.done");

Will for example create a file named foo.done if the target file was foo.txt
in the same directory as the target file.

Samples

Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Read from a directory and write to another directory
using a overrule dynamic name

from("file://inputdir/
?delete=true").to("file://outputdir?overruleFile=copy-of-${file:name}")

CHAPTER 11 - COMPONENT APPENDIX 651

name
name.noext

Listen on a directory and create a message for each file dropped there. Copy
the contents to the outputdir and delete the file in the inputdir.

Reading recursively from a directory and writing to
another

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy
the contents to the outputdir and delete the file in the inputdir. Will scan
recursively into sub-directories. Will lay out the files in the same directory
structure in the outputdir as the inputdir, including any sub-directories.

inputdir/foo.txt
inputdir/sub/bar.txt

Will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt

Using flatten
If you want to store the files in the outputdir directory in the same directory,
disregarding the source directory layout (e.g. to flatten out the path), you
just add the flatten=true option on the file producer side:

from("file://inputdir/
?recursive=true&delete=true").to("file://outputdir?flatten=true")

Will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

Reading from a directory and the default move operation
Camel will by default move any processed file into a .camel subdirectory in
the directory the file was consumed from.

652 CHAPTER 11 - COMPONENT APPENDIX

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Affects the layout as follows:
before

inputdir/foo.txt
inputdir/sub/bar.txt

after

inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Object body = exchange.getIn().getBody();
// do some business logic with the input body

}
});

The body will be a File object that points to the file that was just dropped
into the inputdir directory.

Writing to files
Camel is of course also able to write files, i.e. produce files. In the sample
below we receive some reports on the SEDA queue that we process before
they are written to a directory.

public void testToFile() throws Exception {
MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedFileExists("target/test-reports/report.txt");

template.sendBody("direct:reports", "This is a great report");

assertMockEndpointsSatisfied();
}

CHAPTER 11 - COMPONENT APPENDIX 653

protected JndiRegistry createRegistry() throws Exception {
// bind our processor in the registry with the given id
JndiRegistry reg = super.createRegistry();
reg.bind("processReport", new ProcessReport());
return reg;

}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// the reports from the seda queue is processed by our processor
// before they are written to files in the target/reports directory
from("direct:reports").processRef("processReport").to("file://target/

test-reports", "mock:result");
}

};
}

private static class ProcessReport implements Processor {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
// do some business logic here

// set the output to the file
exchange.getOut().setBody(body);

// set the output filename using java code logic, notice that this is done by
setting

// a special header property of the out exchange
exchange.getOut().setHeader(Exchange.FILE_NAME, "report.txt");

}

}

Write to subdirectory using Exchange.FILE_NAME
Using a single route, it is possible to write a file to any number of
subdirectories. If you have a route setup as such:

<route>
<from uri="bean:myBean"/>
<to uri="file:/rootDirectory"/>

</route>

You can have myBean set the header Exchange.FILE_NAME to values such as:

Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt
Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt

654 CHAPTER 11 - COMPONENT APPENDIX

This allows you to have a single route to write files to multiple destinations.

Using expression for filenames
In this sample we want to move consumed files to a backup folder using
today's date as a sub-folder name:

from("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

See File Language for more samples.

Avoiding reading the same file more than once (idempotent
consumer)
Camel supports Idempotent Consumer directly within the component so it
will skip already processed files. This feature can be enabled by setting the
idempotent=true option.

from("file://inbox?idempotent=true").to("...");

Camel uses the absolute file name as the idempotent key, to detect duplicate
files. From Camel 2.11 onwards you can customize this key by using an
expression in the idempotentKey option. For example to use both the name
and the file size as the key

<route>
<from

uri="file://inbox?idempotent=true&idempotentKey=${file:name}-${file-size}"/>
<to uri="bean:processInbox"/>

</route>

By default Camel uses a in memory based store for keeping track of
consumed files, it uses a least recently used cache holding up to 1000
entries. You can plugin your own implementation of this store by using the
idempotentRepository option using the # sign in the value to indicate it's a
referring to a bean in the Registry with the specified id.

<!-- define our store as a plain spring bean -->
<bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
<from uri="file://inbox?idempotent=true&idempotentRepository=#myStore"/>
<to uri="bean:processInbox"/>

</route>

CHAPTER 11 - COMPONENT APPENDIX 655

http://camel.apache.org/file-language.html
http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/registry.html

Camel will log at DEBUG level if it skips a file because it has been consumed
before:

DEBUG FileConsumer is idempotent and the file has been consumed before. Will skip
this file: target\idempotent\report.txt

Using a file based idempotent repository
In this section we will use the file based idempotent repository
org.apache.camel.processor.idempotent.FileIdempotentRepository
instead of the in-memory based that is used as default.
This repository uses a 1st level cache to avoid reading the file repository. It
will only use the file repository to store the content of the 1st level cache.
Thereby the repository can survive server restarts. It will load the content of
the file into the 1st level cache upon startup. The file structure is very simple
as it stores the key in separate lines in the file. By default, the file store has a
size limit of 1mb. When the file grows larger Camel will truncate the file
store, rebuilding the content by flushing the 1st level cache into a fresh
empty file.

We configure our repository using Spring XML creating our file idempotent
repository and define our file consumer to use our repository with the
idempotentRepository using # sign to indicate Registry lookup:

<!-- this is our file based idempotent store configured to use the .filestore.dat as
file -->
<bean id="fileStore"
class="org.apache.camel.processor.idempotent.FileIdempotentRepository">

<!-- the filename for the store -->
<property name="fileStore" value="target/fileidempotent/.filestore.dat"/>
<!-- the max filesize in bytes for the file. Camel will trunk and flush the cache

if the file gets bigger -->
<property name="maxFileStoreSize" value="512000"/>
<!-- the number of elements in our store -->
<property name="cacheSize" value="250"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="file://target/fileidempotent/
?idempotent=true&idempotentRepository=#fileStore&move=done/${file:name}"/>

<to uri="mock:result"/>
</route>

</camelContext>

656 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html

Using a JPA based idempotent repository
In this section we will use the JPA based idempotent repository instead of the
in-memory based that is used as default.

First we need a persistence-unit in META-INF/persistence.xml where we
need to use the class
org.apache.camel.processor.idempotent.jpa.MessageProcessed as
model.

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/

idempotentTest;create=true"/>
<property name="openjpa.ConnectionDriverName"

value="org.apache.derby.jdbc.EmbeddedDriver"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>

</properties>
</persistence-unit>

Then we need to setup a Spring jpaTemplate in the spring XML file:

<!-- this is standard spring JPA configuration -->
<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<!-- we use idempotentDB as the persitence unit name defined in the
persistence.xml file -->

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

And finally we can create our JPA idempotent repository in the spring XML file
as well:

<!-- we define our jpa based idempotent repository we want to use in the file
consumer -->
<bean id="jpaStore"
class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplate -->
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name).

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>

</bean>

CHAPTER 11 - COMPONENT APPENDIX 657

And yes then we just need to refer to the jpaStore bean in the file consumer
endpoint using the idempotentRepository using the # syntax option:

<route>
<from uri="file://inbox?idempotent=true&idempotentRepository=#jpaStore"/>
<to uri="bean:processInbox"/>

</route>

Filter using org.apache.camel.component.file.GenericFileFilter
Camel supports pluggable filtering strategies. You can then configure the
endpoint with such a filter to skip certain files being processed.

In the sample we have built our own filter that skips files starting with
skip in the filename:

public class MyFileFilter<T> implements GenericFileFilter<T> {
public boolean accept(GenericFile<T> file) {

// we want all directories
if (file.isDirectory()) {

return true;
}
// we dont accept any files starting with skip in the name
return !file.getFileName().startsWith("skip");

}
}

And then we can configure our route using the filter attribute to reference
our filter (using # notation) that we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?filter=#myFilter"/>
<to uri="bean:processInbox"/>

</route>

Filtering using ANT path matcher
The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So
you need to depend on camel-spring if you are using Maven.
The reasons is that we leverage Spring's AntPathMatcher to do the actual
matching.

The file paths is matched with the following rules:
▪ ? matches one character

658 CHAPTER 11 - COMPONENT APPENDIX

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/util/AntPathMatcher.html

New options from Camel 2.10 onwards
There are now antInclude and antExclude options to make it easy
to specify ANT style include/exclude without having to define the
filter. See the URI options above for more information.

▪ * matches zero or more characters
▪ ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<template id="camelTemplate"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan
for -->

<endpoint id="myFileEndpoint" uri="file://target/
antpathmatcher?recursive=true&filter=#myAntFilter"/>

<route>
<from ref="myFileEndpoint"/>
<to uri="mock:result"/>

</route>
</camelContext>

<!-- we use the antpath file filter to use ant paths for includes and exlucde -->
<bean id="myAntFilter"
class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">

<!-- include and file in the subfolder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to seperate

multiple excludes -->
<property name="excludes" value="**/*bad*,**/*.xml"/>

</bean>

Sorting using Comparator
Camel supports pluggable sorting strategies. This strategy it to use the build
in java.util.Comparator in Java. You can then configure the endpoint with
such a comparator and have Camel sort the files before being processed.

In the sample we have built our own comparator that just sorts by file
name:

public class MyFileSorter<T> implements Comparator<GenericFile<T>> {
public int compare(GenericFile<T> o1, GenericFile<T> o2) {

return o1.getFileName().compareToIgnoreCase(o2.getFileName());

CHAPTER 11 - COMPONENT APPENDIX 659

}
}

And then we can configure our route using the sorter option to reference to
our sorter (mySorter) we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="mySorter" class="com.mycompany.MyFileSorter"/>

<route>
<from uri="file://inbox?sorter=#mySorter"/>
<to uri="bean:processInbox"/>

</route>

Sorting using sortBy
Camel supports pluggable sorting strategies. This strategy it to use the File
Language to configure the sorting. The sortBy option is configured as
follows:

sortBy=group 1;group 2;group 3;...

Where each group is separated with semi colon. In the simple situations you
just use one group, so a simple example could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse:
to the group, so the sorting is now Z..A:

sortBy=reverse:file:name

As we have the full power of File Language we can use some of the other
parameters, so if we want to sort by file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string
comparison, so if you want to use file name sorting but to ignore the case
then we do:

sortBy=ignoreCase:file:name

660 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

URI options can reference beans using the # syntax
In the Spring DSL route about notice that we can refer to beans in
the Registry by prefixing the id with #. So writing
sorter=#mySorter, will instruct Camel to go look in the Registry for
a bean with the ID, mySorter.

You can combine ignore case and reverse, however reverse must be specified
first:

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modifed

And then we want to group by name as a 2nd option so files with same
modifcation is sorted by name:

sortBy=file:modifed;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of
the file is too fine as it will be in milliseconds, but what if we want to sort by
date only and then subgroup by name?
Well as we have the true power of File Language we can use the its date
command that supports patterns. So this can be solved as:

sortBy=date:file:yyyyMMdd;file:name

Yeah, that is pretty powerful, oh by the way you can also use reverse per
group, so we could reverse the file names:

sortBy=date:file:yyyyMMdd;reverse:file:name

Using GenericFileProcessStrategy
The option processStrategy can be used to use a custom
GenericFileProcessStrategy that allows you to implement your own begin,
commit and rollback logic.
For instance lets assume a system writes a file in a folder you should

CHAPTER 11 - COMPONENT APPENDIX 661

http://camel.apache.org/file-language.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

consume. But you should not start consuming the file before another ready
file has been written as well.

So by implementing our own GenericFileProcessStrategy we can
implement this as:

▪ In the begin() method we can test whether the special ready file
exists. The begin method returns a boolean to indicate if we can
consume the file or not.

▪ In the abort() method (Camel 2.10) special logic can be executed in
case the begin operation returned false, for example to cleanup
resources etc.

▪ in the commit() method we can move the actual file and also delete
the ready file.

Using filter
The filter option allows you to implement a custom filter in Java code by
implementing the org.apache.camel.component.file.GenericFileFilter
interface. This interface has an accept method that returns a boolean.
Return true to include the file, and false to skip the file. From Camel 2.10
onwards, there is a isDirectory method on GenericFile whether the file is
a directory. This allows you to filter unwanted directories, to avoid traversing
down unwanted directories.

For example to skip any directories which starts with "skip" in the name,
can be implemented as follows:

public class MyDirectoryFilter<T> implements GenericFileFilter<T> {

public boolean accept(GenericFile<T> file) {
// remember the name due unit testing (should not be needed in regular

use-cases)
names.add(file.getFileName());

// we dont accept any files within directory starting with skip in the name
if (file.isDirectory() && file.getFileName().startsWith("skip")) {

return false;
}

return true;
}

}

662 CHAPTER 11 - COMPONENT APPENDIX

How to use the Camel error handler to deal with exceptions
triggered outside the routing engine
The file and ftp consumers, will by default try to pickup files. Only if that is
successful then a Camel Exchange can be created and passed in the Camel
routing engine.
When the Exchange is processed by the routing engine, then the Camel Error
Handling takes over (eg the onException / errorHandler in the routes).
However outside the scope of the routing engine, any exceptions handling is
component specific. Camel offers a
org.apache.camel.spi.ExceptionHandler that allows components
to use that as a pluggable hook for end users to use their own
implementation. Camel offers a default LoggingExceptionHandler that will
log the exception at ERROR/WARN level.
For the file and ftp components this would be the case. However if you want
to bridge the ExceptionHandler so it uses the Camel Error Handling, then
you need to implement a custom ExceptionHandler that will handle the
exception by creating a Camel Exchange and send it to the routing engine;
then the error handling of the routing engine can get triggered.
Here is such an example based upon an unit test.

First we have a custom ExceptionHandler where you can see we deal
with the exception by sending it to a Camel Endpoint named "direct:file-
error":

Listing 1. MyExceptionHandler

/**
* Custom {@link ExceptionHandler} to be used on the file consumer, to send
* exceptions to a Camel route, to let Camel deal with the error.
*/

private static class MyExceptionHandler implements ExceptionHandler {

private ProducerTemplate template;

/**
* We use a producer template to send a message to the Camel route
*/

public void setTemplate(ProducerTemplate template) {
this.template = template;

}

@Override
public void handleException(Throwable exception) {

handleException(exception.getMessage(), exception);
}

@Override
public void handleException(String message, Throwable exception) {

handleException(exception.getMessage(), null, exception);

CHAPTER 11 - COMPONENT APPENDIX 663

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/error-handling-in-camel.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html

Easier with Camel 2.10
The new option consumer.bridgeErrorHandler can be set to true, to
make this even easier. See further below

}

@Override
public void handleException(final String message, final Exchange

originalExchange, final Throwable exception) {
// send the message to the special direct:file-error endpoint, which will

trigger exception handling
//
template.send("direct:file-error", new Processor() {

@Override
public void process(Exchange exchange) throws Exception {

// set an exception on the message from the start so the error
handling is triggered

exchange.setException(exception);
exchange.getIn().setBody(message);

}
});

}
}

Then we have a Camel route that uses the Camel routing error handler,
which is the onException where we handle any IOException being thrown.
We then send the message to the same "direct:file-error" endpoint, where we
handle it by transforming it to a message, and then being sent to a Mock
endpoint.
This is just for testing purpose. You can handle the exception in any custom
way you want, such as using a Bean or sending an email etc.

Notice how we configure our custom MyExceptionHandler by using the
consumer.exceptionHandler option to refer to #myExceptionHandler which
is a id of the bean registered in the Registry. If using Spring XML or OSGi
Blueprint, then that would be a <bean id="myExceptionHandler"
class="com.foo.MyExceptionHandler"/>:

Listing 1. Camel route with routing engine error handling

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// to handle any IOException being thrown
onException(IOException.class)

664 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mock.html
http://camel.apache.org/bean.html
http://camel.apache.org/registry.html

.handled(true)

.log("IOException occurred due: ${exception.message}")
// as we handle the exception we can send it to direct:file-error,
// where we could send out alerts or whatever we want
.to("direct:file-error");

// special route that handles file errors
from("direct:file-error")

.log("File error route triggered to deal with exception
${exception?.class}")

// as this is based on unit test just transform a message and send it
to a mock

.transform().simple("Error ${exception.message}")

.to("mock:error");

// this is the file route that pickup files, notice how we use our custom
exception handler on the consumer

// the exclusiveReadLockStrategy is only configured because this is from
an unit test, so we use that to simulate exceptions

from("file:target/
nospace?exclusiveReadLockStrategy=#myReadLockStrategy&consumer.exceptionHandler=#myExceptionHandler")

.convertBodyTo(String.class)

.to("mock:result");
}

};
}

The source code for this example can be seen here

Using consumer.bridgeErrorHandler
Available as of Camel 2.10

If you want to use the Camel Error Handler to deal with any exception
occurring in the file consumer, then you can enable the
consumer.bridgeErrorHandler option as shown below:

Listing 1. Using consumer.bridgeErrorHandler

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// to handle any IOException being thrown
onException(IOException.class)

.handled(true)

.log("IOException occurred due: ${exception.message}")

.transform().simple("Error ${exception.message}")

.to("mock:error");

// this is the file route that pickup files, notice how we bridge the

CHAPTER 11 - COMPONENT APPENDIX 665

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/component/file/FileConsumerCustomExceptionHandlerTest.java
http://camel.apache.org/error-handler.html

consumer to use the Camel routing error handler
// the exclusiveReadLockStrategy is only configured because this is from

an unit test, so we use that to simulate exceptions
from("file:target/

nospace?exclusiveReadLockStrategy=#myReadLockStrategy&consumer.bridgeErrorHandler=true")
.convertBodyTo(String.class)
.to("mock:result");

}
};

}

So all you have to do is to enable this option, and the error handler in the
route will take it from there.

Debug logging
This component has log level TRACE that can be helpful if you have
problems.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ File Language
▪ FTP
▪ Polling Consumer

FLATPACK COMPONENT
The Flatpack component supports fixed width and delimited file parsing via
the FlatPack library.
Notice: This component only supports consuming from flatpack files to
Object model. You can not (yet) write from Object model to flatpack format.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

666 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ftp2.html
http://camel.apache.org/polling-consumer.html
http://flatpack.sourceforge.net

URI format

flatpack:[delim|fixed]:flatPackConfig.pzmap.xml[?options]

Or for a delimited file handler with no configuration file just use

flatpack:someName[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options
Name Default Value Description
delimiter , The default character delimiter for delimited files.

textQualifier " The text qualifier for delimited files.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for the column headers).

splitRows true The component can either process each row one by one or the entire content at once.

allowShortLines false Camel 2.9.3: Allows for lines to be shorter than expected and ignores the extra characters.

ignoreExtraColumns false Camel 2.9.3: Allows for lines to be longer than expected and ignores the extra characters.

Examples
• flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint

using the foo.pzmap.xml file configuration.
• flatpack:delim:bar.pzmap.xml creates a delimited endpoint using

the bar.pzmap.xml file configuration.
• flatpack:foo creates a delimited endpoint called foo with no file

configuration.

Message Headers
Camel will store the following headers on the IN message:
Header Description
camelFlatpackCounter The current row index. For splitRows=false the counter is the total number of rows.

Message Body
The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that has
converters for java.util.Map or java.util.List.
Usually you want the Map if you process one row at a time (splitRows=true).
Use List for the entire content (splitRows=false), where each element in

CHAPTER 11 - COMPONENT APPENDIX 667

the list is a Map.
Each Map contains the key for the column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn().getBody(Map.class);
String firstName = row.get("FIRSTNAME");

However, you can also always get it as a List (even for splitRows=true).
The same example:

List data = exchange.getIn().getBody(List.class);
Map row = (Map)data.get(0);
String firstName = row.get("FIRSTNAME");

Header and Trailer records
The header and trailer notions in Flatpack are supported. However, you must
use fixed record IDs:

• header for the header record (must be lowercase)
• trailer for the trailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer.
You can omit one or both of them if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="DATE" length="8"/>

</RECORD>

<COLUMN name="FIRSTNAME" length="35" />
<COLUMN name="LASTNAME" length="35" />
<COLUMN name="ADDRESS" length="100" />
<COLUMN name="CITY" length="100" />
<COLUMN name="STATE" length="2" />
<COLUMN name="ZIP" length="5" />

<RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUMN name="INDICATOR" length="3"/>
<COLUMN name="STATUS" length="7"/>

</RECORD>

Using the endpoint
A common use case is sending a file to this endpoint for further processing in
a separate route. For example:

668 CHAPTER 11 - COMPONENT APPENDIX

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="file://someDirectory"/>
<to uri="flatpack:foo"/>

</route>

<route>
<from uri="flatpack:foo"/>
...

</route>
</camelContext>

You can also convert the payload of each message created to a Map for easy
Bean Integration

FLATPACK DATAFORMAT
The Flatpack component ships with the Flatpack data format that can be
used to format between fixed width or delimited text messages to a List of
rows as Map.

▪ marshal = from List<Map<String, Object>> to OutputStream (can
be converted to String)

▪ unmarshal = from java.io.InputStream (such as a File or String)
to a java.util.List as an
org.apache.camel.component.flatpack.DataSetList instance.
The result of the operation will contain all the data. If you need to
process each row one by one you can split the exchange, using
Splitter.

Notice: The Flatpack library does currently not support header and trailers
for the marshal operation.

Options
The data format has the following options:
Option Default Description

definition null
The flatpack pzmap configuration file.
Can be omitted in simpler situations,
but its preferred to use the pzmap.

fixed false Delimited or fixed.

ignoreFirstRecord true Whether the first line is ignored for
delimited files (for the column headers).

CHAPTER 11 - COMPONENT APPENDIX 669

http://camel.apache.org/bean-integration.html
http://camel.apache.org/flatpack.html
http://camel.apache.org/splitter.html

textQualifier " If the text is qualified with a char such
as ".

delimiter , The delimiter char (could be ; , or
similar)

parserFactory null Uses the default Flatpack parser factory.

allowShortLines false

Camel 2.9.5 and 2.10.3 onwards:
Allows for lines to be shorter than
expected and ignores the extra
characters.

ignoreExtraColumns false

Camel 2.9.5 and 2.10.3 onwards:
Allows for lines to be longer than
expected and ignores the extra
characters.

Usage
To use the data format, simply instantiate an instance and invoke the
marshal or unmarshal operation in the route builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
...
from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the
input using the Flatpack configuration file INVENTORY-Delimited.pzmap.xml
that configures the structure of the files. The result is a DataSetList object
we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class).to("jms:queue:people");

In the code above we marshal the data from a Object representation as a
List of rows as Maps. The rows as Map contains the column name as the key,
and the the corresponding value. This structure can be created in Java code
from e.g. a processor. We marshal the data according to the Flatpack format
and convert the result as a String object and store it on a JMS queue.

670 CHAPTER 11 - COMPONENT APPENDIX

Dependencies
To use Flatpack in your camel routes you need to add the a dependency on
camel-flatpack which implements this data format.

If you use maven you could just add the following to your pom.xml,
substituting the version number for the latest & greatest release (see the
download page for the latest versions).

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-flatpack</artifactId>
<version>x.x.x</version>

</dependency>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FREEMARKER
The freemarker: component allows for processing a message using a
FreeMarker template. This can be ideal when using Templating to generate
responses for requests.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-freemarker</artifactId>
<version>x.x.x</version> <!-- use the same version as your Camel core version -->

</dependency>

URI format

freemarker:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke;
or the complete URL of the remote template (eg: file://folder/myfile.ftl).

CHAPTER 11 - COMPONENT APPENDIX 671

http://camel.apache.org/download.html
http://camel.apache.org/download.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://freemarker.org/
http://camel.apache.org/templating.html
/folder/myfile.ftl

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Option Default Description

contentCache true
Cache for the resource content when it's loaded.
Note: as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's
clearContentCache operation.

encoding null Character encoding of the resource content.

templateUpdateDelay 5 Camel 2.9: Number of seconds the loaded template resource will remain in the cache.

Headers
Headers set during the FreeMarker evaluation are returned to the message
and added as headers. This provides a mechanism for the FreeMarker
component to return values to the Message.

An example: Set the header value of fruit in the FreeMarker template:

${request.setHeader('fruit', 'Apple')}

The header, fruit, is now accessible from the message.out.headers.

FreeMarker Context
Camel will provide exchange information in the FreeMarker context (just a
Map). The Exchange is transferred as:
key value
exchange The Exchange itself.

exchange.properties The Exchange properties.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

Hot reloading
The FreeMarker template resource is by default not hot reloadable for both
file and classpath resources (expanded jar). If you set contentCache=false,
then Camel will not cache the resource and hot reloading is thus enabled.
This scenario can be used in development.

672 CHAPTER 11 - COMPONENT APPENDIX

Dynamic templates
Camel provides two headers by which you can define a different resource
location for a template or the template content itself. If any of these headers
is set then Camel uses this over the endpoint configured resource. This
allows you to provide a dynamic template at runtime.

Header Type Description Support
Version

FreemarkerConstants.FREEMARKER_RESOURCE org.springframework.core.io.Resource The template resource <= 2.1

FreemarkerConstants.FREEMARKER_RESOURCE_URI String
A URI for the template resource
to use instead of the endpoint
configured.

>= 2.1

FreemarkerConstants.FREEMARKER_TEMPLATE String The template to use instead of
the endpoint configured. >= 2.1

Samples
For example you could use something like:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl");

To use a FreeMarker template to formulate a response for a message for
InOut message exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to
another destination you could use:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl").
to("activemq:Another.Queue");

And to disable the content cache, e.g. for development usage where the
.ftl template should be hot reloaded:

from("activemq:My.Queue").
to("freemarker:com/acme/MyResponse.ftl?contentCache=false").
to("activemq:Another.Queue");

And a file-based resource:

from("activemq:My.Queue").
to("freemarker:file://myfolder/MyResponse.ftl?contentCache=false").
to("activemq:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should
use dynamically via a header, so for example:

CHAPTER 11 - COMPONENT APPENDIX 673

from("direct:in").
setHeader(FreemarkerConstants.FREEMARKER_RESOURCE_URI).constant("path/to/my/

template.ftl").
to("freemarker:dummy");

The Email Sample
In this sample we want to use FreeMarker templating for an order
confirmation email. The email template is laid out in FreeMarker as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();

Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");

return exchange;
}

@Test
public void testFreemarkerLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel

in Action."
+ "\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a")

.to("freemarker:org/apache/camel/component/freemarker/letter.ftl")

674 CHAPTER 11 - COMPONENT APPENDIX

.to("mock:result");
}

};
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

FTP/SFTP/FTPS COMPONENT
This component provides access to remote file systems over the FTP and
SFTP protocols.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ftp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

Where directoryname represents the underlying directory. Can contain
nested folders.

If no username is provided, then anonymous login is attempted using no
password.
If no port number is provided, Camel will provide default values according to
the protocol (ftp = 21, sftp = 22, ftps = 2222).

You can append query options to the URI in the following format,
?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 675

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

More options
See File for more options as all the options from File is inherited.

Consuming from remote FTP server
Make sure you read the section titled Default when consuming files
further below for details related to consuming files.

This component uses two different libraries for the actual FTP work. FTP
and FTPS uses Apache Commons Net while SFTP uses JCraft JSCH.

The FTPS component is only available in Camel 2.2 or newer.
FTPS (also known as FTP Secure) is an extension to FTP that adds support for
the Transport Layer Security (TLS) and the Secure Sockets Layer (SSL)
cryptographic protocols.

URI Options
The options below are exclusive for the FTP component.

Name Default
Value Description

username null Specifies the username to use to log in to the remote file systen.

password null Specifies the password to use to log in to the remote file system.

binary false Specifies the file transfer mode, BINARY or ASCII. Default is ASCII (false).

disconnect false

Camel 2.2: Whether or not to disconnect from remote FTP server right after use. Can
be used for both consumer and producer. Disconnect will only disconnect the current
connection to the FTP server. If you have a consumer which you want to stop, then you
need to stop the consumer/route instead.

localWorkDirectory null

When consuming, a local work directory can be used to store the remote file content
directly in local files, to avoid loading the content into memory. This is beneficial, if you
consume a very big remote file and thus can conserve memory. See below for more
details.

passiveMode false FTP and FTPS only: Specifies whether to use passive mode connections. Default is
active mode (false).

securityProtocol TLS
FTPS only: Sets the underlying security protocol. The following values are defined:
TLS: Transport Layer Security
SSL: Secure Sockets Layer

disableSecureDataChannelDefaults false

Camel 2.4: FTPS only: Whether or not to disable using default values for execPbsz
and execProt when using secure data transfer. You can set this option to true if you
want to be in absolute full control what the options execPbsz and execProt should be
used.

download true

Camel 2.11: Whether the FTP consumer should download the file. If this option is set
to false, then the message body will be null, but the consumer will still trigger a
Camel Exchange that has details about the file such as file name, file size, etc. It's just
that the file will not be downloaded.

streamDownload false

Camel 2.11:Â Whether the consumer should download the entire file up front, the
default behavior, or if it should pass an InputStreamÂ read from the remote resource
rather than an in-memory array as the in body of theÂ CamelÂ Exchange. Â This option
is ignored if downloadÂ is falseÂ or is localWorkDirectory is provided. Â This option is
useful for working with large remote files.

676 CHAPTER 11 - COMPONENT APPENDIX

http://commons.apache.org/net/
http://www.jcraft.com/jsch/
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

More options
See File for more options as all the options from File is inherited.

execProt null

Camel 2.4: FTPS only: Will by default use option P if secure data channel defaults
hasn't been disabled. Possible values are:
C: Clear
S: Safe (SSL protocol only)
E: Confidential (SSL protocol only)
P: Private

execPbsz null
Camel 2.4: FTPS only: This option specifies the buffer size of the secure data
channel. If option useSecureDataChannel has been enabled and this option has not
been explicit set, then value 0 is used.

isImplicit false FTPS only: Sets the security mode(implicit/explicit). Default is explicit (false).

knownHostsFile null SFTP only: Sets the known_hosts file, so that the SFTP endpoint can do host key
verification.

privateKeyFile null SFTP only: Set the private key file to that the SFTP endpoint can do private key
verification.

privateKeyFilePassphrase null SFTP only: Set the private key file passphrase to that the SFTP endpoint can do
private key verification.

ciphers null

Camel 2.8.2, 2.9: SFTP only Set a comma separated list of ciphers that will be used
in order of preference. Possible cipher names are defined by JCraft JSCH. Some
examples include: aes128-ctr,aes128-cbc,3des-ctr,3des-cbc,blowfish-
cbc,aes192-cbc,aes256-cbc. If not specified the default list from JSCH will be used.

fastExistsCheck false

Camel 2.8.2, 2.9: If set this option to be true, camel-ftp will use the list file directly to
check if the file exists. Since some FTP server may not support to list the file directly, if
the option is false, camel-ftp will use the old way to list the directory and check if the
file exists. Note from Camel 2.10.1 onwards this option also influences
readLock=changed to control whether it performs a fast check to update file
information or not. This can be used to speed up the process if the FTP server has a lot
of files.

strictHostKeyChecking no

SFTP only: Camel 2.2: Sets whether to use strict host key checking. Possible values
are: no, yes and ask. ask does not make sense to use as Camel cannot answer the
question for you as its meant for human intervention. Note: The default in Camel 2.1
and below was ask.

maximumReconnectAttempts 3 Specifies the maximum reconnect attempts Camel performs when it tries to connect to
the remote FTP server. Use 0 to disable this behavior.

reconnectDelay 1000 Delay in millis Camel will wait before performing a reconnect attempt.

connectTimeout 10000
Camel 2.4: Is the connect timeout in millis. This corresponds to using
ftpClient.connectTimeout for the FTP/FTPS. For SFTP this option is also used when
attempting to connect.

soTimeout null FTP and FTPS Only: Camel 2.4: Is the SocketOptions.SO_TIMEOUT value in millis.
Note SFTP will automatic use the connectTimeout as the soTimeout.

timeout 30000 FTP and FTPS Only: Camel 2.4: Is the data timeout in millis. This corresponds to
using ftpClient.dataTimeout for the FTP/FTPS. For SFTP there is no data timeout.

throwExceptionOnConnectFailed false
Camel 2.5: Whether or not to thrown an exception if a successful connection and
login could not be establish. This allows a custom pollStrategy to deal with the
exception, for example to stop the consumer or the likes.

siteCommand null
FTP and FTPS Only: Camel 2.5: To execute site commands after successful login.
Multiple site commands can be separated using a new line character (\n). Use help
site to see which site commands your FTP server supports.

stepwise true
Camel 2.6: Whether or not stepwise traversing directories should be used or not.
Stepwise means that it will CD one directory at a time. See more details below. You can
disable this in case you can't use this approach.

separator Auto
Camel 2.6: Dictates what path separator char to use when uploading files. Auto =
Use the path provided without altering it. UNIX = Use unix style path separators.
Windows = Use Windows style path separators.

chmod null SFTP Producer Only: Camel 2.9: Allows you to set chmod on the stored file. For
example chmod=640.

compression 0
SFTP Only: Camel 2.8.3/2.9: To use compression. Specify a level from 1 to 10.
Important: You must manually add the needed JSCH zlib JAR to the classpath for
compression support.

ftpClient null FTP and FTPS Only: Camel 2.1: Allows you to use a custom
org.apache.commons.net.ftp.FTPClient instance.

CHAPTER 11 - COMPONENT APPENDIX 677

http://www.jcraft.com/jsch/
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

ftpClientConfig null FTP and FTPS Only: Camel 2.1: Allows you to use a custom
org.apache.commons.net.ftp.FTPClientConfig instance.

serverAliveInterval 0 SFTP Only: Camel 2.8 Allows you to set the serverAliveInterval of the sftp session

serverAliveCountMax 1 SFTP Only: Camel 2.8 Allows you to set the serverAliveCountMax of the sftp session

ftpClient.trustStore.file null FTPS Only: Sets the trust store file, so that the FTPS client can look up for trusted
certificates.

ftpClient.trustStore.type JKS FTPS Only: Sets the trust store type.

ftpClient.trustStore.algorithm SunX509 FTPS Only: Sets the trust store algorithm.

ftpClient.trustStore.password null FTPS Only: Sets the trust store password.

ftpClient.keyStore.file null FTPS Only: Sets the key store file, so that the FTPS client can look up for the private
certificate.

ftpClient.keyStore.type JKS FTPS Only: Sets the key store type.

ftpClient.keyStore.algorithm SunX509 FTPS Only: Sets the key store algorithm.

ftpClient.keyStore.password null FTPS Only: Sets the key store password.

ftpClient.keyStore.keyPassword null FTPS Only: Sets the private key password.

sslContextParameters null

FTPS Only: Camel 2.9: Reference to a
org.apache.camel.util.jsse.SSLContextParameters in the Registry.Â This
reference overrides any configured SSL related options on ftpClient as well as the
securityProtocol (SSL, TLS, etc.) set on FtpsConfiguration.Â See Using the JSSE
Configuration Utility.

You can configure additional options on the ftpClient and ftpClientConfig
from the URI directly by using the ftpClient. or ftpClientConfig. prefix.

For example to set the setDataTimeout on the FTPClient to 30 seconds
you can do:

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000").to("bean:foo");

You can mix and match and have use both prefixes, for example to configure
date format or timezones.

from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000&ftpClientConfig.serverLanguageCode=fr").to("bean:foo");

You can have as many of these options as you like.
See the documentation of the Apache Commons FTP FTPClientConfig for

possible options and more details.
And as well for Apache Commons FTP FTPClient.

If you do not like having many and long configuration in the url you can
refer to the ftpClient or ftpClientConfig to use by letting Camel lookup in
the Registry for it.

For example:

<bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
<property name="lenientFutureDates" value="true"/>
<property name="serverLanguageCode" value="fr"/>

</bean>

And then let Camel lookup this bean when you use the # notation in the url.

678 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/camel-configuration-utilities.html
http://camel.apache.org/camel-configuration-utilities.html
http://commons.apache.org/net/api-2.2/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api-2.2/org/apache/commons/net/ftp/FTPClient.html
http://camel.apache.org/registry.html

FTPS component default trust store
When using the ftpClient. properties related to SSL with the FTPS
component, the trust store accept all certificates. If you only want
trust selective certificates, you have to configure the trust store
with the ftpClient.trustStore.xxx options or by configuring a
custom ftpClient.

When using sslContextParameters, the trust store is managed by the
configuration of the provided SSLContextParameters instance.

from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig").to("bean:foo");

More URI options

Examples
ftp://someone@someftpserver.com/public/upload/images/
holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/
password=secret&binary=false
ftp://publicftpserver.com/download

Default when consuming files
The FTP consumer will by default leave the consumed files untouched on the
remote FTP server. You have to configure it explicitly if you want it to delete
the files or move them to another location. For example you can use
delete=true to delete the files, or use move=.done to move the files into a
hidden done sub directory.

The regular File consumer is different as it will by default move files to a
.camel sub directory. The reason Camel does not do this by default for the
FTP consumer is that it may lack permissions by default to be able to move
or delete files.

limitations
The option readLock can be used to force Camel not to consume files that
is currently in the progress of being written. However, this option is turned off
by default, as it requires that the user has write access. See the options table

CHAPTER 11 - COMPONENT APPENDIX 679

ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=secret&binary=true
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false
ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=secret&binary=false
ftp://publicftpserver.com/download
http://camel.apache.org/ftp2.html
http://camel.apache.org/file2.html

See File2 as all the options there also applies for this component.

FTP Consumer does not support concurrency
The FTP consumer (with the same endpoint) does not support
concurrency (the backing FTP client is not thread safe).
You can use multiple FTP consumers to poll from different
endpoints. It is only a single endpoint that does not support
concurrent consumers.

The FTP producer does not have this issue, it supports concurrency.

More information
This component is an extension of the File component. So there are
more samples and details on the File component page.

at File2 for more details about read locks.
There are other solutions to avoid consuming files that are currently being
written over FTP; for instance, you can write to a temporary destination and
move the file after it has been written.

When moving files using move or preMove option the files are restricted to
the FTP_ROOT folder. That prevents you from moving files outside the FTP
area. If you want to move files to another area you can use soft links and
move files into a soft linked folder.

Message Headers
The following message headers can be used to affect the behavior of the
component
Header Description

CamelFileName
Specifies the output file name (relative to the endpoint directory) to be used for the output message when sending
to the endpoint. If this is not present and no expression either, then a generated message ID is used as the
filename instead.

CamelFileNameProduced The actual absolute filepath (path + name) for the output file that was written. This header is set by Camel and its
purpose is providing end-users the name of the file that was written.

CamelFileBatchIndex Current index out of total number of files being consumed in this batch.

CamelFileBatchSize Total number of files being consumed in this batch.

CamelFileHost The remote hostname.

CamelFileLocalWorkPath Path to the local work file, if local work directory is used.

680 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

About timeouts
The two set of libraries (see top) has different API for setting timeout. You can
use the connectTimeout option for both of them to set a timeout in millis to
establish a network connection. An individual soTimeout can also be set on
the FTP/FTPS, which corresponds to using ftpClient.soTimeout. Notice
SFTP will automatically use connectTimeout as its soTimeout. The timeout
option only applies for FTP/FTSP as the data timeout, which corresponds to
the ftpClient.dataTimeout value. All timeout values are in millis.

Using Local Work Directory
Camel supports consuming from remote FTP servers and downloading the
files directly into a local work directory. This avoids reading the entire remote
file content into memory as it is streamed directly into the local file using
FileOutputStream.

Camel will store to a local file with the same name as the remote file,
though with .inprogress as extension while the file is being downloaded.
Afterwards, the file is renamed to remove the .inprogress suffix. And finally,
when the Exchange is complete the local file is deleted.

So if you want to download files from a remote FTP server and store it as
files then you need to route to a file endpoint such as:

from("ftp://someone@someserver.com?password=secret&localWorkDirectory=/
tmp").to("file://inbox");

Stepwise changing directories
Camel FTP can operate in two modes in terms of traversing directories when
consuming files (eg downloading) or producing files (eg uploading)

▪ stepwise
▪ not stepwise

You may want to pick either one depending on your situation and security
issues. Some Camel end users can only download files if they use stepwise,
while others can only download if they do not. At least you have the choice to
pick (from Camel 2.6 onwards).

In Camel 2.0 - 2.5 there is only one mode and it is:
▪ before 2.5 not stepwise
▪ 2.5 stepwise

From Camel 2.6 onwards there is now an option stepwise you can use to
control the behavior.

CHAPTER 11 - COMPONENT APPENDIX 681

http://camel.apache.org/exchange.html
http://camel.apache.org/ftp2.html

Optimization by renaming work file
The route above is ultra efficient as it avoids reading the entire file
content into memory. It will download the remote file directly to a
local file stream. The java.io.File handle is then used as the
Exchange body. The file producer leverages this fact and can work
directly on the work file java.io.File handle and perform a
java.io.File.rename to the target filename. As Camel knows it's a
local work file, it can optimize and use a rename instead of a file
copy, as the work file is meant to be deleted anyway.

Note that stepwise changing of directory will in most cases only work
when the user is confined to it's home directory and when the home
directory is reported as "/".

The difference between the two of them is best illustrated with an
example. Suppose we have the following directory structure on the remote
FTP server we need to traverse and download files:

/
/one
/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.

Using stepwise=true (default mode)

TYPE A
200 Type set to A
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,17,94
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CWD sub-a

682 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/exchange.html

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97
200 Port command successful
RETR foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98
200 Port command successful
RETR a.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-b

CHAPTER 11 - COMPONENT APPENDIX 683

250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99
200 Port command successful
RETR b.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
QUIT
221 Goodbye
disconnected.

As you can see when stepwise is enabled, it will traverse the directory
structure using CD xxx.

Using stepwise=false

230 Logged on
TYPE A
200 Type set to A
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,4,122
200 Port command successful
LIST one/two
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,123
200 Port command successful
LIST one/two/sub-a
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,124
200 Port command successful
LIST one/two/sub-b
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,125
200 Port command successful
RETR one/two/foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,126
200 Port command successful
RETR one/two/sub-a/a.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,127
200 Port command successful
RETR one/two/sub-b/b.txt

684 CHAPTER 11 - COMPONENT APPENDIX

150 Opening data channel for file transfer.
226 Transfer OK
QUIT
221 Goodbye
disconnected.

As you can see when not using stepwise, there are no CD operation invoked
at all.

Samples
In the sample below we set up Camel to download all the reports from the
FTP server once every hour (60 min) as BINARY content and store it as files
on the local file system.

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
// we use a delay of 60 minutes (eg. once pr. hour we poll the FTP server
long delay = 60 * 60 * 1000L;

// from the given FTP server we poll (= download) all the files
// from the public/reports folder as BINARY types and store this as files
// in a local directory. Camel will use the filenames from the FTPServer

// notice that the FTPConsumer properties must be prefixed with
"consumer." in the URL

// the delay parameter is from the FileConsumer component so we should
use consumer.delay as

// the URI parameter name. The FTP Component is an extension of the File
Component.

from("ftp://tiger:scott@localhost/public/reports?binary=true&consumer.delay=" +
delay).

to("file://target/test-reports");
}

};
}

And the route using Spring DSL:

<route>
<from uri="ftp://scott@localhost/public/

reports?password=tiger&binary=true&delay=60000"/>
<to uri="file://target/test-reports"/>

</route>

CHAPTER 11 - COMPONENT APPENDIX 685

Consuming a remote FTPS server (implicit SSL) and
client authentication

from("ftps://admin@localhost:2222/public/camel?password=admin&securityProtocol=SSL&isImplicit=true
&ftpClient.keyStore.file=./src/test/resources/server.jks
&ftpClient.keyStore.password=password&ftpClient.keyStore.keyPassword=password")

.to("bean:foo");

Consuming a remote FTPS server (explicit TLS) and a
custom trust store configuration

from("ftps://admin@localhost:2222/public/camel?password=admin&ftpClient.trustStore.file=./
src/test/resources/server.jks&ftpClient.trustStore.password=password")

.to("bean:foo");

Filter using org.apache.camel.component.file.GenericFileFilter
Camel supports pluggable filtering strategies. This strategy it to use the build
in org.apache.camel.component.file.GenericFileFilter in Java. You can
then configure the endpoint with such a filter to skip certain filters before
being processed.

In the sample we have built our own filter that only accepts files starting
with report in the filename.

public class MyFileFilter<T> implements GenericFileFilter<T> {

public boolean accept(GenericFile<T> file) {
// we only want report files
return file.getFileName().startsWith("report");

}
}

And then we can configure our route using the filter attribute to reference
our filter (using # notation) that we have defined in the spring XML file:

<!-- define our sorter as a plain spring bean -->
<bean id="myFilter" class="com.mycompany.MyFileFilter"/>

<route>
<from

uri="ftp://someuser@someftpserver.com?password=secret&filter=#myFilter"/>
<to uri="bean:processInbox"/>

</route>

686 CHAPTER 11 - COMPONENT APPENDIX

Filtering using ANT path matcher
The ANT path matcher is a filter that is shipped out-of-the-box in the camel-
spring jar. So you need to depend on camel-spring if you are using Maven.
The reason is that we leverage Spring's AntPathMatcher to do the actual
matching.

The file paths are matched with the following rules:
▪ ? matches one character
▪ * matches zero or more characters
▪ ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
<camelContext xmlns="http://camel.apache.org/schema/spring">

<template id="camelTemplate"/>

<!-- use myFilter as filter to allow setting ANT paths for which files to scan
for -->

<endpoint id="myFTPEndpoint"
uri="ftp://admin@localhost:${SpringFileAntPathMatcherRemoteFileFilterTest.ftpPort}/
antpath?password=admin&recursive=true&delay=10000&initialDelay=2000&filter=#myAntFilter"/>

<route>
<from ref="myFTPEndpoint"/>
<to uri="mock:result"/>

</route>
</camelContext>

<!-- we use the AntPathMatcherRemoteFileFilter to use ant paths for includes and
exclude -->
<bean id="myAntFilter"
class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">

<!-- include any files in the sub folder that has day in the name -->
<property name="includes" value="**/subfolder/**/*day*"/>
<!-- exclude all files with bad in name or .xml files. Use comma to separate

multiple excludes -->
<property name="excludes" value="**/*bad*,**/*.xml"/>

</bean>

Debug logging
This component has log level TRACE that can be helpful if you have
problems.

See Also
• Configuring Camel
• Component
• Endpoint

CHAPTER 11 - COMPONENT APPENDIX 687

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html

• Getting Started
▪ File2

CAMEL COMPONENTS FOR GOOGLE APP ENGINE
The Camel components for Google App Engine (GAE) are part of the camel-
gae project and provide connectivity to GAE's cloud computing services. They
make the GAE cloud computing environment accessible to applications via
Camel interfaces. Following this pattern for other cloud computing
environments could make it easier to port Camel applications from one cloud
computing provider to another. The following table lists the cloud computing
services provided by Google and the supporting Camel components. The
documentation of each component can be found by following the link in the
Camel Component column.
GAE
service

Camel
component Component description

URL fetch
service ghttp Provides connectivity to the GAE URL fetch service but can also be used to receive messages from

servlets.

Task
queueing
service

gtask Supports asynchronous message processing on GAE by using the task queueing service as message
queue.

Mail service gmail Supports sending of emails via the GAE mail service. Receiving mails is not supported yet but will be
added later.

Memcache
service Â Not supported yet.

XMPP service Â Not supported yet.

Images
service Â Not supported yet.

Datastore
service Â Not supported yet.

Accounts
service

gauth
glogin

These components interact with the Google Accounts API for authentication and authorization. Google
Accounts is not specific to Google App Engine but is often used by GAE applications for implementing
security. The gauth component is used by web applications to implement a Google-specific OAuth
consumer. This component can also be used to OAuth-enable non-GAE web applications. The glogin
component is used by Java clients (outside GAE) for programmatic login to GAE applications. For
instructions how to protect GAE applications against unauthorized access refer to the Security for Camel
GAE applications page.

Camel context
Setting up a SpringCamelContext on Google App Engine differs between
Camel 2.1 and higher versions. The problem is that usage of the Camel-
specific Spring configuration XML schema from the
http://camel.apache.org/schema/spring namespace requires JAXB and
Camel 2.1 depends on a Google App Engine SDK version that doesn't support
JAXB yet. This limitation has been removed since Camel 2.2.

JMX must be disabled in any case because the javax.management package
isn't on the App Engine JRE whitelist.

688 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/getting-started.html
http://camel.apache.org/file2.html
http://code.google.com/appengine/
http://code.google.com/appengine/docs/java/apis.html
http://code.google.com/appengine/docs/java/urlfetch/
http://code.google.com/appengine/docs/java/urlfetch/
http://camel.apache.org/ghttp.html
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/taskqueue/
http://code.google.com/appengine/docs/java/taskqueue/
http://camel.apache.org/gtask.html
http://code.google.com/appengine/docs/java/mail/
http://camel.apache.org/gmail.html
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/memcache/
http://code.google.com/appengine/docs/java/xmpp/
http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/images/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/appengine/docs/java/datastore/
http://code.google.com/apis/accounts/
http://code.google.com/apis/accounts/
http://camel.apache.org/gauth.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gauth.html
http://code.google.com/apis/accounts/docs/OAuth.html
http://camel.apache.org/glogin.html
http://camel.apache.org/gsec.html
http://camel.apache.org/gsec.html
http://camel.apache.org/schema/spring

Tutorials
• A good starting point for using Camel on GAE is the Tutorial

for Camel on Google App Engine
• The OAuth tutorial demonstrates how to implement OAuth

in web applications.

Camel 2.1
camel-gae 2.1 comes with the following CamelContext implementations.

• org.apache.camel.component.gae.context.GaeDefaultCamelContext
(extends org.apache.camel.impl.DefaultCamelContext)

• org.apache.camel.component.gae.context.GaeSpringCamelContext
(extends org.apache.camel.spring.SpringCamelContext)

Both disable JMX before startup. The GaeSpringCamelContext additionally
provides setter methods adding route builders as shown in the next example.

Listing 1. appctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

<bean id="camelContext"
class="org.apache.camel.component.gae.context.GaeSpringCamelContext">
<property name="routeBuilder" ref="myRouteBuilder" />

</bean>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">

</bean>

</beans>

Alternatively, use the routeBuilders property of the
GaeSpringCamelContext for setting a list of route builders. Using this
approach, a SpringCamelContext can be configured on GAE without the
need for JAXB.

Camel 2.2 or higher
With Camel 2.2 or higher, applications can use the
http://camel.apache.org/schema/spring namespace for configuring a
SpringCamelContext but still need to disable JMX. Here's an example.

CHAPTER 11 - COMPONENT APPENDIX 689

http://camel.apache.org/schema/spring
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/tutorial-for-camel-on-google-app-engine.html
http://camel.apache.org/tutorial-oauth.html
http://oauth.net/

Listing 1. appctx.xml

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camel:camelContext id="camelContext">
<camel:jmxAgent id="agent" disabled="true" />
<camel:routeBuilder ref="myRouteBuilder"/>

</camel:camelContext>

<bean id="myRouteBuilder"
class="org.example.MyRouteBuilder">

</bean>

</beans>

The web.xml
Running Camel on GAE requires usage of the CamelHttpTransportServlet
from camel-servlet. The following example shows how to configure this
servlet together with a Spring application context XML file.

Listing 1. web.xml

<web-app
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemaLocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">

<servlet>
<servlet-name>CamelServlet</servlet-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>appctx.xml</param-value>

</init-param>
</servlet>

<!--
Mapping used for external requests

-->
<servlet-mapping>

<servlet-name>CamelServlet</servlet-name>

690 CHAPTER 11 - COMPONENT APPENDIX

<url-pattern>/camel/*</url-pattern>
</servlet-mapping>

<!--
Mapping used for web hooks accessed by task queueing service.

-->
<servlet-mapping>

<servlet-name>CamelServlet</servlet-name>
<url-pattern>/worker/*</url-pattern>

</servlet-mapping>

</web-app>

The location of the Spring application context XML file is given by the
contextConfigLocation init parameter. The appctx.xml file must be on the
classpath. The servlet mapping makes the Camel application accessible
under http://<appname>.appspot.com/camel/... when deployed to
Google App Engine where <appname> must be replaced by a real GAE
application name. The second servlet mapping is used internally by the task
queueing service for background processing via web hooks. This mapping is
relevant for the gtask component and is explained there in more detail.

HAZELCAST COMPONENT
Available as of Camel 2.7

The hazelcast: component allows you to work with the Hazelcast
distributed data grid / cache. Hazelcast is a in memory data grid, entirely
written in Java (single jar). It offers a great palette of different data stores like
map, multi map (same key, n values), queue, list and atomic number. The
main reason to use Hazelcast is its simple cluster support. If you have
enabled multicast on your network you can run a cluster with hundred nodes
with no extra configuration. Hazelcast can simply configured to add
additional features like n copies between nodes (default is 1), cache
persistence, network configuration (if needed), near cache, enviction and so
on. For more information consult the Hazelcast documentation on
http://www.hazelcast.com/documentation.jsp.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hazelcast</artifactId>
<version>x.x.x</version>

CHAPTER 11 - COMPONENT APPENDIX 691

http://www.webhooks.org/
http://camel.apache.org/gtask.html
http://www.hazelcast.com
http://www.hazelcast.com/documentation.jsp

<!-- use the same version as your Camel core version -->
</dependency>

URI format

hazelcast:[map | multimap | queue | seda | set | atomicvalue |
instance]:cachename[?options]

Sections
1. Usage of map
2. Usage of multimap
3. Usage of queue
4. Usage of list
5. Usage of seda
6. Usage of atomic number
7. Usage of cluster support (instance)

Usage of Map

map cache producer - to("hazelcast:map:foo")
If you want to store a value in a map you can use the map cache producer.
The map cache producer provides 5 operations (put, get, update, delete,
query). For the first 4 you have to provide the operation inside the
"hazelcast.operation.type" header variable. In Java DSL you can use the
constants from
org.apache.camel.component.hazelcast.HazelcastConstants.

Header Variables for the request message:
Name Type Description

hazelcast.operation.type String valid values are: put, delete, get,
update, query

hazelcast.objectId String
the object id to store / find your
object inside the cache (not
needed for the query operation)

Name Type Description

692 CHAPTER 11 - COMPONENT APPENDIX

You have to use the second prefix to define which type of data store
you want to use.

Header variables have changed in Camel 2.8

CamelHazelcastOperationType String
valid values are: put, delete,
get, update, query [Version
2.8]

CamelHazelcastObjectId String

the object id to store / find
your object inside the cache
(not needed for the query
operation) [Version 2.8]

You can call the samples with:

template.sendBodyAndHeader("direct:[put|get|update|delete|query]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

Sample for put:
Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:put" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

CHAPTER 11 - COMPONENT APPENDIX 693

Sample for get:
Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

Sample for update:
Java DSL:

from("direct:update")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.UPDATE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:update" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>update</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for delete:
Java DSL:

694 CHAPTER 11 - COMPONENT APPENDIX

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:delete" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for query
Java DSL:

from("direct:query")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.QUERY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:query" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>query</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

For the query operation Hazelcast offers a SQL like syntax to query your
distributed map.

String q1 = "bar > 1000";
template.sendBodyAndHeader("direct:query", null, HazelcastConstants.QUERY, q1);

CHAPTER 11 - COMPONENT APPENDIX 695

map cache consumer - from("hazelcast:map:foo")
Hazelcast provides event listeners on their data grid. If you want to be
notified if a cache will be manipulated, you can use the map consumer.
There're 4 events: put, update, delete and envict. The event type will be
stored in the "hazelcast.listener.action" header variable. The map
consumer provides some additional information inside these variables:

Header Variables inside the response message:
Name Type Description
hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String the map consumer sets here
"cachelistener"

hazelcast.listener.action String
type of event - here added,
updated, envicted and
removed

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g.
"foo"

hazelcast.cache.type String the type of the cache - here map

Name Type Description

CamelHazelcastListenerTime Long time of the event in millis
[Version 2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version
2.8]

CamelHazelcastListenerAction String
type of event - here added,
updated, envicted and
removed. [Version 2.8]

CamelHazelcastObjectId String the oid of the object
[Version 2.8]

CamelHazelcastCacheName String the name of the cache - e.g.
"foo" [Version 2.8]

CamelHazelcastCacheType String the type of the cache - here
map [Version 2.8]

The object value will be stored within put and update actions inside the
message body.

Here's a sample:

696 CHAPTER 11 - COMPONENT APPENDIX

Header variables have changed in Camel 2.8

fromF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
.log("...envicted")
.to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.UPDATED))
.log("...updated")
.to("mock:updated")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of Multi Map

multimap cache producer - to("hazelcast:multimap:foo")
A multimap is a cache where you can store n values to one key. The
multimap producer provides 4 operations (put, get, removevalue, delete).

Header Variables for the request message:
Name Type Description

hazelcast.operation.type String valid values are: put, get,
removevalue, delete

hazelcast.objectId String the object id to store / find your
object inside the cache

Name Type Description

CHAPTER 11 - COMPONENT APPENDIX 697

Header variables have changed in Camel 2.8

CamelHazelcastOperationType String
valid values are: put, delete,
get, update, query Available
as of Camel 2.8

CamelHazelcastObjectId String

the object id to store / find
your object inside the cache
(not needed for the query
operation) [Version 2.8]

You can call the samples with:

template.sendBodyAndHeader("direct:[put|get|update|delete|query]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

Sample for put:
Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:put" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for get:
Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))

698 CHAPTER 11 - COMPONENT APPENDIX

.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)

.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

Sample for update:
Java DSL:

from("direct:update")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.UPDATE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:update" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>update</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for delete:
Java DSL:

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX);

CHAPTER 11 - COMPONENT APPENDIX 699

Spring DSL:

<route>
<from uri="direct:delete" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:map:foo" />

</route>

Sample for query
Java DSL:

from("direct:query")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.QUERY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:query" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>query</constant>
</setHeader>
<to uri="hazelcast:map:foo" />
<to uri="seda:out" />

</route>

For the query operation Hazelcast offers a SQL like syntax to query your
distributed map.

String q1 = "bar > 1000";
template.sendBodyAndHeader("direct:query", null, HazelcastConstants.QUERY, q1);

map cache consumer - from("hazelcast:map:foo")
Hazelcast provides event listeners on their data grid. If you want to be
notified if a cache will be manipulated, you can use the map consumer.
There're 4 events: put, update, delete and envict. The event type will be

700 CHAPTER 11 - COMPONENT APPENDIX

stored in the "hazelcast.listener.action" header variable. The map
consumer provides some additional information inside these variables:

Header Variables inside the response message:
Name Type Description
hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String the map consumer sets here
"cachelistener"

hazelcast.listener.action String
type of event - here added,
updated, envicted and
removed

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g.
"foo"

hazelcast.cache.type String the type of the cache - here map

Name Type Description

CamelHazelcastListenerTime Long time of the event in millis
[Version 2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version
2.8]

CamelHazelcastListenerAction String
type of event - here added,
updated, envicted and
removed. [Version 2.8]

CamelHazelcastObjectId String the oid of the object
[Version 2.8]

CamelHazelcastCacheName String the name of the cache - e.g.
"foo" [Version 2.8]

CamelHazelcastCacheType String the type of the cache - here
map [Version 2.8]

The object value will be stored within put and update actions inside the
message body.

Here's a sample:

fromF("hazelcast:%sfoo", HazelcastConstants.MAP_PREFIX)
.log("object...")
.choice()

CHAPTER 11 - COMPONENT APPENDIX 701

Header variables have changed in Camel 2.8

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
.log("...envicted")
.to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.UPDATED))
.log("...updated")
.to("mock:updated")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of Multi Map

multimap cache producer - to("hazelcast:multimap:foo")
A multimap is a cache where you can store n values to one key. The
multimap producer provides 4 operations (put, get, removevalue, delete).

Header Variables for the request message:
Name Type Description

hazelcast.operation.type String valid values are: put, get,
removevalue, delete

hazelcast.objectId String the object id to store / find your
object inside the cache

Name Type Description

CamelHazelcastOperationType String
valid values are: put, get,
removevalue, delete [Version
2.8]

702 CHAPTER 11 - COMPONENT APPENDIX

Header variables have changed in Camel 2.8

CamelHazelcastObjectId String
the object id to store / find
your object inside the cache
[Version 2.8]

Sample for put:
Java DSL:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.to(String.format("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX));

Spring DSL:

<route>
<from uri="direct:put" />
<log message="put.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>put</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

Sample for removevalue:
Java DSL:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX);

Spring DSL:

<route>
<from uri="direct:removevalue" />
<log message="removevalue..."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->

CHAPTER 11 - COMPONENT APPENDIX 703

<setHeader headerName="hazelcast.operation.type">
<constant>removevalue</constant>

</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

To remove a value you have to provide the value you want to remove inside
the message body. If you have a multimap object {key: "4711" values: {
"my-foo", "my-bar"}} you have to put "my-foo" inside the message body
to remove the "my-foo" value.

Sample for get:
Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.to("seda:out");

Spring DSL:

<route>
<from uri="direct:get" />
<log message="get.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />
<to uri="seda:out" />

</route>

Sample for delete:
Java DSL:

from("direct:delete")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DELETE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX);

Spring DSL:

704 CHAPTER 11 - COMPONENT APPENDIX

<route>
<from uri="direct:delete" />
<log message="delete.."/>
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>delete</constant>
</setHeader>
<to uri="hazelcast:multimap:foo" />

</route>

you can call them in your test class with:

template.sendBodyAndHeader("direct:[put|get|removevalue|delete]", "my-foo",
HazelcastConstants.OBJECT_ID, "4711");

multimap cache consumer -
from("hazelcast:multimap:foo")
For the multimap cache this component provides the same listeners /
variables as for the map cache consumer (except the update and enviction
listener). The only difference is the multimap prefix inside the URI. Here is a
sample:

fromF("hazelcast:%sbar", HazelcastConstants.MULTIMAP_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

//.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ENVICTED))
// .log("...envicted")
// .to("mock:envicted")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Header Variables inside the response message:
Name Type Description
hazelcast.listener.time Long time of the event in millis

CHAPTER 11 - COMPONENT APPENDIX 705

hazelcast.listener.type String the map consumer sets here
"cachelistener"

hazelcast.listener.action String type of event - here added and
removed (and soon envicted)

hazelcast.objectId String the oid of the object

hazelcast.cache.name String the name of the cache - e.g.
"foo"

hazelcast.cache.type String the type of the cache - here
multimap

Eviction will be added as feature, soon (this is a Hazelcast issue).
Name Type Description

CamelHazelcastListenerTime Long time of the event in millis
[Version 2.8]

CamelHazelcastListenerType String
the map consumer sets here
"cachelistener" [Version
2.8]

CamelHazelcastListenerAction String
type of event - here added
and removed (and soon
envicted) [Version 2.8]

CamelHazelcastObjectId String the oid of the object
[Version 2.8]

CamelHazelcastCacheName String the name of the cache - e.g.
"foo" [Version 2.8]

CamelHazelcastCacheType String the type of the cache - here
multimap [Version 2.8]

Usage of Queue

Queue producer â€“ to(â€œhazelcast:queue:fooâ€?)
The queue producer provides 6 operations (add, put, poll, peek, offer,
removevalue).

706 CHAPTER 11 - COMPONENT APPENDIX

Header variables have changed in Camel 2.8

Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.ADD_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for put:

from("direct:put")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PUT_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for poll:

from("direct:poll")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.POLL_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for peek:

from("direct:peek")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.PEEK_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Sample for offer:

from("direct:offer")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.OFFER_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

CHAPTER 11 - COMPONENT APPENDIX 707

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.QUEUE_PREFIX);

Queue consumer â€“ from(â€œhazelcast:queue:fooâ€?)
The queue consumer provides 2 operations (add, remove).

fromF("hazelcast:%smm", HazelcastConstants.QUEUE_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of List

List producer â€“ to(â€œhazelcast:list:fooâ€?)
The list producer provides 4 operations (add, set, get, removevalue).

Sample for add:

from("direct:add")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.ADD_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

Sample for get:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))

708 CHAPTER 11 - COMPONENT APPENDIX

.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX)

.to("seda:out");

Sample for setvalue:

from("direct:set")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.SETVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

Sample for removevalue:

from("direct:removevalue")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.REMOVEVALUE_OPERATION))
.toF("hazelcast:%sbar", HazelcastConstants.LIST_PREFIX);

List consumer â€“ from(â€œhazelcast:list:fooâ€?)
The list consumer provides 2 operations (add, remove).

fromF("hazelcast:%smm", HazelcastConstants.LIST_PREFIX)
.log("object...")
.choice()

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.REMOVED))
.log("...removed")
.to("mock:removed")

.otherwise()
.log("fail!");

Usage of SEDA
SEDA component differs from the rest components provided. It implements a
work-queue in order to support asynchronous SEDA architectures, similar to
the core "SEDA" component.

CHAPTER 11 - COMPONENT APPENDIX 709

Please note that set,get and removevalue and not yet supported by
hazelcast, will be added in the future..

SEDA producer â€“ to(â€œhazelcast:seda:fooâ€?)
The SEDA producer provides no operations. You only send data to the
specified queue.

Name default
value Description

transferExchange false

Camel 2.8.0: if set to true the whole
Exchange will be transfered. If header or
body contains not serializable objects, they
will be skipped.

Java DSL :

from("direct:foo")
.to("hazelcast:seda:foo");

Spring DSL :

<route>
<from uri="direct:start" />
<to uri="hazelcast:seda:foo" />

</route>

SEDA consumer â€“ from(â€œhazelcast:seda:fooâ€?)
The SEDA consumer provides no operations. You only retrieve data from the
specified queue.

Name default
value Description

pollInterval 1000 How frequent to poll from the SEDA
queue

concurrentConsumers 1 To use concurrent consumers polling
from the SEDA queue.

710 CHAPTER 11 - COMPONENT APPENDIX

transferExchange false

Camel 2.8.0: if set to true the whole
Exchange will be transfered. If header
or body contains not serializable
objects, they will be skipped.

transacted false

Camel 2.10.4: if set to true then the
consumer runs in transaction mode,
where the messages in the seda queue
will only be removed if the transaction
commits, which happens when the
processing is complete.

Java DSL :

from("hazelcast:seda:foo")
.to("mock:result");

Spring DSL:

<route>
<from uri="hazelcast:seda:foo" />
<to uri="mock:result" />

</route>

Usage of Atomic Number

atomic number producer -
to("hazelcast:atomicnumber:foo")
An atomic number is an object that simply provides a grid wide number
(long). The operations for this producer are setvalue (set the number with a
given value), get, increase (+1), decrease (-1) and destroy.

Header Variables for the request message:
Name Type Description

hazelcast.operation.type String valid values are: setvalue, get,
increase, decrease, destroy

Name Type Description

CHAPTER 11 - COMPONENT APPENDIX 711

There is no consumer for this endpoint!

Header variables have changed in Camel 2.8

CamelHazelcastOperationType String

valid values are: setvalue, get,
increase, decrease, destroy
Available as of Camel
version 2.8

Sample for set:
Java DSL:

from("direct:set")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.SETVALUE_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:set" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>setvalue</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

Provide the value to set inside the message body (here the value is 10):
template.sendBody("direct:set", 10);

Sample for get:
Java DSL:

from("direct:get")
.setHeader(HazelcastConstants.OPERATION, constant(HazelcastConstants.GET_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

712 CHAPTER 11 - COMPONENT APPENDIX

Spring DSL:

<route>
<from uri="direct:get" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>get</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

You can get the number with long body =
template.requestBody("direct:get", null, Long.class);.

Sample for increment:
Java DSL:

from("direct:increment")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.INCREMENT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:increment" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>increment</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

The actual value (after increment) will be provided inside the message body.

Sample for decrement:
Java DSL:

from("direct:decrement")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DECREMENT_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

CHAPTER 11 - COMPONENT APPENDIX 713

<route>
<from uri="direct:decrement" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>decrement</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

The actual value (after decrement) will be provided inside the message body.

Sample for destroy
Java DSL:

from("direct:destroy")
.setHeader(HazelcastConstants.OPERATION,
constant(HazelcastConstants.DESTROY_OPERATION))
.toF("hazelcast:%sfoo", HazelcastConstants.ATOMICNUMBER_PREFIX);

Spring DSL:

<route>
<from uri="direct:destroy" />
<!-- If using version 2.8 and above set headerName to

"CamelHazelcastOperationType" -->
<setHeader headerName="hazelcast.operation.type">

<constant>destroy</constant>
</setHeader>
<to uri="hazelcast:atomicvalue:foo" />

</route>

cluster support

instance consumer - from("hazelcast:instance:foo")
Hazelcast makes sense in one single "server node", but it's extremly
powerful in a clustered environment. The instance consumer fires if a new
cache instance will join or leave the cluster.

Here's a sample:

fromF("hazelcast:%sfoo", HazelcastConstants.INSTANCE_PREFIX)
.log("instance...")
.choice()

714 CHAPTER 11 - COMPONENT APPENDIX

There's a bug inside Hazelcast. So this feature may not work
properly. Will be fixed in 1.9.3.

This endpoint provides no producer!

.when(header(HazelcastConstants.LISTENER_ACTION).isEqualTo(HazelcastConstants.ADDED))
.log("...added")
.to("mock:added")

.otherwise()
.log("...removed")
.to("mock:removed");

Each event provides the following information inside the message header:
Header Variables inside the response message:

Name Type Description
hazelcast.listener.time Long time of the event in millis

hazelcast.listener.type String the map consumer sets here
"instancelistener"

hazelcast.listener.action String type of event - here added or
removed

hazelcast.instance.host String host name of the instance
hazelcast.instance.port Integer port number of the instance

Name Type Description

CamelHazelcastListenerTime Long time of the event in millis
[Version 2.8]

CamelHazelcastListenerType String
the map consumer sets
here "instancelistener"
[Version 2.8]

CamelHazelcastListenerActionn String
type of event - here added
or removed. [Version
2.8]

CamelHazelcastInstanceHost String host name of the instance
[Version 2.8]

CHAPTER 11 - COMPONENT APPENDIX 715

Header variables have changed in Camel 2.8

CamelHazelcastInstancePort Integer port number of the
instance [Version 2.8]

HDFS COMPONENT
Available as of Camel 2.8

The hdfs component enables you to read and write messages from/to an
HDFS file system. HDFS is the distributed file system at the heart of Hadoop.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hdfs</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

hdfs://hostname[:port][/path][?options]

You can append query options to the URI in the following format,
?option=value&option=value&...
The path is treated in the following way:

1. as a consumer, if it's a file, it just reads the file, otherwise if it
represents a directory it scans all the file under the path satisfying
the configured pattern. All the files under that directory must be of
the same type.

2. as a producer, if at least one split strategy is defined, the path is
considered a directory and under that directory the producer creates
a different file per split named seg0, seg1, seg2, etc.

Options

Name Default
Value Description

716 CHAPTER 11 - COMPONENT APPENDIX

http://hadoop.apache.org

overwrite true The file can be overwritten

append false Append to existing file. Notice that not all HDFS file systems support the append option.

bufferSize 4096 The buffer size used by HDFS

replication 3 The HDFS replication factor

blockSize 67108864 The size of the HDFS blocks

fileType NORMAL_FILE It can be SEQUENCE_FILE, MAP_FILE, ARRAY_FILE, or BLOOMMAP_FILE, see Hadoop

fileSystemType HDFS It can be LOCAL for local filesystem

keyType NULL The type for the key in case of sequence or map files. See below.

valueType TEXT The type for the key in case of sequence or map files. See below.

splitStrategy Â A string describing the strategy on how to split the file based on different criteria. See below.

openedSuffix opened When a file is opened for reading/writing the file is renamed with this suffix to avoid to read it during the
writing phase.

readSuffix read Once the file has been read is renamed with this suffix to avoid to read it again.

initialDelay 0 For the consumer, how much to wait (milliseconds) before to start scanning the directory.

delay 0 The interval (milliseconds) between the directory scans.

pattern * The pattern used for scanning the directory

chunkSize 4096 When reading a normal file, this is split into chunks producing a message per chunk.

connectOnStartup true

Camel 2.9.3/2.10.1: Whether to connect to the HDFS file system on starting the producer/consumer. If
false then the connection is created on-demand. Notice that HDFS may take up till 15 minutes to
establish a connection, as it has hardcoded 45 x 20 sec redelivery. By setting this option to false allows
your application to startup, and not block for up till 15 minutes.

KeyType and ValueType
• NULL it means that the key or the value is absent
• BYTE for writing a byte, the java Byte class is mapped into a BYTE
• BYTES for writing a sequence of bytes. It maps the java ByteBuffer

class
• INT for writing java integer
• FLOAT for writing java float
• LONG for writing java long
• DOUBLE for writing java double
• TEXT for writing java strings

BYTES is also used with everything else, for example, in Camel a file is sent
around as an InputStream, int this case is written in a sequence file or a map
file as a sequence of bytes.

Splitting Strategy
In the current version of Hadoop opening a file in append mode is disabled
since it's not enough reliable. So, for the moment, it's only possible to create
new files. The Camel HDFS endpoint tries to solve this problem in this way:

• If the split strategy option has been defined, the actual file name will
become a directory name and a <file name>/seg0 will be initially
created.

• Every time a splitting condition is met a new file is created with name
<original file name>/segN where N is 1, 2, 3, etc.

CHAPTER 11 - COMPONENT APPENDIX 717

The splitStrategy option is defined as a string with the following
syntax:
splitStrategy=<ST>:<value>,<ST>:<value>,*

where <ST> can be:
• BYTES a new file is created, and the old is closed when the number of

written bytes is more than <value>
• MESSAGES a new file is created, and the old is closed when the

number of written messages is more than <value>
• IDLE a new file is created, and the old is closed when no writing

happened in the last <value> milliseconds
for example:

hdfs://localhost/tmp/simple-file?splitStrategy=IDLE:1000,BYTES:5

it means: a new file is created either when it has been idle for more than 1
second or if more than 5 bytes have been written. So, running hadoop fs -
ls /tmp/simple-file you'll find the following files seg0, seg1, seg2, etc

Controlling to close file stream
Available as of Camel 2.10.4

When using the HDFS producer without a split strategy, then the file
output stream is by default closed after the write. However you may want to
keep the stream open, and only explicit close the stream later. For that you
can use the header HdfsConstants.HDFS_CLOSE (value =
"CamelHdfsClose") to control this. Setting this value to a boolean allows you
to explicit control whether the stream should be closed or not.

Notice this does not apply if you use a split strategy, as there is varios
strategy that control when the stream is closed.

Using this component in OSGi
This component is fully functional in an OSGi environment however, it
requires some actions from the user. Hadoop uses the thread context class
loader in order to load resources. Usually, the thread context classloader will
be the bundle class loader of the bundle that contains the routes. So, the
default configuration files need to be visible from the bundle class loader. A
typical way to deal with it is to keep a copy of core-default.xml in your bundle
root. That file can be found in the hadoop-common.jar.

718 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/hdfs.html

HIBERNATE COMPONENT
The hibernate: component allows you to work with databases using
Hibernate as the object relational mapping technology to map POJOs to
database tables. The camel-hibernate library is provided by the Camel
Extra project which hosts all *GPL related components for Camel.

Sending to the endpoint
Sending POJOs to the hibernate endpoint inserts entities into the database.
The body of the message is assumed to be an entity bean that you have
mapped to a relational table using the hibernate .hbm.xml files.

If the body does not contain an entity bean, use a Message Translator in
front of the endpoint to perform the necessary conversion first.

Consuming from the endpoint
Consuming messages removes (or updates) entities in the database. This
allows you to use a database table as a logical queue; consumers take
messages from the queue and then delete/update them to logically remove
them from the queue.

If you do not wish to delete the entity when it has been processed, you
can specify consumeDelete=false on the URI. This will result in the entity
being processed each poll.

If you would rather perform some update on the entity to mark it as
processed (such as to exclude it from a future query) then you can annotate
a method with @Consumed which will be invoked on your entity bean when
the entity bean is consumed.

URI format

hibernate:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified it
is used to help use the type conversion to ensure the body is of the correct
type.

For consuming the entityClassName is mandatory.
You can append query options to the URI in the following format,

?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 719

http://code.google.com/p/camel-extra/
http://code.google.com/p/camel-extra/
http://camel.apache.org/message-translator.html
http://activemq.apache.org/camel/maven/camel-hibernate/apidocs/org/apache/camel/component/hibernate/Consumed.html

Note that Camel also ships with a JPA component. The JPA
component abstracts from the underlying persistence provider and
allows you to work with Hibernate, OpenJPA or EclipseLink.

Options

Name Default
Value Description

entityType entityClassName Is the provided entityClassName from the URI.

consumeDelete true Option for HibernateConsumer only. Specifies whether or not the entity is deleted after it is
consumed.

consumeLockEntity true Option for HibernateConsumer only. Specifies whether or not to use exclusive locking of each
entity while processing the results from the pooling.

flushOnSend true Option for HibernateProducer only. Flushes the EntityManager after the entity bean has been
persisted.

maximumResults -1 Option for HibernateConsumer only. Set the maximum number of results to retrieve on the
Query.

consumer.delay 500 Option for HibernateConsumer only. Delay in millis between each poll.

consumer.initialDelay 1000 Option for HibernateConsumer only. Millis before polling starts.

consumer.userFixedDelay false Option for HibernateConsumer only. Set to true to use fixed delay between polls, otherwise
fixed rate is used. See ScheduledExecutorService in JDK for details.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Hibernate Example

HL7 COMPONENT
The hl7 component is used for working with the HL7 MLLP protocol and HL7
v2 messages using the HAPI library.

This component supports the following:
▪ HL7 MLLP codec for Mina
▪ Agnostic data format using either plain String objects or HAPI HL7

model objects.
▪ Type Converter from/to HAPI and String
▪ HL7 DataFormat using HAPI library
▪ Even more ease-of-use as it's integrated well with the camel-mina

(Camel 2.11: [camel-mina2]) component.
Maven users will need to add the following dependency to their pom.xml for
this component:

720 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/hibernate-example.html
http://www.hl7.org/
http://www.hl7.org/
http://hl7api.sourceforge.net
http://mina.apache.org/
http://camel.apache.org/type-converter.html
http://camel.apache.org/mina.html
http://camel.apache.org/jpa.html
http://camel.apache.org/jpa.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-hl7</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

HL7 MLLP protocol
HL7 is often used with the HL7 MLLP protocol that is a text based TCP socket
based protocol. This component ships with a Mina Codec that conforms to
the MLLP protocol so you can easily expose a HL7 listener that accepts HL7
requests over the TCP transport.

To expose a HL7 listener service we reuse the existing mina/mina2
component where we just use the HL7MLLPCodec as codec.

The HL7 MLLP codec has the following options:
Name Default Value Description
startByte 0x0b The start byte spanning the HL7 payload.

endByte1 0x1c The first end byte spanning the HL7 payload.

endByte2 0x0d The 2nd end byte spanning the HL7 payload.

charset JVM Default The encoding (is a charset name) to use for the codec. If not provided, Camel will use
the JVM default Charset.

convertLFtoCR true (Camel 2.11:false) Will convert \n to \r (0x0d, 13 decimal) as HL7 stipulates \r as segment terminators.
The HAPI library requires the use of \r.

validate true Whether HAPI Parser should validate or not.

parser ca.uhn.hl7v2.parser.PipeParser Camel 2.11: To use a custom parser. Must be of type ca.uhn.hl7v2.parser.Parser.

Exposing a HL7 listener
In our Spring XML file, we configure an endpoint to listen for HL7 requests
using TCP:

<endpoint id="hl7listener"
uri="mina:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

<!-- Camel 2.11: uri="mina2:tcp... -->

Notice that we use TCP on localhost on port 8888. We use sync=true to
indicate that this listener is synchronous and therefore will return a HL7
response to the caller. Then we setup mina to use our HL7 codec with
codec=#hl7codec. Notice that hl7codec is just a Spring bean ID, so we
could have named it mygreatcodecforhl7 or whatever. The codec is also set
up in the Spring XML file:

CHAPTER 11 - COMPONENT APPENDIX 721

http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html
http://docs.oracle.com/javase/6/docs/api/java/nio/charset/Charset.html#defaultCharset()

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
<property name="charset" value="iso-8859-1"/>

</bean>

Above we also configure the charset encoding to use (iso-8859-1).
The endpoint hl7listener can then be used in a route as a consumer, as

this Java DSL example illustrates:

from("hl7listener").to("patientLookupService");

This is a very simple route that will listen for HL7 and route it to a service
named patientLookupService that is also a Spring bean ID we have
configured in the Spring XML as:

<bean id="patientLookupService"
class="com.mycompany.healthcare.service.PatientLookupService"/>

Another powerful feature of Camel is that we can have our business logic in
POJO classes that is not tied to Camel as shown here:

import ca.uhn.hl7v2.HL7Exception;
import ca.uhn.hl7v2.model.Message;
import ca.uhn.hl7v2.model.v24.segment.QRD;

public class PatientLookupService {
public Message lookupPatient(Message input) throws HL7Exception {

QRD qrd = (QRD)input.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

// find patient data based on the patient id and create a HL7 model object
with the response

Message response = ... create and set response data
return response

}

Notice that this class uses just imports from the HAPI library and not from
Camel.

HL7 Model using java.lang.String
The HL7MLLP codec uses plain String as its data format. Camel uses its Type
Converter to convert to/from strings to the HAPI HL7 model objects. However,
you can use plain String objects if you prefer, for instance if you wish to
parse the data yourself.

See samples for such an example.

722 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/type-converter.html
http://camel.apache.org/type-converter.html

HL7v2 Model using HAPI
The HL7v2 model uses Java objects from the HAPI library. Using this library,
we can encode and decode from the EDI format (ER7) that is mostly used
with HL7v2.
With this model you can code with Java objects instead of the EDI based HL7
format that can be hard for humans to read and understand.

The sample below is a request to lookup a patient with the patient ID
0101701234.

MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

Using the HL7 model we can work with the data as a
ca.uhn.hl7v2.model.Message object.
To retrieve the patient ID in the message above, you can do this in Java code:

Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

If you know the message type in advance, you can be more type-safe:

QRY_A19 msg = exchange.getIn().getBody(QRY_A19.class);
String patientId = msg.getQRD().getWhoSubjectFilter(0).getIDNumber().getValue();

Camel has built-in type converters, so when this operation is invoked:

Message msg = exchange.getIn().getBody(Message.class);

Camel will convert the received HL7 data from String to Message. This is
powerful when combined with the HL7 listener, then you as the end-user
don't have to work with byte[], String or any other simple object formats.
You can just use the HAPI HL7v2 model objects.

HL7 DataFormat
The HL7 component ships with a HL7 data format that can be used to format
between String and HL7 model objects.

▪ marshal = from Message to byte stream (can be used when
returning as response using the HL7 MLLP codec)

▪ unmarshal = from byte stream to Message (can be used when
receiving streamed data from the HL7 MLLP

CHAPTER 11 - COMPONENT APPENDIX 723

http://camel.apache.org/hl7.html

To use the data format, simply instantiate an instance and invoke the
marshal or unmarshal operation in the route builder:

DataFormat hl7 = new HL7DataFormat();
...
from("direct:hl7in").marshal(hl7).to("jms:queue:hl7out");

In the sample above, the HL7 is marshalled from a HAPI Message object to a
byte stream and put on a JMS queue.
The next example is the opposite:

DataFormat hl7 = new HL7DataFormat();
...
from("jms:queue:hl7out").unmarshal(hl7).to("patientLookupService");

Here we unmarshal the byte stream into a HAPI Message object that is
passed to our patient lookup service.
Notice there is a shorthand syntax in Camel for well-known data formats that
is commonly used.
Then you don't need to create an instance of the HL7DataFormat object:

from("direct:hl7in").marshal().hl7().to("jms:queue:hl7out");
from("jms:queue:hl7out").unmarshal().hl7().to("patientLookupService");

Message Headers
The unmarshal operation adds these MSH fields as headers on the Camel
message:
Key MSH field Example
CamelHL7SendingApplication MSH-3 MYSERVER

CamelHL7SendingFacility MSH-4 MYSERVERAPP

CamelHL7ReceivingApplication MSH-5 MYCLIENT

CamelHL7ReceivingFacility MSH-6 MYCLIENTAPP

CamelHL7Timestamp MSH-7 20071231235900

CamelHL7Security MSH-8 null

CamelHL7MessageType MSH-9-1 ADT

CamelHL7TriggerEvent MSH-9-2 A01

CamelHL7MessageControl MSH-10 1234

CamelHL7ProcessingId MSH-11 P

CamelHL7VersionId MSH-12 2.4

All headers are String types. If a header value is missing, its value is null.

Options
The HL7 Data Format supports the following options:

724 CHAPTER 11 - COMPONENT APPENDIX

Segment separators
As of Camel 2.11, unmarshal does not automatically fix segment
separators anymore by converting \n to \r. If you
need this conversion,
org.apache.camel.component.hl7.HL7#convertLFToCR provides
a handy Expression for this purpose.

Serializable messages
As of HAPI 2.0 (used by Camel 2.11), the HL7v2 model classes are
fully serializable. So you can put HL7v2 messages directly into a
JMS queue (i.e. without calling marshal() and read them again
directly from the queue (i.e. without calling unmarshal().

Option Default Description

validate true
Whether the HAPI Parser should validate using the default validation rules. Camel
2.11: better use the parser option and initialize the parser with the desired HAPI
ValidationContext

parser ca.uhn.hl7v2.parser.GenericParser Camel 2.11: To use a custom parser. Must be of type ca.uhn.hl7v2.parser.Parser.
Note that GenericParser also allows to parse XML-encoded HL7v2 messages.

Dependencies
To use HL7 in your Camel routes you'll need to add a dependency on camel-
hl7 listed above, which implements this data format.

The HAPI library since Version 0.6 has been split into a base library and
several structure libraries, one for each HL7v2 message version:

• v2.1 structures library
• v2.2 structures library
• v2.3 structures library
• v2.3.1 structures library
• v2.4 structures library
• v2.5 structures library
• v2.5.1 structures library
• v2.6 structures library

By default camel-hl7 only references the HAPI base library. Applications are
responsible for including structure libraries themselves. For example, if a
application works with HL7v2 message versions 2.4 and 2.5 then the
following dependencies must be added:

CHAPTER 11 - COMPONENT APPENDIX 725

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v21
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v22
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v23
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v231
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v24
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v25
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v251
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-structures-v26
http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-base

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v24</artifactId>
<version>1.2</version>
<!-- use the same version as your hapi-base version -->

</dependency>
<dependency>

<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-structures-v25</artifactId>
<version>1.2</version>
<!-- use the same version as your hapi-base version -->

</dependency>

Alternatively, an OSGi bundle containing the base library, all structures
libraries and required dependencies (on the bundle classpath) can be
downloaded from the central Maven repository.

<dependency>
<groupId>ca.uhn.hapi</groupId>
<artifactId>hapi-osgi-base</artifactId>
<version>1.2</version>

</dependency>

Terser language (Camel 2.11)
HAPI provides a Terser class that provides access to fields using a commonly
used terse location specification syntax. The Terser language allows to use
this syntax to extract values from messages and to use them as expressions
and predicates for filtering, content-based routing etc.

Sample:

import static org.apache.camel.component.hl7.HL7.terser;
...

// extract patient ID from field QRD-8 in the QRY_A19 message above and put into
message header

from("direct:test1")
.setHeader("PATIENT_ID",terser("QRD-8(0)-1"))
.to("mock:test1");

// continue processing if extracted field equals a message header
from("direct:test2")

.filter(terser("QRD-8(0)-1")

.isEqualTo(header("PATIENT_ID"))

.to("mock:test2");

726 CHAPTER 11 - COMPONENT APPENDIX

http://repo1.maven.org/maven2/ca/uhn/hapi/hapi-osgi-base
http://hl7api.sourceforge.net
http://hl7api.sourceforge.net/base/apidocs/ca/uhn/hl7v2/util/Terser.html

HL7 Validation predicate (Camel 2.11)
Often it is preferable to parse a HL7v2 message and validate it against a
HAPI ValidationContext in a separate step afterwards.

Sample:

import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;
...

// Use standard or define your own validation rules
ValidationContext defaultContext = new DefaultValidation();

// Throws PredicateValidationException if message does not validate
from("direct:test1").validate(messageConformsTo(defaultContext)).to("mock:test1");

HL7 Acknowledgement expression (Camel 2.11)
A common task in HL7v2 processing is to generate an acknowledgement
message as response to an incoming HL7v2 message, e.g. based on a
validation result. The ack expression lets us accomplish this very elegantly:

import static org.apache.camel.component.hl7.HL7.messageConformsTo;
import static org.apache.camel.component.hl7.HL7.ack;
import ca.uhn.hl7v2.validation.impl.DefaultValidation;
...

// Use standard or define your own validation rules
ValidationContext defaultContext = new DefaultValidation();

from("direct:test1")
.onException(Exception.class)

.handled(true)

.transform(ack()) // auto-generates negative ack because of exception in
Exchange

.end()
.validate(messageConformsTo(defaultContext))
// do something meaningful here
...
// acknowledgement
.transform(ack())

More Samples
In the following example we send a HL7 request to a HL7 listener and
retrieves a response. We use plain String types in this example:

CHAPTER 11 - COMPONENT APPENDIX 727

http://hl7api.sourceforge.net/base/apidocs/ca/uhn/hl7v2/validation/ValidationContext.html

String line1 =
"MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200||QRY^A19|1234|P|2.4";
String line2 = "QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||";

StringBuilder in = new StringBuilder();
in.append(line1);
in.append("\n");
in.append(line2);

String out =
(String)template.requestBody("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec",
in.toString());

In the next sample, we want to route HL7 requests from our HL7 listener to
our business logic. We have our business logic in a plain POJO that we have
registered in the registry as hl7service = for instance using Spring and
letting the bean id = hl7service.

Our business logic is a plain POJO only using the HAPI library so we have
these operations defined:

public class MyHL7BusinessLogic {

// This is a plain POJO that has NO imports whatsoever on Apache Camel.
// its a plain POJO only importing the HAPI library so we can much easier work

with the HL7 format.

public Message handleA19(Message msg) throws Exception {
// here you can have your business logic for A19 messages
assertTrue(msg instanceof QRY_A19);
// just return the same dummy response
return createADR19Message();

}

public Message handleA01(Message msg) throws Exception {
// here you can have your business logic for A01 messages
assertTrue(msg instanceof ADT_A01);
// just return the same dummy response
return createADT01Message();

}
}

Then we set up the Camel routes using the RouteBuilder as follows:

DataFormat hl7 = new HL7DataFormat();
// we setup or HL7 listener on port 8888 (using the hl7codec) and in sync mode so we
can return a response
from("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")

// we use the HL7 data format to unmarshal from HL7 stream to the HAPI Message
model

// this ensures that the camel message has been enriched with hl7 specific

728 CHAPTER 11 - COMPONENT APPENDIX

headers to
// make the routing much easier (see below)
.unmarshal(hl7)
// using choice as the content base router
.choice()

// where we choose that A19 queries invoke the handleA19 method on our
hl7service bean

.when(header("CamelHL7TriggerEvent").isEqualTo("A19"))
.beanRef("hl7service", "handleA19")
.to("mock:a19")

// and A01 should invoke the handleA01 method on our hl7service bean
.when(header("CamelHL7TriggerEvent").isEqualTo("A01")).to("mock:a01")

.beanRef("hl7service", "handleA01")

.to("mock:a19")
// other types should go to mock:unknown
.otherwise()

.to("mock:unknown")
// end choice block
.end()
// marshal response back
.marshal(hl7);

Notice that we use the HL7 DataFormat to enrich our Camel Message with
the MSH fields preconfigured on the Camel Message. This lets us much more
easily define our routes using the fluent builders.
If we do not use the HL7 DataFormat, then we do not gains these headers
and we must resort to a different technique for computing the MSH trigger
event (= what kind of HL7 message it is). This is a big advantage of the HL7
DataFormat over the plain HL7 type converters.

Sample using plain String objects
In this sample we use plain String objects as the data format, that we send,
process and receive. As the sample is part of a unit test, there is some code
for assertions, but you should be able to understand what happens. First we
send the plain string, Hello World, to the HL7MLLPCodec and receive the
response as a plain string, Bye World.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Bye World");

// send plain hello world as String
Object out =
template.requestBody("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec", "Hello
World");

assertMockEndpointsSatisfied();

CHAPTER 11 - COMPONENT APPENDIX 729

// and the response is also just plain String
assertEquals("Bye World", out);

Here we process the incoming data as plain String and send the response
also as plain String:

from("mina2:tcp://127.0.0.1:8888?sync=true&codec=#hl7codec")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
// use plain String as message format
String body = exchange.getIn().getBody(String.class);
assertEquals("Hello World", body);

// return the response as plain string
exchange.getOut().setBody("Bye World");

}
})
.to("mock:result");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

HTTP COMPONENT
The http: component provides HTTP based endpoints for consuming external
HTTP resources (as a client to call external servers using HTTP).

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-http</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

730 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/endpoint.html

URI format

http:hostname[:port][/resourceUri][?param1=value1][¶m2=value2]

Will by default use port 80 for HTTP and 443 for HTTPS.

Examples
Call the url with the body using POST and return response as out message. If
body is null call URL using GET and return response as out message
Java DSL Spring DSL

from("direct:start")
.to("http://myhost/mypath");

<from uri="direct:start"/>
<to uri="http://oldhost"/>

You can override the HTTP endpoint URI by adding a header. Camel will call
the http://newhost. This is very handy for e.g. REST urls.
Java DSL

from("direct:start")
.setHeader(Exchange.HTTP_URI, simple("http://myserver/orders/${header.orderId}"))
.to("http://dummyhost");

URI parameters can either be set directly on the endpoint URI or as a header
Java DSL

from("direct:start")
.to("http://oldhost?order=123&detail=short");

from("direct:start")
.setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
.to("http://oldhost");

Set the HTTP request method to POST
Java DSL Spring DSL

CHAPTER 11 - COMPONENT APPENDIX 731

http://newhost

camel-http vs camel-jetty
You can only produce to endpoints generated by the HTTP
component. Therefore it should never be used as input into your
camel Routes. To bind/expose an HTTP endpoint via a HTTP server
as input to a camel route, you can use the Jetty Component or the
Servlet Component

from("direct:start")
.setHeader(Exchange.HTTP_METHOD,

constant("POST"))
.to("http://www.google.com");

<from uri="direct:start"/>
<setHeader
headerName="CamelHttpMethod">

<constant>POST</constant>
</setHeader>
<to uri="http://www.google.com"/>
<to uri="mock:results"/>

HttpEndpoint Options

Name Default
Value Description

throwExceptionOnFailure true Option to disable throwing the HttpOperationFailedException in case of failed responses from
the remote server. This allows you to get all responses regardles of the HTTP status code.

bridgeEndpoint false

If the option is true , HttpProducer will ignore the Exchange.HTTP_URI header, and use the
endpoint's URI for request. You may also set the throwExcpetionOnFailure to be false to let the
HttpProducer send all the fault response back.
Camel 2.3: If the option is true, HttpProducer and CamelServlet will skip the gzip processing if
the content-encoding is "gzip".

disableStreamCache false
DefaultHttpBinding will copy the request input stream into a stream cache and put it into
message body if this option is false to support read it twice, otherwise DefaultHttpBinding will set
the request input stream direct into the message body.

httpBindingRef null Reference to a org.apache.camel.component.http.HttpBinding in the Registry. From Camel
2.3 onwards prefer to use the httpBinding option.

httpBinding null Reference to a org.apache.camel.component.http.HttpBinding in the Registry.

httpClientConfigurerRef null Reference to a org.apache.camel.component.http.HttpClientConfigurer in the Registry.
From Camel 2.3 onwards prefer to use the httpClientConfigurer option.

httpClientConfigurer null Reference to a org.apache.camel.component.http.HttpClientConfigurer in the Registry.

httpClient.XXX null Setting options on the HttpClientParams. For instance httpClient.soTimeout=5000 will set the
SO_TIMEOUT to 5 seconds.

clientConnectionManager null To use a custom org.apache.http.conn.ClientConnectionManager.

transferException false

Camel 2.6: If enabled and an Exchange failed processing on the consumer side, and if the
caused Exception was send back serialized in the response as a application/x-java-
serialized-object content type (for example using Jetty or SERVLET Camel components). On
the producer side the exception will be deserialized and thrown as is, instead of the
HttpOperationFailedException. The caused exception is required to be serialized.

headerFilterStrategy null Camel 2.11: Reference to a instance of org.apache.camel.spi.HeaderFilterStrategy in the
Registry. It will be used to apply the custom headerFilterStrategy on the new create HttpEndpoint.

urlRewrite null

Camel 2.11: Producer only Refers to a custom
org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you
bridge/proxy endpoints. See more details at UrlRewrite and How to use Camel as a HTTP proxy
between a client and server.

732 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://hc.apache.org/httpclient-3.x/apidocs/org/apache/commons/httpclient/params/HttpClientParams.html
http://camel.apache.org/exchange.html
http://camel.apache.org/jetty.html
http://camel.apache.org/servlet.html
http://camel.apache.org/registry.html
http://camel.apache.org/urlrewrite.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/jetty.html
http://camel.apache.org/servlet.html

Authentication and Proxy
The following authentication options can also be set on the HttpEndpoint:

Name Default
Value Description

authMethod null Authentication method, either as Basic, Digest or NTLM.

authMethodPriority null Priority of authentication methods. Is a list separated with comma. For example: Basic,Digest
to exclude NTLM.

authUsername null Username for authentication

authPassword null Password for authentication

authDomain null Domain for NTML authentication

authHost null Optional host for NTML authentication

proxyHost null The proxy host name

proxyPort null The proxy port number

proxyAuthMethod null Authentication method for proxy, either as Basic, Digest or NTLM.

proxyAuthUsername null Username for proxy authentication

proxyAuthPassword null Password for proxy authentication

proxyAuthDomain null Domain for proxy NTML authentication

proxyAuthHost null Optional host for proxy NTML authentication

When using authentication you must provide the choice of method for the
authMethod or authProxyMethod options.
You can configure the proxy and authentication details on either the
HttpComponent or the HttpEndoint. Values provided on the HttpEndpoint
will take precedence over HttpComponent. Its most likely best to configure
this on the HttpComponent which allows you to do this once.

The HTTP component uses convention over configuration which means
that if you have not explicit set a authMethodPriority then it will fallback
and use the select(ed) authMethod as priority as well. So if you use
authMethod.Basic then the auhtMethodPriority will be Basic only.

HttpComponent Options
Name Default Value Description
httpBinding null To use a custom org.apache.camel.component.http.HttpBinding.

httpClientConfigurer null To use a custom org.apache.camel.component.http.HttpClientConfigurer.

httpConnectionManager null To use a custom org.apache.commons.httpclient.HttpConnectionManager.

httpConfiguration null To use a custom org.apache.camel.component.http.HttpConfiguration

HttpConfiguration contains all the options listed in the table above under
the section HttpConfiguration - Setting Authentication and Proxy.

Message Headers
Name Type Description
Exchange.HTTP_URI String URI to call. Will override existing URI set directly on the endpoint.

Exchange.HTTP_METHOD String HTTP Method / Verb to use (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE)

CHAPTER 11 - COMPONENT APPENDIX 733

http://camel.apache.org/http.html

Exchange.HTTP_PATH String

Request URI's path, the header will be used to build the request URI with the
HTTP_URI. Camel 2.3.0: If the path is start with "/", http producer will try to
find the relative path based on the Exchange.HTTP_BASE_URI header or the
exchange.getFromEndpoint().getEndpointUri();

Exchange.HTTP_QUERY String URI parameters. Will override existing URI parameters set directly on the
endpoint.

Exchange.HTTP_RESPONSE_CODE int The HTTP response code from the external server. Is 200 for OK.

Exchange.HTTP_CHARACTER_ENCODING String Character encoding.

Exchange.CONTENT_TYPE String The HTTP content type. Is set on both the IN and OUT message to provide a
content type, such as text/html.

Exchange.CONTENT_ENCODING String The HTTP content encoding. Is set on both the IN and OUT message to provide
a content encoding, such as gzip.

Exchange.HTTP_SERVLET_REQUEST HttpServletRequest The HttpServletRequest object.

Exchange.HTTP_SERVLET_RESPONSE HttpServletResponse The HttpServletResponse object.

Exchange.HTTP_PROTOCOL_VERSION String
Camel 2.5: You can set the http protocol version with this header, eg. "HTTP/
1.0". If you didn't specify the header, HttpProducer will use the default value
"HTTP/1.1"

The header name above are constants. For the spring DSL you have to use
the value of the constant instead of the name.

Message Body
Camel will store the HTTP response from the external server on the OUT
body. All headers from the IN message will be copied to the OUT message, so
headers are preserved during routing. Additionally Camel will add the HTTP
response headers as well to the OUT message headers.

Response code
Camel will handle according to the HTTP response code:

▪ Response code is in the range 100..299, Camel regards it as a
success response.

▪ Response code is in the range 300..399, Camel regards it as a
redirection response and will throw a
HttpOperationFailedException with the information.

▪ Response code is 400+, Camel regards it as an external server failure
and will throw a HttpOperationFailedException with the
information.

HttpOperationFailedException
This exception contains the following information:

▪ The HTTP status code
▪ The HTTP status line (text of the status code)
▪ Redirect location, if server returned a redirect
▪ Response body as a java.lang.String, if server provided a body as

response

734 CHAPTER 11 - COMPONENT APPENDIX

throwExceptionOnFailure
The option, throwExceptionOnFailure, can be set to false to
prevent the HttpOperationFailedException from being thrown for
failed response codes. This allows you to get any response from the
remote server.
There is a sample below demonstrating this.

Calling using GET or POST
The following algorithm is used to determine if either GET or POST HTTP
method should be used:
1. Use method provided in header.
2. GET if query string is provided in header.
3. GET if endpoint is configured with a query string.
4. POST if there is data to send (body is not null).
5. GET otherwise.

How to get access to HttpServletRequest and HttpServletResponse
You can get access to these two using the Camel type converter system
using

HttpServletRequest request = exchange.getIn().getBody(HttpServletRequest.class);
HttpServletRequest response = exchange.getIn().getBody(HttpServletResponse.class);

Using client timeout - SO_TIMEOUT
See the unit test in this link

MORE EXAMPLES

Configuring a Proxy

Java DSL

from("direct:start")
.to("http://oldhost?proxyHost=www.myproxy.com&proxyPort=80");

CHAPTER 11 - COMPONENT APPENDIX 735

http://svn.apache.org/viewvc?view=rev&revision=781775

There is also support for proxy authentication via the proxyUsername and
proxyPassword options.

Using proxy settings outside of URI
Java DSL Spring DSL

context.getProperties().put("http.proxyHost",
"172.168.18.9");
context.getProperties().put("http.proxyPort"

"8080");

<camelContext>
<properties>

<property
key="http.proxyHost"
value="172.168.18.9"/>

<property
key="http.proxyPort"
value="8080"/>

</properties>
</camelContext>

Options on Endpoint will override options on the context.

Configuring charset
If you are using POST to send data you can configure the charset

setProperty(Exchange.CHARSET_NAME, "iso-8859-1");

Sample with scheduled poll
The sample polls the Google homepage every 10 seconds and write the page
to the file message.html:

from("timer://foo?fixedRate=true&delay=0&period=10000")
.to("http://www.google.com")
.setHeader(FileComponent.HEADER_FILE_NAME, "message.html").to("file:target/

google");

Getting the Response Code
You can get the HTTP response code from the HTTP component by getting
the value from the Out message header with
HttpProducer.HTTP_RESPONSE_CODE.

736 CHAPTER 11 - COMPONENT APPENDIX

Exchange exchange = template.send("http://www.google.com/search", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().setHeader(Exchange.HTTP_QUERY,
constant("hl=en&q=activemq"));

}
});
Message out = exchange.getOut();
int responseCode = out.getHeader(HttpProducer.HTTP_RESPONSE_CODE, Integer.class);

Using throwExceptionOnFailure=false to get any response back
In the route below we want to route a message that we enrich with data
returned from a remote HTTP call. As we want any response from the remote
server, we set the throwExceptionOnFailure option to false so we get any
response in the AggregationStrategy. As the code is based on a unit test
that simulates a HTTP status code 404, there is some assertion code etc.

// We set throwExceptionOnFailure to false to let Camel return any response from the
remove HTTP server without thrown
// HttpOperationFailedException in case of failures.
// This allows us to handle all responses in the aggregation strategy where we can
check the HTTP response code
// and decide what to do. As this is based on an unit test we assert the code is 404
from("direct:start").enrich("http://localhost:{{port}}/
myserver?throwExceptionOnFailure=false&user=Camel", new AggregationStrategy() {

public Exchange aggregate(Exchange original, Exchange resource) {
// get the response code
Integer code = resource.getIn().getHeader(Exchange.HTTP_RESPONSE_CODE,

Integer.class);
assertEquals(404, code.intValue());
return resource;

}
}).to("mock:result");

// this is our jetty server where we simulate the 404
from("jetty://http://localhost:{{port}}/myserver")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getOut().setBody("Page not found");
exchange.getOut().setHeader(Exchange.HTTP_RESPONSE_CODE, 404);

}
});

Disabling Cookies
To disable cookies you can set the HTTP Client to ignore cookies by adding
this URI option:
httpClient.cookiePolicy=ignoreCookies

CHAPTER 11 - COMPONENT APPENDIX 737

http://camel.apache.org/content-enricher.html

Advanced Usage
If you need more control over the HTTP producer you should use the
HttpComponent where you can set various classes to give you custom
behavior.

Setting MaxConnectionsPerHost
The HTTP Component has a
org.apache.commons.httpclient.HttpConnectionManager where you can
configure various global configuration for the given component.
By global, we mean that any endpoint the component creates has the same
shared HttpConnectionManager. So, if we want to set a different value for
the max connection per host, we need to define it on the HTTP component
and not on the endpoint URI that we usually use. So here comes:

First, we define the http component in Spring XML. Yes, we use the same
scheme name, http, because otherwise Camel will auto-discover and create
the component with default settings. What we need is to overrule this so we
can set our options. In the sample below we set the max connection to 5
instead of the default of 2.

<bean id="http" class="org.apache.camel.component.http.HttpComponent">
<property name="camelContext" ref="camel"/>
<property name="httpConnectionManager" ref="myHttpConnectionManager"/>

</bean>

<bean id="myHttpConnectionManager"
class="org.apache.commons.httpclient.MultiThreadedHttpConnectionManager">

<property name="params" ref="myHttpConnectionManagerParams"/>
</bean>

<bean id="myHttpConnectionManagerParams"
class="org.apache.commons.httpclient.params.HttpConnectionManagerParams">

<property name="defaultMaxConnectionsPerHost" value="5"/>
</bean>

And then we can just use it as we normally do in our routes:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring" trace="true">
<route>

<from uri="direct:start"/>
<to uri="http://www.google.com"/>
<to uri="mock:result"/>

</route>
</camelContext>

738 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/http.html

Using preemptive authentication
An end user reported that he had problem with authenticating with HTTPS.
The problem was eventually resolved when he discovered the HTTPS server
did not return a HTTP code 401 Authorization Required. The solution was to
set the following URI option: httpClient.authenticationPreemptive=true

Accepting self signed certificates from remote server
See this link from a mailing list discussion with some code to outline how to
do this with the Apache Commons HTTP API.

Setting up SSL for HTTP Client

Using the JSSE Configuration Utility
As of Camel 2.8, the HTTP4 component supports SSL/TLS configuration
through the Camel JSSE Configuration Utility.Â This utility greatly decreases
the amount of component specific code you need to write and is configurable
at the endpoint and component levels.Â The following examples
demonstrate how to use the utility with the HTTP4 component.

The version of the Apache HTTP client used in this component resolves
SSL/TLS information from a global "protocol" registry.Â This component
provides an implementation,
org.apache.camel.component.http.SSLContextParametersSecureProtocolSocketFactory,
of the HTTP client's protocol socket factory in order to support the use of the
Camel JSSE Configuration utility.Â The following example demonstrates how
to configure the protocol registry and use the registered protocol information
in a route.

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

ProtocolSocketFactory factory =
new SSLContextParametersSecureProtocolSocketFactory(scp);

CHAPTER 11 - COMPONENT APPENDIX 739

http://www.nabble.com/Using-HTTPS-in-camel-http-when-remote-side-has-self-signed-cert-td25916878.html
http://camel.apache.org/camel-configuration-utilities.html

Protocol.registerProtocol("https",
new Protocol(

Â Â Â Â Â Â Â "https",
Â Â Â Â Â Â Â factory,
Â Â Â Â Â Â Â 443));

from("direct:start")
.to("https://mail.google.com/mail/").to("mock:results");

Configuring Apache HTTP Client Directly
Basically camel-http component is built on the top of Apache HTTP client,
and you can implement a custom
org.apache.camel.component.http.HttpClientConfigurer to do some
configuration on the http client if you need full control of it.

However if you just want to specify the keystore and truststore you can do
this with Apache HTTP HttpClientConfigurer, for example:

Protocol authhttps = new Protocol("https", new AuthSSLProtocolSocketFactory(
new URL("file:my.keystore"), "mypassword",
new URL("file:my.truststore"), "mypassword"), 443);

Protocol.registerProtocol("https", authhttps);

And then you need to create a class that implements
HttpClientConfigurer, and registers https protocol providing a keystore or
truststore per example above. Then, from your camel route builder class you
can hook it up like so:

HttpComponent httpComponent = getContext().getComponent("http", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

If you are doing this using the Spring DSL, you can specify your
HttpClientConfigurer using the URI. For example:

<bean id="myHttpClientConfigurer"
class="my.https.HttpClientConfigurer">

</bean>

<to uri="https://myhostname.com:443/
myURL?httpClientConfigurerRef=myHttpClientConfigurer"/>

As long as you implement the HttpClientConfigurer and configure your
keystore and truststore as described above, it will work fine.

740 CHAPTER 11 - COMPONENT APPENDIX

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Jetty

IBATIS
The ibatis: component allows you to query, poll, insert, update and delete
data in a relational database using Apache iBATIS.
Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ibatis</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ibatis:statementName[?options]

Where statementName is the name in the iBATIS XML configuration file
which maps to the query, insert, update or delete operation you wish to
evaluate.

You can append query options to the URI in the following format,
?option=value&option=value&...

This component will by default load the iBatis SqlMapConfig file from the
root of the classpath and expected named as SqlMapConfig.xml.
It uses Spring resource loading so you can define it using classpath, file or
http as prefix to load resources with those schemes.
In Camel 2.2 you can configure this on the iBatisComponent with the
setSqlMapConfig(String) method.

Options
Option Type Default Description

CHAPTER 11 - COMPONENT APPENDIX 741

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jetty.html
http://ibatis.apache.org/

Prefer MyBatis
The Apache iBatis project is no longer active. The project is moved
outside Apache and is now know as the MyBatis project.
Therefore we encourage users to use MyBatis instead. This camel-
ibatis component will be removed in Camel 3.0.

consumer.onConsume String null

Statements to run after consuming. Can be used, for
example, to update rows after they have been
consumed and processed in Camel. See sample later.
Multiple statements can be separated with comma.

consumer.useIterator boolean true
If true each row returned when polling will be
processed individually. If false the entire List of data
is set as the IN body.

consumer.routeEmptyResultSet boolean false Sets whether empty result set should be routed or not.
By default, empty result sets are not routed.

statementType StatementType null

Mandatory to specify for IbatisProducer to control
which iBatis SqlMapClient method to invoke. The
enum values are: QueryForObject, QueryForList,
Insert, Update, Delete.

maxMessagesPerPoll int 0

An integer to define a maximum messages to gather
per poll. By default, no maximum is set. Can be used to
set a limit of e.g. 1000 to avoid when starting up the
server that there are thousands of files. Set a value of
0 or negative to disabled it.

isolation String TRANSACTION_REPEATABLE_READ

Camel 2.9: A String the defines the transaction
isolation level of the will be used. Allowed values are
TRANSACTION_NONE,
TRANSACTION_READ_UNCOMMITTED,
TRANSACTION_READ_COMMITTED,
TRANSACTION_REPEATABLE_READ,
TRANSACTION_SERIALIZABLE

isolation String TRANSACTION_REPEATABLE_READ

Camel 2.9: A String the defines the transaction isolation level of the will be used.
Allowed values are TRANSACTION_NONE, TRANSACTION_READ_UNCOMMITTED,
TRANSACTION_READ_COMMITTED, TRANSACTION_REPEATABLE_READ,
TRANSACTION_SERIALIZABLE

Message Headers
Camel will populate the result message, either IN or OUT with a header with
the operationName used:
Header Type Description
CamelIBatisStatementName String The statementName used (for example: insertAccount).

CamelIBatisResult Object The response returned from iBatis in any of the operations. For instance an INSERT could return the
auto-generated key, or number of rows etc.

Message Body
The response from iBatis will only be set as body if it's a SELECT statement.
That means, for example, for INSERT statements Camel will not replace the
body. This allows you to continue routing and keep the original body. The
response from iBatis is always stored in the header with the key
CamelIBatisResult.

742 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mybatis.html

Samples
For example if you wish to consume beans from a JMS queue and insert them
into a database you could do the following:

from("activemq:queue:newAccount").
to("ibatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Camel
which SqlMapClient operation to invoke.

Where insertAccount is the iBatis ID in the SQL map file:

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterClass="Account">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL

)
values (

#id#, #firstName#, #lastName#, #emailAddress#
)

</insert>

Using StatementType for better control of IBatis
When routing to an iBatis endpoint you want more fine grained control so you
can control whether the SQL statement to be executed is a SELEECT, UPDATE,
DELETE or INSERT etc. So for instance if we want to route to an iBatis
endpoint in which the IN body contains parameters to a SELECT statement
we can do:

from("direct:start")
.to("ibatis:selectAccountById?statementType=QueryForObject")
.to("mock:result");

In the code above we can invoke the iBatis statement selectAccountById
and the IN body should contain the account id we want to retrieve, such as
an Integer type.

We can do the same for some of the other operations, such as
QueryForList:

CHAPTER 11 - COMPONENT APPENDIX 743

from("direct:start")
.to("ibatis:selectAllAccounts?statementType=QueryForList")
.to("mock:result");

And the same for UPDATE, where we can send an Account object as IN body
to iBatis:

from("direct:start")
.to("ibatis:updateAccount?statementType=Update")
.to("mock:result");

Scheduled polling example
Since this component does not support scheduled polling, you need to use
another mechanism for triggering the scheduled polls, such as the Timer or
Quartz components.

In the sample below we poll the database, every 30 seconds using the
Timer component and send the data to the JMS queue:

from("timer://pollTheDatabase?delay=30000").to("ibatis:selectAllAccounts?statementType=QueryForList").to("activemq:queue:allAccounts");

And the iBatis SQL map file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

Using onConsume
This component supports executing statements after data have been
consumed and processed by Camel. This allows you to do post updates in the
database. Notice all statements must be UPDATE statements. Camel supports
executing multiple statements whose name should be separated by comma.

The route below illustrates we execute the consumeAccount statement
data is processed. This allows us to change the status of the row in the
database to processed, so we avoid consuming it twice or more.

from("ibatis:selectUnprocessedAccounts?consumer.onConsume=consumeAccount").to("mock:results");

And the statements in the sqlmap file:

744 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/timer.html

<select id="selectUnprocessedAccounts" resultMap="AccountResult">
select * from ACCOUNT where PROCESSED = false

</select>

<update id="consumeAccount" parameterClass="Account">
update ACCOUNT set PROCESSED = true where ACC_ID = #id#

</update>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ MyBatis

IRC COMPONENT
The irc component implements an IRC (Internet Relay Chat) transport.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-irc</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

irc:nick@host[:port]/#room[?options]
irc:nick@host[:port]?channels=#channel1,#channel2,#channel3[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Description Example Default
Value

CHAPTER 11 - COMPONENT APPENDIX 745

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/mybatis.html
http://en.wikipedia.org/wiki/Internet_Relay_Chat

channels Comma separated list of IRC channels to join. channels=#channel1,#channel2 null

nickname The nickname used in chat. irc:MyNick@irc.server.org#channel or
irc:irc.server.org#channel?nickname=MyUser null

username The IRC server user name. irc:MyUser@irc.server.org#channel or
irc:irc.server.org#channel?username=MyUser

Same as
nickname.

password The IRC server password. password=somepass None

realname The IRC user's actual name. realname=MyName None

colors Whether or not the server supports color codes. true, false true

onReply Whether or not to handle general responses to
commands or informational messages. true, false false

onNick Handle nickname change events. true, false true

onQuit Handle user quit events. true, false true

onJoin Handle user join events. true, false true

onKick Handle kick events. true, false true

onMode Handle mode change events. true, false true

onPart Handle user part events. true, false true

onTopic Handle topic change events. true, false true

onPrivmsg Handle message events. true, false true

trustManager The trust manager used to verify the SSL server's
certificate. trustManager=#referenceToTrustManagerBean

The default
trust
manager,
which
accepts all
certificates,
will be used.

keys

Camel 2.2: Comma separated list of IRC channel keys.
Important to be listed in same order as channels. When
joining multiple channels with only some needing keys
just insert an empty value for that channel.

irc:MyNick@irc.server.org/
#channel?keys=chankey null

sslContextParameters

Camel 2.9: Reference to a
org.apache.camel.util.jsse.SSLContextParameters
in the Registry.Â This reference overrides any
configured SSLContextParameters at the component
level.Â See Using the JSSE Configuration Utility.Â Note
that this setting overrides the trustManager option.

#mySslContextParameters null

SSL Support

Using the JSSE Configuration Utility
As of Camel 2.9, the IRC component supports SSL/TLS configuration through
the Camel JSSE Configuration Utility.Â This utility greatly decreases the
amount of component specific code you need to write and is configurable at
the endpoint and component levels.Â The following examples demonstrate
how to use the utility with the IRC component.

Programmatic configuration of the endpoint

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");

746 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/camel-configuration-utilities.html

TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);

SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);

Registry registry = ...
registry.bind("sslContextParameters", scp);

...

from(...)
.to("ircs://camel-prd-user@server:6669/

#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters");

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:trustManagers>

<camel:keyStore
resource="/users/home/server/truststore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to uri="ircs://camel-prd-user@server:6669/

#camel-test?nickname=camel-prd&password=password&sslContextParameters=#sslContextParameters"/>...

Using the legacy basic configuration options
You can also connect to an SSL enabled IRC server, as follows:

ircs:host[:port]/#room?username=user&password=pass

By default, the IRC transport uses SSLDefaultTrustManager. If you need to
provide your own custom trust manager, use the trustManager parameter
as follows:

ircs:host[:port]/
#room?username=user&password=pass&trustManager=#referenceToMyTrustManagerBean

CHAPTER 11 - COMPONENT APPENDIX 747

http://moepii.sourceforge.net/irclib/javadoc/org/schwering/irc/lib/ssl/SSLDefaultTrustManager.html

Using keys
Available as of Camel 2.2

Some irc rooms requires you to provide a key to be able to join that
channel. The key is just a secret word.

For example we join 3 channels where as only channel 1 and 3 uses a key.

irc:nick@irc.server.org?channels=#chan1,#chan2,#chan3&keys=chan1Key,,chan3key

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JASYPT COMPONENT
Available as of Camel 2.5

Jasypt is a simplified encryption library which makes encryption and
decryption easy. Camel integrates with Jasypt to allow sensitive information
in Properties files to be encrypted. By dropping camel-jasypt on the
classpath those encrypted values will automatic be decrypted on-the-fly by
Camel. This ensures that human eyes can't easily spot sensitive information
such as usernames and passwords.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jasypt</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Tooling
The Jasypt component provides a little command line tooling to encrypt or
decrypt values.

The console output the syntax and which options it provides:

748 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.jasypt.org/
http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html

Apache Camel Jasypt takes the following options

-h or -help = Displays the help screen
-c or -command <command> = Command either encrypt or decrypt
-p or -password <password> = Password to use
-i or -input <input> = Text to encrypt or decrypt
-a or -algorithm <algorithm> = Optional algorithm to use

For example to encrypt the value tiger you run with the following
parameters. In the apache camel kit, you cd into the lib folder and run the
following java cmd, where <CAMEL_HOME> is where you have downloaded
and extract the Camel distribution.

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result

Encrypted text: qaEEacuW7BUti8LcMgyjKw==

This means the encrypted representation qaEEacuW7BUti8LcMgyjKw== can
be decrypted back to tiger if you know the master password which was
secret.
If you run the tool again then the encrypted value will return a different
result. But decrypting the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c decrypt -p secret -i qaEEacuW7BUti8LcMgyjKw==

Which outputs the following result:

Decrypted text: tiger

The idea is then to use those encrypted values in your Properties files. Notice
how the password value is encrypted and the value has the tokens
surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

CHAPTER 11 - COMPONENT APPENDIX 749

http://camel.apache.org/properties.html

Tooling dependencies for Camel 2.5 and 2.6
The tooling requires the following JARs in the classpath, which has been
enlisted in the MANIFEST.MF file of camel-jasypt with optional/ as prefix.
Hence why the java cmd above can pickup the needed JARs from the Apache
Distribution in the optional directory.

jasypt-1.6.jar commons-lang-2.4.jar commons-codec-1.4.jar icu4j-4.0.1.jar

Tooling dependencies for Camel 2.7 or better
Jasypt 1.7 onwards is now fully standalone so no additional JARs is needed.

URI Options
The options below are exclusive for the Jasypt component.

Name Default
Value Type Description

password null String Specifies the master password to use for decrypting. This option is mandatory. See below for
more details.

algorithm null String Name of an optional algorithm to use.

Protecting the master password
The master password used by Jasypt must be provided, so its capable of
decrypting the values. However having this master password out in the
opening may not be an ideal solution. Therefore you could for example
provided it as a JVM system property or as a OS environment setting. If you
decide to do so then the password option supports prefixes which dictates
this. sysenv: means to lookup the OS system environment with the given
key. sys: means to lookup a JVM system property.

For example you could provided the password before you start the
application

$ export CAMEL_ENCRYPTION_PASSWORD=secret

Then start the application, such as running the start script.
When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTION_PASSWORD

750 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jasypt.html
http://camel.apache.org/jasypt.html

Java 1.5 users
The icu4j-4.0.1.jar is only needed when running on JDK 1.5.

This JAR is not distributed by Apache Camel and you have to download it
manually and copy it to the lib/optional directory of the Camel
distribution.
You can download it from Apache Central Maven repo.

The password option is then a matter of defining as follows:
password=sysenv:CAMEL_ENCRYPTION_PASSWORD.

Example with Java DSL
In Java DSL you need to configure Jasypt as a JasyptPropertiesParser
instance and set it on the Properties component as show below:

// create the jasypt properties parser
JasyptPropertiesParser jasypt = new JasyptPropertiesParser();
// and set the master password
jasypt.setPassword("secret");

// create the properties component
PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:org/apache/camel/component/jasypt/myproperties.properties");
// and use the jasypt properties parser so we can decrypt values
pc.setPropertiesParser(jasypt);

// add properties component to camel context
context.addComponent("properties", pc);

The properties file myproperties.properties then contain the encrypted
value, such as shown below. Notice how the password value is encrypted and
the value has the tokens surrounding ENC(value here)

refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

Example with Spring XML
In Spring XML you need to configure the JasyptPropertiesParser which is
shown below. Then the Camel Properties component is told to use jasypt as

CHAPTER 11 - COMPONENT APPENDIX 751

http://camel.apache.org/jasypt.html
http://camel.apache.org/properties.html
http://camel.apache.org/properties.html
http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/

the properties parser, which means Jasypt have its chance to decrypt values
looked up in the properties.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">

<property name="password" value="secret"/>
</bean>

<!-- define the camel properties component -->
<bean id="properties"
class="org.apache.camel.component.properties.PropertiesComponent">

<!-- the properties file is in the classpath -->
<property name="location" value="classpath:org/apache/camel/component/jasypt/

myproperties.properties"/>
<!-- and let it leverage the jasypt parser -->
<property name="propertiesParser" ref="jasypt"/>

</bean>

The Properties component can also be inlined inside the <camelContext> tag
which is shown below. Notice how we use the propertiesParserRef
attribute to refer to Jasypt.

<!-- define the jasypt properties parser with the given password to be used -->
<bean id="jasypt" class="org.apache.camel.component.jasypt.JasyptPropertiesParser">

<!-- password is mandatory, you can prefix it with sysenv: or sys: to indicate it
should use

an OS environment or JVM system property value, so you dont have the master
password defined here -->

<property name="password" value="secret"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define the camel properties placeholder, and let it leverage jasypt -->
<propertyPlaceholder id="properties"

location="classpath:org/apache/camel/component/jasypt/
myproperties.properties"

propertiesParserRef="jasypt"/>
<route>

<from uri="direct:start"/>
<to uri="{{cool.result}}"/>

</route>
</camelContext>

See Also
▪ Security
▪ Properties
▪ Encrypted passwords in ActiveMQ - ActiveMQ has a similar feature as

this camel-jasypt component

752 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jasypt.html
http://camel.apache.org/properties.html
http://camel.apache.org/jasypt.html
http://camel.apache.org/security.html
http://camel.apache.org/properties.html
http://activemq.apache.org/encrypted-passwords.html

JAVASPACE COMPONENT
Available as of Camel 2.1

The javaspace component is a transport for working with any JavaSpace
compliant implementation and this component has been tested with both the
Blitz implementation and the GigaSpace implementation .
This component can be used for sending and receiving any object inheriting
from the Jini net.jini.core.entry.Entry class. It is also possible to pass
the bean ID of a template that can be used for reading/taking the entries
from the space.
This component can be used for sending/receiving any serializable object
acting as a sort of generic transport. The JavaSpace component contains a
special optimization for dealing with the BeanExchange. It can be used to
invoke a POJO remotely, using a JavaSpace as a transport.
This latter feature can provide a simple implementation of the master/worker
pattern, where a POJO provides the business logic for the worker.
Look at the test cases for examples of various use cases for this component.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-javaspace</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

javaspace:jini://host[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

spaceName null Specifies the JavaSpace name.

verb take Specifies the verb for getting JavaSpace entries. The values can be: take or read.

transactional false If true, sending and receiving entries is performed within a transaction.

transactionalTimeout Long.MAX_VALUE Specifies the transaction timeout.

concurrentConsumers 1 Specifies the number of concurrent consumers getting entries from the JavaSpace.

CHAPTER 11 - COMPONENT APPENDIX 753

http://www.dancres.org/blitz/
http://www.gigaspaces.com/

templateId null If present, this option specifies the Spring bean ID of the template to use for reading/taking
entries.

Examples

Sending and Receiving Entries

// sending route
from("direct:input")

.to("javaspace:jini://localhost?spaceName=mySpace");

// receiving Route
from("javaspace:jini://localhost?spaceName=mySpace&templateId=template&verb=take&concurrentConsumers=1")

.to("mock:foo");

In this case the payload can be any object that inherits from the Jini Entry
type.

Sending and receiving serializable objects
Using the preceding routes, it is also possible to send and receive any
serializable object. The JavaSpace component detects that the payload is not
a Jini Entry and then it automatically wraps the payload with a Camel Jini
Entry. In this way, a JavaSpace can be used as a generic transport
mechanism.

Using JavaSpace as a remote invocation transport
The JavaSpace component has been tailored to work in combination with the
Camel bean component. It is therefore possible to call a remote POJO using
JavaSpace as the transport:

// client side
from("direct:input")

.to("javaspace:jini://localhost?spaceName=mySpace");

// server side
from("javaspace:jini://localhost?concurrentConsumers=10&spaceName=mySpace")

.to("mock:foo");

In the code there are two test cases showing how to use a POJO to realize the
master/worker pattern. The idea is to use the POJO to provide the business

754 CHAPTER 11 - COMPONENT APPENDIX

logic and rely on Camel for sending/receiving requests/replies with the proper
correlation.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JBI COMPONENT
The jbi component is implemented by the ServiceMix Camel module and
provides integration with a JBI Normalized Message Router, such as the one
provided by Apache ServiceMix.
The following code:

from("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

Automatically exposes a new endpoint to the bus, where the service QName
is {http://foo.bar.org}MyService and the endpoint name is MyEndpoint
(see URI-format).

When a JBI endpoint appears at the end of a route, for example:

to("jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint")

The messages sent by this producer endpoint are sent to the already
deployed JBI endpoint.

URI format

jbi:service:serviceNamespace[sep]serviceName[?options]
jbi:endpoint:serviceNamespace[sep]serviceName[sep]endpointName[?options]
jbi:name:endpointName[?options]

The separator that should be used in the endpoint URL is:
• / (forward slash), if serviceNamespace starts with http://, or
• : (colon), if serviceNamespace starts with urn:foo:bar.

For more details of valid JBI URIs see the ServiceMix URI Guide.
Using the jbi:service: or jbi:endpoint: URI formats sets the service

QName on the JBI endpoint to the one specified. Otherwise, the default
Camel JBI Service QName is used, which is:

CHAPTER 11 - COMPONENT APPENDIX 755

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/
http://foo.bar.org
http://servicemix.apache.org/uris.html

See below for information about how to use StreamSource types
from ServiceMix in Camel.

{http://activemq.apache.org/camel/schema/jbi}endpoint

You can append query options to the URI in the following format,
?option=value&option=value&...

Examples

jbi:service:http://foo.bar.org/MyService
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint
jbi:endpoint:http://foo.bar.org/MyService/MyEndpoint
jbi:name:cheese

URI options

Name Default value Description

mep
MEP of the
Camel
Exchange

Allows users to override the MEP
set on the Exchange object. Valid
values for this option are in-only,
in-out, robust-in-out and in-
optional-out.

operation

Value of the
jbi.operation
header
property

Specifies the JBI operation for the
MessageExchange. If no value is
supplied, the JBI binding will use
the value of the jbi.operation
header property.

756 CHAPTER 11 - COMPONENT APPENDIX

http://servicemix.apache.org/

serialization basic

Default value (basic) will check if
headers are serializable by looking
at the type, setting this option to
strict will detect objects that can
not be serialized although they
implement the Serializable
interface. Set to nocheck to disable
this check altogether, note that this
should only be used for in-memory
transports like SEDAFlow,
otherwise you can expect to get
NotSerializableException
thrown at runtime.

convertException false

false: send any exceptions thrown
from the Camel route back
unmodified
true: convert all exceptions to a JBI
FaultException (can be used to
avoid non-serializable exceptions
or to implement generic error
handling

Examples

jbi:service:http://foo.bar.org/MyService?mep=in-out (override the MEP, use
InOut JBI MessageExchanges)
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?mep=in (override the MEP, use
InOnly JBI MessageExchanges)
jbi:endpoint:urn:foo:bar:MyService:MyEndpoint?operation={http://www.mycompany.org}AddNumbers
(overide the operation for the JBI Exchange to {http://www.mycompany.org}AddNumbers)

Using Stream bodies
If you are using a stream type as the message body, you should be aware
that a stream is only capable of being read once. So if you enable DEBUG
logging, the body is usually logged and thus read. To deal with this, Camel
has a streamCaching option that can cache the stream, enabling you to read
it multiple times.

from("jbi:endpoint:http://foo.bar.org/MyService/
MyEndpoint").streamCaching().to("xslt:transform.xsl", "bean:doSomething");

CHAPTER 11 - COMPONENT APPENDIX 757

The stream caching is default enabled, so it is not necessary to set the
streamCaching() option.
We store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be
deleted.

Creating a JBI Service Unit
If you have some Camel routes that you want to deploy inside JBI as a
Service Unit, you can use the JBI Service Unit Archetype to create a new
Maven project for the Service Unit.

If you have an existing Maven project that you need to convert into a JBI
Service Unit, you may want to consult ServiceMix Maven JBI Plugins for
further help. The key steps are as follows:

• Create a Spring XML file at src/main/resources/camel-
context.xml to bootstrap your routes inside the JBI Service Unit.

• Change the POM file's packaging to jbi-service-unit.
Your pom.xml should look something like this to enable the jbi-service-
unit packaging:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>myGroupId</groupId>
<artifactId>myArtifactId</artifactId>
<packaging>jbi-service-unit</packaging>
<version>1.0-SNAPSHOT</version>

<name>A Camel based JBI Service Unit</name>

<url>http://www.myorganization.org</url>

<properties>
<camel-version>x.x.x</camel-version>
<servicemix-version>3.3</servicemix-version>

</properties>

<dependencies>
<dependency>

<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-camel</artifactId>
<version>${servicemix-version}</version>

</dependency>

<dependency>

758 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jbi-service-unit-archetype.html
http://servicemix.apache.org/maven-jbi-plugin.html

<groupId>org.apache.servicemix</groupId>
<artifactId>servicemix-core</artifactId>
<version>${servicemix-version}</version>
<scope>provided</scope>

</dependency>
</dependencies>

<build>
<defaultGoal>install</defaultGoal>

<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>

<source>1.5</source>
<target>1.5</target>

</configuration>
</plugin>

<!-- creates the JBI deployment unit -->
<plugin>

<groupId>org.apache.servicemix.tooling</groupId>
<artifactId>jbi-maven-plugin</artifactId>
<version>${servicemix-version}</version>
<extensions>true</extensions>

</plugin>
</plugins>

</build>
</project>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• ServiceMix Camel module
• Using Camel with ServiceMix
• Cookbook on using Camel with ServiceMix

JCR COMPONENT
The jcr component allows you to add/read nodes to/from a JCR compliant
content repository (for example, Apache Jackrabbit) with its producer, or
register an EventListener with the consumer.

Maven users will need to add the following dependency to their pom.xml
for this component:

CHAPTER 11 - COMPONENT APPENDIX 759

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://servicemix.apache.org/servicemix-camel.html
http://servicemix.apache.org/3-beginner-using-apache-camel-inside-servicemix.html
http://servicemix.apache.org/order-file-processing.html
http://jackrabbit.apache.org/

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jcr</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jcr://user:password@repository/path/to/node

Usage
The repository element of the URI is used to look up the JCR Repository
object in the Camel context registry.

Producer
Name Default Value Description
CamelJcrOperation CamelJcrInsert CamelJcrInsert or CamelJcrGetById operation to use

CamelJcrNodeName null Used to determine the node name to use.

When a message is sent to a JCR producer endpoint:
• If the operation is CamelJcrInsert: A new node is created in the

content repository, all the message properties of the IN message are
transformed to JCR Value instances and added to the new node and
the node's UUID is returned in the OUT message.

• If the operation is CamelJcrGetById: A new node is retrieved from the
repository using the message body as node identifier.

Consumer
The consumer will connect to JCR periodically and return a
List<javax.jcr.observation.Event> in the message body.

Name Default
Value Description

eventTypes 0
A combination of one or more event types encoded as a bit mask value such as
javax.jcr.observation.Event.NODE_ADDED, javax.jcr.observation.Event.NODE_REMOVED,
etc.

deep false When it is true, events whose associated parent node is at current path or within its
subgraph are received.

uuids null Only events whose associated parent node has one of the identifiers in the comma
separated uuid list will be received.

760 CHAPTER 11 - COMPONENT APPENDIX

Consumer added
From Camel 2.10 onwards you can use consumer as an
EventListener in JCR or a producer to read a node by identifier.

nodeTypeNames null Only events whose associated parent node has one of the node types (or a subtype of
one of the node types) in this list will be received.

noLocal false If noLocal is true, then events generated by the session through which the listener was
registered are ignored. Otherwise, they are not ignored.

sessionLiveCheckInterval 60000 Interval in milliseconds to wait before each session live checking.

sessionLiveCheckIntervalOnStart 3000 Interval in milliseconds to wait before the first session live checking.

Example
The snippet below creates a node named node under the /home/test node in
the content repository. One additional attribute is added to the node as well:
my.contents.property which will contain the body of the message being
sent.

from("direct:a").setProperty(JcrConstants.JCR_NODE_NAME, constant("node"))
.setProperty("my.contents.property", body())
.to("jcr://user:pass@repository/home/test");

The following code will register an EventListener under the path import-
application/inbox for Event.NODE_ADDED and Event.NODE_REMOVED events
(event types 1 and 2, both masked as 3) and listening deep for all the
children.

<route>
<from uri="jcr://user:pass@repository/import-application/

inbox?eventTypes=3&deep=true" />
<to uri="direct:execute-import-application" />

</route>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

CHAPTER 11 - COMPONENT APPENDIX 761

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

JDBC COMPONENT
The jdbc component enables you to access databases through JDBC, where
SQL queries and operations are sent in the message body. This component
uses the standard JDBC API, unlike the SQL Component component, which
uses spring-jdbc.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jdbc</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jdbc:dataSourceName[?options]

This component only supports producer endpoints.
You can append query options to the URI in the following format,

?option=value&option=value&...

Options

Name Default
Value Description

readSize 0

The default maximum
number of rows that can
be read by a polling
query. The default value
is 0.

762 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/sql-component.html

This component can only be used to define producer endpoints,
which means that you cannot use the JDBC component in a from()
statement.

This component can not be used as a Transactional Client. If you
need transaction support in your route, you should use the SQL
component instead.

statement.<xxx> null

Camel 2.1: Sets
additional options on
the
java.sql.Statement
that is used behind the
scenes to execute the
queries. For instance,
statement.maxRows=10.
For detailed
documentation, see the
java.sql.Statement
javadoc documentation.

useJDBC4ColumnNameAndLabelSemantics true

Camel 2.2: Sets
whether to use JDBC 4/3
column label/name
semantics. You can use
this option to turn it
false in case you have
issues with your JDBC
driver to select data.
This only applies when
using SQL SELECT using
aliases (e.g. SQL
SELECT id as
identifier, name as
given_name from
persons).

CHAPTER 11 - COMPONENT APPENDIX 763

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/sql-component.html
http://camel.apache.org/sql-component.html

resetAutoCommit true

Camel 2.9: Camel will
set the autoCommit on
the JDBC connection to
be false, commit the
change after executed
the statement and reset
the autoCommit flag of
the connection at the
end, if the
resetAutoCommit is
true. If the JDBC
connection doesn't
support to reset the
autoCommit flag, you
can set the
resetAutoCommit flag to
be false, and Camel will
not try to reset the
autoCommit flag.

Result
The result is returned in the OUT body as an ArrayList<HashMap<String,
Object>>. The List object contains the list of rows and the Map objects
contain each row with the String key as the column name.

Note: This component fetches ResultSetMetaData to be able to return
the column name as the key in the Map.

Message Headers
Header Description

CamelJdbcRowCount If the query is a SELECT, query the row
count is returned in this OUT header.

CamelJdbcUpdateCount
If the query is an UPDATE, query the
update count is returned in this OUT
header.

CamelGeneratedKeysRows Camel 2.10: Rows that contains the
generated kets.

764 CHAPTER 11 - COMPONENT APPENDIX

CamelGeneratedKeysRowCount Camel 2.10: The number of rows in the
header that contains generated keys.

Generated keys
Available as of Camel 2.10

If you insert data using SQL INSERT, then the RDBMS may support auto
generated keys. You can instruct the JDBC producer to return the generated
keys in headers.
To do that set the header CamelRetrieveGeneratedKeys=true. Then the
generated keys will be provided as headers with the keys listed in the table
above.

You can see more details in this unit test.

Samples
In the following example, we fetch the rows from the customer table.

First we register our datasource in the Camel registry as testdb:

JndiRegistry reg = super.createRegistry();
reg.bind("testdb", db);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will
be executed. Note how we refer to the testdb datasource that was bound in
the previous step:

// lets add simple route
public void configure() throws Exception {

from("direct:hello").to("jdbc:testdb?readSize=100");
}

Or you can create a DataSource in Spring like this:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- trigger every second -->
<from uri="timer://kickoff?period=1s"/>
<setBody>

<constant>select * from customer</constant>
</setBody>
<to uri="jdbc:testdb"/>
<to uri="mock:result"/>

</route>
</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 765

http://camel.apache.org/jdbc.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jdbc/src/test/java/org/apache/camel/component/jdbc/JdbcGeneratedKeysTest.java

<!-- Just add a demo to show how to bind a date source for camel in Spring-->
<jdbc:embedded-database id="testdb" type="DERBY">

<jdbc:script location="classpath:sql/init.sql"/>
</jdbc:embedded-database>

We create an endpoint, add the SQL query to the body of the IN message,
and then send the exchange. The result of the query is returned in the OUT
body:

// first we create our exchange using the endpoint
Endpoint endpoint = context.getEndpoint("direct:hello");
Exchange exchange = endpoint.createExchange();
// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receives the response from Camel
Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);
assertNotNull(out.getOut());
List<Map<String, Object>> data = out.getOut().getBody(List.class);
assertNotNull(data);
assertEquals(3, data.size());
Map<String, Object> row = data.get(0);
assertEquals("cust1", row.get("ID"));
assertEquals("jstrachan", row.get("NAME"));
row = data.get(1);
assertEquals("cust2", row.get("ID"));
assertEquals("nsandhu", row.get("NAME"));

If you want to work on the rows one by one instead of the entire ResultSet at
once you need to use the Splitter EIP such as:

from("direct:hello")
// here we split the data from the testdb into new messages one by one
// so the mock endpoint will receive a message per row in the table

.to("jdbc:testdb").split(body()).to("mock:result");

Sample - Polling the database every minute
If we want to poll a database using the JDBC component, we need to combine
it with a polling scheduler such as the Timer or Quartz etc. In the following
example, we retrieve data from the database every 60 seconds:

766 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/splitter.html
http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html

from("timer://foo?period=60000").setBody(constant("select * from
customer")).to("jdbc:testdb").to("activemq:queue:customers");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ SQL

JETTY COMPONENT
The jetty component provides HTTP-based endpoints for consuming and
producing HTTP requests. That is, the Jetty component behaves as a simple
Web server.
Jetty can also be used as a http client which mean you can also use it with
Camel as a producer.
Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jetty</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jetty:http://hostname[:port][/resourceUri][?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

sessionSupport false Specifies whether to enable the session manager on the server side of Jetty.

httpClient.XXX null Configuration of Jetty's HttpClient. For example, setting httpClient.idleTimeout=30000 sets the
idle timeout to 30 seconds.

CHAPTER 11 - COMPONENT APPENDIX 767

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/sql.html
http://camel.apache.org/endpoint.html
http://wiki.eclipse.org/Jetty/Tutorial/HttpClient

Stream
Jetty is stream based, which means the input it receives is
submitted to Camel as a stream. That means you will only be able
to read the content of the stream once.
If you find a situation where the message body appears to be
empty or you need to access the data multiple times (eg: doing
multicasting, or redelivery error handling)
you should use Stream caching or convert the message body to a
String which is safe to be re-read multiple times.

httpClient null To use a shared org.eclipse.jetty.client.HttpClient for all producers created by this
endpoint. This option should only be used in special circumstances.

httpClientMinThreads null
Camel 2.11: Producer only: To set a value for minimum number of threads in HttpClient
thread pool. This setting override any setting configured on component level. Notice that both a
min and max size must be configured.

httpClientMaxThreads null
Camel 2.11: Producer only: To set a value for maximum number of threads in HttpClient
thread pool. This setting override any setting configured on component level. Notice that both a
min and max size must be configured.

httpBindingRef null Reference to an org.apache.camel.component.http.HttpBinding in the Registry. HttpBinding
can be used to customize how a response should be written for the consumer.

jettyHttpBindingRef null
Camel 2.6.0+: Reference to an org.apache.camel.component.jetty.JettyHttpBinding in the
Registry. JettyHttpBinding can be used to customize how a response should be written for the
producer.

matchOnUriPrefix false Whether or not the CamelServlet should try to find a target consumer by matching the URI prefix
if no exact match is found. See here How do I let Jetty match wildcards.

handlers null
Specifies a comma-delimited set of org.mortbay.jetty.Handler instances in your Registry
(such as your Spring ApplicationContext). These handlers are added to the Jetty servlet context
(for example, to add security).

chunked true Camel 2.2: If this option is false Jetty servlet will disable the HTTP streaming and set the content-
length header on the response

enableJmx false Camel 2.3: If this option is true, Jetty JMX support will be enabled for this endpoint. See Jetty JMX
support for more details.

disableStreamCache false

Camel 2.3: Determines whether or not the raw input stream from Jetty is cached or not (Camel
will read the stream into a in memory/overflow to file, Stream caching) cache. By default Camel
will cache the Jetty input stream to support reading it multiple times to ensure it Camel can
retrieve all data from the stream. However you can set this option to true when you for example
need to access the raw stream, such as streaming it directly to a file or other persistent store.
DefaultHttpBinding will copy the request input stream into a stream cache and put it into
message body if this option is false to support reading the stream multiple times. If you use Jetty
to bridge/proxy an endpoint then consider enabling this option to improve performance, in case
you do not need to read the message payload multiple times.

bridgeEndpoint false

Camel 2.1: If the option is true , HttpProducer will ignore the Exchange.HTTP_URI header, and
use the endpoint's URI for request. You may also set the throwExceptionOnFailure to be false
to let the HttpProducer send all the fault response back.
Camel 2.3: If the option is true, HttpProducer and CamelServlet will skip the gzip processing if
the content-encoding is "gzip". Also consider setting disableStreamCache to true to optimize
when bridging.

enableMultipartFilter true
Camel 2.5: Whether Jetty org.eclipse.jetty.servlets.MultiPartFilter is enabled or not.
You should set this value to false when bridging endpoints, to ensure multipart requests is
proxied/bridged as well.

multipartFilterRef null Camel 2.6: Allows using a custom multipart filter. Note: setting multipartFilterRef forces the
value of enableMultipartFilter to true.

filtersRef null Camel 2.9: Allows using a custom filters which is putted into a list and can be find in the Registry

continuationTimeout null

Camel 2.6: Allows to set a timeout in millis when using Jetty as consumer (server). By default
Jetty uses 30000. You can use a value of <= 0 to never expire. If a timeout occurs then the
request will be expired and Jetty will return back a http error 503 to the client. This option is only
in use when using Jetty with the Asynchronous Routing Engine.

useContinuation true Camel 2.6: Whether or not to use Jetty continuations for the Jetty Server.

768 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/how-do-i-let-jetty-match-wildcards.html
http://camel.apache.org/registry.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/jetty.html
http://camel.apache.org/registry.html
http://camel.apache.org/jetty.html
http://camel.apache.org/jetty.html
http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations
http://camel.apache.org/stream-caching.html

sslContextParametersRef null
Camel 2.8: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the
Registry.Â This reference overrides any configured SSLContextParameters at the component
level.Â See Using the JSSE Configuration Utility.

traceEnabled false Specifies whether to enable HTTP TRACE for this Jetty consumer. By default TRACE is turned off.

headerFilterStrategy null
Camel 2.11: Reference to a instance of org.apache.camel.spi.HeaderFilterStrategy in the
Registry. It will be used to apply the custom headerFilterStrategy on the new create
HttpJettyEndpoint.

urlRewrite null

Camel 2.11: Producer only Refers to a custom
org.apache.camel.component.http.UrlRewrite which allows you to rewrite urls when you
bridge/proxy endpoints. See more details at UrlRewrite and How to use Camel as a HTTP proxy
between a client and server.

Message Headers
Camel uses the same message headers as the HTTP component.
From Camel 2.2, it also uses (Exchange.HTTP_CHUNKED,CamelHttpChunked)
header to turn on or turn off the chuched encoding on the camel-jetty
consumer.

Camel also populates all request.parameter and request.headers. For
example, given a client request with the URL, http://myserver/
myserver?orderid=123, the exchange will contain a header named orderid
with the value 123.

Starting with Camel 2.2.0, you can get the request.parameter from the
message header not only from Get Method, but also other HTTP method.

Usage
The Jetty component supports both consumer and producer endpoints.
Another option for producing to other HTTP endpoints, is to use the HTTP
Component

Component Options
The JettyHttpComponent provides the following options:

Name Default
Value Description

enableJmx false Camel 2.3: If this option is true, Jetty JMX support will be enabled for this endpoint. See
Jetty JMX support for more details.

sslKeyPassword null Consumer only: The password for the keystore when using SSL.

sslPassword null Consumer only: The password when using SSL.

sslKeystore null Consumer only: The path to the keystore.

minThreads null Camel 2.5 Consumer only: To set a value for minimum number of threads in server
thread pool. Notice that both a min and max size must be configured.

maxThreads null Camel 2.5 Consumer only: To set a value for maximum number of threads in server
thread pool. Notice that both a min and max size must be configured.

threadPool null Camel 2.5 Consumer only: To use a custom thread pool for the server. This option should
only be used in special circumstances.

sslSocketConnectors null Camel 2.3 Consumer only: A map which contains per port number specific SSL
connectors. See section SSL support for more details.

CHAPTER 11 - COMPONENT APPENDIX 769

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/urlrewrite.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/how-to-use-camel-as-a-http-proxy-between-a-client-and-server.html
http://camel.apache.org/http.html
http://myserver/myserver?orderid=123
http://myserver/myserver?orderid=123
http://camel.apache.org/http.html
http://camel.apache.org/http.html

socketConnectors null
Camel 2.5 Consumer only: A map which contains per port number specific HTTP
connectors. Uses the same principle as sslSocketConnectors and therefore see section
SSL support for more details.

sslSocketConnectorProperties null Camel 2.5 Consumer only. A map which contains general SSL connector properties. See
section SSL support for more details.

socketConnectorProperties null
Camel 2.5 Consumer only. A map which contains general HTTP connector properties.
Uses the same principle as sslSocketConnectorProperties and therefore see section SSL
support for more details.

httpClient null
Deprecated: Producer only: To use a custom HttpClient with the jetty producer. This
option is removed from Camel 2.11 onwards, instead you can set the option on the
endpoint instead.

httpClientMinThreads null Producer only: To set a value for minimum number of threads in HttpClient thread pool.
Notice that both a min and max size must be configured.

httpClientMaxThreads null Producer only: To set a value for maximum number of threads in HttpClient thread pool.
Notice that both a min and max size must be configured.

httpClientThreadPool null Deprecated: Producer only: To use a custom thread pool for the client. This option is
removed from Camel 2.11 onwards.

sslContextParameters null Camel 2.8: To configure a custom SSL/TLS configuration options at the component level.Â
SeeÂ Using the JSSE Configuration Utility for more details.

Producer Example
The following is a basic example of how to send an HTTP request to an
existing HTTP endpoint.

in Java DSL

from("direct:start").to("jetty://http://www.google.com");

or in Spring XML

<route>
<from uri="direct:start"/>
<to uri="jetty://http://www.google.com"/>

<route>

Consumer Example
In this sample we define a route that exposes a HTTP service at
http://localhost:8080/myapp/myservice:

from("jetty:http://localhost:{{port}}/myapp/myservice").process(new MyBookService());

Our business logic is implemented in the MyBookService class, which
accesses the HTTP request contents and then returns a response.
Note: The assert call appears in this example, because the code is part of
an unit test.

770 CHAPTER 11 - COMPONENT APPENDIX

http://localhost:8080/myapp/myservice

Usage of localhost
When you specify localhost in a URL, Camel exposes the endpoint
only on the local TCP/IP network interface, so it cannot be accessed
from outside the machine it operates on.

If you need to expose a Jetty endpoint on a specific network interface, the
numerical IP address of this interface should be used as the host. If you
need to expose a Jetty endpoint on all network interfaces, the 0.0.0.0
address should be used.

public class MyBookService implements Processor {
public void process(Exchange exchange) throws Exception {

// just get the body as a string
String body = exchange.getIn().getBody(String.class);

// we have access to the HttpServletRequest here and we can grab it if we
need it

HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
assertNotNull(req);

// for unit testing
assertEquals("bookid=123", body);

// send a html response
exchange.getOut().setBody("<html><body>Book 123 is Camel in

Action</body></html>");
}

}

The following sample shows a content-based route that routes all requests
containing the URI parameter, one, to the endpoint, mock:one, and all others
to mock:other.

from("jetty:" + serverUri)
.choice()
.when().simple("${header.one}").to("mock:one")
.otherwise()
.to("mock:other");

So if a client sends the HTTP request, http://serverUri?one=hello, the
Jetty component will copy the HTTP request parameter, one to the
exchange's in.header. We can then use the simple language to route
exchanges that contain this header to a specific endpoint and all others to
another. If we used a language more powerful than Simple--such as EL or
OGNL--we could also test for the parameter value and do routing based on
the header value as well.

CHAPTER 11 - COMPONENT APPENDIX 771

http://serverUri?one=hello
http://camel.apache.org/simple.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html

Session Support
The session support option, sessionSupport, can be used to enable a
HttpSession object and access the session object while processing the
exchange. For example, the following route enables sessions:

<route>
<from uri="jetty:http://0.0.0.0/myapp/myservice/?sessionSupport=true"/>
<processRef ref="myCode"/>

<route>

The myCode Processor can be instantiated by a Spring bean element:

<bean id="myCode"class="com.mycompany.MyCodeProcessor"/>

Where the processor implementation can access the HttpSession as follows:

public void process(Exchange exchange) throws Exception {
HttpSession session = exchange.getIn(HttpMessage.class).getRequest().getSession();
...

}

SSL Support (HTTPS)

Using the JSSE Configuration Utility
As of Camel 2.8, the Jetty component supports SSL/TLS configuration through
the Camel JSSE Configuration Utility.Â This utility greatly decreases the
amount of component specific code you need to write and is configurable at
the endpoint and component levels.Â The following examples demonstrate
how to use the utility with the Jetty component.

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

772 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/processor.html
http://camel.apache.org/camel-configuration-utilities.html

JettyComponent jettyComponent = getContext().getComponent("jetty",
JettyComponent.class);
jettyComponent.setSslContextParameters(scp);

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to uri="jetty:https://127.0.0.1/mail/

?sslContextParametersRef=sslContextParameters"/>
...

Configuring Jetty Directly
Jetty provides SSL support out of the box. To enable Jetty to run in SSL mode,
simply format the URI with the https:// prefix---for example:

<from uri="jetty:https://0.0.0.0/myapp/myservice/"/>

Jetty also needs to know where to load your keystore from and what
passwords to use in order to load the correct SSL certificate. Set the following
JVM System Properties:

until Camel 2.2
• jetty.ssl.keystore specifies the location of the Java keystore file,

which contains the Jetty server's own X.509 certificate in a key entry.
A key entry stores the X.509 certificate (effectively, the public key)
and also its associated private key.

• jetty.ssl.password the store password, which is required to access
the keystore file (this is the same password that is supplied to the
keystore command's -storepass option).

• jetty.ssl.keypassword the key password, which is used to access
the certificate's key entry in the keystore (this is the same password
that is supplied to the keystore command's -keypass option).

from Camel 2.3 onwards

CHAPTER 11 - COMPONENT APPENDIX 773

• org.eclipse.jetty.ssl.keystore specifies the location of the Java
keystore file, which contains the Jetty server's own X.509 certificate
in a key entry. A key entry stores the X.509 certificate (effectively,
the public key) and also its associated private key.

• org.eclipse.jetty.ssl.password the store password, which is
required to access the keystore file (this is the same password that is
supplied to the keystore command's -storepass option).

• org.eclipse.jetty.ssl.keypassword the key password, which is
used to access the certificate's key entry in the keystore (this is the
same password that is supplied to the keystore command's -
keypass option).

For details of how to configure SSL on a Jetty endpoint, read the following
documentation at the Jetty Site: http://docs.codehaus.org/display/JETTY/
How+to+configure+SSL

Some SSL properties aren't exposed directly by Camel, however Camel
does expose the underlying SslSocketConnector, which will allow you to set
properties like needClientAuth for mutual authentication requiring a client
certificate or wantClientAuth for mutual authentication where a client doesn't
need a certificate but can have one. There's a slight difference between the
various Camel versions:

Up to Camel 2.2

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.mortbay.jetty.security.SslSocketConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

Camel 2.3, 2.4

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.eclipse.jetty.server.ssl.SslSocketConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>

774 CHAPTER 11 - COMPONENT APPENDIX

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

*From Camel 2.5 we switch to use SslSelectChannelConnector *

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectors">

<map>
<entry key="8043">

<bean class="org.eclipse.jetty.server.ssl.SslSelectChannelConnector">
<property name="password"value="..."/>
<property name="keyPassword"value="..."/>
<property name="keystore"value="..."/>
<property name="needClientAuth"value="..."/>
<property name="truststore"value="..."/>

</bean>
</entry>

</map>
</property>

</bean>

The value you use as keys in the above map is the port you configure Jetty to
listen on.

Configuring general SSL properties
Available as of Camel 2.5

Instead of a per port number specific SSL socket connector (as shown
above) you can now configure general properties which applies for all SSL
socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="sslSocketConnectorProperties">

<map>
<entry key="password"value="..."/>
<entry key="keyPassword"value="..."/>
<entry key="keystore"value="..."/>
<entry key="needClientAuth"value="..."/>
<entry key="truststore"value="..."/>

</map>

CHAPTER 11 - COMPONENT APPENDIX 775

</property>
</bean>

How to obtain reference to the X509Certificate
Jetty stores a reference to the certificate in the HttpServletRequest which you
can access from code as follows:

HttpServletRequest req = exchange.getIn().getBody(HttpServletRequest.class);
X509Certificate cert = (X509Certificate)
req.getAttribute("javax.servlet.request.X509Certificate")

Configuring general HTTP properties
Available as of Camel 2.5

Instead of a per port number specific HTTP socket connector (as shown
above) you can now configure general properties which applies for all HTTP
socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
<property name="socketConnectorProperties">

<map>
<entry key="acceptors" value="4"/>
<entry key="maxIdleTime" value="300000"/>

</map>
</property>

</bean>

Default behavior for returning HTTP status codes
The default behavior of HTTP status codes is defined by the
org.apache.camel.component.http.DefaultHttpBinding class, which
handles how a response is written and also sets the HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is
returned.
If the exchange failed with an exception, the 500 HTTP status code is
returned, and the stacktrace is returned in the body. If you want to specify
which HTTP status code to return, set the code in the
HttpProducer.HTTP_RESPONSE_CODE header of the OUT message.

776 CHAPTER 11 - COMPONENT APPENDIX

Customizing HttpBinding
By default, Camel uses the
org.apache.camel.component.http.DefaultHttpBinding to handle how a
response is written. If you like, you can customize this behavior either by
implementing your own HttpBinding class or by extending
DefaultHttpBinding and overriding the appropriate methods.

The following example shows how to customize the DefaultHttpBinding
in order to change how exceptions are returned:

public class MyHttpBinding extends DefaultHttpBinding {
public MyHttpBinding(HttpEndpoint ep) {

super(ep);
}
@Override
public void doWriteExceptionResponse(Throwable exception, HttpServletResponse

response) throws IOException {
// we override the doWriteExceptionResponse as we only want to alter the

binding how exceptions is
// written back to the client.

// we just return HTTP 200 so the client thinks its okay
response.setStatus(200);
// and we return this fixed text
response.getWriter().write("Something went wrong but we dont care");

}
}

We can then create an instance of our binding and register it in the Spring
registry as follows:

<bean id="mybinding"class="com.mycompany.MyHttpBinding"/>

And then we can reference this binding when we define the route:

<route><from uri="jetty:http://0.0.0.0:8080/myapp/
myservice?httpBindingRef=mybinding"/><to uri="bean:doSomething"/></route>

Jetty handlers and security configuration
You can configure a list of Jetty handlers on the endpoint, which can be useful
for enabling advanced Jetty security features. These handlers are configured
in Spring XML as follows:

<-- Jetty Security handling -->
<bean id="userRealm" class="org.mortbay.jetty.plus.jaas.JAASUserRealm">

CHAPTER 11 - COMPONENT APPENDIX 777

<property name="name" value="tracker-users"/>
<property name="loginModuleName" value="ldaploginmodule"/>

</bean>

<bean id="constraint" class="org.mortbay.jetty.security.Constraint">
<property name="name" value="BASIC"/>
<property name="roles" value="tracker-users"/>
<property name="authenticate" value="true"/>

</bean>

<bean id="constraintMapping" class="org.mortbay.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint"/>
<property name="pathSpec" value="/*"/>

</bean>

<bean id="securityHandler" class="org.mortbay.jetty.security.SecurityHandler">
<property name="userRealm" ref="userRealm"/>
<property name="constraintMappings" ref="constraintMapping"/>

</bean>

And from Camel 2.3 onwards you can configure a list of Jetty handlers as
follows:

<-- Jetty Security handling -->
<bean id="constraint" class="org.eclipse.jetty.http.security.Constraint">

<property name="name" value="BASIC"/>
<property name="roles" value="tracker-users"/>
<property name="authenticate" value="true"/>

</bean>

<bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
<property name="constraint" ref="constraint"/>
<property name="pathSpec" value="/*"/>

</bean>

<bean id="securityHandler"
class="org.eclipse.jetty.security.ConstraintSecurityHandler">

<property name="authenticator">
<bean class="org.eclipse.jetty.security.authentication.BasicAuthenticator"/>

</property>
<property name="constraintMappings">

<list>
<ref bean="constraintMapping"/>

</list>
</property>

</bean>

You can then define the endpoint as:

from("jetty:http://0.0.0.0:9080/myservice?handlers=securityHandler")

778 CHAPTER 11 - COMPONENT APPENDIX

If you need more handlers, set the handlers option equal to a comma-
separated list of bean IDs.

How to return a custom HTTP 500 reply message
You may want to return a custom reply message when something goes
wrong, instead of the default reply message Camel Jetty replies with.
You could use a custom HttpBinding to be in control of the message
mapping, but often it may be easier to use Camel's Exception Clause to
construct the custom reply message. For example as show here, where we
return Dude something went wrong with HTTP error code 500:

from("jetty://http://localhost:{{port}}/myserver")
// use onException to catch all exceptions and return a custom reply message
.onException(Exception.class)

.handled(true)
// create a custom failure response
.transform(constant("Dude something went wrong"))
// we must remember to set error code 500 as handled(true)
// otherwise would let Camel thing its a OK response (200)
.setHeader(Exchange.HTTP_RESPONSE_CODE, constant(500))

.end()
// now just force an exception immediately
.throwException(new IllegalArgumentException("I cannot do this"));

Multi-part Form support
From Camel 2.3.0, camel-jetty support to multipart form post out of box. The
submitted form-data are mapped into the message header. Camel-jetty
creates an attachment for each uploaded file. The file name is mapped to the
name of the attachment. The content type is set as the content type of the
attachment file name. You can find the example here.

Listing 1. Note: getName() functions as shown below in versions 2.5 and higher. In
earlier versions you receive the temporary file name for the attachment instead

// Set the jetty temp directory which store the file for multi part form
// camel-jetty will clean up the file after it handled the request.
// The option works rightly from Camel 2.4.0
getContext().getProperties().put("CamelJettyTempDir", "target");

from("jetty://http://localhost:{{port}}/test").process(new Processor() {

public void process(Exchange exchange) throws Exception {
Message in = exchange.getIn();
assertEquals("Get a wrong attachement size", 1, in.getAttachments().size());
// The file name is attachment id
DataHandler data = in.getAttachment("NOTICE.txt");

CHAPTER 11 - COMPONENT APPENDIX 779

http://camel.apache.org/jetty.html
http://camel.apache.org/exception-clause.html

assertNotNull("Should get the DataHandle NOTICE.txt", data);
// This assert is wrong, but the correct content-type (application/

octet-stream)
// will not be returned until Jetty makes it available - currently the

content-type
// returned is just the default for FileDataHandler (for the implentation

being used)
//assertEquals("Get a wrong content type", "text/plain",

data.getContentType());
assertEquals("Got the wrong name", "NOTICE.txt", data.getName());

assertTrue("We should get the data from the DataHandle", data.getDataSource()
.getInputStream().available() > 0);

// The other form date can be get from the message header
exchange.getOut().setBody(in.getHeader("comment"));

}

});

Jetty JMX support
From Camel 2.3.0, camel-jetty supports the enabling of Jetty's JMX
capabilities at the component and endpoint level with the endpoint
configuration taking priority. Note that JMX must be enabled within the Camel
context in order to enable JMX support in this component as the component
provides Jetty with a reference to the MBeanServer registered with the Camel
context. Because the camel-jetty component caches and reuses Jetty
resources for a given protocol/host/port pairing, this configuration option will
only be evaluated during the creation of the first endpoint to use a protocol/
host/port pairing. For example, given two routes created from the following
XML fragments, JMX support would remain enabled for all endpoints listening
on "https://0.0.0.0".

<from uri="jetty:https://0.0.0.0/myapp/myservice1/?enableJmx=true"/>

<from uri="jetty:https://0.0.0.0/myapp/myservice2/?enableJmx=false"/>

The camel-jetty component also provides for direct configuration of the Jetty
MBeanContainer. Jetty creates MBean names dynamically. If you are running
another instance of Jetty outside of the Camel context and sharing the same
MBeanServer between the instances, you can provide both instances with a
reference to the same MBeanContainer in order to avoid name collisions
when registering Jetty MBeans.

780 CHAPTER 11 - COMPONENT APPENDIX

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ HTTP

JING COMPONENT
The Jing component uses the Jing Library to perform XML validation of the
message body using either

• RelaxNG XML Syntax
• RelaxNG Compact Syntax

Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jing</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Note that the MSV component can also support RelaxNG XML syntax.

URI format

rng:someLocalOrRemoteResource
rnc:someLocalOrRemoteResource

Where rng means use the RelaxNG XML Syntax whereas rnc means use
RelaxNG Compact Syntax. The following examples show possible URI values
Example Description
rng:foo/bar.rng References the XML file foo/bar.rng on the classpath
rnc:
http://foo.com/
bar.rnc

References the RelaxNG Compact Syntax file from the
URL, http://foo.com/bar.rnc

You can append query options to the URI in the following format,
?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 781

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/http.html
http://www.thaiopensource.com/relaxng/jing.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://camel.apache.org/msv.html
http://relaxng.org/
http://relaxng.org/compact-tutorial-20030326.html
http://foo.com/bar.rnc
http://foo.com/bar.rnc
http://foo.com/bar.rnc

Options

Option Default Description

useDom false Specifies whether DOMSource/DOMResult or
SaxSource/SaxResult should be used by the validator.

Example
The following example shows how to configure a route from the endpoint
direct:start which then goes to one of two endpoints, either mock:valid or
mock:invalid based on whether or not the XML matches the given RelaxNG
Compact Syntax schema (which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<doTry>

<to uri="rnc:org/apache/camel/component/validator/jing/schema.rnc"/>
<to uri="mock:valid"/>

<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

JMS COMPONENT
The JMS component allows messages to be sent to (or consumed from) a JMS
Queue or Topic. The implementation of the JMS Component uses Spring's JMS
support for declarative transactions, using Spring's JmsTemplate for sending
and a MessageListenerContainer for consuming.

782 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-jing/src/test/resources/org/apache/camel/component/validator/jing/rnc-context.xml
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/compact-tutorial-20030326.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://java.sun.com/products/jms/

Using ActiveMQ
If you are using Apache ActiveMQ, you should prefer the ActiveMQ
component as it has been optimized for ActiveMQ. All of the options
and samples on this page are also valid for the ActiveMQ
component.

Transacted and caching
See section Transactions and Cache Levels below if you are using
transactions with JMS as it can impact performance.

Request/Reply over JMS
Make sure to read the section Request-reply over JMS further below
on this page for important notes about request/reply, as Camel
offers a number of options to configure for performance, and
clustered environments.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jms</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jms:[queue:|topic:]destinationName[?options]

Where destinationName is a JMS queue or topic name. By default, the
destinationName is interpreted as a queue name. For example, to connect
to the queue, FOO.BAR use:

jms:FOO.BAR

CHAPTER 11 - COMPONENT APPENDIX 783

http://activemq.apache.org/
http://camel.apache.org/activemq.html
http://camel.apache.org/activemq.html
http://camel.apache.org/activemq.html
http://camel.apache.org/jms.html

You can include the optional queue: prefix, if you prefer:

jms:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to
connect to the topic, Stocks.Prices, use:

jms:topic:Stocks.Prices

You append query options to the URI using the following format,
?option=value&option=value&...

Notes

Using ActiveMQ
The JMS component reuses Spring 2's JmsTemplate for sending messages.
This is not ideal for use in a non-J2EE container and typically requires some
caching in the JMS provider to avoid poor performance.

If you intend to use Apache ActiveMQ as your Message Broker - which is a
good choice as ActiveMQ rocks , then we recommend that you either:

• Use the ActiveMQ component, which is already optimized to use
ActiveMQ efficiently

• Use the PoolingConnectionFactory in ActiveMQ.

Transactions and Cache Levels

If you are consuming messages and using transactions (transacted=true)
then the default settings for cache level can impact performance.
If you are using XA transactions then you cannot cache as it can cause the
XA transaction to not work properly.

If you are not using XA, then you should consider caching as it speeds up
performance, such as setting cacheLevelName=CACHE_CONSUMER.

Through Camel 2.7.x, the default setting for cacheLevelName is
CACHE_CONSUMER. You will need to explicitly set
cacheLevelName=CACHE_NONE.
In Camel 2.8 onwards, the default setting for cacheLevelName is CACHE_AUTO.
This default auto detects the mode and sets the cache level accordingly to:

▪ CACHE_CONSUMER = if transacted=false
▪ CACHE_NONE = if transacted=true

784 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://camel.apache.org/activemq.html

So you can say the default setting is conservative. Consider using
cacheLevelName=CACHE_CONSUMER if you are using non-XA transactions.

Durable Subscriptions
If you wish to use durable topic subscriptions, you need to specify both
clientId and durableSubscriptionName. The value of the clientId must
be unique and can only be used by a single JMS connection instance in your
entire network. You may prefer to use Virtual Topics instead to avoid this
limitation. More background on durable messaging here.

Message Header Mapping
When using message headers, the JMS specification states that header
names must be valid Java identifiers. So try to name your headers to be valid
Java identifiers. One benefit of doing this is that you can then use your
headers inside a JMS Selector (whose SQL92 syntax mandates Java identifier
syntax for headers).

A simple strategy for mapping header names is used by default. The
strategy is to replace any dots and hyphens in the header name as shown
below and to reverse the replacement when the header name is restored
from a JMS message sent over the wire. What does this mean? No more
losing method names to invoke on a bean component, no more losing the
filename header for the File Component, and so on.

The current header name strategy for accepting header names in Camel is
as follows:

▪ Dots are replaced by _DOT_ and the replacement is reversed when
Camel consume the message

▪ Hyphen is replaced by _HYPHEN_ and the replacement is reversed
when Camel consumes the message

Options
You can configure many different properties on the JMS endpoint which map
to properties on the JMSConfiguration POJO.
The options are divided into two tables, the first one with the most common
options used. The latter contains the rest.

CHAPTER 11 - COMPONENT APPENDIX 785

http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html

Mapping to Spring JMS
Many of these properties map to properties on Spring JMS, which
Camel uses for sending and receiving messages. So you can get
more information about these properties by consulting the relevant
Spring documentation.

Most commonly used options

Option Default
Value Description

clientId null
Sets the JMS client ID to use. Note that this value, if specified, must be unique and can only be
used by a single JMS connection instance. It is typically only required for durable topic
subscriptions. You may prefer to use Virtual Topics instead.

concurrentConsumers 1
Specifies the default number of concurrent consumers. From Camel 2.10.3 onwards this option
can also be used when doing request/reply over JMS. See also the maxMessagesPerTask option to
control dynamic scaling up/down of threads.

disableReplyTo false

If true, a producer will behave like a InOnly exchange with the exception that JMSReplyTo header
is sent out and not be suppressed like in the case of InOnly. Like InOnly the producer will not
wait for a reply. A consumer with this flag will behave like InOnly. This feature can be used to
bridge InOut requests to another queue so that a route on the other queue will send itÂ´s
response directly back to the original JMSReplyTo.

durableSubscriptionName null The durable subscriber name for specifying durable topic subscriptions. The clientId option
must be configured as well.

maxConcurrentConsumers 1
Specifies the maximum number of concurrent consumers. From Camel 2.10.3 onwards this
option can also be used when doing request/reply over JMS. See also the maxMessagesPerTask
option to control dynamic scaling up/down of threads.

maxMessagesPerTask -1
The number of messages per task. -1 is unlimited. If you use a range for concurrent consumers
(eg min < max), then this option can be used to set a value to eg 100 to control how fast the
consumers will shrink when less work is required.

preserveMessageQos false

Set to true, if you want to send message using the QoS settings specified on the message,
instead of the QoS settings on the JMS endpoint. The following three headers are considered
JMSPriority, JMSDeliveryMode, and JMSExpiration. You can provide all or only some of them. If
not provided, Camel will fall back to use the values from the endpoint instead. So, when using
this option, the headers override the values from the endpoint. The explicitQosEnabled option,
by contrast, will only use options set on the endpoint, and not values from the message header.

replyTo null

Provides an explicit ReplyTo destination, which overrides any incoming value of
Message.getJMSReplyTo(). If you do Request Reply over JMS then make sure to read the
section Request-reply over JMS further below for more details, and the replyToType option as
well.

replyToType null

Camel 2.9: Allows for explicitly specifying which kind of strategy to use for replyTo queues when
doing request/reply over JMS. Possible values are: Temporary, Shared, or Exclusive. By default
Camel will use temporary queues. However if replyTo has been configured, then Shared is used
by default. This option allows you to use exclusive queues instead of shared ones. See further
below for more details, and especially the notes about the implications if running in a clustered
environment, and the fact that Shared reply queues has lower performance than its alternatives
Temporary and Exclusive.

requestTimeout 20000
Producer only: The timeout for waiting for a reply when using the InOut Exchange Pattern (in
milliseconds). The default is 20 seconds. See below in section About time to live for more details.
See also the requestTimeoutCheckerInterval option.

selector null
Sets the JMS Selector, which is an SQL 92 predicate that is used to filter messages within the
broker. You may have to encode special characters such as = as %3D Before Camel 2.3.0, we
don't support this option in CamelConsumerTemplate

timeToLive null When sending messages, specifies the time-to-live of the message (in milliseconds). See below in
section About time to live for more details.

transacted false Specifies whether to use transacted mode for sending/receiving messages using the InOnly
Exchange Pattern.

testConnectionOnStartup false

Camel 2.1: Specifies whether to test the connection on startup. This ensures that when Camel
starts that all the JMS consumers have a valid connection to the JMS broker. If a connection
cannot be granted then Camel throws an exception on startup. This ensures that Camel is not
started with failed connections. From Camel 2.8 onwards also the JMS producers is tested as
well.

786 CHAPTER 11 - COMPONENT APPENDIX

http://activemq.apache.org/virtual-destinations.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html

All the other options
Option Default Value Description

acceptMessagesWhileStopping false

Specifies whether the consumer accept messages while it is stopping. You
may consider enabling this option, if you start and stop JMS routes at
runtime, while there are still messages enqued on the queue. If this option is
false, and you stop the JMS route, then messages may be rejected, and the
JMS broker would have to attempt redeliveries, which yet again may be
rejected, and eventually the message may be moved at a dead letter queue
on the JMS broker. To avoid this its recommended to enable this option.

acknowledgementModeName AUTO_ACKNOWLEDGE The JMS acknowledgement name, which is one of: SESSION_TRANSACTED,
CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE

acknowledgementMode -1
The JMS acknowledgement mode defined as an Integer. Allows you to set
vendor-specific extensions to the acknowledgment mode. For the regular
modes, it is preferable to use the acknowledgementModeName instead.

allowNullBody true
Camel 2.9.3/2.10.1: Whether to allow sending messages with no body. If
this option is false and the message body is null, then an JMSException is
thrown.

alwaysCopyMessage false

If true, Camel will always make a JMS message copy of the message when it
is passed to the producer for sending. Copying the message is needed in
some situations, such as when a replyToDestinationSelectorName is set
(incidentally, Camel will set the alwaysCopyMessage option to true, if a
replyToDestinationSelectorName is set)

asyncConsumer false

Camel 2.9: Whether the JmsConsumer processes the Exchange
asynchronously. If enabled then the JmsConsumer may pickup the next
message from the JMS queue, while the previous message is being processed
asynchronously (by the Asynchronous Routing Engine). This means that
messages may be processed not 100% strictly in order. If disabled (as
default) then the Exchange is fully processed before the JmsConsumer will
pickup the next message from the JMS queue. Note if transacted has been
enabled, then asyncConsumer=true does not run asynchronously, as
transactions must be executed synchronously (Camel 3.0 may support async
transactions).

asyncStartListener false

Camel 2.10: Whether to startup the JmsConsumer message listener
asynchronously, when starting a route. For example if a JmsConsumer cannot
get a connection to a remote JMS broker, then it may block while retrying
and/or failover. This will cause Camel to block while starting routes. By
setting this option to true, you will let routes startup, while the JmsConsumer
connects to the JMS broker using a dedicated thread in asynchronous mode.
If this option is used, then beware that if the connection could not be
established, then an exception is logged at WARN level, and the consumer will
not be able to receive messages; You can then restart the route to retry.

asyncStopListener false Camel 2.10: Whether to stop the JmsConsumer message listener
asynchronously, when stopping a route.

autoStartup true Specifies whether the consumer container should auto-startup.

cacheLevelName
CACHE_AUTO (Camel >= 2.8.0)
CACHE_CONSUMER (Camel <=
2.7.1)

Sets the cache level by name for the underlying JMS resources. Possible
values are: CACHE_AUTO, CACHE_CONNECTION, CACHE_CONSUMER, CACHE_NONE,
and CACHE_SESSION. The default setting for Camel 2.8 and newer is
CACHE_AUTO. For Camel 2.7.1 and older the default is CACHE_CONSUMER. See
the Spring documentation and Transactions Cache Levels for more
information.

cacheLevel Â Sets the cache level by ID for the underlying JMS resources. See
cacheLevelName option for more details.

consumerType Default

The consumer type to use, which can be one of: Simple, Default, or Custom.
The consumer type determines which Spring JMS listener to use. Default will
use
org.springframework.jms.listener.DefaultMessageListenerContainer,
Simple will use
org.springframework.jms.listener.SimpleMessageListenerContainer.
When Custom is specified, the MessageListenerContainerFactory defined
by the messageListenerContainerFactoryRef option will determine what
org.springframework.jms.listener.AbstractMessageListenerContainer
to use (new option in Camel 2.10.2 onwards). This option was temporary
removed in Camel 2.7 and 2.8. But has been added back from Camel 2.9
onwards.

connectionFactory null
The default JMS connection factory to use for the
listenerConnectionFactory and templateConnectionFactory, if neither is
specified.

CHAPTER 11 - COMPONENT APPENDIX 787

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/exchange.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/exchange.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

defaultTaskExecutorType (see description)

Camel 2.10.4: Specifies what default TaskExecutor type to use in the
DefaultMessageListenerContainer, for both consumer endpoints and the
ReplyTo consumer of producer endpoints. Possible values: SimpleAsync (uses
Spring's SimpleAsyncTaskExecutor) or ThreadPool (uses Spring's
ThreadPoolTaskExecutor with optimal values - cached threadpool-like). If not
set, it defaults to the previous behaviour, which uses a cached thread pool
for consumer endpoints and SimpleAsync for reply consumers. The use of
ThreadPool is recommended to reduce "thread trash" in elastic
configurations with dynamically increasing and decreasing concurrent
consumers.

deliveryPersistent true Specifies whether persistent delivery is used by default.

destination null Specifies the JMS Destination object to use on this endpoint.

destinationName null Specifies the JMS destination name to use on this endpoint.

destinationResolver null

A pluggable
org.springframework.jms.support.destination.DestinationResolver
that allows you to use your own resolver (for example, to lookup the real
destination in a JNDI registry).

disableTimeToLive false

Camel 2.8: Use this option to force disabling time to live. For example when
you do request/reply over JMS, then Camel will by default use the
requestTimeout value as time to live on the message being sent. The
problem is that the sender and receiver systems have to have their clocks
synchronized, so they are in sync. This is not always so easy to archive. So
you can use disableTimeToLive=true to not set a time to live value on the
sent message. Then the message will not expire on the receiver system. See
below in section About time to live for more details.

eagerLoadingOfProperties false

Enables eager loading of JMS properties as soon as a message is received,
which is generally inefficient, because the JMS properties might not be
required. But this feature can sometimes catch early any issues with the
underlying JMS provider and the use of JMS properties. This feature can also
be used for testing purposes, to ensure JMS properties can be understood
and handled correctly.

exceptionListener null Specifies the JMS Exception Listener that is to be notified of any underlying
JMS exceptions.

errorHandler null

Camel 2.8.2, 2.9: Specifies a org.springframework.util.ErrorHandler
to be invoked in case of any uncaught exceptions thrown while processing a
Message. By default these exceptions will be logged at the WARN level, if no
errorHandler has been configured. From Camel 2.9.1: onwards you can
configure logging level and whether stack traces should be logged using the
below two options. This makes it much easier to configure, than having to
code a custom errorHandler.

errorHandlerLoggingLevel WARN Camel 2.9.1: Allows to configure the default errorHandler logging level for
logging uncaught exceptions.

errorHandlerLogStackTrace true Camel 2.9.1: Allows to control whether stacktraces should be logged or not,
by the default errorHandler.

explicitQosEnabled false

Set if the deliveryMode, priority or timeToLive qualities of service should
be used when sending messages. This option is based on Spring's
JmsTemplate. The deliveryMode, priority and timeToLive options are
applied to the current endpoint. This contrasts with the preserveMessageQos
option, which operates at message granularity, reading QoS properties
exclusively from the Camel In message headers.

exposeListenerSession true Specifies whether the listener session should be exposed when consuming
messages.

forceSendOriginalMessage false

Camel 2.7: When using mapJmsMessage=false Camel will create a new JMS
message to send to a new JMS destination if you touch the headers (get or
set) during the route. Set this option to true to force Camel to send the
original JMS message that was received.

idleTaskExecutionLimit 1

Specifies the limit for idle executions of a receive task, not having received
any message within its execution. If this limit is reached, the task will shut
down and leave receiving to other executing tasks (in the case of dynamic
scheduling; see the maxConcurrentConsumers setting).

idleConsumerLimit 1 Camel 2.8.2, 2.9: Specify the limit for the number of consumers that are
allowed to be idle at any given time.

includeSentJMSMessageID false

Camel 2.10.3: Only applicable when sending to JMS destination using InOnly
(eg fire and forget). Enabling this option will enrich the Camel Exchange with
the actual JMSMessageID that was used by the JMS client when the message
was sent to the JMS destination.

jmsMessageType null

Allows you to force the use of a specific javax.jms.Message implementation
for sending JMS messages. Possible values are: Bytes, Map, Object, Stream,
Text. By default, Camel would determine which JMS message type to use
from the In body type. This option allows you to specify it.

788 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/core/task/SimpleAsyncTaskExecutor.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/concurrent/ThreadPoolTaskExecutor.html
http://camel.apache.org/exchange.html

jmsKeyFormatStrategy default

Pluggable strategy for encoding and decoding JMS keys so they can be
compliant with the JMS specification. Camel provides two implementations
out of the box: default and passthrough. The default strategy will safely
marshal dots and hyphens (. and -). The passthrough strategy leaves the
key as is. Can be used for JMS brokers which do not care whether JMS header
keys contain illegal characters. You can provide your own implementation of
the org.apache.camel.component.jms.JmsKeyFormatStrategy and refer to
it using the # notation.

jmsOperations null

Allows you to use your own implementation of the
org.springframework.jms.core.JmsOperations interface. Camel uses
JmsTemplate as default. Can be used for testing purpose, but not used much
as stated in the spring API docs.

lazyCreateTransactionManager true If true, Camel will create a JmsTransactionManager, if there is no
transactionManager injected when option transacted=true.

listenerConnectionFactory null The JMS connection factory used for consuming messages.

mapJmsMessage true
Specifies whether Camel should auto map the received JMS message to an
appropiate payload type, such as javax.jms.TextMessage to a String etc.
See section about how mapping works below for more details.

maximumBrowseSize -1 Limits the number of messages fetched at most, when browsing endpoints
using Browse or JMX API.

messageConverter null
To use a custom Spring
org.springframework.jms.support.converter.MessageConverter so you
can be 100% in control how to map to/from a javax.jms.Message.

messageIdEnabled true When sending, specifies whether message IDs should be added.

messageListenerContainerFactoryRef null

Camel 2.10.2: Registry ID of the MessageListenerContainerFactory used
to determine what
org.springframework.jms.listener.AbstractMessageListenerContainer
to use to consume messages. Setting this will automatically set
consumerType to Custom.

messageTimestampEnabled true Specifies whether timestamps should be enabled by default on sending
messages.

password null The password for the connector factory.

priority 4
Values greater than 1 specify the message priority when sending (where 0 is
the lowest priority and 9 is the highest). The explicitQosEnabled option
must also be enabled in order for this option to have any effect.

pubSubNoLocal false Specifies whether to inhibit the delivery of messages published by its own
connection.

receiveTimeout None The timeout for receiving messages (in milliseconds).

recoveryInterval 5000 Specifies the interval between recovery attempts, i.e. when a connection is
being refreshed, in milliseconds. The default is 5000 ms, that is, 5 seconds.

replyToCacheLevelName CACHE_CONSUMER

Camel 2.9.1: Sets the cache level by name for the reply consumer when
doing request/reply over JMS. This option only applies when using fixed reply
queues (not temporary). Camel will by default use: CACHE_CONSUMER for
exclusive or shared w/ replyToSelectorName. And CACHE_SESSION for shared
without replyToSelectorName. Some JMS brokers such as IBM WebSphere
may require to set the replyToCacheLevelName=CACHE_NONE to work.

replyToDestinationSelectorName null
Sets the JMS Selector using the fixed name to be used so you can filter out
your own replies from the others when using a shared queue (that is, if you
are not using a temporary reply queue).

replyToDeliveryPersistent true Specifies whether to use persistent delivery by default for replies.

requestTimeoutCheckerInterval 1000

Camel 2.9.2: Configures how often Camel should check for timed out
Exchanges when doing request/reply over JMS.By default Camel checks once
per second. But if you must react faster when a timeout occurs, then you can
lower this interval, to check more frequently. The timeout is determined by
the option requestTimeout.

subscriptionDurable false @deprecated: Enabled by default, if you specify a durableSubscriberName
and a clientId.

taskExecutor null Allows you to specify a custom task executor for consuming messages.

taskExecutorSpring2 null Camel 2.6: To use when using Spring 2.x with Camel. Allows you to specify a
custom task executor for consuming messages.

templateConnectionFactory null The JMS connection factory used for sending messages.

transactedInOut false
@deprecated: Specifies whether to use transacted mode for sending
messages using the InOut Exchange Pattern. Applies only to producer
endpoints. See section Enabling Transacted Consumption for more details.

transactionManager null The Spring transaction manager to use.

transactionName "JmsConsumer[destinationName]" The name of the transaction to use.

CHAPTER 11 - COMPONENT APPENDIX 789

http://camel.apache.org/browse.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html

transactionTimeout null The timeout value of the transaction (in seconds), if using transacted mode.

transferException false

If enabled and you are using Request Reply messaging (InOut) and an
Exchange failed on the consumer side, then the caused Exception will be
send back in response as a javax.jms.ObjectMessage. If the client is Camel,
the returned Exception is rethrown. This allows you to use Camel JMS as a
bridge in your routing - for example, using persistent queues to enable robust
routing. Notice that if you also have transferExchange enabled, this option
takes precedence. The caught exception is required to be serializable. The
original Exception on the consumer side can be wrapped in an outer
exception such as org.apache.camel.RuntimeCamelException when
returned to the producer.

transferExchange false

You can transfer the exchange over the wire instead of just the body and
headers. The following fields are transferred: In body, Out body, Fault body,
In headers, Out headers, Fault headers, exchange properties, exchange
exception. This requires that the objects are serializable. Camel will exclude
any non-serializable objects and log it at WARN level. You must enable this
option on both the producer and consumer side, so Camel knows the
payloads is an Exchange and not a regular payload.

username null The username for the connector factory.

useMessageIDAsCorrelationID false Specifies whether JMSMessageID should always be used as
JMSCorrelationID for InOut messages.

useVersion102 false @deprecated (removed from Camel 2.5 onwards): Specifies whether
the old JMS API should be used.

Message Mapping between JMS and Camel
Camel automatically maps messages between javax.jms.Message and
org.apache.camel.Message.

When sending a JMS message, Camel converts the message body to the
following JMS message types:
Body Type JMS Message Comment
String javax.jms.TextMessage Â

org.w3c.dom.Node javax.jms.TextMessage The DOM will be converted to String.

Map javax.jms.MapMessage Â

java.io.Serializable javax.jms.ObjectMessage Â

byte[] javax.jms.BytesMessage Â

java.io.File javax.jms.BytesMessage Â

java.io.Reader javax.jms.BytesMessage Â

java.io.InputStream javax.jms.BytesMessage Â

java.nio.ByteBuffer javax.jms.BytesMessage Â

When receiving a JMS message, Camel converts the JMS message to the
following body type:
JMS Message Body Type
javax.jms.TextMessage String

javax.jms.BytesMessage byte[]

javax.jms.MapMessage Map<String, Object>

javax.jms.ObjectMessage Object

Disabling auto-mapping of JMS messages
You can use the mapJmsMessage option to disable the auto-mapping above. If
disabled, Camel will not try to map the received JMS message, but instead
uses it directly as the payload. This allows you to avoid the overhead of

790 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html
http://camel.apache.org/jms.html

mapping and let Camel just pass through the JMS message. For instance, it
even allows you to route javax.jms.ObjectMessage JMS messages with
classes you do not have on the classpath.

Using a custom MessageConverter
You can use the messageConverter option to do the mapping yourself in a
Spring org.springframework.jms.support.converter.MessageConverter
class.

For example, in the route below we use a custom message converter when
sending a message to the JMS order queue:

from("file://inbox/
order").to("jms:queue:order?messageConverter=#myMessageConverter");

You can also use a custom message converter when consuming from a JMS
destination.

Controlling the mapping strategy selected
You can use the jmsMessageType option on the endpoint URL to force a
specific message type for all messages.
In the route below, we poll files from a folder and send them as
javax.jms.TextMessage as we have forced the JMS producer endpoint to
use text messages:

from("file://inbox/order").to("jms:queue:order?jmsMessageType=Text");

You can also specify the message type to use for each messabe by setting
the header with the key CamelJmsMessageType. For example:

from("file://inbox/order").setHeader("CamelJmsMessageType",
JmsMessageType.Text).to("jms:queue:order");

The possible values are defined in the enum class,
org.apache.camel.jms.JmsMessageType.

Message format when sending
The exchange that is sent over the JMS wire must conform to the JMS
Message spec.

CHAPTER 11 - COMPONENT APPENDIX 791

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

For the exchange.in.header the following rules apply for the header
keys:

▪ Keys starting with JMS or JMSX are reserved.
▪ exchange.in.headers keys must be literals and all be valid Java

identifiers (do not use dots in the key name).
▪ Camel replaces dots & hyphens and the reverse when when

consuming JMS messages:
. is replaced by _DOT_ and the reverse replacement when Camel
consumes the message.
- is replaced by _HYPHEN_ and the reverse replacement when Camel
consumes the message.

▪ See also the option jmsKeyFormatStrategy, which allows use of your
own custom strategy for formatting keys.

For the exchange.in.header, the following rules apply for the header
values:

▪ The values must be primitives or their counter objects (such as
Integer, Long, Character). The types, String, CharSequence, Date,
BigDecimal and BigInteger are all converted to their toString()
representation. All other types are dropped.

Camel will log with category
org.apache.camel.component.jms.JmsBinding at DEBUG level if it drops a
given header value. For example:

2008-07-09 06:43:04,046 [main] DEBUG JmsBinding
- Ignoring non primitive header: order of class:

org.apache.camel.component.jms.issues.DummyOrder with value: DummyOrder{orderId=333,
itemId=4444, quantity=2}

Message format when receiving
Camel adds the following properties to the Exchange when it receives a
message:
Property Type Description
org.apache.camel.jms.replyDestination javax.jms.Destination The reply destination.

Camel adds the following JMS properties to the In message headers when it
receives a JMS message:
Header Type Description
JMSCorrelationID String The JMS correlation ID.

JMSDeliveryMode int The JMS delivery mode.

JMSDestination javax.jms.Destination The JMS destination.

JMSExpiration long The JMS expiration.

JMSMessageID String The JMS unique message ID.

JMSPriority int The JMS priority (with 0 as the lowest priority and 9 as the highest).

JMSRedelivered boolean Is the JMS message redelivered.

792 CHAPTER 11 - COMPONENT APPENDIX

JMSReplyTo javax.jms.Destination The JMS reply-to destination.

JMSTimestamp long The JMS timestamp.

JMSType String The JMS type.

JMSXGroupID String The JMS group ID.

As all the above information is standard JMS you can check the JMS
documentation for further details.

About using Camel to send and receive messages and JMSReplyTo
The JMS component is complex and you have to pay close attention to how it
works in some cases. So this is a short summary of some of the areas/pitfalls
to look for.

When Camel sends a message using its JMSProducer, it checks the
following conditions:

▪ The message exchange pattern,
▪ Whether a JMSReplyTo was set in the endpoint or in the message

headers,
▪ Whether any of the following options have been set on the JMS

endpoint: disableReplyTo, preserveMessageQos,
explicitQosEnabled.

All this can be a tad complex to understand and configure to support your
use case.

JmsProducer
The JmsProducer behaves as follows, depending on configuration:
Exchange
Pattern

Other
options Description

InOut - Camel will expect a reply, set a temporary JMSReplyTo, and after sending the message, it will start to
listen for the reply message on the temporary queue.

InOut JMSReplyTo is
set

Camel will expect a reply and, after sending the message, it will start to listen for the reply message on the
specified JMSReplyTo queue.

InOnly - Camel will send the message and not expect a reply.

InOnly JMSReplyTo is
set

By default, Camel discards the JMSReplyTo destination and clears the JMSReplyTo header before sending
the message. Camel then sends the message and does not expect a reply. Camel logs this in the log at
WARN level (changed to DEBUG level from Camel 2.6 onwards. You can use preserveMessageQuo=true to
instruct Camel to keep the JMSReplyTo. In all situations the JmsProducer does not expect any reply and
thus continue after sending the message.

JmsConsumer
The JmsConsumer behaves as follows, depending on configuration:
Exchange Pattern Other options Description
InOut - Camel will send the reply back to the JMSReplyTo queue.

InOnly - Camel will not send a reply back, as the pattern is InOnly.

- disableReplyTo=true This option suppresses replies.

CHAPTER 11 - COMPONENT APPENDIX 793

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html
http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

So pay attention to the message exchange pattern set on your exchanges.
If you send a message to a JMS destination in the middle of your route you

can specify the exchange pattern to use, see more at Request Reply.
This is useful if you want to send an InOnly message to a JMS topic:

from("activemq:queue:in")
.to("bean:validateOrder")
.to(ExchangePattern.InOnly, "activemq:topic:order")
.to("bean:handleOrder");

Reuse endpoint and send to different destinations computed at
runtime
If you need to send messages to a lot of different JMS destinations, it makes
sense to reuse a JMS endpoint and specify the real destination in a message
header. This allows Camel to reuse the same endpoint, but send to different
destinations. This greatly reduces the number of endpoints created and
economizes on memory and thread resources.

You can specify the destination in the following headers:
Header Type Description
CamelJmsDestination javax.jms.Destination A destination object.

CamelJmsDestinationName String The destination name.

For example, the following route shows how you can compute a destination
at run time and use it to override the destination appearing in the JMS URL:

from("file://inbox")
.to("bean:computeDestination")
.to("activemq:queue:dummy");

The queue name, dummy, is just a placeholder. It must be provided as part of
the JMS endpoint URL, but it will be ignored in this example.

In the computeDestination bean, specify the real destination by setting
the CamelJmsDestinationName header as follows:

public void setJmsHeader(Exchange exchange) {
String id =
exchange.getIn().setHeader("CamelJmsDestinationName", "order:" + id");

}

Then Camel will read this header and use it as the destination instead of the
one configured on the endpoint. So, in this example Camel sends the
message to activemq:queue:order:2, assuming the id value was 2.

794 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html

If both the CamelJmsDestination and the CamelJmsDestinationName
headers are set, CamelJmsDestination takes priority.

Configuring different JMS providers
You can configure your JMS provider in Spring XML as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="true"/>

</camelContext>

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

</property>
</bean>

Basically, you can configure as many JMS component instances as you wish
and give them a unique name using the id attribute. The preceding
example configures an activemq component. You could do the same to
configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints
within that component using URIs. For example for the component name,
activemq, you can then refer to destinations using the URI format,
activemq:[queue:|topic:]destinationName. You can use the same
approach for all other JMS providers.

This works by the SpringCamelContext lazily fetching components from
the spring context for the scheme name you use for Endpoint URIs and
having the Component resolve the endpoint URIs.

Using JNDI to find the ConnectionFactory
If you are using a J2EE container, you might need to look up JNDI to find the
JMS ConnectionFactory rather than use the usual <bean> mechanism in
Spring. You can do this using Spring's factory bean or the new Spring XML
namespace. For example:

<bean id="weblogic" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="myConnectionFactory"/>

</bean>

<jee:jndi-lookup id="myConnectionFactory" jndi-name="jms/connectionFactory"/>

CHAPTER 11 - COMPONENT APPENDIX 795

http://camel.apache.org/spring.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/component.html

See The jee schema in the Spring reference documentation for more details
about JNDI lookup.

Concurrent Consuming
A common requirement with JMS is to consume messages concurrently in
multiple threads in order to make an application more responsive. You can
set the concurrentConsumers option to specify the number of threads
servicing the JMS endpoint, as follows:

from("jms:SomeQueue?concurrentConsumers=20").
bean(MyClass.class);

You can configure this option in one of the following ways:
• On the JmsComponent,
• On the endpoint URI or,
• By invoking setConcurrentConsumers() directly on the

JmsEndpoint.

Request-reply over JMS
Camel supports Request Reply over JMS. In essence the MEP of the Exchange
should be InOut when you send a message to a JMS queue.

Camel offers a number of options to configure request/reply over JMS that
influence performance and clustered environments. The table below
summaries the options.
Option Performance Cluster Description

Temporary Fast Yes
A temporary queue is used as reply queue, and automatic created by
Camel. To use this do not specify a replyTo queue name. And you can
optionally configure replyToType=Temporary to make it stand out that
temporary queues are in use.

Shared Slow Yes

A shared persistent queue is used as reply queue. The queue must be
created beforehand, although some brokers can create them on the fly
such as Apache ActiveMQ. To use this you must specify the replyTo
queue name. And you can optionally configure replyToType=Shared to
make it stand out that shared queues are in use. A shared queue can be
used in a clustered environment with multiple nodes running this Camel
application at the same time. All using the same shared reply queue.
This is possible because JMS Message selectors are used to correlate
expected reply messages; this impacts performance though. JMS
Message selectors is slower, and therefore not as fast as Temporary or
Exclusive queues. See further below how to tweak this for better
performance.

796 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-jee
http://camel.apache.org/request-reply.html

Exclusive Fast No (*Yes)

An exclusive persistent queue is used as reply queue. The queue must
be created beforehand, although some brokers can create them on the
fly such as Apache ActiveMQ. To use this you must specify the replyTo
queue name. And you must configure replyToType=Exclusive to
instruct Camel to use exclusive queues, as Shared is used by default, if a
replyTo queue name was configured. When using exclusive reply
queues, then JMS Message selectors are not in use, and therefore other
applications must not use this queue as well. An exclusive queue cannot
be used in a clustered environment with multiple nodes running this
Camel application at the same time; as we do not have control if the
reply queue comes back to the same node that sent the request
message; that is why shared queues use JMS Message selectors to make
sure of this. Though if you configure each Exclusive reply queue with an
unique name per node, then you can run this in a clustered environment.
As then the reply message will be sent back to that queue for the given
node, that awaits the reply message.

concurrentConsumers Fast Yes

Camel 2.10.3: Allows to process reply messages concurrently using
concurrent message listeners in use. You can specify a range using the
concurrentConsumers and maxConcurrentConsumers options. Notice:
That using Shared reply queues may not work as well with concurrent
listeners, so use this option with care.

maxConcurrentConsumers Fast Yes

Camel 2.10.3: Allows to process reply messages concurrently using
concurrent message listeners in use. You can specify a range using the
concurrentConsumers and maxConcurrentConsumers options. Notice:
That using Shared reply queues may not work as well with concurrent
listeners, so use this option with care.

The JmsProducer detects the InOut and provides a JMSReplyTo header with
the reply destination to be used. By default Camel uses a temporary queue,
but you can use the replyTo option on the endpoint to specify a fixed reply
queue (see more below about fixed reply queue).

Camel will automatic setup a consumer which listen on the reply queue, so
you should not do anything.
This consumer is a Spring DefaultMessageListenerContainer which listen
for replies. However it's fixed to 1 concurrent consumer.
That means replies will be processed in sequence as there are only 1 thread
to process the replies. If you want to process replies faster, then we need to
use concurrency. But not using the concurrentConsumer option. We should
use the threads from the Camel DSL instead, as shown in the route below:

from(xxx)
.inOut().to("activemq:queue:foo")
.threads(5)
.to(yyy)
.to(zzz);

In this route we instruct Camel to route replies asynchronously using a thread
pool with 5 threads.

From Camel 2.10.3 onwards you can now configure the listener to use
concurrent threads using the concurrentConsumers and
maxConcurrentConsumers options. This allows you to easier configure this in
Camel as shown below:

from(xxx)
.inOut().to("activemq:queue:foo?concurrentConsumers=5")

CHAPTER 11 - COMPONENT APPENDIX 797

http://camel.apache.org/async.html

.to(yyy)

.to(zzz);

Request-reply over JMS and using a shared fixed reply
queue
If you use a fixed reply queue when doing Request Reply over JMS as shown
in the example below, then pay attention.

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar")
.to(yyy)

In this example the fixed reply queue named "bar" is used. By default Camel
assumes the queue is shared when using fixed reply queues, and therefore it
uses a JMSSelector to only pickup the expected reply messages (eg based
on the JMSCorrelationID). See next section for exclusive fixed reply queues.
That means its not as fast as temporary queues. You can speedup how often
Camel will pull for reply messages using the receiveTimeout option. By
default its 1000 millis. So to make it faster you can set it to 250 millis to pull
4 times per second as shown:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&receiveTimeout=250")
.to(yyy)

Notice this will cause the Camel to send pull requests to the message broker
more frequent, and thus require more network traffic.
It is generally recommended to use temporary queues if possible.

Request-reply over JMS and using an exclusive fixed
reply queue
Available as of Camel 2.9

In the previous example, Camel would anticipate the fixed reply queue
named "bar" was shared, and thus it uses a JMSSelector to only consume
reply messages which it expects. However there is a drawback doing this as
JMS selectos is slower. Also the consumer on the reply queue is slower to
update with new JMS selector ids. In fact it only updates when the
receiveTimeout option times out, which by default is 1 second. So in theory
the reply messages could take up till about 1 sec to be detected. On the

798 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html

other hand if the fixed reply queue is exclusive to the Camel reply consumer,
then we can avoid using the JMS selectors, and thus be more performant. In
fact as fast as using temporary queues. So in Camel 2.9 onwards we
introduced the ReplyToType option which you can configure to Exclusive
to tell Camel that the reply queue is exclusive as shown in the example
below:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

Mind that the queue must be exclusive to each and every endpoint. So if you
have two routes, then they each need an unique reply queue as shown in the
next example:

from(xxx)
.inOut().to("activemq:queue:foo?replyTo=bar&replyToType=Exclusive")
.to(yyy)

from(aaa)
.inOut().to("activemq:queue:order?replyTo=order.reply&replyToType=Exclusive")
.to(bbb)

The same applies if you run in a clustered environment. Then each node in
the cluster must use an unique reply queue name. As otherwise each node in
the cluster may pickup messages which was intended as a reply on another
node. For clustered environments its recommended to use shared reply
queues instead.

Synchronizing clocks between senders and receivers
When doing messaging between systems, its desirable that the systems
have synchronized clocks. For example when sending a JMS message, then
you can set a time to live value on the message. Then the receiver can
inspect this value, and determine if the message is already expired, and thus
drop the message instead of consume and process it. However this requires
that both sender and receiver have synchronized clocks. If you are using
ActiveMQ then you can use the timestamp plugin to synchronize clocks.

About time to live
Read first above about synchronized clocks.

When you do request/reply (InOut) over JMS with Camel then Camel uses a
timeout on the sender side, which is default 20 seconds from the
requestTimeout option. You can control this by setting a higher/lower value.

CHAPTER 11 - COMPONENT APPENDIX 799

http://camel.apache.org/jms.html
http://activemq.apache.org/
http://activemq.apache.org/timestampplugin.html
http://camel.apache.org/jms.html

However the time to live value is still set on the JMS message being send. So
that requires the clocks to be synchronized between the systems. If they are
not, then you may want to disable the time to live value being set. This is
now possible using the disableTimeToLive option from Camel 2.8 onwards.
So if you set this option to disableTimeToLive=true, then Camel does not
set any time to live value when sending JMS messages. But the request
timeout is still active. So for example if you do request/reply over JMS and
have disabled time to live, then Camel will still use a timeout by 20 seconds
(the requestTimeout option). That option can of course also be configured.
So the two options requestTimeout and disableTimeToLive gives you fine
grained control when doing request/reply.

When you do fire and forget (InOut) over JMS with Camel then Camel by
default does not set any time to live value on the message. You can
configure a value by using the timeToLive option. For example to indicate a
5 sec., you set timeToLive=5000. The option disableTimeToLive can be
used to force disabling the time to live, also for InOnly messaging. The
requestTimeout option is not being used for InOnly messaging.

Enabling Transacted Consumption
A common requirement is to consume from a queue in a transaction and

then process the message using the Camel route. To do this, just ensure that
you set the following properties on the component/endpoint:

• transacted = true
• transactionManager = a Transsaction Manager - typically the

JmsTransactionManager
See the Transactional Client EIP pattern for further details.
Available as of Camel 2.10

You can leverage the DMLC transacted session API using the following
properties on component/endpoint:

• transacted = true
• lazyCreateTransactionManager = false

The benefit of doing so is that the cacheLevel setting will be honored when
using local transactions without a configured TransactionManager. When a
TransactionManager is configured, no caching happens at DMLC level and its
necessary to rely on a pooled connection factory. For more details about this
kind of setup see here and here.

Using JMSReplyTo for late replies
When using Camel as a JMS listener, it sets an Exchange property with the
value of the ReplyTo javax.jms.Destination object, having the key
ReplyTo. You can obtain this Destination as follows:

800 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/transactional-client.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/jms/listener/AbstractPollingMessageListenerContainer.html#setSessionTransacted(boolean)
http://tmielke.blogspot.com/2012/03/camel-jms-with-transactions-lessons.html
http://forum.springsource.org/showthread.php?123631-JMS-DMLC-not-caching connection-when-using-TX-despite-cacheLevel-CACHE_CONSUMER&p=403530&posted=1#post403530

Transactions and Request Reply over JMS
When using Request Reply over JMS you cannot use a single
transaction; JMS will not send any messages until a commit is
performed, so the server side won't receive anything at all until the
transaction commits. Therefore to use Request Reply you must
commit a transaction after sending the request and then use a
separate transaction for receiving the response.

To address this issue the JMS component uses different properties to
specify transaction use for oneway messaging and request reply
messaging:

The transacted property applies only to the InOnly message Exchange
Pattern (MEP).

The transactedInOut property applies to the InOut(Request Reply)
message Exchange Pattern (MEP).

If you want to use transactions for Request Reply(InOut MEP), you must
set transactedInOut=true.

Destination replyDestination =
exchange.getIn().getHeader(JmsConstants.JMS_REPLY_DESTINATION, Destination.class);

And then later use it to send a reply using regular JMS or Camel.

// we need to pass in the JMS component, and in this sample we use ActiveMQ
JmsEndpoint endpoint = JmsEndpoint.newInstance(replyDestination,

activeMQComponent);
// now we have the endpoint we can use regular Camel API to send a message to it
template.sendBody(endpoint, "Here is the late reply.");

A different solution to sending a reply is to provide the replyDestination
object in the same Exchange property when sending. Camel will then pick up
this property and use it for the real destination. The endpoint URI must
include a dummy destination, however. For example:

// we pretend to send it to some non existing dummy queue
template.send("activemq:queue:dummy, new Processor() {

public void process(Exchange exchange) throws Exception {
// and here we override the destination with the ReplyTo destination

object so the message is sent to there instead of dummy
exchange.getIn().setHeader(JmsConstants.JMS_DESTINATION,

replyDestination);

CHAPTER 11 - COMPONENT APPENDIX 801

http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/request-reply.html

exchange.getIn().setBody("Here is the late reply.");
}

}

Using a request timeout
In the sample below we send a Request Reply style message Exchange (we
use the requestBody method = InOut) to the slow queue for further
processing in Camel and we wait for a return reply:

// send a in-out with a timeout for 5 sec
Object out = template.requestBody("activemq:queue:slow?requestTimeout=5000", "Hello
World");

Samples
JMS is used in many examples for other components as well. But we provide
a few samples below to get started.

Receiving from JMS
In the following sample we configure a route that receives JMS messages and
routes the message to a POJO:

from("jms:queue:foo").
to("bean:myBusinessLogic");

You can of course use any of the EIP patterns so the route can be context
based. For example, here's how to filter an order topic for the big spenders:

from("jms:topic:OrdersTopic").
filter().method("myBean", "isGoldCustomer").

to("jms:queue:BigSpendersQueue");

Sending to a JMS
In the sample below we poll a file folder and send the file content to a JMS
topic. As we want the content of the file as a TextMessage instead of a
BytesMessage, we need to convert the body to a String:

802 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/request-reply.html
http://camel.apache.org/exchange.html

from("file://orders").
convertBodyTo(String.class).
to("jms:topic:OrdersTopic");

Using Annotations
Camel also has annotations so you can use POJO Consuming and POJO
Producing.

Spring DSL sample
The preceding examples use the Java DSL. Camel also supports Spring XML
DSL. Here is the big spender sample using Spring DSL:

<route>
<from uri="jms:topic:OrdersTopic"/>
<filter>

<method bean="myBean" method="isGoldCustomer"/>
<to uri="jms:queue:BigSpendersQueue"/>

</filter>
</route>

Other samples
JMS appears in many of the examples for other components and EIP patterns,
as well in this Camel documentation. So feel free to browse the
documentation. If you have time, check out the this tutorial that uses JMS but
focuses on how well Spring Remoting and Camel works together Tutorial-
JmsRemoting.

Using JMS as a Dead Letter Queue storing Exchange
Normally, when using JMS as the transport, it only transfers the body and
headers as the payload. If you want to use JMS with a Dead Letter Channel,
using a JMS queue as the Dead Letter Queue, then normally the caused
Exception is not stored in the JMS message. You can, however, use the
transferExchange option on the JMS dead letter queue to instruct Camel to
store the entire Exchange in the queue as a javax.jms.ObjectMessage that
holds a org.apache.camel.impl.DefaultExchangeHolder. This allows you
to consume from the Dead Letter Queue and retrieve the caused exception

CHAPTER 11 - COMPONENT APPENDIX 803

http://camel.apache.org/bean-integration.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/pojo-producing.html
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/jms.html
http://camel.apache.org/jms.html
http://camel.apache.org/dead-letter-channel.html
http://camel.apache.org/exchange.html

from the Exchange property with the key Exchange.EXCEPTION_CAUGHT. The
demo below illustrates this:

// setup error handler to use JMS as queue and store the entire Exchange
errorHandler(deadLetterChannel("jms:queue:dead?transferExchange=true"));

Then you can consume from the JMS queue and analyze the problem:

from("jms:queue:dead").to("bean:myErrorAnalyzer");

// and in our bean
String body = exchange.getIn().getBody();
Exception cause = exchange.getProperty(Exchange.EXCEPTION_CAUGHT, Exception.class);
// the cause message is
String problem = cause.getMessage();

Using JMS as a Dead Letter Channel storing error only
You can use JMS to store the cause error message or to store a custom body,
which you can initialize yourself. The following example uses the Message
Translator EIP to do a transformation on the failed exchange before it is
moved to the JMS dead letter queue:

// we sent it to a seda dead queue first
errorHandler(deadLetterChannel("seda:dead"));

// and on the seda dead queue we can do the custom transformation before its sent to
the JMS queue
from("seda:dead").transform(exceptionMessage()).to("jms:queue:dead");

Here we only store the original cause error message in the transform. You
can, however, use any Expression to send whatever you like. For example,
you can invoke a method on a Bean or use a custom processor.

Sending an InOnly message and keeping the JMSReplyTo header
When sending to a JMS destination using camel-jms the producer will use
the MEP to detect if its InOnly or InOut messaging. However there can be
times where you want to send an InOnly message but keeping the
JMSReplyTo header. To do so you have to instruct Camel to keep it, otherwise
the JMSReplyTo header will be dropped.

For example to send an InOnly message to the foo queue, but with a
JMSReplyTo with bar queue you can do as follows:

804 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/message-translator.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/jms.html
http://camel.apache.org/expression.html
http://camel.apache.org/jms.html

template.send("activemq:queue:foo?preserveMessageQos=true", new Processor() {
public void process(Exchange exchange) throws Exception {

exchange.getIn().setBody("World");
exchange.getIn().setHeader("JMSReplyTo", "bar");

}
});

Notice we use preserveMessageQos=true to instruct Camel to keep the
JMSReplyTo header.

Setting JMS provider options on the destination
Some JMS providers, like IBM's WebSphere MQ need options to be set on the
JMS destination. For example, you may need to specify the targetClient
option. Since targetClient is a WebSphere MQ option and not a Camel URI
option, you need to set that on the JMS destination name like so:

...

.setHeader("CamelJmsDestinationName", constant("queue:///MY_QUEUE?targetClient=1"))

.to("wmq:queue:MY_QUEUE?useMessageIDAsCorrelationID=true");

Some versions of WMQ won't accept this option on the destination name and
you will get an exception like:

com.ibm.msg.client.jms.DetailedJMSException: JMSCC0005: The
specified value 'MY_QUEUE?targetClient=1' is not allowed for
'XMSC_DESTINATION_NAME'

A workaround is to use a custom DestinationResolver:

JmsComponent wmq = new JmsComponent(connectionFactory);

wmq.setDestinationResolver(new DestinationResolver(){
public Destination resolveDestinationName(Session session, String

destinationName, boolean pubSubDomain) throws JMSException {
MQQueueSession wmqSession = (MQQueueSession) session;
return wmqSession.createQueue("queue:///" + destinationName +

"?targetClient=1");
}

});

See Also
• Configuring Camel
• Component

CHAPTER 11 - COMPONENT APPENDIX 805

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html

• Endpoint
• Getting Started
▪ Transactional Client
▪ Bean Integration
▪ Tutorial-JmsRemoting
▪ JMSTemplate gotchas

JMX COMPONENT
Available as of Camel 2.6

Standard JMX Consumer Configuration
Component allows consumers to subscribe to an mbean's Notifications. The
component supports passing the Notification object directly through the
Exchange or serializing it to XML according to the schema provided within
this project. This is a consumer only component. Exceptions are thrown if you
attempt to create a producer for it.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jmx</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI Format
The component can connect to the local platform mbean server with the
following URI:

jmx://platform?options

A remote mbean server url can be provided following the initial JMX scheme
like so:

jmx:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi?options

You can append query options to the URI in the following format,
?options=value&option2=value&...

806 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/transactional-client.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/tutorial-jmsremoting.html
http://activemq.apache.org/jmstemplate-gotchas.html

URI Options
Property Required Default Description
format Â xml Format for the message body. Either "xml" or "raw". If xml, the notification

is serialized to xml. If raw, then the raw java object is set as the body.

user Â Â Credentials for making a remote connection.

password Â Â Credentials for making a remote connection.

objectDomain yes Â The domain for the mbean you're connecting to.

objectName Â Â The name key for the mbean you're connecting to. This value is mutually
exclusive with the object properties that get passed. (see below)

notificationFilter Â Â Reference to a bean that implements the NotificationFilter. The #ref
syntax should be used to reference the bean via the Registry.

handback Â Â Value to handback to the listener when a notification is received. This
value will be put in the message header with the key "jmx.handback"

testConnectionOnStartup Â true
Camel 2.11 If true, the consumer will throw an exception when unable to
establish the JMX connection upon startup. If false, the consumer will
attempt to establish the JMX connection every 'x' seconds until the
connection is made â€“ where 'x' is the configured reconnectDelay.

reconnectOnConnectionFailure Â false
Camel 2.11 If true, the consumer will attempt to reconnect to the JMX
server when any connection failure occurs. The consumer will attempt to
re-establish the JMX connection every 'x' seconds until the connection is
made-- where 'x' is the configured reconnectDelay.

reconnectDelay Â 10 seconds Camel 2.11 The number of seconds to wait before retrying creation of the
initial connection or before reconnecting a lost connection.

ObjectName Construction
The URI must always have the objectDomain property. In addition, the URI
must contain either objectName or one or more properties that start with
"key."

Domain with Name property
When the objectName property is provided, the following constructor is used
to build the ObjectName? for the mbean:

ObjectName(String domain, String key, String value)

The key value in the above will be "name" and the value will be the value of
the objectName property.

Domain with Hashtable

ObjectName(String domain, Hashtable<String,String> table)

The Hashtable is constructed by extracting properties that start with "key."
The properties will have the "key." prefixed stripped prior to building the

CHAPTER 11 - COMPONENT APPENDIX 807

http://camel.apache.org/registry.html

Hashtable. This allows the URI to contain a variable number of properties to
identify the mbean.

Example

from("jmx:platform?objectDomain=jmxExample&key.name=simpleBean").
to("log:jmxEvent");

Full example

Monitor Type Consumer
Available as of Camel 2.8
One popular use case for JMX is creating a monitor bean to monitor an
attribute on a deployed bean. This requires writing a few lines of Java code to
create the JMX monitor and deploy it. As shown below:

CounterMonitor monitor = new CounterMonitor();
monitor.addObservedObject(makeObjectName("simpleBean"));
monitor.setObservedAttribute("MonitorNumber");
monitor.setNotify(true);
monitor.setInitThreshold(1);
monitor.setGranularityPeriod(500);
registerBean(monitor, makeObjectName("counter"));
monitor.start();

The 2.8 version introduces a new type of consumer that automatically
creates and registers a monitor bean for the specified objectName and
attribute. Additional endpoint attributes allow the user to specify the
attribute to monitor, type of monitor to create, and any other required
properties. The code snippet above is condensed into a set of endpoint
properties. The consumer uses these properties to create the
CounterMonitor, register it, and then subscribe to its changes. All of the JMX
monitor types are supported.

Example

from("jmx:platform?objectDomain=myDomain&objectName=simpleBean&" +
"monitorType=counter&observedAttribute=MonitorNumber&initThreshold=1&" +
"granularityPeriod=500").to("mock:sink");

The example above will cause a new Monitor Bean to be created and
depoyed to the local mbean server that monitors the "MonitorNumber"

808 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/jmx-component-example.html

attribute on the "simpleBean." Additional types of monitor beans and options
are detailed below. The newly deployed monitor bean is automatically
undeployed when the consumer is stopped.

URI Options for Monitor Type

property type applies
to description

monitorType enum all one of counter, guage, string
observedAttribute string all the attribute being observed

granualityPeriod long all
granularity period (in millis) for
the attribute being observed. As
per JMX, default is 10 seconds

initThreshold number counter initial threshold value
offset number counter offset value
modulus number counter modulus value

differenceMode boolean counter,
gauge

true if difference should be
reported, false for actual value

notifyHigh boolean gauge high notification on/off switch
notifyLow boolean gauge low notification on/off switch

highThreshold number gauge threshold for reporting high
notification

lowThreshold number gauge threshold for reporting low
notificaton

notifyDiffer boolean string true to fire notification when
string differs

notifyMatch boolean string true to fire notification when
string matches

stringToCompare string string string to compare against the
attribute value

The monitor style consumer is only supported for the local mbean server. JMX
does not currently support remote deployment of mbeans without either
having the classes already remotely deployed or an adapter library on both
the client and server to facilitate a proxy deployment.

CHAPTER 11 - COMPONENT APPENDIX 809

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Camel JMX

JPA COMPONENT
The jpa component enables you to store and retrieve Java objects from
persistent storage using EJB 3's Java Persistence Architecture (JPA), which is a
standard interface layer that wraps Object/Relational Mapping (ORM)
products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jpa</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Sending to the endpoint
You can store a Java entity bean in a database by sending it to a JPA producer
endpoint. The body of the In message is assumed to be an entity bean (that
is, a POJO with an @Entity annotation on it) or a collection or array of entity
beans.

If the body does not contain one of the previous listed types, put a
Message Translator in front of the endpoint to perform the necessary
conversion first.

Consuming from the endpoint
Consuming messages from a JPA consumer endpoint removes (or updates)
entity beans in the database. This allows you to use a database table as a
logical queue: consumers take messages from the queue and then delete/
update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed,
you can specify consumeDelete=false on the URI. This will result in the
entity being processed each poll.

810 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/camel-jmx.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/message-translator.html

If you would rather perform some update on the entity to mark it as
processed (such as to exclude it from a future query) then you can annotate
a method with @Consumed which will be invoked on your entity bean when
the entity bean is consumed.

URI format

jpa:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified, it
helps the Type Converter to ensure the body is of the correct type.

For consuming, the entityClassName is mandatory.
You can append query options to the URI in the following format,

?option=value&option=value&...

Options

Name Default
Value Description

entityType entityClassName Overrides the entityClassName from the URI.

persistenceUnit camel The JPA persistence unit used by default.

consumeDelete true JPA consumer only: If true, the entity is deleted after it is consumed; if false, the entity is
not deleted.

consumeLockEntity true JPA consumer only: Specifies whether or not to set an exclusive lock on each entity bean
while processing the results from polling.

flushOnSend true JPA producer only: Flushes the EntityManager after the entity bean has been persisted.

maximumResults -1 JPA consumer only: Set the maximum number of results to retrieve on the Query.

transactionManager null

This option is Registry based which requires the # notation so that the given
transactionManager being specified can be looked up properly, e.g.
transactionManager=#myTransactionManager. It specifies the transaction manager to use. If
none provided, Camel will use a JpaTransactionManager by default. Can be used to set a JTA
transaction manager (for integration with an EJB container).

consumer.delay 500 JPA consumer only: Delay in milliseconds between each poll.

consumer.initialDelay 1000 JPA consumer only: Milliseconds before polling starts.

consumer.useFixedDelay false JPA consumer only: Set to true to use fixed delay between polls, otherwise fixed rate is used.
See ScheduledExecutorService in JDK for details.

maxMessagesPerPoll 0
JPA consumer only: An integer value to define the maximum number of messages to gather
per poll. By default, no maximum is set. Can be used to avoid polling many thousands of
messages when starting up the server. Set a value of 0 or negative to disable.

consumer.query Â JPA consumer only: To use a custom query when consuming data.

consumer.namedQuery Â JPA consumer only: To use a named query when consuming data.

consumer.nativeQuery Â JPA consumer only: To use a custom native query when consuming data. You may want to use
the option consumer.resultClass also when using native queries.

consumer.resultClass Â

Camel 2.7: JPA consumer only: Defines the type of the returned payload (we will call
entityManager.createNativeQuery(nativeQuery, resultClass) instead of
entityManager.createNativeQuery(nativeQuery)). Without this option, we will return an
object array. Only has an affect when using in conjunction with native query when consuming
data.

consumer.transacted false

Camel 2.7.5/2.8.3/2.9: JPA consumer only: Whether to run the consumer in transacted
mode, by which all messages will either commit or rollback, when the entire batch has been
processed. The default behavior (false) is to commit all the previously successfully processed
messages, and only rollback the last failed message.

CHAPTER 11 - COMPONENT APPENDIX 811

http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/type-converter.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

usePersist false

Camel 2.5: JPA producer only: Indicates to use entityManager.persist(entity) instead of
entityManager.merge(entity). Note: entityManager.persist(entity) doesn't work for
detached entities (where the EntityManager has to execute an UPDATE instead of an INSERT
query)!

Message Headers
Camel adds the following message headers to the exchange:
Header Type Description
CamelJpaTemplate JpaTemplate The JpaTemplate object that is used to access the entity bean. You need this object in some situations, for

instance in a type converter or when you are doing some custom processing.

Configuring EntityManagerFactory
Its strongly advised to configure the JPA component to use a specific
EntityManagerFactory instance. If failed to do so each JpaEndpoint will
auto create their own instance of EntityManagerFactory which most often is
not what you want.

For example, you can instantiate a JPA component that references the
myEMFactory entity manager factory, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>

</bean>

In Camel 2.3 the JpaComponent will auto lookup the EntityManagerFactory
from the Registry which means you do not need to configure this on the
JpaComponent as shown above. You only need to do so if there is ambiguity,
in which case Camel will log a WARN.

Configuring TransactionManager
Its strongly advised to configure the TransactionManager instance used by
the JPA component. If failed to do so each JpaEndpoint will auto create their
own instance of TransactionManager which most often is not what you
want.

For example, you can instantiate a JPA component that references the
myTransactionManager transaction manager, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
<property name="entityManagerFactory" ref="myEMFactory"/>
<property name="transactionManager" ref="myTransactionManager"/>

</bean>

In Camel 2.3 the JpaComponent will auto lookup the TransactionManager
from the Registry which means you do not need to configure this on the

812 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

JpaComponent as shown above. You only need to do so if there is ambiguity,
in which case Camel will log a WARN.

Using a consumer with a named query
For consuming only selected entities, you can use the consumer.namedQuery
URI query option. First, you have to define the named query in the JPA Entity
class:

@Entity
@NamedQuery(name = "step1", query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {

...
}

After that you can define a consumer uri like this one:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=step1")
.to("bean:myBusinessLogic");

Using a consumer with a query
For consuming only selected entities, you can use the consumer.query URI
query option. You only have to define the query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=select o from
org.apache.camel.examples.MultiSteps o where o.step = 1")
.to("bean:myBusinessLogic");

Using a consumer with a native query
For consuming only selected entities, you can use the
consumer.nativeQuery URI query option. You only have to define the native
query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=select * from
MultiSteps where step = 1")
.to("bean:myBusinessLogic");

If you use the native query option, you will receive an object array in the
message body.

CHAPTER 11 - COMPONENT APPENDIX 813

Example
See Tracer Example for an example using JPA to store traced messages into a
database.

Using the JPA based idempotent repository
In this section we will use the JPA based idempotent repository.

First we need to setup a persistence-unit in the persistence.xml file:

<persistence-unit name="idempotentDb" transaction-type="RESOURCE_LOCAL">
<class>org.apache.camel.processor.idempotent.jpa.MessageProcessed</class>

<properties>
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/

idempotentTest;create=true"/>
<property name="openjpa.ConnectionDriverName"

value="org.apache.derby.jdbc.EmbeddedDriver"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
<property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO"/>

</properties>
</persistence-unit>

Second we have to setup a org.springframework.orm.jpa.JpaTemplate
which is used by the
org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:

<!-- this is standard spring JPA configuration -->
<bean id="jpaTemplate" class="org.springframework.orm.jpa.JpaTemplate">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<!-- we use idempotentDB as the persitence unit name defined in the
persistence.xml file -->

<property name="persistenceUnitName" value="idempotentDb"/>
</bean>

Afterwards we can configure our
org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository:

<!-- we define our jpa based idempotent repository we want to use in the file
consumer -->
<bean id="jpaStore"
class="org.apache.camel.processor.idempotent.jpa.JpaMessageIdRepository">

<!-- Here we refer to the spring jpaTemplate -->
<constructor-arg index="0" ref="jpaTemplate"/>
<!-- This 2nd parameter is the name (= a cateogry name).

814 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/tracer-example.html
http://camel.apache.org/jpa.html

You can have different repositories with different names -->
<constructor-arg index="1" value="FileConsumer"/>

</bean>

And finally we can create our JPA idempotent repository in the spring XML file
as well:

<camel:camelContext>
<camel:route id="JpaMessageIdRepositoryTest">

<camel:from uri="direct:start" />
<camel:idempotentConsumer messageIdRepositoryRef="jpaStore">

<camel:header>messageId</camel:header>
<camel:to uri="mock:result" />

</camel:idempotentConsumer>
</camel:route>

</camel:camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Tracer Example

JT/400 COMPONENT
The jt400 component allows you to exchanges messages with an AS/400
system using data queues.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jt400</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/QUEUE.DTAQ[?options]

CHAPTER 11 - COMPONENT APPENDIX 815

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/tracer-example.html

When running this Camel component tests inside your IDE
In case you run the tests of this component directly inside your IDE (and not necessarily through Maven itself) then
you could spot exceptions like:

org.springframework.transaction.CannotCreateTransactionException: Could not open JPA EntityManager for transaction; nested exception
is
<openjpa-2.2.1-r422266:1396819 nonfatal user error> org.apache.openjpa.persistence.ArgumentException: This configuration disallows
runtime optimization,
but the following listed types were not enhanced at build time or at class load time with a javaagent:
"org.apache.camel.examples.SendEmail".

at org.springframework.orm.jpa.JpaTransactionManager.doBegin(JpaTransactionManager.java:427)
at

org.springframework.transaction.support.AbstractPlatformTransactionManager.getTransaction(AbstractPlatformTransactionManager.java:371)
at org.springframework.transaction.support.TransactionTemplate.execute(TransactionTemplate.java:127)
at org.apache.camel.processor.jpa.JpaRouteTest.cleanupRepository(JpaRouteTest.java:96)
at org.apache.camel.processor.jpa.JpaRouteTest.createCamelContext(JpaRouteTest.java:67)
at org.apache.camel.test.junit4.CamelTestSupport.doSetUp(CamelTestSupport.java:238)
at org.apache.camel.test.junit4.CamelTestSupport.setUp(CamelTestSupport.java:208)

The problem here is that the source has been compiled/recompiled through your IDE and not through Maven itself which would
enhance the byte-code at build time. To overcome this you would need to enable dynamic byte-code enhancement of OpenJPA. As
an example assuming the current OpenJPA version being used in Camel itself is 2.2.1, then as running the tests inside your favorite
IDE you would need to pass the following argument to the JVM:

-javaagent:<path_to_your_local_m2_cache>/org/apache/openjpa/openjpa/2.2.1/openjpa-2.2.1.jar

Then it will all become green again

To call remote program (Camel 2.7)

jt400://user:password@system/QSYS.LIB/LIBRARY.LIB/program.PGM[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

URI options
For the data queue message exchange:

Name Default
value Description

ccsid default system CCSID Specifies the CCSID to use for the connection with the AS/400 system.

format text Specifies the data format for sending messages
valid options are: text (represented by String) and binary (represented by byte[])

816 CHAPTER 11 - COMPONENT APPENDIX

https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/pom.xml
http://openjpa.apache.org/entity-enhancement.html#dynamic-enhancement

consumer.delay 500 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Milliseconds before polling starts.

consumer.userFixedDelay false true to use fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

guiAvailable false Camel 2.8: Specifies whether AS/400 prompting is enabled in the environment running
Camel.

keyed false Camel 2.10: Whether to use keyed or non-keyed data queues.

searchKey null Camel 2.10: Search key for keyed data queues.

searchType EQ Camel 2.10: Search type which can be a value of EQ, NE, LT, LE, GT, or GE.

connectionPool AS400ConnectionPool
instance

Camel 2.10: Reference to an com.ibm.as400.access.AS400ConnectionPool instance in
the Registry. This is used for obtaining connections to the AS/400 system. The look up
notation ('#' character) should be used.

For the remote program call (Camel 2.7)

Name Default
value Description

outputFieldsIdx Â Specifies which fields (program parameters) are output parameters.

fieldsLength Â Specifies the fields (program parameters) length as in the AS/400 program definition.

format text Camel 2.10: Specifies the data format for sending messages
valid options are: text (represented by String) and binary (represented by byte[])

guiAvailable false Camel 2.8: Specifies whether AS/400 prompting is enabled in the environment running Camel.

connectionPool AS400ConnectionPool
instance

Camel 2.10: Reference to an com.ibm.as400.access.AS400ConnectionPool instance in the
Registry. This is used for obtaining connections to the AS/400 system. The look up notation ('#'
character) should be used.

Usage
When configured as a consumer endpoint, the endpoint will poll a data queue
on a remote system. For every entry on the data queue, a new Exchange is
sent with the entry's data in the In message's body, formatted either as a
String or a byte[], depending on the format. For a provider endpoint, the In
message body contents will be put on the data queue as either raw bytes or
text.

Connection pool
Available as of Camel 2.10

Connection pooling is in use from Camel 2.10 onwards. You can explicit
configure a connection pool on the Jt400Component, or as an uri option on
the endpoint.

Remote program call (Camel 2.7)
This endpoint expects the input to be either a String array or byte[] array
(depending on format) and handles all the CCSID handling through the native
jt400 library mechanisms. A parameter can be omitted by passing null as the
value in its position (the remote program has to support it). After the
program execution the endpoint returns either a String array or byte[] array

CHAPTER 11 - COMPONENT APPENDIX 817

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

with the values as they were returned by the program (the input only
parameters will contain the same data as the beginning of the invocation)
This endpoint does not implement a provider endpoint!

Example
In the snippet below, the data for an exchange sent to the direct:george
endpoint will be put in the data queue PENNYLANE in library BEATLES on a
system named LIVERPOOL.
Another user connects to the same data queue to receive the information
from the data queue and forward it to the mock:ringo endpoint.

public class Jt400RouteBuilder extends RouteBuilder {
@Override
public void configure() throws Exception {

from("direct:george").to("jt400://GEORGE:EGROEG@LIVERPOOL/QSYS.LIB/BEATLES.LIB/
PENNYLANE.DTAQ");

from("jt400://RINGO:OGNIR@LIVERPOOL/QSYS.LIB/BEATLES.LIB/
PENNYLANE.DTAQ").to("mock:ringo");

}
}

Remote program call example (Camel 2.7)
In the snippet below, the data Exchange sent to the direct:work endpoint will
contain three string that will be used as the arguments for the program
â€œcomputeâ€? in the library â€œassetsâ€?. This program will write the
output values in the 2nd and 3rd parameters. All the parameters will be sent
to the direct:play endpoint.

public class Jt400RouteBuilder extends RouteBuilder {
@Override
public void configure() throws Exception {

from("direct:work").to("jt400://GRUPO:ATWORK@server/QSYS.LIB/assets.LIB/
compute.PGM?fieldsLength=10,10,512&ouputFieldsIdx=2,3").to(â€œdirect:playâ€?);

}
}

Writing to keyed data queues

from("jms:queue:input")
.to("jt400://username:password@system/lib.lib/MSGINDQ.DTAQ?keyed=true");

818 CHAPTER 11 - COMPONENT APPENDIX

Reading from keyed data queues

from("jt400://username:password@system/lib.lib/
MSGOUTDQ.DTAQ?keyed=true&searchKey=MYKEY&searchType=GE")
.to("jms:queue:output");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

LANGUAGE
Available as of Camel 2.5

The language component allows you to send Exchange to an endpoint
which executes a script by any of the supported Languages in Camel.
By having a component to execute language scripts, it allows more dynamic
routing capabilities. For example by using the Routing Slip or Dynamic Router
EIPs you can send messages to language endpoints where the script is
dynamic defined as well.

This component is provided out of the box in camel-core and hence no
additional JARs is needed. You only have to include additional Camel
components if the language of choice mandates it, such as using Groovy or
JavaScript languages.

URI format

language://languageName[:script][?options]

And from Camel 2.11 onwards you can refer to an external resource for the
script using same notation as supported by the other Languages in Camel

language://languageName:resource:scheme:location][?options]

URI Options
The component supports the following options.

CHAPTER 11 - COMPONENT APPENDIX 819

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/exchange.html
http://camel.apache.org/languages.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html
http://camel.apache.org/groovy.html
http://camel.apache.org/javascript.html
http://camel.apache.org/language.html

Name Default
Value Type Description

languageName null String The name of the Language to use, such as simple, groovy, javascript etc. This option is
mandatory.

script null String The script to execute.

transform true boolean Whether or not the result of the script should be used as the new message body. By setting to
false the script is executed but the result of the script is discarded.

contentCache true boolean
Camel 2.9: Whether to cache the script if loaded from a resource.
Note: from Camel 2.10.3 a cached script can be forced to reload at runtime via JMX using the
clearContentCache operation.

Message Headers
The following message headers can be used to affect the behavior of the
component
Header Description
CamelLanguageScript The script to execute provided in the header. Takes precedence over script configured on the endpoint.

Examples
For example you can use the Simple language to Message Translator a
message:

String script = URLEncoder.encode("Hello ${body}", "UTF-8");
from("direct:start").to("language:simple:" + script).to("mock:result");

In case you want to convert the message body type you can do this as well:

String script = URLEncoder.encode("${mandatoryBodyAs(String)}", "UTF-8");
from("direct:start").to("language:simple:" + script).to("mock:result");

You can also use the Groovy language, such as this example where the input
message will by multiplied with 2:

String script = URLEncoder.encode("request.body * 2", "UTF-8");
from("direct:start").to("language:groovy:" + script).to("mock:result");

You can also provide the script as a header as shown below. Here we use
XPath language to extract the text from the <foo> tag.

Object out = producer.requestBodyAndHeader("language:xpath", "<foo>Hello
World</foo>", Exchange.LANGUAGE_SCRIPT, "/foo/text()");
assertEquals("Hello World", out);

820 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/languages.html
http://camel.apache.org/simple.html
http://camel.apache.org/message-translator.html
http://camel.apache.org/groovy.html
http://camel.apache.org/xpath.html

Loading scripts from resources
Available as of Camel 2.9

You can specify a resource uri for a script to load in either the endpoint uri,
or in the Exchange.LANGUAGE_SCRIPT header.
The uri must start with one of the following schemes: file:, classpath:, or http:

For example to load a script from the classpath:

from("direct:start")
// load the script from the classpath
.to("language:simple:classpath:org/apache/camel/component/language/

mysimplescript.txt")
.to("mock:result");

By default the script is loaded once and cached. However you can disable the
contentCache option and have the script loaded on each evaluation.
For example if the file myscript.txt is changed on disk, then the updated
script is used:

from("direct:start")
// the script will be loaded on each message, as we disabled cache
.to("language:simple:file:target/script/myscript.txt?contentCache=false")
.to("mock:result");

From Camel 2.11 onwards you can refer to the resource similar to the other
Languages in Camel by prefixing with "resource:" as shown below:

from("direct:start")
// load the script from the classpath
.to("language:simple:resource:classpath:org/apache/camel/component/language/

mysimplescript.txt")
.to("mock:result");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Languages
▪ Routing Slip
▪ Dynamic Router

CHAPTER 11 - COMPONENT APPENDIX 821

http://camel.apache.org/language.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/languages.html
http://camel.apache.org/routing-slip.html
http://camel.apache.org/dynamic-router.html

LDAP COMPONENT
The ldap component allows you to perform searches in LDAP servers using
filters as the message payload.
This component uses standard JNDI (javax.naming package) to access the
server.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-ldap</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

ldap:ldapServerBean[?options]

The ldapServerBean portion of the URI refers to a DirContext bean in the
registry. The LDAP component only supports producer endpoints, which
means that an ldap URI cannot appear in the from at the start of a route.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

base ou=system The base DN for searches.

scope subtree Specifies how deeply to search the tree of entries, starting at the base DN. Value can be object,
onelevel, or subtree.

pageSize no paging
used

Camel 2.6: When specified the ldap module uses paging to retrieve all results (most LDAP Servers throw
an exception when trying to retrieve more than 1000 entries in one query). To be able to use this a
LdapContext (subclass of DirContext) has to be passed in as ldapServerBean (otherwise an exception is
thrown)

returnedAttributes
depends on
LDAP Server
(could be all
or none)

Camel 2.6: Comma-separated list of attributes that should be set in each entry of the result

Result
The result is returned in the Out body as a
ArrayList<javax.naming.directory.SearchResult> object.

822 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html

DirContext
The URI, ldap:ldapserver, references a Spring bean with the ID,
ldapserver. The ldapserver bean may be defined as follows:

<bean id="ldapserver" class="javax.naming.directory.InitialDirContext"
scope="prototype">

<constructor-arg>
<props>

<prop key="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</prop>
<prop key="java.naming.provider.url">ldap://localhost:10389</prop>
<prop key="java.naming.security.authentication">none</prop>

</props>
</constructor-arg>

</bean>

The preceding example declares a regular Sun based LDAP DirContext that
connects anonymously to a locally hosted LDAP server.

Samples
Following on from the Spring configuration above, the code sample below
sends an LDAP request to filter search a group for a member. The Common
Name is then extracted from the response.

ProducerTemplate<Exchange> template = exchange
.getContext().createProducerTemplate();

Collection<?> results = (Collection<?>) (template
.sendBody(

"ldap:ldapserver?base=ou=mygroup,ou=groups,ou=system",
"(member=uid=huntc,ou=users,ou=system)"));

if (results.size() > 0) {
// Extract what we need from the device's profile

Iterator<?> resultIter = results.iterator();
SearchResult searchResult = (SearchResult) resultIter

.next();
Attributes attributes = searchResult

.getAttributes();
Attribute deviceCNAttr = attributes.get("cn");
String deviceCN = (String) deviceCNAttr.get();

...

If no specific filter is required - for example, you just need to look up a single
entry - specify a wildcard filter expression. For example, if the LDAP entry has
a Common Name, use a filter expression like:

CHAPTER 11 - COMPONENT APPENDIX 823

DirContext objects are not required to support concurrency by
contract. It is therefore important that the directory context is
declared with the setting, scope="prototype", in the bean
definition or that the context supports concurrency. In the Spring
framework, prototype scoped objects are instantiated each time
they are looked up.

(cn=*)

Binding using credentials
A Camel end user donated this sample code he used to bind to the ldap
server using credentials.

Properties props = new Properties();
props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
props.setProperty(Context.PROVIDER_URL, "ldap://localhost:389");
props.setProperty(Context.URL_PKG_PREFIXES, "com.sun.jndi.url");
props.setProperty(Context.REFERRAL, "ignore");
props.setProperty(Context.SECURITY_AUTHENTICATION, "simple");
props.setProperty(Context.SECURITY_PRINCIPAL, "cn=Manager");
props.setProperty(Context.SECURITY_CREDENTIALS, "secret");

SimpleRegistry reg = new SimpleRegistry();
reg.put("myldap", new InitialLdapContext(props, null));

CamelContext context = new DefaultCamelContext(reg);
context.addRoutes(

new RouteBuilder() {
public void configure() throws Exception {

from("direct:start").to("ldap:myldap?base=ou=test");
}

}
);
context.start();

ProducerTemplate template = context.createProducerTemplate();

Endpoint endpoint = context.getEndpoint("direct:start");
Exchange exchange = endpoint.createExchange();
exchange.getIn().setBody("(uid=test)");
Exchange out = template.send(endpoint, exchange);

Collection<SearchResult> data = out.getOut().getBody(Collection.class);

824 CHAPTER 11 - COMPONENT APPENDIX

assert data != null;
assert !data.isEmpty();

System.out.println(out.getOut().getBody());

context.stop();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

LOG COMPONENT
The log: component logs message exchanges to the underlying logging
mechanism.
Camel 2.7 or better uses sfl4j which allows you to configure logging via,
among others:

• Log4j
• Logback
• JDK Util Logging logging

Camel 2.6 or lower uses commons-logging which allows you to configure
logging via, among others:

• Log4j
• JDK Util Logging logging
• SimpleLog - a simple provider in commons-logging

Refer to the commons-logging user guide for a more complete overview of
how to use and configure commons-logging.

URI format

log:loggingCategory[?options]

Where loggingCategory is the name of the logging category to use. You can
append query options to the URI in the following format,
?option=value&option=value&...

For example, a log endpoint typically specifies the logging level using the
level option, as follows:

CHAPTER 11 - COMPONENT APPENDIX 825

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.slf4j.org/
http://logging.apache.org/log4j/
http://logback.qos.ch/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html

log:org.apache.camel.example?level=DEBUG

The default logger logs every exchange (regular logging). But Camel also
ships with the Throughput logger, which is used whenever the groupSize
option is specified.

Options
Option Default Type Description
level INFO String Logging level to use. Possible values: ERROR, WARN, INFO, DEBUG, TRACE, OFF

marker null String Camel 2.9: An optional Marker name to use.

groupSize null Integer An integer that specifies a group size for throughput logging.

groupInterval null Integer Camel 2.6: If specified will group message stats by this time interval (in millis)

groupDelay 0 Integer Camel 2.6: Set the initial delay for stats (in millis)

groupActiveOnly true boolean Camel 2.6: If true, will hide stats when no new messages have been received for a time
interval, if false, show stats regardless of message traffic

note: groupDelay and groupActiveOnly are only applicable when using
groupInterval

Formatting
The log formats the execution of exchanges to log lines.
By default, the log uses LogFormatter to format the log output, where
LogFormatter has the following options:
Option Default Description
showAll false Quick option for turning all options on. (multiline, maxChars has to be manually set if to be used)

showExchangeId false Show the unique exchange ID.

showExchangePattern true Camel 2.3: Shows the Message Exchange Pattern (or MEP for short).

showProperties false Show the exchange properties.

showHeaders false Show the In message headers.

showBodyType true Show the In body Java type.

showBody true Show the In body.

showOut false If the exchange has an Out message, show the Out message.

showException false If the exchange has an exception, show the exception message (no stack trace).

showCaughtException false
If the exchange has a caught exception, show the exception message (no stack trace). A caught
exception is stored as a property on the exchange (using the key Exchange.EXCEPTION_CAUGHT) and
for instance a doCatch can catch exceptions. See Try Catch Finally.

showStackTrace false Show the stack trace, if an exchange has an exception. Only effective if one of showAll,
showException or showCaughtException are enabled.

showFiles false Camel 2.9: Whether Camel should show file bodies or not (eg such as java.io.File).

showFuture false Camel 2.1: Whether Camel should show java.util.concurrent.Future bodies or not. If enabled
Camel could potentially wait until the Future task is done. Will by default not wait.

showStreams false
Camel 2.8: Whether Camel should show stream bodies or not (eg such as java.io.InputStream).
Beware if you enable this option then you may not be able later to access the message body as the
stream have already been read by this logger. To remedy this you will have to use Stream caching.

multiline false If true, each piece of information is logged on a new line.

maxChars Â Limits the number of characters logged per line. The default value is 10000 from Camel 2.9 onwards.

826 CHAPTER 11 - COMPONENT APPENDIX

http://www.slf4j.org/api/org/slf4j/Marker.html
http://camel.apache.org/try-catch-finally.html
http://camel.apache.org/stream-caching.html

Also a log in the DSL
In Camel 2.2 onwards there is a log directly in the DSL, but it has
a different purpose. Its meant for lightweight and human logs. See
more details at LogEIP.

Logging stream bodies
For older versions of Camel that do not support the showFiles or
showStreams properties above, you can set the following property
instead on the CamelContext to log both stream and file bodies:

camelContext.getProperties().put(Exchange.LOG_DEBUG_BODY_STREAMS, true);

Regular logger sample
In the route below we log the incoming orders at DEBUG level before the order
is processed:

from("activemq:orders").to("log:com.mycompany.order?level=DEBUG").to("bean:processOrder");

Or using Spring XML to define the route:

<route>
<from uri="activemq:orders"/>
<to uri="log:com.mycompany.order?level=DEBUG"/>
<to uri="bean:processOrder"/>

</route>

Regular logger with formatter sample
In the route below we log the incoming orders at INFO level before the order
is processed.

from("activemq:orders").
to("log:com.mycompany.order?showAll=true&multiline=true").to("bean:processOrder");

CHAPTER 11 - COMPONENT APPENDIX 827

http://camel.apache.org/logeip.html
http://camel.apache.org/camelcontext.html

Throughput logger with groupSize sample
In the route below we log the throughput of the incoming orders at DEBUG
level grouped by 10 messages.

from("activemq:orders").
to("log:com.mycompany.order?level=DEBUG&groupSize=10").to("bean:processOrder");

Throughput logger with groupInterval sample
This route will result in message stats logged every 10s, with an initial 60s
delay and stats should be displayed even if there isn't any message traffic.

from("activemq:orders").
to("log:com.mycompany.order?level=DEBUG&groupInterval=10000&groupDelay=60000&groupActiveOnly=false").to("bean:processOrder");

The following will be logged:

"Received: 1000 new messages, with total 2000 so far. Last group took: 10000 millis
which is: 100 messages per second. average: 100"

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Tracer
• How do I use log4j
• How do I use Java 1.4 logging
• LogEIP for using log directly in the DSL for human logs.

LUCENE (INDEXER AND SEARCH) COMPONENT
Available as of Camel 2.2

The lucene component is based on the Apache Lucene project. Apache
Lucene is a powerful high-performance, full-featured text search engine
library written entirely in Java. For more details about Lucene, please see the
following links

• http://lucene.apache.org/java/docs/
• http://lucene.apache.org/java/docs/features.html

828 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/tracer.html
http://camel.apache.org/how-do-i-use-log4j.html
http://camel.apache.org/how-do-i-use-java-14-logging.html
http://camel.apache.org/logeip.html
http://lucene.apache.org/java/docs/
http://lucene.apache.org/java/docs/features.html

The lucene component in camel facilitates integration and utilization of
Lucene endpoints in enterprise integration patterns and scenarios. The
lucene component does the following

• builds a searchable index of documents when payloads are sent to
the Lucene Endpoint

• facilitates performing of indexed searches in Camel
This component only supports producer endpoints.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-lucene</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

lucene:searcherName:insert[?options]
lucene:searcherName:query[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Insert Options

Name Default
Value Description

analyzer StandardAnalyzer
An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting index terms
from text. The value for analyzer can be any class that extends the abstract class
org.apache.lucene.analysis.Analyzer. Lucene also offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the document by the specified
analyzer

srcDir null An optional directory containing files to be used to be analyzed and added to the index at producer startup.

Query Options

Name Default
Value Description

analyzer StandardAnalyzer
An Analyzer builds TokenStreams, which analyze text. It thus represents a policy for extracting index terms
from text. The value for analyzer can be any class that extends the abstract class
org.apache.lucene.analysis.Analyzer. Lucene also offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created upon analysis of the document by the specified
analyzer

maxHits 10 An integer value that limits the result set of the search operation

CHAPTER 11 - COMPONENT APPENDIX 829

Sending/Receiving Messages to/from the cache

Message Headers
Header Description
QUERY The Lucene Query to performed on the index. The query may include wildcards and phrases

Lucene Producers
This component supports 2 producer endpoints.

• insert - The insert producer builds a searchable index by analyzing
the body in incoming exchanges and associating it with a token
("content").

• query - The query producer performs searches on a pre-created
index. The query uses the searchable index to perform score &
relevance based searches. Queries are sent via the incoming
exchange contains a header property name called 'QUERY'. The value
of the header property 'QUERY' is a Lucene Query. For more details
on how to create Lucene Queries check out http://lucene.apache.org/
java/3_0_0/queryparsersyntax.html

Lucene Processor
There is a processor called LuceneQueryProcessor available to perform
queries against lucene without the need to create a producer.

Lucene Usage Samples

Example 1: Creating a Lucene index

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").
to("lucene:whitespaceQuotesIndex:insert?

analyzer=#whitespaceAnalyzer&indexDir=#whitespace&srcDir=#load_dir").
to("mock:result");

}
};

830 CHAPTER 11 - COMPONENT APPENDIX

http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html

Example 2: Loading properties into the JNDI registry in
the Camel Context

@Override
protected JndiRegistry createRegistry() throws Exception {

JndiRegistry registry =
new JndiRegistry(createJndiContext());

registry.bind("whitespace", new File("./whitespaceIndexDir"));
registry.bind("load_dir",

new File("src/test/resources/sources"));
registry.bind("whitespaceAnalyzer",

new WhitespaceAnalyzer());
return registry;

}
...
CamelContext context = new DefaultCamelContext(createRegistry());

Example 2: Performing searches using a Query Producer

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("direct:start").
setHeader("QUERY", constant("Seinfeld")).
to("lucene:searchIndex:query?

analyzer=#whitespaceAnalyzer&indexDir=#whitespace&maxHits=20").
to("direct:next");

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {
LOG.debug("Number of hits: " + hits.getNumberOfHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {

LOG.debug("Hit " + i + " Index Location:" +
hits.getHit().get(i).getHitLocation());

LOG.debug("Hit " + i + " Score:" + hits.getHit().get(i).getScore());
LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());

}
}

}).to("mock:searchResult");
}

};

CHAPTER 11 - COMPONENT APPENDIX 831

Example 3: Performing searches using a Query Processor

RouteBuilder builder = new RouteBuilder() {
public void configure() {

try {
from("direct:start").

setHeader("QUERY", constant("Rodney Dangerfield")).
process(new LuceneQueryProcessor("target/stdindexDir", analyzer,

null, 20)).
to("direct:next");

} catch (Exception e) {
e.printStackTrace();

}

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {

Hits hits = exchange.getIn().getBody(Hits.class);
printResults(hits);

}

private void printResults(Hits hits) {
LOG.debug("Number of hits: " + hits.getNumberOfHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {

LOG.debug("Hit " + i + " Index Location:" +
hits.getHit().get(i).getHitLocation());

LOG.debug("Hit " + i + " Score:" +
hits.getHit().get(i).getScore());

LOG.debug("Hit " + i + " Data:" + hits.getHit().get(i).getData());
}

}
}).to("mock:searchResult");

}
};

MAIL COMPONENT
The mail component provides access to Email via Spring's Mail support and
the underlying JavaMail system.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mail</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

832 CHAPTER 11 - COMPONENT APPENDIX

Geronimo mail .jar
We have discovered that the geronimo mail .jar (v1.6) has a bug
when polling mails with attachments. It cannot correctly identify the
Content-Type. So, if you attach a .jpeg file to a mail and you poll
it, the Content-Type is resolved as text/plain and not as image/
jpeg. For that reason, we have added an
org.apache.camel.component.ContentTypeResolver SPI
interface which enables you to provide your own implementation
and fix this bug by returning the correct Mime type based on the
file name. So if the file name ends with jpeg/jpg, you can return
image/jpeg.

You can set your custom resolver on the MailComponent instance or on the
MailEndpoint instance.

POP3 or IMAP
POP3 has some limitations and end users are encouraged to use
IMAP if possible.

Using mock-mail for testing
You can use a mock framework for unit testing, which allows you to
test without the need for a real mail server. However you should
remember to not include the mock-mail when you go into
production or other environments where you need to send mails to
a real mail server. Just the presence of the mock-javamail.jar on the
classpath means that it will kick in and avoid sending the mails.

URI format
Mail endpoints can have one of the following URI formats (for the protocols,
SMTP, POP3, or IMAP, respectively):

smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

CHAPTER 11 - COMPONENT APPENDIX 833

The mail component also supports secure variants of these protocols
(layered over SSL). You can enable the secure protocols by adding s to the
scheme:

smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Sample endpoints
Typically, you specify a URI with login credentials as follows (taking SMTP as
an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password
as query options:

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

Default ports
Default port numbers are supported. If the port number is omitted, Camel
determines the port number to use based on the protocol.
Protocol Default Port Number
SMTP 25

SMTPS 465

POP3 110

POP3S 995

IMAP 143

IMAPS 993

Options
Property Default Description

834 CHAPTER 11 - COMPONENT APPENDIX

host Â The host name or IP address to connect to.

port See DefaultPorts The TCP port number to connect on.

username Â The user name on the email server.

password null The password on the email server.

ignoreUriScheme false If false, Camel uses the scheme to determine the transport protocol (POP, IMAP,
SMTP etc.)

defaultEncoding null The default encoding to use for Mime Messages.

contentType text/plain The mail message content type. Use text/html for HTML mails.

folderName INBOX The folder to poll.

destination username@host @deprecated Use the to option instead. The TO recipients (receivers of the
email).

to username@host The TO recipients (the receivers of the mail). Separate multiple email addresses
with a comma.

replyTo alias@host As of Camel 2.8.4, 2.9.1+, the Reply-To recipients (the receivers of the response
mail). Separate multiple email addresses with a comma.

CC null The CC recipients (the receivers of the mail). Separate multiple email addresses
with a comma.

BCC null The BCC recipients (the receivers of the mail). Separate multiple email addresses
with a comma.

from camel@localhost The FROM email address.

subject Â As of Camel 2.3, the Subject of the message being sent. Note: Setting the
subject in the header takes precedence over this option.

delete false

Deletes the messages after they have been processed. This is done by setting the
DELETED flag on the mail message. If false, the SEEN flag is set instead. As of
Camel 2.10 you can override this configuration option by setting a header with
the key delete to determine if the mail should be deleted or not.

unseen true

It is possible to configure a consumer endpoint so that it processes only unseen
messages (that is, new messages) or all messages. Note that Camel always skips
deleted messages. The default option of true will filter to only unseen messages.
POP3 does not support the SEEN flag, so this option is not supported in POP3; use
IMAP instead.

copyTo null

Camel 2.10: Consumer only. After processing a mail message, it can be copied to
a mail folder with the given name. You can override this configuration value, with
a header with the key copyTo, allowing you to copy messages to folder names
configured at runtime.

fetchSize -1

Sets the maximum number of messages to consume during a poll. This can be
used to avoid overloading a mail server, if a mailbox folder contains a lot of
messages. Default value of -1 means no fetch size and all messages will be
consumed. Setting the value to 0 is a special corner case, where Camel will not
consume any messages at all.

alternativeBodyHeader CamelMailAlternativeBody

Specifies the key to an IN message header that contains an alternative email
body. For example, if you send emails in text/html format and want to provide
an alternative mail body for non-HTML email clients, set the alternative mail body
with this key as a header.

debugMode false Enable debug mode on the underlying mail framework. The SUN Mail framework
logs the debug messages to System.out by default.

connectionTimeout 30000 The connection timeout in milliseconds. Default is 30 seconds.

consumer.initialDelay 1000 Milliseconds before the polling starts.

consumer.delay 60000 Camel will poll the mailbox only once a minute by default to avoid overloading
the mail server.

consumer.useFixedDelay false Set to true to use a fixed delay between polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

disconnect false Camel 2.8.3/2.9: Whether the consumer should disconnect after polling. If
enabled this forces Camel to connect on each poll.

closeFolder true
Camel 2.10.4: Whether the consumer should close the folder after polling.
Setting this option to false and having disconnect=false as well, then the
consumer keep the folder open between polls.

mail.XXX null

Set any additional java mail properties. For instance if you want to set a special
property when using POP3 you can now provide the option directly in the URI such
as: mail.pop3.forgettopheaders=true. You can set multiple such options, for
example:
mail.pop3.forgettopheaders=true&mail.mime.encodefilename=true.

CHAPTER 11 - COMPONENT APPENDIX 835

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html

mapMailMessage true

Camel 2.8: Specifies whether Camel should map the received mail message to
Camel body/headers. If set to true, the body of the mail message is mapped to
the body of the Camel IN message and the mail headers are mapped to IN
headers. If this option is set to false then the IN message contains a raw
javax.mail.Message. You can retrieve this raw message by calling
exchange.getIn().getBody(javax.mail.Message.class).

maxMessagesPerPoll 0

Specifies the maximum number of messages to gather per poll. By default, no
maximum is set. Can be used to set a limit of e.g. 1000 to avoid downloading
thousands of files when the server starts up. Set a value of 0 or negative to
disable this option.

javaMailSender null
Specifies a pluggable org.springframework.mail.javamail.JavaMailSender
instance in order to use a custom email implementation. If none provided, Camel
uses the default org.springframework.mail.javamail.JavaMailSenderImpl.

ignoreUnsupportedCharset false

Option to let Camel ignore unsupported charset in the local JVM when sending
mails. If the charset is unsupported then charset=XXX (where XXX represents the
unsupported charset) is removed from the content-type and it relies on the
platform default instead.

sslContextParameters null

Camel 2.10: Reference to a
org.apache.camel.util.jsse.SSLContextParameters in the Registry.Â This
reference overrides any configured SSLContextParameters at the component
level.Â See Using the JSSE Configuration Utility.

searchTerm null
Camel 2.11: Refers to a javax.mail.search.SearchTerm which allows to filter
mails based on search criteria such as subject, body, from, sent after a certain
date etc. See further below for examples.

searchTerm.xxx null

Camel 2.11: To configure search terms directly from the endpoint uri, which
supports a limited number of terms defined by the
org.apache.camel.component.mail.SimpleSearchTerm class. See further below
for examples.

SSL support
The underlying mail framework is responsible for providing SSL support.
Â You may either configure SSL/TLS support by completely specifying the
necessary Java Mail API configuration options, or you may provide a
configured SSLContextParameters through the component or endpoint
configuration.

Using the JSSE Configuration Utility
As of Camel 2.10, the mail component supports SSL/TLS configuration
through the Camel JSSE Configuration Utility.Â This utility greatly decreases
the amount of component specific code you need to write and is configurable
at the endpoint and component levels.Â The following examples
demonstrate how to use the utility with the mail component.

Programmatic configuration of the endpoint

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/truststore.jks");
ksp.setPassword("keystorePassword");
TrustManagersParameters tmp = new TrustManagersParameters();
tmp.setKeyStore(ksp);
SSLContextParameters scp = new SSLContextParameters();
scp.setTrustManagers(tmp);

836 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://camel.apache.org/camel-configuration-utilities.html

Registry registry = ...
registry.bind("sslContextParameters", scp);
...
from(...)

.to("smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters");

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters id="sslContextParameters">

<camel:trustManagers>
<camel:keyStore resource="/users/home/server/truststore.jks"

password="keystorePassword"/>
</camel:trustManagers>

</camel:sslContextParameters>...
...
<to
uri="smtps://smtp.google.com?username=user@gmail.com&password=password&sslContextParameters=#sslContextParameters"/>...

Configuring JavaMail Directly
Camel uses SUN JavaMail, which only trusts certificates issued by well known
Certificate Authorities (the default JVM trust configuration). If you issue your
own certificates, you have to import the CA certificates into the JVM's Java
trust/key store files, override the default JVM trust/key store files (see
SSLNOTES.txt in JavaMail for details).

Mail Message Content
Camel uses the message exchange's IN body as the MimeMessage text
content. The body is converted to String.class.

Camel copies all of the exchange's IN headers to the MimeMessage
headers.

The subject of the MimeMessage can be configured using a header
property on the IN message. The code below demonstrates this:

from("direct:a").setHeader("subject",
constant(subject)).to("smtp://james2@localhost");

The same applies for other MimeMessage headers such as recipients, so you
can use a header property as To:

CHAPTER 11 - COMPONENT APPENDIX 837

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

Map<String, Object> map = new HashMap<String, Object>();
map.put("To", "davsclaus@apache.org");
map.put("From", "jstrachan@apache.org");
map.put("Subject", "Camel rocks");

String body = "Hello Claus.\nYes it does.\n\nRegards James.";
template.sendBodyAndHeaders("smtp://davsclaus@apache.org", body, map);

Since Camel 2.11 When using the MailProducer the send the mail to server,
you should be able to get the message id of the MimeMessage with the key
CamelMailMessageId from the Camel message header.

Headers take precedence over pre-configured recipients
The recipients specified in the message headers always take precedence
over recipients pre-configured in the endpoint URI. The idea is that if you
provide any recipients in the message headers, that is what you get. The
recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email message is sent to
davsclaus@apache.org, because it takes precedence over the pre-
configured recipient, info@mycompany.com. Any CC and BCC settings in the
endpoint URI are also ignored and those recipients will not receive any mail.
The choice between headers and pre-configured settings is all or nothing: the
mail component either takes the recipients exclusively from the headers or
exclusively from the pre-configured settings. It is not possible to mix and
match headers and pre-configured settings.

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org");

template.sendBodyAndHeaders("smtp://admin@localhost?to=info@mycompany.com",
"Hello World", headers);

Multiple recipients for easier configuration
It is possible to set multiple recipients using a comma-separated or a
semicolon-separated list. This applies both to header settings and to settings
in an endpoint URI. For example:

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("to", "davsclaus@apache.org ; jstrachan@apache.org ;

ningjiang@apache.org");

The preceding example uses a semicolon, ;, as the separator character.

838 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

Setting sender name and email
You can specify recipients in the format, name <email>, to include both the
name and the email address of the recipient.

For example, you define the following headers on the a Message:

Map headers = new HashMap();
map.put("To", "Claus Ibsen <davsclaus@apache.org>");
map.put("From", "James Strachan <jstrachan@apache.org>");
map.put("Subject", "Camel is cool");

SUN JavaMail
SUN JavaMail is used under the hood for consuming and producing mails.
We encourage end-users to consult these references when using either POP3
or IMAP protocol. Note particularly that POP3 has a much more limited set of
features than IMAP.

▪ SUN POP3 API
▪ SUN IMAP API
▪ And generally about the MAIL Flags

Samples
We start with a simple route that sends the messages received from a JMS
queue as emails. The email account is the admin account on
mymailserver.com.

from("jms://queue:subscription").to("smtp://admin@mymailserver.com?password=secret");

In the next sample, we poll a mailbox for new emails once every minute.
Notice that we use the special consumer option for setting the poll interval,
consumer.delay, as 60000 milliseconds = 60 seconds.

from("imap://admin@mymailserver.com
password=secret&unseen=true&consumer.delay=60000")

.to("seda://mails");

In this sample we want to send a mail to multiple recipients:

// all the recipients of this mail are:
// To: camel@riders.org , easy@riders.org
// CC: me@you.org
// BCC: someone@somewhere.org
String recipients =

CHAPTER 11 - COMPONENT APPENDIX 839

http://camel.apache.org/message.html
http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

"&To=camel@riders.org,easy@riders.org&CC=me@you.org&BCC=someone@somewhere.org";

from("direct:a").to("smtp://you@mymailserver.com?password=secret&From=you@apache.org"
+ recipients);

Sending mail with attachment sample
The mail component supports attachments. In the sample below, we send a
mail message containing a plain text message with a logo file attachment.

// create an exchange with a normal body and attachment to be produced as email
Endpoint endpoint =
context.getEndpoint("smtp://james@mymailserver.com?password=secret");

// create the exchange with the mail message that is multipart with a file and a
Hello World text/plain message.
Exchange exchange = endpoint.createExchange();
Message in = exchange.getIn();
in.setBody("Hello World");
in.addAttachment("logo.jpeg", new DataHandler(new FileDataSource("src/test/data/
logo.jpeg")));

// create a producer that can produce the exchange (= send the mail)
Producer producer = endpoint.createProducer();
// start the producer
producer.start();
// and let it go (processes the exchange by sending the email)
producer.process(exchange);

SSL sample
In this sample, we want to poll our Google mail inbox for mails. To download
mail onto a local mail client, Google mail requires you to enable and
configure SSL. This is done by logging into your Google mail account and
changing your settings to allow IMAP access. Google have extensive
documentation on how to do this.

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&delete=false&unseen=true&consumer.delay=60000").to("log:newmail");

The preceding route polls the Google mail inbox for new mails once every
minute and logs the received messages to the newmail logger category.
Running the sample with DEBUG logging enabled, we can monitor the
progress in the logs:

840 CHAPTER 11 - COMPONENT APPENDIX

Attachments are not support by all Camel components
The Attachments API is based on the Java Activation Framework and
is generally only used by the Mail API. Since many of the other
Camel components do not support attachments, the attachments
could potentially be lost as they propagate along the route. The rule
of thumb, therefore, is to add attachments just before sending a
message to the mail endpoint.

2008-05-08 06:32:09,640 DEBUG MailConsumer - Connecting to MailStore
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,203 DEBUG MailConsumer - Polling mailfolder:
imaps//imap.gmail.com:993 (SSL enabled), folder=INBOX
2008-05-08 06:32:11,640 DEBUG MailConsumer - Fetching 1 messages. Total 1 messages.
2008-05-08 06:32:12,171 DEBUG MailConsumer - Processing message: messageNumber=[332],
from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...
2008-05-08 06:32:12,187 INFO newmail - Exchange[MailMessage: messageNumber=[332],
from=[James Bond <007@mi5.co.uk>], to=YOUR_USERNAME@gmail.com], subject=[...

Consuming mails with attachment sample
In this sample we poll a mailbox and store all attachments from the mails as
files. First, we define a route to poll the mailbox. As this sample is based on
google mail, it uses the same route as shown in the SSL sample:

from("imaps://imap.gmail.com?username=YOUR_USERNAME@gmail.com&password=YOUR_PASSWORD"
+ "&delete=false&unseen=true&consumer.delay=60000").process(new

MyMailProcessor());

Instead of logging the mail we use a processor where we can process the
mail from java code:

public void process(Exchange exchange) throws Exception {
// the API is a bit clunky so we need to loop
Map<String, DataHandler> attachments = exchange.getIn().getAttachments();
if (attachments.size() > 0) {

for (String name : attachments.keySet()) {
DataHandler dh = attachments.get(name);
// get the file name
String filename = dh.getName();

// get the content and convert it to byte[]
byte[] data = exchange.getContext().getTypeConverter()

.convertTo(byte[].class, dh.getInputStream());

CHAPTER 11 - COMPONENT APPENDIX 841

// write the data to a file
FileOutputStream out = new FileOutputStream(filename);
out.write(data);
out.flush();
out.close();

}
}

}

As you can see the API to handle attachments is a bit clunky but it's there so
you can get the javax.activation.DataHandler so you can handle the
attachments using standard API.

How to split a mail message with attachments
In this example we consume mail messages which may have a number of
attachments. What we want to do is to use the Splitter EIP per individual
attachment, to process the attachments separately. For example if the mail
message has 5 attachments, we want the Splitter to process five messages,
each having a single attachment. To do this we need to provide a custom
Expression to the Splitter where we provide a List<Message> that contains
the five messages with the single attachment.

The code is provided out of the box in Camel 2.10 onwards in the camel-
mail component. The code is in the class:
org.apache.camel.component.mail.SplitAttachmentsExpression, which
you can find the source code here

In the Camel route you then need to use this Expression in the route as
shown below:

from("pop3://james@mymailserver.com?password=secret&consumer.delay=1000")
.to("log:email")
// use the SplitAttachmentsExpression which will split the message per attachment
.split(new SplitAttachmentsExpression())

// each message going to this mock has a single attachment
.to("mock:split")

.end();

If you use XML DSL then you need to declare a method call expression in the
Splitter as shown below

<split>
<method beanType="org.apache.camel.component.mail.SplitAttachmentsExpression"/>
<to uri="mock:split"/>

</split>

842 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/splitter.html
http://camel.apache.org/splitter.html
http://camel.apache.org/expression.html
http://camel.apache.org/splitter.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-mail/src/main/java/org/apache/camel/component/mail/SplitAttachmentsExpression.java
http://camel.apache.org/expression.html
http://camel.apache.org/splitter.html

Using custom SearchTerm
Available as of Camel 2.11

You can configure a searchTerm on the MailEndpoint which allows you to
filter out unwanted mails.

For example to filter mails to contain Camel in either Subject or Text you
can do as follows:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subjectOrBody=Camel"/>
<to uri="bean:myBean"/>

</route>

Notice we use the "searchTerm.subjectOrBody" as parameter key to
indicate that we want to search on mail subject or body, to contain the word
"Camel".
The class org.apache.camel.component.mail.SimpleSearchTerm has a
number of options you can configure:

Or to get the new unseen emails going 24 hours back in time you can do.
Notice the "now-24h" syntax. See the table below for more details.

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.fromSentDate=now-24h"/>
<to uri="bean:myBean"/>

</route>

You can have multiple searchTerm in the endpoint uri configuration. They
would then be combined together using AND operator, eg so both conditions
must match. For example to get the last unseen emails going back 24 hours
which has Camel in the mail subject you can do:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm.subject=Camel&searchTerm.fromSentDate=now-24h"/>
<to uri="bean:myBean"/>

</route>

Option Default Description
unseen true Whether to limit by unseen mails only.

subjectOrBody null To limit by subject or body to contain the word.

subject null The subject must contain the word.

body null The body must contain the word.

from null The mail must be from a given email pattern.

to null The mail must be to a given email pattern.

CHAPTER 11 - COMPONENT APPENDIX 843

fromSentDate null

The mail must be sent after or equals (GE) a given date. The date pattern is yyyy-MM-dd HH:mm:SS, eg use
"2012-01-01 00:00:00" to be from the year 2012 onwards. You can use "now" for current timestamp. The
"now" syntax supports an optional offset, that can be specified as either + or - with a numeric value. For
example for last 24 hours, you can use "now - 24h" or without spaces "now-24h". Notice that Camel supports
shorthands for hours, minutes, and seconds.

toSentDate null

The mail must be sent before or equals (BE) a given date. The date pattern is yyyy-MM-dd HH:mm:SS, eg use
"2012-01-01 00:00:00" to be before the year 2012. You can use "now" for current timestamp. The "now"
syntax supports an optional offset, that can be specified as either + or - with a numeric value. For example for
last 24 hours, you can use "now - 24h" or without spaces "now-24h". Notice that Camel supports shorthands
for hours, minutes, and seconds.

The SimpleSearchTerm is designed to be easily configurable from a POJO, so
you can also configure it using a <bean> style in XML

<bean id="mySearchTerm" class="org.apache.camel.component.mail.SimpleSearchTerm">
<property name="subject" value="Order"/>
<property name="to" value="acme-order@acme.com"/>
<property name="fromSentDate" value="now"/>

</bean>

You can then refer to this bean, using #beanId in your Camel route as shown:

<route>
<from

uri="imaps://mymailseerver?username=foo&password=secret&searchTerm=#mySearchTerm"/>
<to uri="bean:myBean"/>

</route>

In Java there is a builder class to build compound SearchTerm}}s using the
{{org.apache.camel.component.mail.SearchTermBuilder class.
This allows you to build complex terms such as:

// we just want the unseen mails which is not spam
SearchTermBuilder builder = new SearchTermBuilder();

builder.unseen().body(Op.not, "Spam").subject(Op.not, "Spam")
// which was sent from either foo or bar
.from("foo@somewhere.com").from(Op.or, "bar@somewhere.com");
// .. and we could continue building the terms

SearchTerm term = builder.build();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

844 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

MINA COMPONENT
The mina: component is a transport for working with Apache MINA

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mina</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

mina:tcp://hostname[:port][?options]
mina:udp://hostname[:port][?options]
mina:vm://hostname[:port][?options]

You can specify a codec in the Registry using the codec option. If you are
using TCP and no codec is specified then the textline flag is used to
determine if text line based codec or object serialization should be used
instead. By default the object serialization is used.

For UDP if no codec is specified the default uses a basic ByteBuffer based
codec.

The VM protocol is used as a direct forwarding mechanism in the same
JVM. See the MINA VM-Pipe API documentation for details.

A Mina producer has a default timeout value of 30 seconds, while it waits
for a response from the remote server.

In normal use, camel-mina only supports marshalling the body
contentâ€”message headers and exchange properties are not sent.
However, the option, transferExchange, does allow you to transfer the
exchange itself over the wire. See options below.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Option Default
Value Description

codec null You can refer to a named ProtocolCodecFactory instance in your Registry such as your Spring
ApplicationContext, which is then used for the marshalling.

codec null You must use the # notation to look up your codec in the Registry. For example, use #myCodec to look
up a bean with the id value, myCodec.

CHAPTER 11 - COMPONENT APPENDIX 845

http://mina.apache.org/
http://camel.apache.org/registry.html
http://mina.apache.org/report/1.1/apidocs/org/apache/mina/transport/vmpipe/package-summary.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

disconnect false Camel 2.3: Whether or not to disconnect(close) from Mina session right after use. Can be used for
both consumer and producer.

textline false Only used for TCP. If no codec is specified, you can use this flag to indicate a text line based codec; if
not specified or the value is false, then Object Serialization is assumed over TCP.

textlineDelimiter DEFAULT
Only used for TCP and if textline=true. Sets the text line delimiter to use. Possible values are:
DEFAULT, AUTO, WINDOWS, UNIX or MAC. If none provided, Camel will use DEFAULT. This delimiter is
used to mark the end of text.

sync true
You can configure the exchange pattern to be either InOnly (default) or InOut. Setting sync=true
means a synchronous exchange (InOut), where the client can read the response from MINA (the
exchange Out message).

lazySessionCreation true Sessions can be lazily created to avoid exceptions, if the remote server is not up and running when
the Camel producer is started.

timeout 3000
You can configure the timeout that specifies how long to wait for a response from a remote server.
The timeout unit is in milliseconds, so 60000 is 60 seconds. The timeout is only used for Mina
producer.

encoding JVM Default You can configure the encoding (a charset name) to use for the TCP textline codec and the UDP
protocol. If not provided, Camel will use the JVM default Charset.

transferExchange false

Only used for TCP. You can transfer the exchange over the wire instead of just the body. The following
fields are transferred: In body, Out body, fault body, In headers, Out headers, fault headers,
exchange properties, exchange exception. This requires that the objects are serializable. Camel will
exclude any non-serializable objects and log it at WARN level.

minaLogger false You can enable the Apache MINA logging filter. Apache MINA uses slf4j logging at INFO level to log
all input and output.

filters null

You can set a list of Mina IoFilters to register. The filters value must be one of the following:
• Camel 2.2: comma-separated list of bean references (e.g.

#filterBean1,#filterBean2) where each bean must be of type
org.apache.mina.common.IoFilter.

• before Camel 2.2: a reference to a bean of type
List<org.apache.mina.common.IoFilter>.

encoderMaxLineLength -1 As of 2.1, you can set the textline protocol encoder max line length. By default the default value of
Mina itself is used which are Integer.MAX_VALUE.

decoderMaxLineLength -1 As of 2.1, you can set the textline protocol decoder max line length. By default the default value of
Mina itself is used which are 1024.

producerPoolSize 16
The TCP producer is thread safe and supports concurrency much better. This option allows you to
configure the number of threads in its thread pool for concurrent producers. Note: Camel has a
pooled service which ensured it was already thread safe and supported concurrency already.

allowDefaultCodec true

The mina component installs a default codec if both, codec is null and textline is false. Setting
allowDefaultCodec to false prevents the mina component from installing a default codec as the
first element in the filter chain. This is useful in scenarios where another filter must be the first in the
filter chain, like the SSL filter.

disconnectOnNoReply true Camel 2.3: If sync is enabled then this option dictates MinaConsumer if it should disconnect where
there is no reply to send back.

noReplyLogLevel WARN Camel 2.3: If sync is enabled this option dictates MinaConsumer which logging level to use when
logging a there is no reply to send back. Values are: FATAL, ERROR, INFO, DEBUG, OFF.

Using a custom codec
See the Mina documentation how to write your own codec. To use your
custom codec with camel-mina, you should register your codec in the
Registry; for example, by creating a bean in the Spring XML file. Then use the
codec option to specify the bean ID of your codec. See HL7 that has a
custom codec.

Sample with sync=false
In this sample, Camel exposes a service that listens for TCP connections on
port 6200. We use the textline codec. In our route, we create a Mina
consumer endpoint that listens on port 6200:

846 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://mina.apache.org/iofilter.html
http://mina.apache.org/tutorial-on-protocolcodecfilter.html
http://camel.apache.org/registry.html
http://camel.apache.org/hl7.html

from("mina:tcp://localhost:" + port1 + "?textline=true&sync=false").to("mock:result");

As the sample is part of a unit test, we test it by sending some data to it on
port 6200.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedBodiesReceived("Hello World");

template.sendBody("mina:tcp://localhost:" + port1 + "?textline=true&sync=false",
"Hello World");

assertMockEndpointsSatisfied();

Sample with sync=true
In the next sample, we have a more common use case where we expose a
TCP service on port 6201 also use the textline codec. However, this time we
want to return a response, so we set the sync option to true on the
consumer.

from("mina:tcp://localhost:" + port2 + "?textline=true&sync=true").process(new
Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);

}
});

Then we test the sample by sending some data and retrieving the response
using the template.requestBody() method. As we know the response is a
String, we cast it to String and can assert that the response is, in fact,
something we have dynamically set in our processor code logic.

String response = (String)template.requestBody("mina:tcp://localhost:" + port2 +
"?textline=true&sync=true", "World");
assertEquals("Bye World", response);

Sample with Spring DSL
Spring DSL can, of course, also be used for MINA. In the sample below we
expose a TCP server on port 5555:

CHAPTER 11 - COMPONENT APPENDIX 847

http://camel.apache.org/mina.html

<route>
<from uri="mina:tcp://localhost:5555?textline=true"/>
<to uri="bean:myTCPOrderHandler"/>

</route>

In the route above, we expose a TCP server on port 5555 using the textline
codec. We let the Spring bean with ID, myTCPOrderHandler, handle the
request and return a reply. For instance, the handler bean could be
implemented as follows:

public String handleOrder(String payload) {
...
return "Order: OK"

}

Configuring Mina endpoints using Spring bean style
Configuration of Mina endpoints is possible using regular Spring bean style
configuration in the Spring DSL.

However, in the underlying Apache Mina toolkit, it is relatively difficult to
set up the acceptor and the connector, because you can not use simple
setters. To resolve this difficulty, we leverage the MinaComponent as a Spring
factory bean to configure this for us. If you really need to configure this
yourself, there are setters on the MinaEndpoint to set these when needed.

The sample below shows the factory approach:

<!-- Creating mina endpoints is a bit complex so we reuse MinaComponnet
as a factory bean to create our endpoint, this is the easiest to do -->

<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">
<!-- we must provide a camel context so we refer to it by its id -->
<constructor-arg index="0" ref="myCamel"/>

</bean>

<!-- This is our mina endpoint configured with spring, we will use the factory above
to create it for us. The goal is to invoke the createEndpoint method with the
mina configuration parameter we defined using the constructor-arg option -->

<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">

<!-- and here we can pass it our configuration -->
<constructor-arg index="0" ref="myMinaConfig"/>

</bean>

<!-- this is our mina configuration with plain properties -->
<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">

<property name="protocol" value="tcp"/>

848 CHAPTER 11 - COMPONENT APPENDIX

<property name="host" value="localhost"/>
<property name="port" value="1234"/>
<property name="sync" value="false"/>

</bean>

And then we can refer to our endpoint directly in the route, as follows:

<route>
<!-- here we route from or mina endpoint we have defined above -->
<from ref="myMinaEndpoint"/>
<to uri="mock:result"/>

</route>

Closing Session When Complete
When acting as a server you sometimes want to close the session when, for
example, a client conversion is finished. To instruct Camel to close the
session, you should add a header with the key
CamelMinaCloseSessionWhenComplete set to a boolean true value.

For instance, the example below will close the session after it has written
the bye message back to the client:

from("mina:tcp://localhost:8080?sync=true&textline=true").process(new
Processor() {

public void process(Exchange exchange) throws Exception {
String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);

exchange.getOut().setHeader(MinaConstants.MINA_CLOSE_SESSION_WHEN_COMPLETE, true);
}

});

Get the IoSession for message
Available since Camel 2.1
You can get the IoSession from the message header with this key
MinaEndpoint.HEADER_MINA_IOSESSION, and also get the local host address
with the key MinaEndpoint.HEADER_LOCAL_ADDRESS and remote host
address with the key MinaEndpoint.HEADER_REMOTE_ADDRESS.

Configuring Mina filters
Filters permit you to use some Mina Filters, such as SslFilter. You can also
implement some customized filters. Please note that codec and logger are

CHAPTER 11 - COMPONENT APPENDIX 849

also implemented as Mina filters of type, IoFilter. Any filters you may
define are appended to the end of the filter chain; that is, after codec and
logger.
For instance, the example below will send a keep-alive message after 10
seconds of inactivity:

public class KeepAliveFilter extends IoFilterAdapter {
@Override
public void sessionCreated(NextFilter nextFilter, IoSession session)

throws Exception {
session.setIdleTime(IdleStatus.BOTH_IDLE, 10);

nextFilter.sessionCreated(session);
}

@Override
public void sessionIdle(NextFilter nextFilter, IoSession session,

IdleStatus status) throws Exception {
session.write("NOOP"); // NOOP is a FTP command for keep alive
nextFilter.sessionIdle(session, status);

}
}

As Camel Mina may use a request-reply scheme, the endpoint as a client
would like to drop some message, such as greeting when the connection is
established. For example, when you connect to an FTP server, you will get a
220 message with a greeting (220 Welcome to Pure-FTPd). If you don't drop
the message, your request-reply scheme will be broken.

public class DropGreetingFilter extends IoFilterAdapter {

@Override
public void messageReceived(NextFilter nextFilter, IoSession session,

Object message) throws Exception {
if (message instanceof String) {

String ftpMessage = (String) message;
// "220" is given as greeting. "200 Zzz" is given as a response to "NOOP"

(keep alive)
if (ftpMessage.startsWith("220") || or ftpMessage.startsWith("200 Zzz")) {

// Dropping greeting
return;

}
}
nextFilter.messageReceived(session, message);

}
}

Then, you can configure your endpoint using Spring DSL:

850 CHAPTER 11 - COMPONENT APPENDIX

If using the SslFilter you need to add the mina-filter-ssl JAR
to the classpath.

<bean id="myMinaFactory" class="org.apache.camel.component.mina.MinaComponent">
<constructor-arg index="0" ref="camelContext" />

</bean>

<bean id="myMinaEndpoint"
factory-bean="myMinaFactory"
factory-method="createEndpoint">

<constructor-arg index="0" ref="myMinaConfig"/>
</bean>

<bean id="myMinaConfig" class="org.apache.camel.component.mina.MinaConfiguration">
<property name="protocol" value="tcp" />
<property name="host" value="localhost" />
<property name="port" value="2121" />
<property name="sync" value="true" />
<property name="minaLogger" value="true" />
<property name="filters" ref="listFilters"/>

</bean>

<bean id="listFilters" class="java.util.ArrayList" >
<constructor-arg>

<list value-type="org.apache.mina.common.IoFilter">
<bean class="com.example.KeepAliveFilter"/>
<bean class="com.example.DropGreetingFilter"/>

</list>
</constructor-arg>

</bean>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Camel Netty

MOCK COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult.
The Mock, Test and DataSet endpoints work great with the Camel Testing
Framework to simplify your unit and integration testing using Enterprise

CHAPTER 11 - COMPONENT APPENDIX 851

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/netty.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html

Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.
The Mock component provides a powerful declarative testing mechanism,
which is similar to jMock in that it allows declarative expectations to be
created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the
expectations can be asserted in a test case to ensure the system worked as
expected.

This allows you to test various things like:
• The correct number of messages are received on each endpoint,
• The correct payloads are received, in the right order,
• Messages arrive on an endpoint in order, using some Expression to

create an order testing function,
• Messages arrive match some kind of Predicate such as that specific

headers have certain values, or that parts of the messages match
some predicate, such as by evaluating an XPath or XQuery
Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which
uses a second endpoint to provide the list of expected message bodies and
automatically sets up the Mock endpoint assertions. In other words, it's a
Mock endpoint that automatically sets up its assertions from some sample
messages in a File or database, for example.

URI format

mock:someName[?options]

Where someName can be any string that uniquely identifies the endpoint.
You can append query options to the URI in the following format,

?option=value&option=value&...

Options
Option Default Description
reportGroup null A size to use a throughput logger for reporting

Simple Example
Here's a simple example of Mock endpoint in use. First, the endpoint is
resolved on the context. Then we set an expectation, and then, after the test
has run, we assert that our expectations have been met.

852 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html
http://camel.apache.org/test.html
http://camel.apache.org/file2.html
http://camel.apache.org/jpa.html
http://camel.apache.org/log.html

Mock endpoints keep received Exchanges in memory
indefinitely
Remember that Mock is designed for testing. When you add Mock
endpoints to a route, each Exchange sent to the endpoint will be
stored (to allow for later validation) in memory until explicitly reset
or the JVM is restarted. If you are sending high volume and/or large
messages, this may cause excessive memory use. If your goal is to
test deployable routes inline, consider using NotifyBuilder or
AdviceWith in your tests instead of adding Mock endpoints to routes
directly.

From Camel 2.10 onwards there are two new options retainFirst, and
retainLast that can be used to limit the number of messages the Mock
endpoints keep in memory.

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the
expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is
invoked. This can be configured by setting the setResultWaitTime(millis)
method.

Using assertPeriod
Available as of Camel 2.7
When the assertion is satisfied then Camel will stop waiting and continue
from the assertIsSatisfied method. That means if a new message arrives
on the mock endpoint, just a bit later, that arrival will not affect the outcome
of the assertion. Suppose you do want to test that no new messages arrives
after a period thereafter, then you can do that by setting the
setAssertPeriod method, for example:

CHAPTER 11 - COMPONENT APPENDIX 853

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()
http://camel.apache.org/exchange.html
http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now lets assert that the mock:foo endpoint received 2 messages
resultEndpoint.assertIsSatisfied();

Setting expectations
You can see from the javadoc of MockEndpoint the various helper methods
you can use to set expectations. The main methods are as follows:
Method Description
expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using the given Expression to compare
messages.

expectsNoDuplicates(Expression)
To add an expectation that no duplicate messages are received; using an Expression to calculate a
unique identifier for each message. This could be something like the JMSMessageID if using JMS, or some
unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody",
"thirdMessageBody");

Adding expectations to specific messages
In addition, you can use the message(int messageIndex) method to add
assertions about a specific message that is received.

For example, to add expectations of the headers or body of the first
message (using zero-based indexing like java.util.List), you can use the
following code:

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core
processor tests.

854 CHAPTER 11 - COMPONENT APPENDIX

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

Mocking existing endpoints
Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your
Camel routes.
Suppose you have the given route below:

Listing 1. Route

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

You can then use the adviceWith feature in Camel to mock all the endpoints
in a given route from your unit test, as shown below:

Listing 1. adviceWith mocking all endpoints

public void testAdvisedMockEndpoints() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock all endpoints
mockEndpoints();

}
});

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));

CHAPTER 11 - COMPONENT APPENDIX 855

How it works
Important: The endpoints are still in action. What happens
differently is that a Mock endpoint is injected and receives the
message first and then delegates the message to the target
endpoint. You can view this as a kind of intercept and delegate or
endpoint listener.

assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

Notice that the mock endpoints is given the uri mock:<endpoint>, for
example mock:direct:foo. Camel logs at INFO level the endpoints being
mocked:

INFO Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Its also possible to only mock certain endpoints using a pattern. For example
to mock all log endpoints you do as shown:

Listing 1. adviceWith mocking only log endpoints using a pattern

public void testAdvisedMockEndpointsWithPattern() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock only log endpoints
mockEndpoints("log*");

}
});

// now we can refer to log:foo as a mock and set our expectations
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));

856 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mock.html

Mocked endpoints are without parameters
Endpoints which are mocked will have their parameters stripped off.
For example the endpoint "log:foo?showAll=true" will be mocked to
the following endpoint "mock:log:foo". Notice the parameters have
been removed.

assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// only the log:foo endpoint was mocked
assertNotNull(context.hasEndpoint("mock:log:foo"));
assertNull(context.hasEndpoint("mock:direct:start"));
assertNull(context.hasEndpoint("mock:direct:foo"));

}

The pattern supported can be a wildcard or a regular expression. See more
details about this at Intercept as its the same matching function used by
Camel.

Mocking existing endpoints using the camel-test
component
Instead of using the adviceWith to instruct Camel to mock endpoints, you
can easily enable this behavior when using the camel-test Test Kit.
The same route can be tested as follows. Notice that we return "*" from the
isMockEndpoints method, which tells Camel to mock all endpoints.
If you only want to mock all log endpoints you can return "log*" instead.

Listing 1. isMockEndpoints using camel-test kit

public class IsMockEndpointsJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpoints() {

// override this method and return the pattern for which endpoints to mock.
// use * to indicate all
return "*";

}

@Test
public void testMockAllEndpoints() throws Exception {

// notice we have automatic mocked all endpoints and the name of the
endpoints is "mock:uri"

getMockEndpoint("mock:direct:start").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

CHAPTER 11 - COMPONENT APPENDIX 857

http://camel.apache.org/intercept.html

Mind that mocking endpoints causes the messages to be copied
when they arrive on the mock.
That means Camel will use more memory. This may not be suitable
when you send in a lot of messages.

getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// additional test to ensure correct endpoints in registry
assertNotNull(context.hasEndpoint("direct:start"));
assertNotNull(context.hasEndpoint("direct:foo"));
assertNotNull(context.hasEndpoint("log:foo"));
assertNotNull(context.hasEndpoint("mock:result"));
// all the endpoints was mocked
assertNotNull(context.hasEndpoint("mock:direct:start"));
assertNotNull(context.hasEndpoint("mock:direct:foo"));
assertNotNull(context.hasEndpoint("mock:log:foo"));

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("log:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World"));
}

};
}

}

Mocking existing endpoints with XML DSL
If you do not use the camel-test component for unit testing (as shown
above) you can use a different approach when using XML files for routes.
The solution is to create a new XML file used by the unit test and then
include the intended XML file which has the route you want to test.

Suppose we have the route in the camel-route.xml file:
Listing 1. camel-route.xml

858 CHAPTER 11 - COMPONENT APPENDIX

<!-- this camel route is in the camel-route.xml file -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<to uri="direct:foo"/>
<to uri="log:foo"/>
<to uri="mock:result"/>

</route>

<route>
<from uri="direct:foo"/>
<transform>

<constant>Bye World</constant>
</transform>

</route>

</camelContext>

Then we create a new XML file as follows, where we include the camel-
route.xml file and define a spring bean with the class
org.apache.camel.impl.InterceptSendToMockEndpointStrategy which
tells Camel to mock all endpoints:

Listing 1. test-camel-route.xml

<!-- the Camel route is defined in another XML file -->
<import resource="camel-route.xml"/>

<!-- bean which enables mocking all endpoints -->
<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy"/>

Then in your unit test you load the new XML file (test-camel-route.xml)
instead of camel-route.xml.

To only mock all Log endpoints you can define the pattern in the
constructor for the bean:

<bean id="mockAllEndpoints"
class="org.apache.camel.impl.InterceptSendToMockEndpointStrategy">

<constructor-arg index="0" value="log*"/>
</bean>

Mocking endpoints and skip sending to original endpoint
Available as of Camel 2.10

Sometimes you want to easily mock and skip sending to a certain
endpoints. So the message is detoured and send to the mock endpoint only.

CHAPTER 11 - COMPONENT APPENDIX 859

http://camel.apache.org/log.html

From Camel 2.10 onwards you can now use the mockEndpointsAndSkip
method using AdviceWith or the [Test Kit]. The example below will skip
sending to the two endpoints "direct:foo", and "direct:bar".

Listing 1. adviceWith mock and skip sending to endpoints

public void testAdvisedMockEndpointsWithSkip() throws Exception {
// advice the first route using the inlined AdviceWith route builder
// which has extended capabilities than the regular route builder
context.getRouteDefinitions().get(0).adviceWith(context, new

AdviceWithRouteBuilder() {
@Override
public void configure() throws Exception {

// mock sending to direct:foo and direct:bar and skip send to it
mockEndpointsAndSkip("direct:foo", "direct:bar");

}
});

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);
getMockEndpoint("mock:direct:bar").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the seda
endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

The same example using the Test Kit
Listing 1. isMockEndpointsAndSkip using camel-test kit

public class IsMockEndpointsAndSkipJUnit4Test extends CamelTestSupport {

@Override
public String isMockEndpointsAndSkip() {

// override this method and return the pattern for which endpoints to mock,
// and skip sending to the original endpoint.
return "direct:foo";

}

@Test
public void testMockEndpointAndSkip() throws Exception {

// notice we have automatic mocked the direct:foo endpoints and the name of
the endpoints is "mock:uri"

getMockEndpoint("mock:result").expectedBodiesReceived("Hello World");
getMockEndpoint("mock:direct:foo").expectedMessageCount(1);

template.sendBody("direct:start", "Hello World");

860 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/advicewith.html
http://camel.apache.org/testing.html

assertMockEndpointsSatisfied();

// the message was not send to the direct:foo route and thus not sent to the
seda endpoint

SedaEndpoint seda = context.getEndpoint("seda:foo", SedaEndpoint.class);
assertEquals(0, seda.getCurrentQueueSize());

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("direct:foo").to("mock:result");

from("direct:foo").transform(constant("Bye World")).to("seda:foo");
}

};
}

}

Limiting the number of messages to keep
Available as of Camel 2.10

The Mock endpoints will by default keep a copy of every Exchange that it
received. So if you test with a lot of messages, then it will consume memory.
From Camel 2.10 onwards we have introduced two options retainFirst and
retainLast that can be used to specify to only keep N'th of the first and/or
last Exchanges.

For example in the code below, we only want to retain a copy of the first 5
and last 5 Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data");
mock.setRetainFirst(5);
mock.setRetainLast(5);
mock.expectedMessageCount(2000);

...

mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and
getReceivedExchanges() methods on the MockEndpoint will return only the
retained copies of the Exchanges. So in the example above, the list will
contain 10 Exchanges; the first five, and the last five.
The retainFirst and retainLast options also have limitations on which
expectation methods you can use. For example the expectedXXX methods

CHAPTER 11 - COMPONENT APPENDIX 861

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

that work on message bodies, headers, etc. will only operate on the retained
messages. In the example above they can test only the expectations on the
10 retained messages.

Testing with arrival times
Available as of Camel 2.7

The Mock endpoint stores the arrival time of the message as a property on
the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock.
But it also provides foundation to know the time interval between the
previous and next message arrived on the mock. You can use this to set
expectations using the arrives DSL on the Mock endpoint.

For example to say that the first message should arrive between 0-2
seconds before the next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that 2nd message (0 index based) should arrive
no later than 0-2 seconds after the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it
should be between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the
gap between them should be at most 1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

862 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/mock.html
http://camel.apache.org/exchange.html
http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

time units
In the example above we use seconds as the time unit, but Camel
offers milliseconds, and minutes as well.

• Spring Testing
• Testing

MSV COMPONENT
The MSV component performs XML validation of the message body using the
MSV Library and any of the supported XML schema languages, such as XML
Schema or RelaxNG XML Syntax.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-msv</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Note that the Jing component also supports RelaxNG Compact Syntax

URI format

msv:someLocalOrRemoteResource[?options]

Where someLocalOrRemoteResource is some URL to a local resource on
the classpath or a full URL to a remote resource or resource on the file
system. For example

msv:org/foo/bar.rng
msv:file:../foo/bar.rng
msv:http://acme.com/cheese.rng

You can append query options to the URI in the following format,
?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 863

http://camel.apache.org/spring-testing.html
http://camel.apache.org/testing.html
https://msv.dev.java.net/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://relaxng.org/
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html

Options
Option Default Description
useDom true Whether DOMSource/DOMResult or SaxSource/SaxResult should be used by the validator. Note: DOM must be

used by the MSV component.

Example
The following example shows how to configure a route from endpoint
direct:start which then goes to one of two endpoints, either mock:valid or
mock:invalid based on whether or not the XML matches the given RelaxNG
XML Schema (which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<doTry>

<to uri="msv:org/apache/camel/component/validator/msv/schema.rng"/>
<to uri="mock:valid"/>

<doCatch>
<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

</camelContext>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

MYBATIS
Available as of Camel 2.7

The mybatis: component allows you to query, poll, insert, update and
delete data in a relational database using MyBatis.

Maven users will need to add the following dependency to their pom.xml
for this component:

864 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/msv.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-msv/src/test/resources/org/apache/camel/component/validator/msv/camelContext.xml
http://relaxng.org/
http://relaxng.org/
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://mybatis.org/

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-mybatis</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

mybatis:statementName[?options]

Where statementName is the statement name in the MyBatis XML mapping
file which maps to the query, insert, update or delete operation you wish to
evaluate.

You can append query options to the URI in the following format,
?option=value&option=value&...

This component will by default load the MyBatis SqlMapConfig file from the
root of the classpath with the expected name of SqlMapConfig.xml.
If the file is located in another location, you will need to configure the
configurationUri option on the MyBatisComponent component.

Options
Option Type Default Description

consumer.onConsume String null
Statements to run after consuming. Can be used, for example, to update
rows after they have been consumed and processed in Camel. See
sample later. Multiple statements can be separated with commas.

consumer.useIterator boolean true If true each row returned when polling will be processed individually. If
false the entire List of data is set as the IN body.

consumer.routeEmptyResultSet boolean false Sets whether empty result sets should be routed.

statementType StatementType null

Mandatory to specify for the producer to control which kind of operation
to invoke. The enum values are: SelectOne, SelectList, Insert,
InsertList, Update, UpdateList, Delete, and DeleteList. Notice:
InsertList is available as of Camel 2.10, and UpdateList, DeleteList
is available as of Camel 2.11.

maxMessagesPerPoll int 0

An integer to define the maximum messages to gather per poll. By
default, no maximum is set. Can be used to set a limit of e.g. 1000 to
avoid when starting up the server that there are thousands of files. Set a
value of 0 or negative to disable it.

executorType String null

Camel 2.11: The executor type to be used while executing statements.
The supported values are: simple, reuse, batch. By default, the value is
not specified and is equal to what MyBatis uses, i.e. simple.
simple executor does nothing special.
reuse executor reuses prepared statements.
batch executor reuses statements and batches updates.

CHAPTER 11 - COMPONENT APPENDIX 865

Message Headers
Camel will populate the result message, either IN or OUT with a header with
the statement used:
Header Type Description
CamelMyBatisStatementName String The statementName used (for example: insertAccount).

CamelMyBatisResult Object The response returned from MtBatis in any of the operations. For instance an INSERT could return
the auto-generated key, or number of rows etc.

Message Body
The response from MyBatis will only be set as the body if it's a SELECT
statement. That means, for example, for INSERT statements Camel will not
replace the body. This allows you to continue routing and keep the original
body. The response from MyBatis is always stored in the header with the key
CamelMyBatisResult.

Samples
For example if you wish to consume beans from a JMS queue and insert them
into a database you could do the following:

from("activemq:queue:newAccount").
to("mybatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Camel
which kind of operation to invoke.

Where insertAccount is the MyBatis ID in the SQL mapping file:

<!-- Insert example, using the Account parameter class -->
<insert id="insertAccount" parameterType="Account">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL

)
values (

#{id}, #{firstName}, #{lastName}, #{emailAddress}
)

</insert>

Using StatementType for better control of MyBatis
When routing to an MyBatis endpoint you will want more fine grained control
so you can control whether the SQL statement to be executed is a SELECT,

866 CHAPTER 11 - COMPONENT APPENDIX

UPDATE, DELETE or INSERT etc. So for instance if we want to route to an
MyBatis endpoint in which the IN body contains parameters to a SELECT
statement we can do:

from("direct:start")
.to("mybatis:selectAccountById?statementType=SelectOne")
.to("mock:result");

In the code above we can invoke the MyBatis statement selectAccountById
and the IN body should contain the account id we want to retrieve, such as
an Integer type.

We can do the same for some of the other operations, such as
SelectList:

from("direct:start")
.to("mybatis:selectAllAccounts?statementType=SelectList")
.to("mock:result");

And the same for UPDATE, where we can send an Account object as the IN
body to MyBatis:

from("direct:start")
.to("mybatis:updateAccount?statementType=Update")
.to("mock:result");

Using InsertList StatementType
Available as of Camel 2.10

MyBatis allows you to insert multiple rows using its for-each batch driver.
To use this, you need to use the <foreach> in the mapper XML file. For
example as shown below:

<!-- Batch Insert example, using the Account parameter class -->
<insert id="batchInsertAccount" parameterType="java.util.List">

insert into ACCOUNT (
ACC_ID,
ACC_FIRST_NAME,
ACC_LAST_NAME,
ACC_EMAIL
)
values (
<foreach item="Account" collection="list" open="" close="" separator="),(">

#{Account.id}, #{Account.firstName}, #{Account.lastName},
#{Account.emailAddress}

</foreach>

CHAPTER 11 - COMPONENT APPENDIX 867

)
</insert>

Then you can insert multiple rows, by sending a Camel message to the
mybatis endpoint which uses the InsertList statement type, as shown
below:

from("direct:start")
.to("mybatis:batchInsertAccount?statementType=InsertList")
.to("mock:result");

Using UpdateList StatementType
Available as of Camel 2.11

MyBatis allows you to update multiple rows using its for-each batch driver.
To use this, you need to use the <foreach> in the mapper XML file. For
example as shown below:

<update id="batchUpdateAccount" parameterType="java.util.Map">
update ACCOUNT set
ACC_EMAIL = #{emailAddress}
where
ACC_ID in
<foreach item="Account" collection="list" open="(" close=")" separator=",">

#{Account.id}
</foreach>

</update>

Then you can update multiple rows, by sending a Camel message to the
mybatis endpoint which uses the UpdateList statement type, as shown
below:

from("direct:start")
.to("mybatis:batchUpdateAccount?statementType=UpdateList")
.to("mock:result");

Using DeleteList StatementType
Available as of Camel 2.11

MyBatis allows you to delete multiple rows using its for-each batch driver.
To use this, you need to use the <foreach> in the mapper XML file. For
example as shown below:

868 CHAPTER 11 - COMPONENT APPENDIX

<delete id="batchDeleteAccountById" parameterType="java.util.List">
delete from ACCOUNT
where
ACC_ID in
<foreach item="AccountID" collection="list" open="(" close=")" separator=",">

#{AccountID}
</foreach>

</delete>

Then you can delete multiple rows, by sending a Camel message to the
mybatis endpoint which uses the DeleteList statement type, as shown below:

from("direct:start")
.to("mybatis:batchDeleteAccount?statementType=DeleteList")
.to("mock:result");

Notice on InsertList, UpdateList and DeleteList
StatementTypes
Parameter of any type (List, Map, etc.) can be passed to mybatis and an end
user is responsible for handling it as required
with the help of mybatis dynamic queries capabilities.

Scheduled polling example
Since this component does not support scheduled polling, you need to use
another mechanism for triggering the scheduled polls, such as the Timer or
Quartz components.

In the sample below we poll the database, every 30 seconds using the
Timer component and send the data to the JMS queue:

from("timer://pollTheDatabase?delay=30000").to("mbatis:selectAllAccounts").to("activemq:queue:allAccounts");

And the MyBatis SQL mapping file used:

<!-- Select with no parameters using the result map for Account class. -->
<select id="selectAllAccounts" resultMap="AccountResult">

select * from ACCOUNT
</select>

CHAPTER 11 - COMPONENT APPENDIX 869

http://www.mybatis.org/core/dynamic-sql.html
http://camel.apache.org/timer.html
http://camel.apache.org/quartz.html
http://camel.apache.org/timer.html

Using onConsume
This component supports executing statements after data have been
consumed and processed by Camel. This allows you to do post updates in the
database. Notice all statements must be UPDATE statements. Camel supports
executing multiple statements whose names should be separated by
commas.

The route below illustrates we execute the consumeAccount statement
data is processed. This allows us to change the status of the row in the
database to processed, so we avoid consuming it twice or more.

from("mybatis:selectUnprocessedAccounts?consumer.onConsume=consumeAccount").to("mock:results");

And the statements in the sqlmap file:

<select id="selectUnprocessedAccounts" resultMap="AccountResult">
select * from ACCOUNT where PROCESSED = false

</select>

<update id="consumeAccount" parameterType="Account">
update ACCOUNT set PROCESSED = true where ACC_ID = #{id}

</update>

Participating in transactions
Setting up a transaction manager under camel-mybatis can be a little bit
fiddly, as it involves externalising the database configuration outside the
standard MyBatis SqlMapConfig.xml file.

The first part requires the setup of a DataSource. This is typically a pool
(either DBCP, or c3p0), which needs to be wrapped in a Spring proxy. This
proxy enables non-Spring use of the DataSource to participate in Spring
transactions (the MyBatis SqlSessionFactory does just this).

<bean id="dataSource"
class="org.springframework.jdbc.datasource.TransactionAwareDataSourceProxy">

<constructor-arg>
<bean class="com.mchange.v2.c3p0.ComboPooledDataSource">

<property name="driverClass" value="org.postgresql.Driver"/>
<property name="jdbcUrl" value="jdbc:postgresql://localhost:5432/

myDatabase"/>
<property name="user" value="myUser"/>
<property name="password" value="myPassword"/>

</bean>

870 CHAPTER 11 - COMPONENT APPENDIX

</constructor-arg>
</bean>

This has the additional benefit of enabling the database configuration to be
externalised using property placeholders.

A transaction manager is then configured to manage the outermost
DataSource:

<bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">

<property name="dataSource" ref="dataSource"/>
</bean>

A mybatis-spring SqlSessionFactoryBean then wraps that same
DataSource:

<bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
<property name="dataSource" ref="dataSource"/>
<!-- standard mybatis config file -->
<property name="configLocation" value="/META-INF/SqlMapConfig.xml"/>
<!-- externalised mappers -->
<property name="mapperLocations" value="classpath*:META-INF/mappers/**/

*.xml"/>
</bean>

The camel-mybatis component is then configured with that factory:

<bean id="mybatis" class="org.apache.camel.component.mybatis.MyBatisComponent">
<property name="sqlSessionFactory" ref="sqlSessionFactory"/>

</bean>

Finally, a transaction policy is defined over the top of the transaction
manager, which can then be used as usual:

<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">

<property name="transactionManager" ref="txManager"/>
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>

</bean>

<camelContext id="my-model-context" xmlns="http://camel.apache.org/schema/spring">
<route id="insertModel">

<from uri="direct:insert"/>
<transacted ref="PROPAGATION_REQUIRED"/>
<to uri="mybatis:myModel.insert?statementType=Insert"/>

</route>
</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 871

http://www.mybatis.org/spring/index.html
http://www.mybatis.org/spring/factorybean.html
http://camel.apache.org/transactional-client.html

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

NAGIOS
Available as of Camel 2.3

The Nagios component allows you to send passive checks to Nagios.
Maven users will need to add the following dependency to their pom.xml

for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-nagios</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

nagios://host[:port][?Options]

Camel provides two abilities with the Nagios component. You can send
passive check messages by sending a message to its endpoint.
Camel also provides a EventNotifer which allows you to send notifications to
Nagios.

Options

Name Default
Value Description

host none This is the address of the Nagios host where checks should be send.

port Â The port number of the host.

password Â Password to be authenticated when sending checks to Nagios.

connectionTimeout 5000 Connection timeout in millis.

timeout 5000 Sending timeout in millis.

nagiosSettings Â To use an already configured com.googlecode.jsendnsca.core.NagiosSettings object. Then any of
the other options are not in use, if using this.

sendSync true Whether or not to use synchronous when sending a passive check. Setting it to false will allow Camel to
continue routing the message and the passive check message will be send asynchronously.

encryptionMethod No Camel 2.9: To specify an encryption method. Possible values: No, Xor, or TripleDes.

872 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/nagios.html
http://nagios.org
http://camel.apache.org/nagios.html
http://camel.apache.org/camel-jmx.html
http://camel.apache.org/nagios.html

Headers
Name Description
CamelNagiosHostName This is the address of the Nagios host where checks should be send. This header will override any existing

hostname configured on the endpoint.

CamelNagiosLevel This is the severity level. You can use values CRITICAL, WARNING, OK. Camel will by default use OK.

CamelNagiosServiceName The servie name. Will default use the CamelContext name.

Sending message examples
You can send a message to Nagios where the message payload contains the
message. By default it will be OK level and use the CamelContext name as
the service name. You can overrule these values using headers as shown
above.

For example we send the Hello Nagios message to Nagios as follows:

template.sendBody("direct:start", "Hello Nagios");

from("direct:start").to("nagios:127.0.0.1:5667?password=secret").to("mock:result");

To send a CRITICAL message you can send the headers such as:

Map headers = new HashMap();
headers.put(NagiosConstants.LEVEL, "CRITICAL");
headers.put(NagiosConstants.HOST_NAME, "myHost");
headers.put(NagiosConstants.SERVICE_NAME, "myService");
template.sendBodyAndHeaders("direct:start", "Hello Nagios", headers);

Using NagiosEventNotifer
The Nagios component also provides an EventNotifer which you can use to
send events to Nagios. For example we can enable this from Java as follows:

NagiosEventNotifier notifier = new NagiosEventNotifier();
notifier.getConfiguration().setHost("localhost");
notifier.getConfiguration().setPort(5667);
notifier.getConfiguration().setPassword("password");

CamelContext context = ...
context.getManagementStrategy().addEventNotifier(notifier);
return context;

In Spring XML its just a matter of defining a Spring bean with the type
EventNotifier and Camel will pick it up as documented here: Advanced
configuration of CamelContext using Spring.

CHAPTER 11 - COMPONENT APPENDIX 873

http://camel.apache.org/nagios.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/nagios.html
http://camel.apache.org/camel-jmx.html
http://camel.apache.org/advanced-configuration-of-camelcontext-using-spring.html
http://camel.apache.org/advanced-configuration-of-camelcontext-using-spring.html

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

NETTY COMPONENT
Available as of Camel 2.3

The netty component in Camel is a socket communication component,
based on the Netty project.
Netty is a NIO client server framework which enables quick and easy
development of network applications such as protocol servers and clients.
Netty greatly simplifies and streamlines network programming such as TCP
and UDP socket server.

This camel component supports both producer and consumer endpoints.
The Netty component has several options and allows fine-grained control

of a number of TCP/UDP communication parameters (buffer sizes, keepAlives,
tcpNoDelay etc) and facilitates both In-Only and In-Out communication on a
Camel route.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-netty</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
The URI scheme for a netty component is as follows

netty:tcp://localhost:99999[?options]
netty:udp://remotehost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and
UDP.

You can append query options to the URI in the following format,
?option=value&option=value&...

874 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://netty.io/

Options

Name Default
Value Description

keepAlive true Setting to ensure socket is not closed due to inactivity

tcpNoDelay true Setting to improve TCP protocol performance

backlog Â
Camel 2.9.6/2.10.4/2.11: Allows to configure a backlog for netty consumer (server). Note
the backlog is just a best effort depending on the OS. Setting this option to a value such as
200, 500 or 1000, tells the TCP stack how long the "accept" queue can be. If this option is
not configured, then the backlog depends on OS setting.

broadcast false Setting to choose Multicast over UDP

connectTimeout 10000 Time to wait for a socket connection to be available. Value is in millis.

reuseAddress true Setting to facilitate socket multiplexing

sync true Setting to set endpoint as one-way or request-response

synchronous false Camel 2.10: Whether Asynchronous Routing Engine is not in use. false then the
Asynchronous Routing Engine is used, true to force processing synchronous.

ssl false Setting to specify whether SSL encryption is applied to this endpoint

sendBufferSize 65536 bytes The TCP/UDP buffer sizes to be used during outbound communication. Size is bytes.

receiveBufferSize 65536 bytes The TCP/UDP buffer sizes to be used during inbound communication. Size is bytes.

option.XXX null
Camel 2.11/2.10.4: Allows to configure additional netty options using "option." as prefix.
For example "option.child.keepAlive=false" to set the netty option "child.keepAlive=false".
See the Netty documentation for possible options that can be used.

corePoolSize 10 The number of allocated threads at component startup. Defaults to 10. Note: This option is
removed from Camel 2.9.2 onwards. As we rely on Nettys default settings.

maxPoolSize 100
The maximum number of threads that may be allocated to this endpoint. Defaults to 100.
Note: This option is removed from Camel 2.9.2 onwards. As we rely on Nettys default
settings.

disconnect false Whether or not to disconnect(close) from Netty Channel right after use. Can be used for
both consumer and producer.

lazyChannelCreation true Channels can be lazily created to avoid exceptions, if the remote server is not up and
running when the Camel producer is started.

transferExchange false

Only used for TCP. You can transfer the exchange over the wire instead of just the body. The
following fields are transferred: In body, Out body, fault body, In headers, Out headers, fault
headers, exchange properties, exchange exception. This requires that the objects are
serializable. Camel will exclude any non-serializable objects and log it at WARN level.

disconnectOnNoReply true If sync is enabled then this option dictates NettyConsumer if it should disconnect where
there is no reply to send back.

noReplyLogLevel WARN If sync is enabled this option dictates NettyConsumer which logging level to use when
logging a there is no reply to send back. Values are: FATAL, ERROR, INFO, DEBUG, OFF.

allowDefaultCodec true
Camel 2.4: The netty component installs a default codec if both, encoder/deocder is null
and textline is false. Setting allowDefaultCodec to false prevents the netty component from
installing a default codec as the first element in the filter chain.

textline false
Camel 2.4: Only used for TCP. If no codec is specified, you can use this flag to indicate a
text line based codec; if not specified or the value is false, then Object Serialization is
assumed over TCP.

delimiter LINE Camel 2.4: The delimiter to use for the textline codec. Possible values are LINE and NULL.

decoderMaxLineLength 1024 Camel 2.4: The max line length to use for the textline codec.

autoAppendDelimiter true Camel 2.4: Whether or not to auto append missing end delimiter when sending using the
textline codec.

encoding null Camel 2.4: The encoding (a charset name) to use for the textline codec. If not provided,
Camel will use the JVM default Charset.

workerCount null
Camel 2.9: When netty works on nio mode, it uses default workerCount parameter from
Netty, which is cpu_core_threads*2. User can use this operation to override the default
workerCount from Netty

sslContextParametersRef null
Camel 2.9: Reference to a org.apache.camel.util.jsse.SSLContextParameters in the
Registry.Â This reference overrides any configured SSLContextParameters at the
component level.Â See Using the JSSE Configuration Utility.

receiveBufferSizePredictor null Camel 2.9: Configures the buffer size predictor. See details at Jetty documentation and this
mail thread.

needClientAuth false Camel 2.11: Configures whether the server needs client authentication when using SSL.

CHAPTER 11 - COMPONENT APPENDIX 875

http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/asynchronous-routing-engine.html
http://camel.apache.org/registry.html
http://lists.jboss.org/pipermail/netty-users/2010-January/001958.html

orderedThreadPoolExecutor true

Camel 2.10.2: Whether to use ordered thread pool, to ensure events are processed orderly
on the same channel. See details at the netty javadoc of
org.jboss.netty.handler.execution.OrderedMemoryAwareThreadPoolExecutor for
more details.

maximumPoolSize 16 Camel 2.10.2: The core pool size for the ordered thread pool, if its in use.

producerPoolEnabled true Camel 2.10.4/Camel 2.11: Producer only. Whether producer pool is enabled or not.

producerPoolMaxActive -1
Camel 2.10.3: Producer only. Sets the cap on the number of objects that can be allocated
by the pool (checked out to clients, or idle awaiting checkout) at a given time. Use a
negative value for no limit.

producerPoolMinIdle 0 Camel 2.10.3: Producer only. Sets the minimum number of instances allowed in the
producer pool before the evictor thread (if active) spawns new objects.

producerPoolMaxIdle 100 Camel 2.10.3: Producer only. Sets the cap on the number of "idle" instances in the pool.

producerPoolMinEvictableIdle 30000 Camel 2.10.3: Producer only. Sets the minimum amount of time (value in millis) an object
may sit idle in the pool before it is eligible for eviction by the idle object evictor.

Registry based Options
Codec Handlers and SSL Keystores can be enlisted in the Registry, such as in
the Spring XML file.
The values that could be passed in, are the following:
Name Description
passphrase password setting to use in order to encrypt/decrypt payloads sent using SSH

keyStoreFormat keystore format to be used for payload encryption. Defaults to "JKS" if not set

securityProvider Security provider to be used for payload encryption. Defaults to "SunX509" if not set.

keyStoreFile Client side certificate keystore to be used for encryption

trustStoreFile Server side certificate keystore to be used for encryption

sslHandler Reference to a class that could be used to return an SSL Handler

encoder A custom ChannelHandler class that can be used to perform special marshalling of outbound payloads. Must override
org.jboss.netty.channel.ChannelDownStreamHandler.

encorders A list of encoders to be used. You can use a String which have values separated by comma, and have the values be looked
up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.

decoder A custom ChannelHandler class that can be used to perform special marshalling of inbound payloads. Must override
org.jboss.netty.channel.ChannelUpStreamHandler.

decoders A list of decoders to be used. You can use a String which have values separated by comma, and have the values be looked
up in the Registry. Just remember to prefix the value with # so Camel knows it should lookup.

Important: Read below about using non shareable encoders/decoders.

Using non shareable encoders or decoders
If your encoders or decoders is not shareable (eg they have the @Shareable
class annotation), then your encoder/decoder must implement the
org.apache.camel.component.netty.ChannelHandlerFactory interface,
and return a new instance in the newChannelHandler method. This is to
ensure the encoder/decoder can safely be used. If this is not the case, then
the Netty component will log a WARN when
an endpoint is created.

The Netty component offers a
org.apache.camel.component.netty.ChannelHandlerFactories factory
class, that has a number of commonly used methods.

876 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Sending Messages to/from a Netty endpoint

Netty Producer
In Producer mode, the component provides the ability to send payloads to a
socket endpoint
using either TCP or UDP protocols (with optional SSL support).

The producer mode supports both one-way and request-response based
operations.

Netty Consumer
In Consumer mode, the component provides the ability to:

▪ listen on a specified socket using either TCP or UDP protocols (with
optional SSL support),

▪ receive requests on the socket using text/xml, binary and serialized
object based payloads and

▪ send them along on a route as message exchanges.
The consumer mode supports both one-way and request-response based
operations.

Usage Samples

A UDP Netty endpoint using Request-Reply and
serialized object payload

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("netty:udp://localhost:5155?sync=true")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
Poetry poetry = (Poetry) exchange.getIn().getBody();
poetry.setPoet("Dr. Sarojini Naidu");
exchange.getOut().setBody(poetry);

}
}

}
};

CHAPTER 11 - COMPONENT APPENDIX 877

A TCP based Netty consumer endpoint using One-way
communication

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("netty:tcp://localhost:5150")
.to("mock:result");

}
};

An SSL/TCP based Netty consumer endpoint using
Request-Reply communication

Using the JSSE Configuration Utility
As of Camel 2.9, the Netty component supports SSL/TLS configuration
through the Camel JSSE Configuration Utility.Â This utility greatly decreases
the amount of component specific code you need to write and is configurable
at the endpoint and component levels.Â The following examples
demonstrate how to use the utility with the Netty component.

Programmatic configuration of the component

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

NettyComponent nettyComponent = getContext().getComponent("netty",
NettyComponent.class);
nettyComponent.setSslContextParameters(scp);

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters

id="sslContextParameters">
<camel:keyManagers

878 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/camel-configuration-utilities.html

keyPassword="keyPassword">
<camel:keyStore

resource="/users/home/server/keystore.jks"
password="keystorePassword"/>

</camel:keyManagers>
</camel:sslContextParameters>...

...
<to

uri="netty:tcp://localhost:5150?sync=true&ssl=true&sslContextParameters=#sslContextParameters"/>
...

Using Basic SSL/TLS configuration on the Jetty Component

JndiRegistry registry = new JndiRegistry(createJndiContext());
registry.bind("password", "changeit");
registry.bind("ksf", new File("src/test/resources/keystore.jks"));
registry.bind("tsf", new File("src/test/resources/keystore.jks"));

context.createRegistry(registry);
context.addRoutes(new RouteBuilder() {

public void configure() {
String netty_ssl_endpoint =

"netty:tcp://localhost:5150?sync=true&ssl=true&passphrase=#password"
+ "&keyStoreFile=#ksf&trustStoreFile=#tsf";

String return_string =
"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

from(netty_ssl_endpoint)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);

}
}

}
});

Using Multiple Codecs
In certain cases it may be necessary to add chains of encoders and decoders
to the netty pipeline. To add multpile codecs to a camel netty endpoint the
'encoders' and 'decoders' uri parameters should be used. Like the 'encoder'
and 'decoder' parameters they are used to supply references (to lists of
ChannelUpstreamHandlers and ChannelDownstreamHandlers) that should be
added to the pipeline. Note that if encoders is specified then the encoder
param will be ignored, similarly for decoders and the decoder param.

CHAPTER 11 - COMPONENT APPENDIX 879

Read further above about using non shareable encoders/decoders.

The lists of codecs need to be added to the Camel's registry so they can be
resolved when the endpoint is created.

ChannelHandlerFactory lengthDecoder =
ChannelHandlerFactories.newLengthFieldBasedFrameDecoder(1048576, 0, 4, 0, 4);

StringDecoder stringDecoder = new StringDecoder();
registry.bind("length-decoder", lengthDecoder);
registry.bind("string-decoder", stringDecoder);

LengthFieldPrepender lengthEncoder = new LengthFieldPrepender(4);
StringEncoder stringEncoder = new StringEncoder();
registry.bind("length-encoder", lengthEncoder);
registry.bind("string-encoder", stringEncoder);

List<ChannelHandler> decoders = new ArrayList<ChannelHandler>();
decoders.add(lengthDecoder);
decoders.add(stringDecoder);

List<ChannelHandler> encoders = new ArrayList<ChannelHandler>();
encoders.add(lengthEncoder);
encoders.add(stringEncoder);

registry.bind("encoders", encoders);
registry.bind("decoders", decoders);

Spring's native collections support can be used to specify the codec lists in
an application context

<util:list id="decoders" list-class="java.util.LinkedList">
<bean class="org.apache.camel.component.netty.ChannelHandlerFactories"

factory-method="newLengthFieldBasedFrameDecoder">
<constructor-arg value="1048576"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>

</bean>
<bean class="org.jboss.netty.handler.codec.string.StringDecoder"/>

</util:list>

<util:list id="encoders" list-class="java.util.LinkedList">
<bean class="org.jboss.netty.handler.codec.frame.LengthFieldPrepender">

<constructor-arg value="4"/>
</bean>
<bean class="org.jboss.netty.handler.codec.string.StringEncoder"/>

</util:list>

880 CHAPTER 11 - COMPONENT APPENDIX

<bean id="length-encoder"
class="org.jboss.netty.handler.codec.frame.LengthFieldPrepender">

<constructor-arg value="4"/>
</bean>
<bean id="string-encoder"

class="org.jboss.netty.handler.codec.string.StringEncoder"/>

<bean id="length-decoder"
class="org.apache.camel.component.netty.ChannelHandlerFactories"
factory-method="newLengthFieldBasedFrameDecoder">

<constructor-arg value="1048576"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>
<constructor-arg value="0"/>
<constructor-arg value="4"/>

</bean>
<bean id="string-decoder"

class="org.jboss.netty.handler.codec.string.StringDecoder"/>

</beans>

The bean names can then be used in netty endpoint definitions either as a
comma separated list or contained in a List e.g.

from("direct:multiple-codec").to("netty:tcp://localhost:{{port}}?encoders=#encoders&sync=false");

from("netty:tcp://localhost:{{port}}?decoders=#length-decoder,#string-decoder&sync=false").to("mock:multiple-codec");
}

};
}

}

or via spring.

<camelContext id="multiple-netty-codecs-context" xmlns="http://camel.apache.org/
schema/spring">

<route>
<from uri="direct:multiple-codec"/>
<to uri="netty:tcp://localhost:5150?encoders=#encoders&sync=false"/>

</route>
<route>

<from
uri="netty:tcp://localhost:5150?decoders=#length-decoder,#string-decoder&sync=false"/>

<to uri="mock:multiple-codec"/>
</route>

</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 881

Closing Channel When Complete
When acting as a server you sometimes want to close the channel when, for
example, a client conversion is finished.
You can do this by simply setting the endpoint option disconnect=true.

However you can also instruct Camel on a per message basis as follows.
To instruct Camel to close the channel, you should add a header with the key
CamelNettyCloseChannelWhenComplete set to a boolean true value.
For instance, the example below will close the channel after it has written the
bye message back to the client:

from("netty:tcp://localhost:8080").process(new Processor() {
public void process(Exchange exchange) throws Exception {

String body = exchange.getIn().getBody(String.class);
exchange.getOut().setBody("Bye " + body);
// some condition which determines if we should close
if (close) {

exchange.getOut().setHeader(NettyConstants.NETTY_CLOSE_CHANNEL_WHEN_COMPLETE, true);
}

}
});

Adding custom channel pipeline factories to gain complete control
over a created pipeline
Available as of Camel 2.5

Custom channel pipelines provide complete control to the user over the
handler/interceptor chain by inserting custom handler(s), encoder(s) &
decoders without having to specify them in the Netty Endpoint URL in a very
simple way.

In order to add a custom pipeline, a custom channel pipeline factory must
be created and registered with the context via the context registry
(JNDIRegistry,or the camel-spring ApplicationContextRegistry etc).

A custom pipeline factory must be constructed as follows
• A Producer linked channel pipeline factory must extend the abstract

class ClientPipelineFactory.
• A Consumer linked channel pipeline factory must extend the abstract

class ServerPipelineFactory.
• The classes should override the getPipeline() method in order to

insert custom handler(s), encoder(s) and decoder(s). Not overriding
the getPipeline() method creates a pipeline with no handlers,
encoders or decoders wired to the pipeline.

The example below shows how ServerChannel Pipeline factory may be
created

882 CHAPTER 11 - COMPONENT APPENDIX

Listing 1. Using custom pipeline factory

public class SampleServerChannelPipelineFactory extends ServerPipelineFactory {
private int maxLineSize = 1024;

public ChannelPipeline getPipeline() throws Exception {
ChannelPipeline channelPipeline = Channels.pipeline();

channelPipeline.addLast("encoder-SD", new StringEncoder(CharsetUtil.UTF_8));
channelPipeline.addLast("decoder-DELIM", new

DelimiterBasedFrameDecoder(maxLineSize, true, Delimiters.lineDelimiter()));
channelPipeline.addLast("decoder-SD", new StringDecoder(CharsetUtil.UTF_8));
// here we add the default Camel ServerChannelHandler for the consumer, to

allow Camel to route the message etc.
channelPipeline.addLast("handler", new ServerChannelHandler(consumer));

return channelPipeline;
}

}

The custom channel pipeline factory can then be added to the registry and
instantiated/utilized on a camel route in the following way

Registry registry = camelContext.getRegistry();
serverPipelineFactory = new TestServerChannelPipelineFactory();
registry.bind("spf", serverPipelineFactory);
context.addRoutes(new RouteBuilder() {

public void configure() {
String netty_ssl_endpoint =

"netty:tcp://localhost:5150?serverPipelineFactory=#spf"
String return_string =

"When You Go Home, Tell Them Of Us And Say,"
+ "For Your Tomorrow, We Gave Our Today.";

from(netty_ssl_endpoint)
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(return_string);

}
}

}
});

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ MINA

CHAPTER 11 - COMPONENT APPENDIX 883

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/mina.html

NMR COMPONENT
The nmr component is an adapter to the Normalized Message Router (NMR)
in ServiceMix, which is intended for use by Camel applications deployed
directly into the OSGi container. You can exchange objects with NMR and not
only XML like this is the case with the JBI specification. The interest of this
component is that you can interconnect camel routes deployed in different
OSGI bundles.

By contrast, the JBI component is intended for use by Camel applications
deployed into the ServiceMix JBI container.

Installing in Apache Servicemix
The NMR component is provided with Apache ServiceMix. It is not distributed
with Camel. To install the NMR component in ServiceMix, enter the following
command in the ServiceMix console window:

features:install nmr camel-nmr

Installing in plain Apache Karaf
In plain Karaf the nmr component can also be installed using the servicemix
artifacts:

features:chooseurl camel <version>
features:addurl mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.5.0/xml/features
features:install camel-blueprint nmr camel-nmr
install -s mvn:org.apache.servicemix.camel/org.apache.servicemix.camel.component/4.4.2

Configuration
You also need to instantiate the NMR component. You can do this by editing
your Spring configuration file, META-INF/spring/*.xml, and adding the
following bean instance:

<beans xmlns:osgi="http://www.springframework.org/schema/osgi" ... >
...
<bean id="nmr" class="org.apache.servicemix.camel.nmr.ServiceMixComponent">

<property name="nmr">
<osgi:reference interface="org.apache.servicemix.nmr.api.NMR" />

</property>
</bean>
...

</beans>

884 CHAPTER 11 - COMPONENT APPENDIX

http://servicemix.apache.org/home.html
http://camel.apache.org/jbi.html

NMR consumer and producer endpoints
The following code:

from("nmr:MyServiceEndpoint")

Automatically exposes a new endpoint to the bus with endpoint name
MyServiceEndpoint (see URI-format).

When an NMR endpoint appears at the end of a route, for example:

to("nmr:MyServiceEndpoint")

The messages sent by this producer endpoint are sent to the already
deployed NMR endpoint.

URI format

nmr:endpointName

URI Options

Option Default
Value Description

runAsSubject false
Apache ServiceMix 4.4: When this is set to true on a consumer endpoint, the endpoint will be invoked on
behalf of the Subject that is set on the Exchange (i.e. the call to
Subject.getSubject(AccessControlContext) will return the Subject instance)

synchronous false When this is set to true on a consumer endpoint, an incoming, synchronous NMR Exchange will be handled on
the sender's thread instead of being handled on a new thread of the NMR endpoint's thread pool

timeout 0

Apache ServiceMix 4.4: When this is set to a value greater than 0, the producer endpoint will timeout if it
doesn't receive a response from the NMR within the given timeout period (in milliseconds). Configuring a
timeout value will switch to using synchronous interactions with the NMR instead of the usual asynchronous
messaging.

Examples
Consumer

from("nmr:MyServiceEndpoint") // consume nmr exchanges asynchronously
from("nmr:MyServiceEndpoint?synchronous=true").to() // consume nmr exchanges
synchronously and use the same thread as defined by NMR ThreadPool

Producer

CHAPTER 11 - COMPONENT APPENDIX 885

from()...to("nmr:MyServiceEndpoint") // produce nmr exchanges asynchronously
from()...to("nmr:MyServiceEndpoint?timeout=10000") // produce nmr exchanges
synchronously and wait till 10s to receive response

Using Stream bodies
If you are using a stream type as the message body, you should be aware
that a stream is only capable of being read once. So if you enable DEBUG
logging, the body is usually logged and thus read. To deal with this, Camel
has a streamCaching option that can cache the stream, enabling you to read
it multiple times.

from("nmr:MyEndpoint").streamCaching().to("xslt:transform.xsl", "bean:doSomething");

The stream caching is default enabled, so it is not necessary to set the
streamCaching() option.
We store big input streams (by default, over 64K) in a temp file using
CachedOutputStream. When you close the input stream, the temp file will be
deleted.

Testing
NMR camel routes can be tested using the camel unit test approach even if
they will be deployed next in different bundles on an OSGI runtime. With this
aim in view, you will extend the ServiceMixNMR Mock class
org.apache.servicemix.camel.nmr.AbstractComponentTest which will
create a NMR bus, register the Camel NMR Component and the endpoints
defined into the Camel routes.

public class ExchangeUsingNMRTest extends AbstractComponentTest {

@Test
public void testProcessing() throws InterruptedException {

MockEndpoint mock = getMockEndpoint("mock:simple");
mock.expectedBodiesReceived("Simple message body");

template.sendBody("direct:simple", "Simple message body");

assertMockEndpointsSatisfied();

}

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

886 CHAPTER 11 - COMPONENT APPENDIX

return new RouteBuilder() {

@Override
public void configure() throws Exception {

from("direct:simple").to("nmr:simple");
from("nmr:simple?synchronous=true").to("mock:simple");

}
};

}
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

QUARTZ COMPONENT
The quartz: component provides a scheduled delivery of messages using
the Quartz scheduler.
Each endpoint represents a different timer (in Quartz terms, a Trigger and
JobDetail).

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-quartz</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

quartz://timerName?options
quartz://groupName/timerName?options
quartz://groupName/timerName?cron=expression
quartz://timerName?cron=expression

CHAPTER 11 - COMPONENT APPENDIX 887

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.quartz-scheduler.org/

The component uses either a CronTrigger or a SimpleTrigger. If no cron
expression is provided, the component uses a simple trigger. If no groupName
is provided, the quartz component uses the Camel group name.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Parameter Default Description
cron None Specifies a cron expression (not compatible with the trigger.* or job.* options).

trigger.repeatCount 0 SimpleTrigger: How many times should the timer repeat?

trigger.repeatInterval 0 SimpleTrigger: The amount of time in milliseconds between repeated triggers.

job.name null Sets the job name.

job.XXX null Sets the job option with the XXX setter name.

trigger.XXX null Sets the trigger option with the XXX setter name.

stateful false Uses a Quartz StatefulJob instead of the default job.

fireNow false New to Camel 2.2.0, if it is true will fire the trigger when the route is start when using
SimpleTrigger.

For example, the following routing rule will fire two timer events to the
mock:results endpoint:

from("quartz://myGroup/
myTimerName?trigger.repeatInterval=2&trigger.repeatCount=1").routeId("myRoute").to("mock:result");

When using a StatefulJob, the JobDataMap is re-persisted after every
execution of the job, thus preserving state for the next execution.

Configuring quartz.properties file
By default Quartz will look for a quartz.properties file in the root of the
classpath. If you are using WAR deployments this means just drop the
quartz.properties in WEB-INF/classes.

However the Camel Quartz component also allows you to configure
properties:
Parameter Default Type Description
properties null Properties Camel 2.4: You can configure a java.util.Propoperties instance.

propertiesFile null String Camel 2.4: File name of the properties to load from the classpath

To do this you can configure this in Spring XML as follows

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
<property name="propertiesFile" value="com/mycompany/myquartz.properties"/>

</bean>

888 CHAPTER 11 - COMPONENT APPENDIX

http://www.quartz-scheduler.org/docs/api/2.0.0/org/quartz/StatefulJob.html
http://www.quartz-scheduler.org/docs/api/2.0.0/org/quartz/JobDataMap.html
http://camel.apache.org/quartz.html

Running in OSGi and having multiple bundles with quartz
routes
If you run in OSGi such as Apache ServiceMix, or Apache Karaf, and
have multiple bundles with Camel routes that starts from Quartz
endpoints, then make sure if you assign
an id to the <camelContext> that this id is unique, as this is
required by the QuartzScheduler in the OSGi container. If you do
not set any id on <camelContext> then
an unique id is auto assigned, and there is no problem.

Starting the Quartz scheduler
Available as of Camel 2.4

The Quartz component offers an option to let the Quartz scheduler be
started delayed, or not auto started at all.
Parameter Default Type Description
startDelayedSeconds 0 int Camel 2.4: Seconds to wait before starting the quartz scheduler.

autoStartScheduler true boolean Camel 2.4: Whether or not the scheduler should be auto started.

To do this you can configure this in Spring XML as follows

<bean id="quartz" class="org.apache.camel.component.quartz.QuartzComponent">
<property name="startDelayedSeconds" value="5"/>

</bean>

Clustering
Available as of Camel 2.4

If you use Quartz in clustered mode, e.g. the JobStore is clustered. Then
from Camel 2.4 onwards the Quartz component will not pause/remove
triggers when a node is being stopped/shutdown. This allows the trigger to
keep running on the other nodes in the cluster.

Note: When running in clustered node no checking is done to ensure
unique job name/group for endpoints.

Message Headers
Camel adds the getters from the Quartz Execution Context as header values.
The following headers are added:
calendar, fireTime, jobDetail, jobInstance, jobRuntTime,
mergedJobDataMap, nextFireTime, previousFireTime, refireCount,

CHAPTER 11 - COMPONENT APPENDIX 889

http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html

result, scheduledFireTime, scheduler, trigger, triggerName,
triggerGroup.

The fireTime header contains the java.util.Date of when the exchange
was fired.

Using Cron Triggers
Quartz supports Cron-like expressions for specifying timers in a handy
format. You can use these expressions in the cron URI parameter; though to
preserve valid URI encoding we allow + to be used instead of spaces. Quartz
provides a little tutorial on how to use cron expressions.

For example, the following will fire a message every five minutes starting
at 12pm (noon) to 6pm on weekdays:

from("quartz://myGroup/myTimerName?cron=0+0/
5+12-18+?+*+MON-FRI").to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve
valid URI syntax:
URI Character Cron character
+ Space

Specifying time zone
Available as of Camel 2.8.1
The Quartz Scheduler allows you to configure time zone per trigger. For
example to use a timezone of your country, then you can do as follows:

quartz://groupName/timerName?cron=0+0/5+12-18+?+*+MON-FRI&trigger.timeZone=Europe/
Stockholm

The timeZone value is the values accepted by java.util.TimeZone.
In Camel 2.8.0 or older versions you would have to provide your custom

String to java.util.TimeZone Type Converter to be able configure this
from the endpoint uri.
From Camel 2.8.1 onwards we have included such a Type Converter in the
camel-core.

890 CHAPTER 11 - COMPONENT APPENDIX

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://camel.apache.org/type-converter.html
http://camel.apache.org/type-converter.html

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Timer

QUICKFIX/J COMPONENT
The quickfix component adapts the QuickFIX/J FIX engine for using in Camel
. This component uses the standard Financial Interchange (FIX) protocol for
message transport.
Maven users will need to add the following dependency to their pom.xml for
this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-quickfix</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

quickfix:configFile[?sessionID=sessionID]

The configFile is the name of the QuickFIX/J configuration to use for the FIX
engine (located as a resource found in your classpath). The optional
sessionID identifies a specific FIX session. The format of the sessionID is:

(BeginString):(SenderCompID)[/(SenderSubID)[/(SenderLocationID)]]->(TargetCompID)[/
(TargetSubID)[/(TargetLocationID)]]

Example URIs:

quickfix:config.cfg

quickfix:config.cfg?sessionID=FIX.4.2:MyTradingCompany->SomeExchange

CHAPTER 11 - COMPONENT APPENDIX 891

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/timer.html
http://www.quickfixj.org/
http://www.fixprotocol.org/

Previous Versions
The quickfix component was rewritten for Camel 2.5. For
information about using the quickfix component prior to 2.5 see
the documentation section below.

ENDPOINTS
FIX sessions are endpoints for the quickfix component. An endpoint URI may
specify a single session or all sessions managed by a specific QuickFIX/J
engine. Typical applications will use only one FIX engine but advanced users
may create multiple FIX engines by referencing different configuration files in
quickfix component endpoint URIs.

When a consumer does not include a session ID in the endpoint URI, it will
receive exchanges for all sessions managed by the FIX engine associated
with the configuration file specified in the URI. If a producer does not specify
a session in the endpoint URI then it must include the session-related fields
in the FIX message being sent. If a session is specified in the URI then the
component will automatically inject the session-related fields into the FIX
message.

Exchange Format
The exchange headers include information to help with exchange filtering,
routing and other processing. The following headers are available:
Header
Name Description

EventCategory One of AppMessageReceived, AppMessageSent, AdminMessageReceived, AdminMessageSent, SessionCreated,
SessionLogon, SessionLogoff. See the QuickfixjEventCategory enum.

SessionID The FIX message SessionID

MessageType The FIX MsgType tag value

DataDictionary Specifies a data dictionary to used for parsing an incoming message. Can be an instance of a data dictionary or a resource
path for a QuickFIX/J data dictionary file

The DataDictionary header is useful if string messages are being received
and need to be parsed in a route. QuickFIX/J requires a data dictionary to
parse certain types of messages (with repeating groups, for example). By
injecting a DataDictionary header in the route after receiving a message
string, the FIX engine can properly parse the data.

QuickFIX/J Configuration Extensions
When using QuickFIX/J directly, one typically writes code to create instances
of logging adapters, message stores and communication connectors. The
quickfix component will automatically create instances of these classes

892 CHAPTER 11 - COMPONENT APPENDIX

based on information in the configuration file. It also provides defaults for
many of the common required settings and adds additional capabilities (like
the ability to activate JMX support).

The following sections describe how the quickfix component processes
the QuickFIX/J configuration. For comprehensive information about QuickFIX/J
configuration, see the QFJ user manual.

Communication Connectors
When the component detects an initiator or acceptor session setting in the
QuickFIX/J configuration file it will automatically create the corresponding
initiator and/or acceptor connector. These settings can be in the default or in
a specific session section of the configuration file.
Session Setting Component Action
ConnectionType=initiator Create an initiator connector

ConnectionType=acceptor Create an acceptor connector

The threading model for the QuickFIX/J session connectors can also be
specified. These settings affect all sessions in the configuration file and must
be placed in the settings default section.
Default/Global Setting Component Action
ThreadModel=ThreadPerConnector Use SocketInitiator or SocketAcceptor (default)

ThreadModel=ThreadPerSession Use ThreadedSocketInitiator or ThreadedSocketAcceptor

Logging
The QuickFIX/J logger implementation can be specified by including the
following settings in the default section of the configuration file. The
ScreenLog is the default if none of the following settings are present in the
configuration. It's an error to include settings that imply more than one log
implementation. The log factory implementation can also be set directly on
the Quickfix component. This will override any related values in the
QuickFIX/J settings file.
Default/Global Setting Component Action
ScreenLogShowEvents Use a ScreenLog

ScreenLogShowIncoming Use a ScreenLog

ScreenLogShowOutgoing Use a ScreenLog

SLF4J* Camel 2.6+. Use a SLF4JLog. Any of the SLF4J settings will cause this log to be used.

FileLogPath Use a FileLog

JdbcDriver Use a JdbcLog

CHAPTER 11 - COMPONENT APPENDIX 893

http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html

Message Store
The QuickFIX/J message store implementation can be specified by including
the following settings in the default section of the configuration file. The
MemoryStore is the default if none of the following settings are present in the
configuration. It's an error to include settings that imply more than one
message store implementation. The message store factory implementation
can also be set directly on the Quickfix component. This will override any
related values in the QuickFIX/J settings file.
Default/Global Setting Component Action
JdbcDriver Use a JdbcStore

FileStorePath Use a FileStore

SleepycatDatabaseDir Use a SleepcatStore

Message Factory
A message factory is used to construct domain objects from raw FIX
messages. The default message factory is DefaultMessageFactory.
However, advanced applications may require a custom message factory. This
can be set on the QuickFIX/J component.

JMX
Default/Global Setting Component Action
UseJmx if Y, then enable QuickFIX/J JMX

Other Defaults
The component provides some default settings for what are normally
required settings in QuickFIX/J configuration files. SessionStartTime and
SessionEndTime default to "00:00:00", meaning the session will not be
automatically started and stopped. The HeartBtInt (heartbeat interval)
defaults to 30 seconds.

Minimal Initiator Configuration Example

[SESSION]
ConnectionType=initiator
BeginString=FIX.4.4

894 CHAPTER 11 - COMPONENT APPENDIX

SenderCompID=YOUR_SENDER
TargetCompID=YOUR_TARGET

Using the InOut Message Exchange Pattern
Camel 2.8+

Although the FIX protocol is event-driven and asynchronous, there are
specific pairs of messages
that represent a request-reply message exchange. To use an InOut exchange
pattern, there should
be a single request message and single reply message to the request.
Examples include an
OrderStatusRequest message and UserRequest.

Implementing InOut Exchanges for Consumers
Add "exchangePattern=InOut" to the QuickFIX/J enpoint URI. The
MessageOrderStatusService in
the example below is a bean with a synchronous service method. The
method returns the response
to the request (an ExecutionReport in this case) which is then sent back to
the requestor session.

from("quickfix:examples/
inprocess.cfg?sessionID=FIX.4.2:MARKET->TRADER&exchangePattern=InOut")

.filter(header(QuickfixjEndpoint.MESSAGE_TYPE_KEY).isEqualTo(MsgType.ORDER_STATUS_REQUEST))
.bean(new MarketOrderStatusService());

Implementing InOut Exchanges for Producers
For producers, sending a message will block until a reply is received or a
timeout occurs. There
is no standard way to correlate reply messages in FIX. Therefore, a
correlation criteria must be
defined for each type of InOut exchange. The correlation criteria and timeout
can be specified
using Exchange properties.
Description Key String Key Constant Default

CHAPTER 11 - COMPONENT APPENDIX 895

Correlation
Criteria "CorrelationCriteria" QuickfixjProducer.CORRELATION_CRITERIA_KEY None

Correlation
Timeout in
Milliseconds

"CorrelationTimeout" QuickfixjProducer.CORRELATION_TIMEOUT_KEY 1000

The correlation criteria is defined with a MessagePredicate object. The
following example will treat
a FIX ExecutionReport from the specified session where the transaction type
is STATUS and the Order ID
matches our request. The session ID should be for the requestor, the sender
and target CompID fields
will be reversed when looking for the reply.

exchange.setProperty(QuickfixjProducer.CORRELATION_CRITERIA_KEY,
new MessagePredicate(new SessionID(sessionID), MsgType.EXECUTION_REPORT)

.withField(ExecTransType.FIELD, Integer.toString(ExecTransType.STATUS))

.withField(OrderID.FIELD, request.getString(OrderID.FIELD)));

Example
The source code contains an example called RequestReplyExample that
demonstrates the InOut exchanges
for a consumer and producer. This example creates a simple HTTP server
endpoint that accepts order
status requests. The HTTP request is converted to a FIX
OrderStatusRequestMessage, is augmented with a
correlation criteria, and is then routed to a quickfix endpoint. The response is
then converted to a
JSON-formatted string and sent back to the HTTP server endpoint to be
provided as the web response.

The Spring configuration have changed from Camel 2.9 onwards. See
further below for example.

Spring Configuration
Camel 2.6 - 2.8.x

The QuickFIX/J component includes a Spring FactoryBean for configuring
the session settings within a Spring context. A type converter for QuickFIX/J
session ID strings is also included. The following example shows a simple
configuration of an acceptor and initiator session with default settings for
both sessions.

896 CHAPTER 11 - COMPONENT APPENDIX

<!-- camel route -->
<camelContext id="quickfixjContext" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="quickfix:example"/>
<filter>

<simple>${in.header.EventCategory} == 'AppMessageReceived'</simple>
<to uri="log:test"/>

</filter>
</route>

</camelContext>

<!-- quickfix component -->
<bean id="quickfix" class="org.apache.camel.component.quickfixj.QuickfixjComponent">

<property name="engineSettings">
<util:map>

<entry key="quickfix:example" value-ref="quickfixjSettings"/>
</util:map>

</property>
<property name="messageFactory">

<bean
class="org.apache.camel.component.quickfixj.QuickfixjSpringTest.CustomMessageFactory"/>

</property>
</bean>

<!-- quickfix settings -->
<bean id="quickfixjSettings"

class="org.apache.camel.component.quickfixj.QuickfixjSettingsFactory">
<property name="defaultSettings">

<util:map>
<entry key="SocketConnectProtocol" value="VM_PIPE"/>
<entry key="SocketAcceptProtocol" value="VM_PIPE"/>
<entry key="UseDataDictionary" value="N"/>

</util:map>
</property>
<property name="sessionSettings">

<util:map>
<entry key="FIX.4.2:INITIATOR->ACCEPTOR">

<util:map>
<entry key="ConnectionType" value="initiator"/>
<entry key="SocketConnectHost" value="localhost"/>
<entry key="SocketConnectPort" value="5000"/>

</util:map>
</entry>
<entry key="FIX.4.2:ACCEPTOR->INITIATOR">

<util:map>
<entry key="ConnectionType" value="acceptor"/>
<entry key="SocketAcceptPort" value="5000"/>

</util:map>
</entry>

</util:map>
</property>

</bean>

Camel 2.9 onwards

CHAPTER 11 - COMPONENT APPENDIX 897

The QuickFIX/J component includes a QuickfixjConfiguration class for
configuring the session settings. A type converter for QuickFIX/J session ID
strings is also included. The following example shows a simple configuration
of an acceptor and initiator session with default settings for both sessions.

<!-- camel route -->
<camelContext id="quickfixjContext" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="quickfix:example"/>
<filter>

<simple>${in.header.EventCategory} == 'AppMessageReceived'</simple>
<to uri="log:test"/>

</filter>
</route>

</camelContext>

<!-- quickfix component -->
<bean id="quickfix" class="org.apache.camel.component.quickfixj.QuickfixjComponent">

<property name="configurations">
<util:map>

<entry key="example" value-ref="quickfixjConfiguration"/>
</util:map>

</property>
<property name="messageFactory">

<bean
class="org.apache.camel.component.quickfixj.QuickfixjSpringTest.CustomMessageFactory"/>

</property>
</bean>

<!-- quickfix settings -->
<bean id="quickfixjConfiguration"
class="org.apache.camel.component.quickfixj.QuickfixjConfiguration">

<property name="defaultSettings">
<util:map>

<entry key="SocketConnectProtocol" value="VM_PIPE"/>
<entry key="SocketAcceptProtocol" value="VM_PIPE"/>
<entry key="UseDataDictionary" value="N"/>

</util:map>
</property>
<property name="sessionSettings">

<util:map>
<entry key="FIX.4.2:INITIATOR->ACCEPTOR">

<util:map>
<entry key="ConnectionType" value="initiator"/>
<entry key="SocketConnectHost" value="localhost"/>
<entry key="SocketConnectPort" value="5000"/>

</util:map>
</entry>
<entry key="FIX.4.2:ACCEPTOR->INITIATOR">

<util:map>
<entry key="ConnectionType" value="acceptor"/>
<entry key="SocketAcceptPort" value="5000"/>

</util:map>

898 CHAPTER 11 - COMPONENT APPENDIX

</entry>
</util:map>

</property>
</bean>

Exception handling
QuickFIX/J behavior can be modified if certain exceptions are thrown during
processing of a message. If a RejectLogon exception is thrown while
processing an incoming logon administrative message, then the logon will be
rejected.

Normally, QuickFIX/J handles the logon process automatically. However,
sometimes an outgoing logon message must be modified to include
credentials required by a FIX counterparty. If the FIX logon message body is
modified when sending a logon message
(EventCategory=AdminMessageSent the modified message will be sent to the
counterparty. It is important that the outgoing logon message is being
processed synchronously. If it is processed asynchronously (on another
thread), the FIX engine will immediately send the unmodified outgoing
message when it's callback method returns.

FIX Sequence Number Management
If an application exception is thrown during synchronous exchange
processing, this will cause QuickFIX/J to not increment incoming FIX message
sequence numbers and will cause a resend of the counterparty message.
This FIX protocol behavior is primarily intended to handle transport errors
rather than application errors. There are risks associated with using this
mechanism to handle application errors. The primary risk is that the message
will repeatedly cause application errors each time it's re-received. A better
solution is to persist the incoming message (database, JMS queue)
immediately before processing it. This also allows the application to process
messages asynchronously without losing messages when errors occur.

Although it's possible to send messages to a FIX session before it's logged
on (the messages will be sent at logon time), it is usually a better practice to
wait until the session is logged on. This eliminates the required sequence
number resynchronization steps at logon. Waiting for session logon can be
done by setting up a route that processes the SessionLogon event category
and signals the application to start sending messages.

See the FIX protocol specifications and the QuickFIX/J documentation for
more details about FIX sequence number management.

CHAPTER 11 - COMPONENT APPENDIX 899

Route Examples
Several examples are included in the QuickFIX/J component source code (test
subdirectories). One of these examples implements a trival trade excecution
simulation. The example defines an application component that uses the URI
scheme "trade-executor".

The following route receives messages for the trade executor session and
passes application messages to the trade executor component.

from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:MARKET->TRADER").

filter(header(QuickfixjEndpoint.EVENT_CATEGORY_KEY).isEqualTo(QuickfixjEventCategory.AppMessageReceived)).
to("trade-executor:market");

The trade executor component generates messages that are routed back to
the trade session. The session ID must be set in the FIX message itself since
no session ID is specified in the endpoint URI.

from("trade-executor:market").to("quickfix:examples/inprocess.cfg");

The trader session consumes execution report messages from the market
and processes them.

from("quickfix:examples/inprocess.cfg?sessionID=FIX.4.2:TRADER->MARKET").

filter(header(QuickfixjEndpoint.MESSAGE_TYPE_KEY).isEqualTo(MsgType.EXECUTION_REPORT)).
bean(new MyTradeExecutionProcessor());

QUICKFIX/J COMPONENT PRIOR TO CAMEL 2.5
The quickfix component is an implementation of the QuickFIX/J engine for
Java . This engine allows to connect to a FIX server which is used to
exchange financial messages according to FIX protocol standard.

Note: The component can be used to send/receives messages to a FIX
server.

URI format

quickfix-server:config file
quickfix-client:config file

Where config file is the location (in your classpath) of the quickfix
configuration file used to configure the engine at the startup.

900 CHAPTER 11 - COMPONENT APPENDIX

http://www.quickfixj.org/
http://www.fixprotocol.org/

Note: Information about parameters available for quickfix can be found on
QuickFIX/J web site.

The quickfix-server endpoint must be used to receive from FIX server FIX
messages and quickfix-client endpoint in the case that you want to send
messages to a FIX gateway.

Exchange data format
The QuickFIX/J engine is like CXF component a messaging bus using MINA as
protocol layer to create the socket connection with the FIX engine gateway.

When QuickFIX/J engine receives a message, then it create a
QuickFix.Message instance which is next received by the camel endpoint.
This object is a 'mapping object' created from a FIX message formatted
initially as a collection of key value pairs data. You can use this object or you
can use the method 'toString' to retrieve the original FIX message.

Note: Alternatively, you can use camel bindy dataformat to transform the
FIX message into your own java POJO

When a message must be send to QuickFix, then you must create a
QuickFix.Message instance.

Samples
Direction : to FIX gateway

<route>
<from uri="activemq:queue:fix"/>
<bean ref="fixService" method="createFixMessage"/> // bean method in charge to

transform message into a QuickFix.Message
<to uri="quickfix-client:META-INF/quickfix/client.cfg"/> // Quickfix engine who

will send the FIX messages to the gateway
</route>

Direction : from FIX gateway

<route>
<from uri="quickfix-server:META-INF/quickfix/server.cfg"/> // QuickFix engine who

will receive the message from FIX gateway
<bean ref="fixService" method="parseFixMessage"/> // bean method parsing the

QuickFix.Message
<to uri="uri="activemq:queue:fix"/>"

</route>

See Also
• Configuring Camel

CHAPTER 11 - COMPONENT APPENDIX 901

http://www.quickfixj.org/quickfixj/usermanual/usage/configuration.html
http://camel.apache.org/bindy.html
http://camel.apache.org/configuring-camel.html

• Component
• Endpoint
• Getting Started

PRINTER COMPONENT
Available as of Camel 2.1

The printer component provides a way to direct payloads on a route to a
printer. Obviously the payload has to be a formatted piece of payload in
order for the component to appropriately print it. The objective is to be able
to direct specific payloads as jobs to a line printer in a camel flow.

This component only supports a camel producer endpoint.
The functionality allows for the payload to be printed on a default printer,

named local, remote or wirelessly linked printer using the javax printing API
under the covers.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-printer</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
Since the URI scheme for a printer has not been standardized (the nearest
thing to a standard being the IETF print standard) and therefore not uniformly
applied by vendors, we have chosen "lpr" as the scheme.

lpr://localhost/default[?options]
lpr://remotehost:port/path/to/printer[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Name Default Value Description

mediaSize MediaSizeName.NA_LETTER
Sets the stationary as defined by enumeration settings in the
javax.print.attribute.standard.MediaSizeName API. The default setting is to use North American
Letter sized stationary

902 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://download.oracle.com/javase/6/docs/api/javax/print/attribute/standard/MediaSizeName.html

copies 1 Sets number of copies based on the javax.print.attribute.standard.Copies API

sides Sides.ONE_SIDED Sets one sided or two sided printing based on the javax.print.attribute.standard.Sides API

flavor DocFlavor.BYTE_ARRAY Sets DocFlavor based on the javax.print.DocFlavor API

mimeType AUTOSENSE Sets mimeTypes supported by the javax.print.DocFlavor API

mediaTray AUTOSENSE Since Camel 2.11.x sets MediaTray supported by the javax.print.DocFlavor API

printerPrefix null Since Camel 2.11.x sets the prefix name of the printer, it is useful when the printer name is
not start with //hostname/printer

sendToPrinter true Setting this option to false prevents sending of the print data to the printer

Sending Messages to a Printer

Printer Producer
Sending data to the printer is very straightforward and involves creating a
producer endpoint that can be sent message exchanges on in route.

Usage Samples

Example 1: Printing text based payloads on a Default
printer using letter stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)
.to("lpr://localhost/default?copies=2" +

"&flavor=DocFlavor.INPUT_STREAM&" +
"&mimeType=AUTOSENSE" +
"&mediaSize=na-letter" +
"&sides=one-sided")

}};

Example 2: Printing GIF based payloads on a Remote
printer using A4 stationary and one-sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)
.to("lpr://remotehost/sales/salesprinter" +

"?copies=2&sides=one-sided" +
"&mimeType=GIF&mediaSize=iso-a4" +
"&flavor=DocFlavor.INPUT_STREAM")

}};

CHAPTER 11 - COMPONENT APPENDIX 903

http://docs.oracle.com/javase/6/docs/api/javax/print/Doc.html

Example 3: Printing JPEG based payloads on a Remote
printer using Japanese Postcard stationary and one-
sided mode

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from(file://inputdir/?delete=true)
.to("lpr://remotehost/sales/salesprinter" +

"?copies=2&sides=one-sided" +
"&mimeType=JPEG" +
"&mediaSize=japanese-postcard" +
"&flavor=DocFlavor.INPUT_STREAM")

}};

PROPERTIES COMPONENT
Available as of Camel 2.3

URI format

properties:key[?options]

Where key is the key for the property to lookup

Options
Name Type Default Description
cache boolean true Whether or not to cache loaded properties.

locations String null
A list of locations to load properties. You can use comma to separate multiple
locations. This option will override any default locations and only use the
locations from this option.

ignoreMissingLocation boolean false Camel 2.10: Whether to silently ignore if a location cannot be located, such
as a properties file not found.

propertyPrefix String null Camel 2.9 Optional prefix prepended to property names before resolution.

propertySuffix String null Camel 2.9 Optional suffix appended to property names before resolution.

fallbackToUnaugmentedProperty boolean true
Camel 2.9 If true, first attempt resolution of property name augmented with
propertyPrefix and propertySuffix before falling back the plain property
name specified. If false, only the augmented property name is searched.

prefixToken String {{ Camel 2.9 The token to indicate the beginning of a property token.

suffixToken String }} Camel 2.9 The token to indicate the end of a property token.

USING PROPERTYPLACEHOLDER
Available as of Camel 2.3

904 CHAPTER 11 - COMPONENT APPENDIX

Resolving property from Java code
You can use the method resolvePropertyPlaceholders on the
CamelContext to resolve a property from any Java code.

Camel now provides a new PropertiesComponent in camel-core which
allows you to use property placeholders when defining Camel Endpoint URIs.
This works much like you would do if using Spring's <property-
placeholder> tag. However Spring have a limitation which prevents 3rd
party frameworks to leverage Spring property placeholders to the fullest. See
more at How do I use Spring Property Placeholder with Camel XML.
The property placeholder is generally in use when doing:

▪ lookup or creating endpoints
▪ lookup of beans in the Registry
▪ additional supported in Spring XML (see below in examples)
▪ using Blueprint PropertyPlaceholder with Camel Properties

component

Syntax
The syntax to use Camel's property placeholder is to use {{key}} for
example {{file.uri}} where file.uri is the property key.
You can use property placeholders in parts of the endpoint URI's which for
example you can use placeholders for parameters in the URIs.

PropertyResolver
Camel provides a pluggable mechanism which allows 3rd part to provide
their own resolver to lookup properties. Camel provides a default
implementation
org.apache.camel.component.properties.DefaultPropertiesResolver
which is capable of loading properties from the file system, classpath or
Registry. You can prefix the locations with either:

▪ ref: Camel 2.4: to lookup in the Registry
▪ file: to load the from file system
▪ classpath: to load from classpath (this is also the default if no prefix

is provided)
▪ blueprint: Camel 2.7: to use a specific OSGi blueprint placeholder

service

CHAPTER 11 - COMPONENT APPENDIX 905

http://camel.apache.org/endpoint.html
http://camel.apache.org/how-do-i-use-spring-property-placeholder-with-camel-xml.html
http://camel.apache.org/registry.html
http://camel.apache.org/properties.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Bridging Spring and Camel property placeholders
From Camel 2.10 onwards, you can bridge the Spring property
placeholder with Camel, see further below for more details.

Defining location
The PropertiesResolver need to know a location(s) where to resolve the
properties. You can define 1 to many locations. If you define the location in a
single String property you can separate multiple locations with comma such
as:

pc.setLocation("com/mycompany/myprop.properties,com/mycompany/other.properties");

Using system and environment variables in locations
Available as of Camel 2.7

The location now supports using placeholders for JVM system properties
and OS environments variables.

For example:

location=file:${karaf.home}/etc/foo.properties

In the location above we defined a location using the file scheme using the
JVM system property with key karaf.home.

To use an OS environment variable instead you would have to prefix with
env:

location=file:${env:APP_HOME}/etc/foo.properties

Where APP_HOME is an OS environment.
You can have multiple placeholders in the same location, such as:

location=file:${env:APP_HOME}/etc/${prop.name}.properties

Configuring in Java DSL
You have to create and register the PropertiesComponent under the name
properties such as:

906 CHAPTER 11 - COMPONENT APPENDIX

PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:com/mycompany/myprop.properties");
context.addComponent("properties", pc);

Configuring in Spring XML
Spring XML offers two variations to configure. You can define a spring bean
as a PropertiesComponent which resembles the way done in Java DSL. Or
you can use the <propertyPlaceholder> tag.

<bean id="properties"
class="org.apache.camel.component.properties.PropertiesComponent">

<property name="location" value="classpath:com/mycompany/myprop.properties"/>
</bean>

Using the <propertyPlaceholder> tag makes the configuration a bit more
fresh such as:

<camelContext ...>
<propertyPlaceholder id="properties" location="com/mycompany/myprop.properties"/>

</camelContext>

Using a Properties from the Registry
Available as of Camel 2.4
For example in OSGi you may want to expose a service which returns the
properties as a java.util.Properties object.

Then you could setup the Properties component as follows:

<propertyPlaceholder id="properties" location="ref:myProperties"/>

Where myProperties is the id to use for lookup in the OSGi registry. Notice
we use the ref: prefix to tell Camel that it should lookup the properties for
the Registry.

Examples using properties component
When using property placeholders in the endpoint URIs you can either use
the properties: component or define the placeholders directly in the URI.
We will show example of both cases, starting with the former.

CHAPTER 11 - COMPONENT APPENDIX 907

http://camel.apache.org/registry.html
http://camel.apache.org/properties.html
http://camel.apache.org/registry.html

Specifying the cache option inside XML
Camel 2.10 onwards supports specifying a value for the cache
option both inside the Spring as well as the Blueprint XML.

// properties
cool.end=mock:result

// route
from("direct:start").to("properties:{{cool.end}}");

You can also use placeholders as a part of the endpoint uri:

// properties
cool.foo=result

// route
from("direct:start").to("properties:mock:{{cool.foo}}");

In the example above the to endpoint will be resolved to mock:result.
You can also have properties with refer to each other such as:

// properties
cool.foo=result
cool.concat=mock:{{cool.foo}}

// route
from("direct:start").to("properties:mock:{{cool.concat}}");

Notice how cool.concat refer to another property.
The properties: component also offers you to override and provide a

location in the given uri using the locations option:

from("direct:start").to("properties:bar.end?locations=com/mycompany/
bar.properties");

Examples
You can also use property placeholders directly in the endpoint uris without
having to use properties:.

// properties
cool.foo=result

908 CHAPTER 11 - COMPONENT APPENDIX

// route
from("direct:start").to("mock:{{cool.foo}}");

And you can use them in multiple wherever you want them:

// properties
cool.start=direct:start
cool.showid=true
cool.result=result

// route
from("{{cool.start}}")

.to("log:{{cool.start}}?showBodyType=false&showExchangeId={{cool.showid}}")

.to("mock:{{cool.result}}");

You can also your property placeholders when using ProducerTemplate for
example:

template.sendBody("{{cool.start}}", "Hello World");

Example with Simple language
The Simple language now also support using property placeholders, for
example in the route below:

// properties
cheese.quote=Camel rocks

// route
from("direct:start")

.transform().simple("Hi ${body} do you think ${properties:cheese.quote}?");

You can also specify the location in the Simple language for example:

// bar.properties
bar.quote=Beer tastes good

// route
from("direct:start")

.transform().simple("Hi ${body}. ${properties:com/mycompany/
bar.properties:bar.quote}.");

CHAPTER 11 - COMPONENT APPENDIX 909

http://camel.apache.org/producertemplate.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Additional property placeholder supported in Spring XML
The property placeholders is also supported in many of the Camel Spring
XML tags such as <package>, <packageScan>, <contextScan>,
<jmxAgent>, <endpoint>, <routeBuilder>, <proxy> and the others.

The example below has property placeholder in the <jmxAgent> tag:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties" location="org/apache/camel/spring/

jmx.properties"/>

<!-- we can use propery placeholders when we define the JMX agent -->
<jmxAgent id="agent" registryPort="{{myjmx.port}}" disabled="{{myjmx.disabled}}"

usePlatformMBeanServer="{{myjmx.usePlatform}}"
createConnector="true"
statisticsLevel="RoutesOnly"/>

<route id="foo" autoStartup="false">
<from uri="seda:start"/>
<to uri="mock:result"/>

</route>

</camelContext>

You can also define property placeholders in the various attributes on the
<camelContext> tag such as trace as shown here:

<camelContext trace="{{foo.trace}}" xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties" location="org/apache/camel/spring/processor/

myprop.properties"/>

<template id="camelTemplate" defaultEndpoint="{{foo.cool}}"/>

<route>
<from uri="direct:start"/>
<setHeader headerName="{{foo.header}}">

<simple>${in.body} World!</simple>
</setHeader>
<to uri="mock:result"/>

</route>
</camelContext>

Overriding a property setting using a JVM System Property
Available as of Camel 2.5
It is possible to override a property value at runtime using a JVM System
property without the need to restart the application to pick up the change.
This may also be accomplished from the command line by creating a JVM

910 CHAPTER 11 - COMPONENT APPENDIX

System property of the same name as the property it replaces with a new
value. An example of this is given below

PropertiesComponent pc = context.getComponent("properties",
PropertiesComponent.class);
pc.setCache(false);

System.setProperty("cool.end", "mock:override");
System.setProperty("cool.result", "override");

context.addRoutes(new RouteBuilder() {
@Override
public void configure() throws Exception {

from("direct:start").to("properties:cool.end");
from("direct:foo").to("properties:mock:{{cool.result}}");

}
});
context.start();

getMockEndpoint("mock:override").expectedMessageCount(2);

template.sendBody("direct:start", "Hello World");
template.sendBody("direct:foo", "Hello Foo");

System.clearProperty("cool.end");
System.clearProperty("cool.result");

assertMockEndpointsSatisfied();

Using property placeholders for any kind of attribute in the XML DSL
Available as of Camel 2.7

Previously it was only the xs:string type attributes in the XML DSL that
support placeholders. For example often a timeout attribute would be a
xs:int type and thus you cannot set a string value as the placeholder key.
This is now possible from Camel 2.7 onwards using a special placeholder
namespace.

In the example below we use the prop prefix for the namespace
http://camel.apache.org/schema/placeholder by which we can use the
prop prefix in the attributes in the XML DSLs. Notice how we use that in the
Multicast to indicate that the option stopOnException should be the value of
the placeholder with the key "stop".

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:prop="http://camel.apache.org/schema/placeholder"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

CHAPTER 11 - COMPONENT APPENDIX 911

http://camel.apache.org/schema/placeholder
http://camel.apache.org/multicast.html

schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

<!-- Notice in the declaration above, we have defined the prop prefix as the
Camel placeholder namespace -->

<bean id="damn" class="java.lang.IllegalArgumentException">
<constructor-arg index="0" value="Damn"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<propertyPlaceholder id="properties"
location="classpath:org/apache/camel/component/

properties/myprop.properties"
xmlns="http://camel.apache.org/schema/spring"/>

<route>
<from uri="direct:start"/>
<!-- use prop namespace, to define a property placeholder, which maps to

option stopOnException={{stop}} -->
<multicast prop:stopOnException="stop">

<to uri="mock:a"/>
<throwException ref="damn"/>
<to uri="mock:b"/>

</multicast>
</route>

</camelContext>

</beans>

In our properties file we have the value defined as

stop=true

Using property placeholder in the Java DSL
Available as of Camel 2.7

Likewise we have added support for defining placeholders in the Java DSL
using the new placeholder DSL as shown in the following equivalent
example:

from("direct:start")
// use a property placeholder for the option stopOnException on the Multicast EIP
// which should have the value of {{stop}} key being looked up in the properties

file

912 CHAPTER 11 - COMPONENT APPENDIX

.multicast().placeholder("stopOnException", "stop")
.to("mock:a").throwException(new IllegalAccessException("Damn")).to("mock:b");

Using Blueprint property placeholder with Camel routes
Available as of Camel 2.7

Camel supports Blueprint which also offers a property placeholder service.
Camel supports convention over configuration, so all you have to do is to
define the OSGi Blueprint property placeholder in the XML file as shown
below:

Listing 1. Using OSGi blueprint property placeholders in Camel routes

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/

blueprint/v1.0.0/blueprint.xsd">

<!-- OSGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder"

persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>

<cm:property name="result" value="mock:result"/>
</cm:default-properties>

</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<!-- in the route we can use {{ }} placeholders which will lookup in blueprint
as Camel will auto detect the OSGi blueprint property placeholder and

use it -->
<route>

<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="{{result}}"/>

</route>

</camelContext>

</blueprint>

By default Camel detects and uses OSGi blueprint property placeholder
service. You can disable this by setting the attribute
useBlueprintPropertyResolver to false on the <camelContext> definition.
You can also explicit refer to a specific OSGi blueprint property placeholder
by its id. For that you need to use the Camel's <propertyPlaceholder> as
shown in the example below:

CHAPTER 11 - COMPONENT APPENDIX 913

http://camel.apache.org/using-osgi-blueprint-with-camel.html

About placeholder syntaxes
Notice how we can use the Camel syntax for placeholders {{ }} in
the Camel route, which will lookup the value from OSGi blueprint.
The blueprint syntax for placeholders is ${ }. So outside the
<camelContext> you must use the ${ } syntax. Where as inside
<camelContext> you must use {{ }} syntax.
OSGi blueprint allows you to configure the syntax, so you can
actually align those if you want.

Listing 1. Explicit referring to a OSGi blueprint placeholder in Camel

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/

blueprint/v1.0.0/blueprint.xsd">

<!-- OSGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder"

persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>

<cm:property name="prefix.result" value="mock:result"/>
</cm:default-properties>

</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<!-- using Camel properties component and refer to the blueprint property
placeholder by its id -->

<propertyPlaceholder id="properties"
location="blueprint:myblueprint.placeholder"

prefixToken="[[" suffixToken="]]"
propertyPrefix="prefix."/>

<!-- in the route we can use {{ }} placeholders which will lookup in
blueprint -->

<route>
<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="[[result]]"/>

</route>

</camelContext>

</blueprint>

914 CHAPTER 11 - COMPONENT APPENDIX

Notice how we use the blueprint scheme to refer to the OSGi blueprint
placeholder by its id. This allows you to mix and match, for example you can
also have additional schemes in the location. For example to load a file from
the classpath you can do:

location="blueprint:myblueprint.placeholder,classpath:myproperties.properties"

Each location is separated by comma.

Overriding Blueprint property placeholders outside
CamelContext
Available as of Camel 2.10.4

When using Blueprint property placeholder in the Blueprint XML file, you
can declare the properties directly in the XML file as shown below:

<!-- blueprint property placeholders -->
<cm:property-placeholder persistent-id="my-placeholders">

<cm:default-properties>
<cm:property name="greeting" value="Hello"/>
<cm:property name="destination" value="mock:result"/>

</cm:default-properties>
</cm:property-placeholder>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="{{destination}}"/>

</route>

</camelContext>

Notice that we have a <bean> which refers to one of the properties. And in
the Camel route we refer to the other using the {{ }} notation.

Now if you want to override these Blueprint properties from an unit test,
you can do this as shown below:

@Override
protected String useOverridePropertiesWithConfigAdmin(Dictionary props) {

CHAPTER 11 - COMPONENT APPENDIX 915

// add the properties we want to override
props.put("greeting", "Bye");

// return the PID of the config-admin we are using in the blueprint xml file
return "my-placeholders";

}

To do this we override and implement the
useOverridePropertiesWithConfigAdmin method. We can then put the
properties we want to override on the given props parameter. And the return
value must be the persistence-id of the <cm:property-placeholder> tag,
which you define in the blueprint XML file.

Using .cfg or .properties file for Blueprint property
placeholders
Available as of Camel 2.10.4

When using Blueprint property placeholder in the Blueprint XML file, you
can declare the properties in a .properties or .cfg file. If you use Apache
ServieMix / Karaf then this container has a convention that it loads the
properties from a file in the etc directory with the naming etc/pid.cfg, where
pid is the persistence-id.

For example in the blueprint XML file we have the persistence-id="stuff",
which mean it will load the configuration file as etc/stuff.cfg.

<!-- blueprint property placeholders, that will use etc/stuff.cfg as the properties
file -->
<cm:property-placeholder persistent-id="stuff"/>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="mock:result"/>

</route>

</camelContext>

916 CHAPTER 11 - COMPONENT APPENDIX

Now if you want to unit test this blueprint XML file, then you can override the
loadConfigAdminConfigurationFile and tell Camel which file to load as
shown below:

@Override
protected String[] loadConfigAdminConfigurationFile() {

// String[0] = tell Camel the path of the .cfg file to use for OSGi ConfigAdmin
in the blueprint XML file

// String[1] = tell Camel the persistence-id of the cm:property-placeholder in
the blueprint XML file

return new String[]{"src/test/resources/etc/stuff.cfg", "stuff"};
}

Notice that this method requires to return a String[] with 2 values. The 1st
value is the path for the configuration file to load.
The 2nd value is the persistence-id of the <cm:property-placeholder> tag.

The stuff.cfg file is just a plain properties file with the property
placeholders such as:

this is a comment
greeting=Bye

Using .cfg file and overriding properties for Blueprint
property placeholders
You can do both as well. Here is a complete example. First we have the
Blueprint XML file:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
xsi:schemaLocation="

http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0
http://aries.apache.org/schemas/blueprint-cm/blueprint-cm-1.0.0.xsd

http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

<!-- blueprint property placeholders, that will use etc/stuff.cfg as the properties
file -->

<cm:property-placeholder persistent-id="stuff"/>

<!-- a bean that uses a blueprint property placeholder -->
<bean id="myCoolBean" class="org.apache.camel.test.blueprint.MyCoolBean">

<property name="say" value="${greeting}"/>
<property name="echo" value="${echo}"/>

</bean>

CHAPTER 11 - COMPONENT APPENDIX 917

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="direct:start"/>
<bean ref="myCoolBean" method="saySomething"/>
<to uri="{{destination}}"/>
<bean ref="myCoolBean" method="echoSomething"/>
<to uri="{{destination}}"/>

</route>

</camelContext>

</blueprint>

And in the unit test class we do as follows:

/**
* This example will load a Blueprint .cfdg file, and also override its property

placeholders from this unit test
* source code directly.
*/

public class ConfigAdminLoadConfigurationFileAndOverrideTest extends
CamelBlueprintTestSupport {

@Override
protected String getBlueprintDescriptor() {

// which blueprint XML file to use for this test
return "org/apache/camel/test/blueprint/configadmin-loadfileoverride.xml";

}

@Override
protected String[] loadConfigAdminConfigurationFile() {

// which .cfg file to use, and the name of the persistence-id
return new String[]{"src/test/resources/etc/stuff.cfg", "stuff"};

}

@Override
protected String useOverridePropertiesWithConfigAdmin(Dictionary props) throws

Exception {
// override / add extra properties
props.put("destination", "mock:extra");

// return the persistence-id to use
return "stuff";

}

@Test
public void testConfigAdmin() throws Exception {

// regular unit test method
getMockEndpoint("mock:extra").expectedBodiesReceived("Bye World", "Yay Bye

WorldYay Bye World");

template.sendBody("direct:start", "World");

918 CHAPTER 11 - COMPONENT APPENDIX

assertMockEndpointsSatisfied();
}

}

And the etc/stuff.cfg configuration file contains

greeting=Bye
echo=Yay
destination=mock:result

Bridging Spring and Camel property placeholders
Available as of Camel 2.10

The Spring Framework does not allow 3rd party frameworks such as
Apache Camel to seamless hook into the Spring property placeholder
mechanism. However you can easily bridge Spring and Camel by declaring a
Spring bean with the type
org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer,
which is a Spring
org.springframework.beans.factory.config.PropertyPlaceholderConfigurer
type.

To bridge Spring and Camel you must define a single bean as shown
below:

Listing 1. Bridging Spring and Camel property placeholders

<!-- bridge spring property placeholder with Camel -->
<!-- you must NOT use the <context:property-placeholder at the same time, only this
bridge bean -->
<bean id="bridgePropertyPlaceholder"
class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer">

<property name="location" value="classpath:org/apache/camel/component/properties/
cheese.properties"/>
</bean>

You must not use the spring <context:property-placeholder> namespace at
the same time; this is not possible.

After declaring this bean, you can define property placeholders using both
the Spring style, and the Camel style within the <camelContext> tag as
shown below:

Listing 1. Using bridge property placeholders

CHAPTER 11 - COMPONENT APPENDIX 919

<!-- a bean that uses Spring property placeholder -->
<!-- the ${hi} is a spring property placeholder -->
<bean id="hello" class="org.apache.camel.component.properties.HelloBean">

<property name="greeting" value="${hi}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- in this route we use Camels property placeholder {{ }} style -->
<route>

<from uri="direct:{{cool.bar}}"/>
<bean ref="hello"/>
<to uri="{{cool.end}}"/>

</route>
</camelContext>

Notice how the hello bean is using pure Spring property placeholders using
the ${ } notation. And in the Camel routes we use the Camel placeholder
notation with {{ }}.

Overriding properties from Camel test kit
Available as of Camel 2.10

When Testing with Camel and using the Properties component, you may
want to be able to provide the properties to be used from directly within the
unit test source code.
This is now possible from Camel 2.10 onwards, as the Camel test kits, eg
CamelTestSupport class offers the following methods

▪ useOverridePropertiesWithPropertiesComponent
▪ ignoreMissingLocationWithPropertiesComponent

So for example in your unit test classes, you can override the
useOverridePropertiesWithPropertiesComponent method and return a
java.util.Properties that contains the properties which should be
preferred to be used.

Listing 1. Providing properties from within unit test source

// override this method to provide our custom properties we use in this unit test
@Override
protected Properties useOverridePropertiesWithPropertiesComponent() {

Properties extra = new Properties();
extra.put("destination", "mock:extra");
extra.put("greeting", "Bye");
return extra;

}

This can be done from any of the Camel Test kits, such as camel-test, camel-
test-spring, and camel-test-blueprint.

920 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/testing.html
http://camel.apache.org/properties.html

The ignoreMissingLocationWithPropertiesComponent can be used to
instruct Camel to ignore any locations which was not discoverable, for
example if you run the unit test, in an environment that does not have
access to the location of the properties.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Jasypt for using encrypted values (eg passwords) in the properties

REF COMPONENT
The ref: component is used for lookup of existing endpoints bound in the
Registry.

URI format

ref:someName

Where someName is the name of an endpoint in the Registry (usually, but
not always, the Spring registry). If you are using the Spring registry,
someName would be the bean ID of an endpoint in the Spring registry.

Runtime lookup
This component can be used when you need dynamic discovery of endpoints
in the Registry where you can compute the URI at runtime. Then you can look
up the endpoint using the following code:

// lookup the endpoint
String myEndpointRef = "bigspenderOrder";
Endpoint endpoint = context.getEndpoint("ref:" + myEndpointRef);

Producer producer = endpoint.createProducer();
Exchange exchange = producer.createExchange();
exchange.getIn().setBody(payloadToSend);
// send the exchange
producer.process(exchange);
...

And you could have a list of endpoints defined in the Registry such as:

CHAPTER 11 - COMPONENT APPENDIX 921

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jasypt.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<endpoint id="normalOrder" uri="activemq:order.slow"/>
<endpoint id="bigspenderOrder" uri="activemq:order.high"/>
...

</camelContext>

Sample
In the sample below we use the ref: in the URI to reference the endpoint
with the spring ID, endpoint2:

<bean id="mybean" class="org.apache.camel.spring.example.DummyBean">
<property name="endpoint" ref="endpoint1"/>

</bean>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<jmxAgent id="agent" disabled="true"/>
<endpoint id="endpoint1" uri="direct:start"/>
<endpoint id="endpoint2" uri="mock:end"/>

<route>
<from ref="endpoint1"/>
<to uri="ref:endpoint2"/>

</route>
</camelContext>

You could, of course, have used the ref attribute instead:

<to ref="endpoint2"/>

Which is the more common way to write it.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

RESTLET COMPONENT
The Restlet component provides Restlet based endpoints for consuming and
producing RESTful resources.

Maven users will need to add the following dependency to their pom.xml
for this component:

922 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.restlet.org
http://camel.apache.org/endpoint.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-restlet</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

restlet:restletUrl[?options]

Format of restletUrl:

protocol://hostname[:port][/resourcePattern]

Restlet promotes decoupling of protocol and application concerns. The
reference implementation of Restlet Engine supports a number of protocols.
However, we have tested the HTTP protocol only. The default port is port 80.
We do not automatically switch default port based on the protocol yet.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Name Default Value Description

headerFilterStrategy=#refName An instance of
RestletHeaderFilterStrategy

Use the # notation (headerFilterStrategy=#refName) to reference a
header filter strategy in the Camel Registry. The strategy will be
plugged into the restlet binding if it is HeaderFilterStrategyAware.

restletBinding=#refName An instance of
DefaultRestletBinding The bean ID of a RestletBinding object in the Camel Registry.

restletMethod GET

On a producer endpoint, specifies the request method to use. On a
consumer endpoint, specifies that the endpoint consumes only
restletMethod requests. The string value is converted to
org.restlet.data.Method by the Method.valueOf(String) method.

restletMethods None

Consumer only Specify one or more methods separated by commas
(e.g. restletMethods=post,put) to be serviced by a restlet consumer
endpoint. If both restletMethod and restletMethods options are
specified, the restletMethod setting is ignored.

restletRealm=#refName null The bean ID of the Realm Map in the Camel Registry.

restletUriPatterns=#refName None

Consumer only Specify one ore more URI templates to be serviced by
a restlet consumer endpoint, using the # notation to reference a
List<String> in the Camel Registry. If a URI pattern has been defined
in the endpoint URI, both the URI pattern defined in the endpoint and
the restletUriPatterns option will be honored.

throwExceptionOnFailure (2.6
or later) true *Producer only * Throws exception on a producer failure.

CHAPTER 11 - COMPONENT APPENDIX 923

http://www.noelios.com/products/restlet-engine
http://www.restlet.org/documentation/1.1/api/org/restlet/data/Method.html

Component Options
The Restlet component can be configured with the following options

Name Default
Value Description

controllerDaemon true Camel 2.10: Indicates if the controller thread should be a daemon (not blocking JVM exit).

controllerSleepTimeMs 100 Camel 2.10: Time for the controller thread to sleep between each control.

inboundBufferSize 8192 Camel 2.10: The size of the buffer when reading messages.

minThreads 1 Camel 2.10: Minimum threads waiting to service requests.

maxThreads 10 Camel 2.10: Maximum threads that will service requests.

maxConnectionsPerHost -1 Camel 2.10: Maximum number of concurrent connections per host (IP address).

maxTotalConnections -1 Camel 2.10: Maximum number of concurrent connections in total.

outboundBufferSize 8192 Camel 2.10: The size of the buffer when writing messages.

persistingConnections true Camel 2.10: Indicates if connections should be kept alive after a call.

pipeliningConnections false Camel 2.10: Indicates if pipelining connections are supported.

threadMaxIdleTimeMs 60000 Camel 2.10: Time for an idle thread to wait for an operation before being collected.

useForwardedForHeader false

Camel 2.10: Lookup the "X-Forwarded-For" header supported by popular proxies and caches and
uses it to populate the Request.getClientAddresses() method result. This information is only safe for
intermediary components within your local network. Other addresses could easily be changed by
setting a fake header and should not be trusted for serious security checks.

Message Headers
Name Type Description

Content-Type String

Specifies the content type, which can be set on the OUT message by the application/
processor. The value is the content-type of the response message. If this header is not
set, the content type is based on the object type of the OUT message body. In Camel 2.3
onward, if the Content-Type header is specified in the Camel IN message, the value of
the header determine the content type for the Restlet request message.Â Â Otherwise,
it is defaulted to "application/x-www-form-urlencoded'. Prior to release 2.3, it is not
possible to change the request content type default.

CamelAcceptContentType String Since Camel 2.9.3, 2.10.0: The HTTP Accept request header.

CamelHttpMethod String The HTTP request method. This is set in the IN message header.

CamelHttpQuery String The query string of the request URI. It is set on the IN message by
DefaultRestletBinding when the restlet component receives a request.

CamelHttpResponseCode String or Integer
The response code can be set on the OUT message by the application/processor. The
value is the response code of the response message. If this header is not set, the
response code is set by the restlet runtime engine.

CamelHttpUri String The HTTP request URI. This is set in the IN message header.

CamelRestletLogin String Login name for basic authentication. It is set on the IN message by the application and
gets filtered before the restlet request header by Camel.

CamelRestletPassword String Password name for basic authentication. It is set on the IN message by the application
and gets filtered before the restlet request header by Camel.

CamelRestletRequest Request Camel 2.8: The org.restlet.Request object which holds all request details.

CamelRestletResponse Response Camel 2.8: The org.restlet.Response object. You can use this to create responses
using the API from Restlet. See examples below.

org.restlet.* Â Attributes of a Restlet message that get propagated to Camel IN headers.

cache-control String or
List<CacheDirective>

Camel 2.11: User can set the cache-control with the String value or the List of
CacheDirective of Restlet from the camel message header.

924 CHAPTER 11 - COMPONENT APPENDIX

Message Body
Camel will store the restlet response from the external server on the OUT
body. All headers from the IN message will be copied to the OUT message, so
that headers are preserved during routing.

Samples

Restlet Endpoint with Authentication
The following route starts a restlet consumer endpoint that listens for POST
requests on http://localhost:8080. The processor creates a response that
echoes the request body and the value of the id header.

from("restlet:http://localhost:" + port +
"/securedOrders?restletMethod=post&restletRealm=#realm").process(new Processor() {

public void process(Exchange exchange) throws Exception {
exchange.getOut().setBody(

"received [" + exchange.getIn().getBody()
+ "] as an order id = "
+ exchange.getIn().getHeader("id"));

}
});

The restletRealm setting in the URI query is used to look up a Realm Map in
the registry. If this option is specified, the restlet consumer uses the
information to authenticate user logins. Only authenticated requests can
access the resources. In this sample, we create a Spring application context
that serves as a registry. The bean ID of the Realm Map should match the
restletRealmRef.

<util:map id="realm">
<entry key="admin" value="foo" />
<entry key="bar" value="foo" />

</util:map>

The following sample starts a direct endpoint that sends requests to the
server on http://localhost:8080 (that is, our restlet consumer endpoint).

// Note: restletMethod and restletRealmRef are stripped
// from the query before a request is sent as they are
// only processed by Camel.
from("direct:start-auth").to("restlet:http://localhost:" + port +
"/securedOrders?restletMethod=post");

CHAPTER 11 - COMPONENT APPENDIX 925

http://localhost:8080
http://localhost:8080

That is all we need. We are ready to send a request and try out the restlet
component:

final String id = "89531";

Map<String, Object> headers = new HashMap<String, Object>();
headers.put(RestletConstants.RESTLET_LOGIN, "admin");
headers.put(RestletConstants.RESTLET_PASSWORD, "foo");
headers.put("id", id);

String response = (String)template.requestBodyAndHeaders(
"direct:start-auth", "<order foo='1'/>", headers);

The sample client sends a request to the direct:start-auth endpoint with
the following headers:

• CamelRestletLogin (used internally by Camel)
• CamelRestletPassword (used internally by Camel)
• id (application header)

The sample client gets a response like the following:

received [<order foo='1'/>] as an order id = 89531

Single restlet endpoint to service multiple methods and
URI templates
It is possible to create a single route to service multiple HTTP methods using
the restletMethods option. This snippet also shows how to retrieve the
request method from the header:

from("restlet:http://localhost:" + portNum + "/users/
{username}?restletMethods=post,get,put")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

// echo the method

exchange.getOut().setBody(exchange.getIn().getHeader(Exchange.HTTP_METHOD,
String.class));

}
});

In addition to servicing multiple methods, the next snippet shows how to
create an endpoint that supports multiple URI templates using the
restletUriPatterns option. The request URI is available in the header of
the IN message as well. If a URI pattern has been defined in the endpoint URI

926 CHAPTER 11 - COMPONENT APPENDIX

Note
org.apache.camel.restlet.auth.login and
org.apache.camel.restlet.auth.password will not be
propagated as Restlet header.

(which is not the case in this sample), both the URI pattern defined in the
endpoint and the restletUriPatterns option will be honored.

from("restlet:http://localhost:" + portNum +
"?restletMethods=post,get&restletUriPatterns=#uriTemplates")

.process(new Processor() {
public void process(Exchange exchange) throws Exception {

// echo the method
String uri = exchange.getIn().getHeader(Exchange.HTTP_URI, String.class);
String out = exchange.getIn().getHeader(Exchange.HTTP_METHOD,

String.class);
if (("http://localhost:" + portNum + "/users/homer").equals(uri)) {

exchange.getOut().setBody(out + " " +
exchange.getIn().getHeader("username", String.class));

} else if (("http://localhost:" + portNum + "/atom/collection/foo/
component/bar").equals(uri)) {

exchange.getOut().setBody(out + " " +
exchange.getIn().getHeader("id", String.class)

+ " " + exchange.getIn().getHeader("cid",
String.class));

}
}

});

The restletUriPatterns=#uriTemplates option references the
List<String> bean defined in the Spring XML configuration.

<util:list id="uriTemplates">
<value>/users/{username}</value>
<value>/atom/collection/{id}/component/{cid}</value>

</util:list>

Using Restlet API to populate response
Available as of Camel 2.8

You may want to use the org.restlet.Response API to populate the
response. This gives you full access to the Restlet API and fine grained
control of the response. See the route snippet below where we generate the
response from an inlined Camel Processor:

CHAPTER 11 - COMPONENT APPENDIX 927

http://camel.apache.org/processor.html

Listing 1. Generating response using Restlet Response API

from("restlet:http://localhost:" + portNum + "/users/{id}/like/{beer}")
.process(new Processor() {

public void process(Exchange exchange) throws Exception {
// the Restlet request should be available if neeeded
Request request =

exchange.getIn().getHeader(RestletConstants.RESTLET_REQUEST, Request.class);
assertNotNull("Restlet Request", request);

// use Restlet API to create the response
Response response =

exchange.getIn().getHeader(RestletConstants.RESTLET_RESPONSE, Response.class);
assertNotNull("Restlet Response", response);
response.setStatus(Status.SUCCESS_OK);
response.setEntity("<response>Beer is Good</response>",

MediaType.TEXT_XML);
exchange.getOut().setBody(response);

}
});

Using the Restlet servlet within a webapp
Available as of Camel 2.8
There are three possible ways to configure a Restlet application within a
servlet container and using the subclassed SpringServerServlet enables
configuration within Camel by injecting the Restlet Component.

Use of the Restlet servlet within a servlet container enables routes to be
configured with relative paths in URIs (removing the restrictions of hard-
coded absolute URIs) and for the hosting servlet container to handle
incoming requests (rather than have to spawn a separate server process on a
new port).

To configure, add the following to your camel-context.xml;

<camelContext>
<route id="RS_RestletDemo">

<from uri="restlet:/demo/{id}" />
<transform>

<simple>Request type : ${header.CamelHttpMethod} and ID : ${header.id}</simple>
</transform>

</route>
</camelContext>

<bean id="RestletComponent" class="org.restlet.Component" />

<bean id="RestletComponentService"
class="org.apache.camel.component.restlet.RestletComponent">

<constructor-arg index="0">

928 CHAPTER 11 - COMPONENT APPENDIX

http://www.restlet.org/documentation/2.0/jee/ext/org/restlet/ext/servlet/ServerServlet.html

<ref bean="RestletComponent" />
</constructor-arg>

</bean>

And add this to your web.xml;

<!-- Restlet Servlet -->
<servlet>

<servlet-name>RestletServlet</servlet-name>
<servlet-class>org.restlet.ext.spring.SpringServerServlet</servlet-class>
<init-param>

<param-name>org.restlet.component</param-name>
<param-value>RestletComponent</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>RestletServlet</servlet-name>
<url-pattern>/rs/*</url-pattern>

</servlet-mapping>

You will then be able to access the deployed route at http://localhost:8080/
mywebapp/rs/demo/1234 where;

localhost:8080 is the server and port of your servlet container
mywebapp is the name of your deployed webapp
Your browser will then show the following content;

"Request type : GET and ID : 1234"

You will need to add dependency on the Spring extension to restlet which you
can do in your Maven pom.xml file:

<dependency>
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.spring</artifactId>
<version>${restlet-version}</version>

</dependency>

And you would need to add dependency on the restlet maven repository as
well:

<repository>
<id>maven-restlet</id>
<name>Public online Restlet repository</name>
<url>http://maven.restlet.org</url>

</repository>

CHAPTER 11 - COMPONENT APPENDIX 929

http://localhost:8080/mywebapp/rs/demo/1234
http://localhost:8080/mywebapp/rs/demo/1234

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

RMI COMPONENT
The rmi: component binds PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply regarding
what methods can be invoked. This component supports only PojoExchanges
that carry a method invocation from an interface that extends the Remote
interface. All parameters in the method should be either Serializable or
Remote objects.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-rmi</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path[?options]

For example:

rmi://localhost:1099/path/to/service

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

method null You can set the name of the method to invoke.

remoteInterfaces null Its now possible to use this option from Camel 2.7: in the XML DSL. It can be a list of interface
names separated by comma.

930 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

Using
To call out to an existing RMI service registered in an RMI registry, create a
route similar to the following:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing camel processor or service in an RMI registry, define an
RMI endpoint as follows:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Note that when binding an RMI consumer endpoint, you must specify the
Remote interfaces exposed.

In XML DSL you can do as follows from Camel 2.7 onwards:

<camel:route>
<from uri="rmi://localhost:37541/

helloServiceBean?remoteInterfaces=org.apache.camel.example.osgi.HelloService"/>
<to uri="bean:helloServiceBean"/>

</camel:route>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

RSS COMPONENT
The rss: component is used for polling RSS feeds. Camel will default poll the
feed every 60th seconds.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-rss</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

CHAPTER 11 - COMPONENT APPENDIX 931

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

Note: The component currently only supports polling (consuming) feeds.

URI format

rss:rssUri

Where rssUri is the URI to the RSS feed to poll.
You can append query options to the URI in the following format,

?option=value&option=value&...

Options
Property Default Description

splitEntries true

If true, Camel splits a feed into its individual entries and returns each entry, poll by poll. For
example, if a feed contains seven entries, Camel returns the first entry on the first poll, the
second entry on the second poll, and so on. When no more entries are left in the feed, Camel
contacts the remote RSS URI to obtain a new feed. If false, Camel obtains a fresh feed on every
poll and returns all of the feed's entries.

filter true

Use in combination with the splitEntries option in order to filter returned entries. By default,
Camel applies the UpdateDateFilter filter, which returns only new entries from the feed,
ensuring that the consumer endpoint never receives an entry more than once. The filter orders
the entries chronologically, with the newest returned last.

throttleEntries true
Camel 2.5: Sets whether all entries identified in a single feed poll should be delivered
immediately. If true, only one entry is processed per consumer.delay. Only applicable when
splitEntries is set to true.

lastUpdate null
Use in combination with the filter option to block entries earlier than a specific date/time (uses
the entry.updated timestamp). The format is: yyyy-MM-ddTHH:MM:ss. Example:
2007-12-24T17:45:59.

feedHeader true Specifies whether to add the ROME SyndFeed object as a header.

sortEntries false If splitEntries is true, this specifies whether to sort the entries by updated date.

consumer.delay 60000 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Milliseconds before polling starts.

consumer.userFixedDelay false Set to true to use fixed delay between pools, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

Exchange data types
Camel initializes the In body on the Exchange with a ROME SyndFeed.
Depending on the value of the splitEntries flag, Camel returns either a
SyndFeed with one SyndEntry or a java.util.List of SyndEntrys.
Option Value Behavior
splitEntries true A single entry from the current feed is set in the exchange.

splitEntries false The entire list of entries from the current feed is set in the exchange.

Message Headers
Header Description
CamelRssFeed The entire SyncFeed object.

932 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Camel-rss internally uses a patched version of ROME hosted on
ServiceMix to solve some OSGi class loading issues.

RSS Dataformat
The RSS component ships with an RSS dataformat that can be used to
convert between String (as XML) and ROME RSS model objects.

• marshal = from ROME SyndFeed to XML String
• unmarshal = from XML String to ROME SyndFeed

A route using this would look something like this:

from("rss:file:src/test/data/
rss20.xml?splitEntries=false&consumer.delay=1000").marshal().rss().to("mock:marshal");

The purpose of this feature is to make it possible to use Camel's lovely built-
in expressions for manipulating RSS messages. As shown below, an XPath
expression can be used to filter the RSS message:

// only entries with Camel in the title will get through the filter
from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100")

.marshal().rss().filter().xpath("//item/
title[contains(.,'Camel')]").to("mock:result");

Filtering entries
You can filter out entries quite easily using XPath, as shown in the data
format section above. You can also exploit Camel's Bean Integration to
implement your own conditions. For instance, a filter equivalent to the XPath
example above would be:

// only entries with Camel in the title will get through the filter
from("rss:file:src/test/data/rss20.xml?splitEntries=true&consumer.delay=100").

filter().method("myFilterBean", "titleContainsCamel").to("mock:result");

The custom bean for this would be:

public static class FilterBean {
public boolean titleContainsCamel(@Body SyndFeed feed) {

SyndEntry firstEntry = (SyndEntry) feed.getEntries().get(0);
return firstEntry.getTitle().contains("Camel");

}
}

CHAPTER 11 - COMPONENT APPENDIX 933

http://camel.apache.org/bean-integration.html
http://svn.apache.org/repos/asf/servicemix/smx4/bundles/trunk/rome-1.0/
http://rometools.org/
https://issues.apache.org/jira/browse/SMX4-510

Query parameters
If the URL for the RSS feed uses query parameters, this component will understand
them as well, for example if the feed uses alt=rss, then you can for example do
from("rss:http://someserver.com/feeds/posts/
default?alt=rss&splitEntries=false&consumer.delay=1000").to("bean:rss");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Atom

Unable to render {include} Couldn't find a page to include called: Scalate

SEDA COMPONENT
The seda: component provides asynchronous SEDA behavior, so that
messages are exchanged on a BlockingQueue and consumers are invoked in
a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want
to communicate across CamelContext instances (for example,
communicating between Web applications), see the VM component.

This component does not implement any kind of persistence or recovery, if
the VM terminates while messages are yet to be processed. If you need
persistence, reliability or distributed SEDA, try using either JMS or ActiveMQ.

URI format

seda:someName[?options]

Where someName can be any string that uniquely identifies the endpoint
within the current CamelContext.

You can append query options to the URI in the following format:
?option=value&option=value&â€¦

Options
Name Since Default Description

934 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/atom.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/vm.html
http://camel.apache.org/jms.html
http://camel.apache.org/activemq.html
http://camel.apache.org/camelcontext.html
http://someserver.com/feeds/posts/default?alt=rss&splitEntries=false&consumer.delay=1000
http://someserver.com/feeds/posts/default?alt=rss&splitEntries=false&consumer.delay=1000

Synchronous
The Direct component provides synchronous invocation of any
consumers when a producer sends a message exchange.

size Â Â

The maximum capacity of the SEDA queue (i.e., the number of messages it can
hold). The default value in Camel 2.2 or older is 1000. From Camel 2.3 onwards,
the size is unbounded by default. Notice: Mind if you use this option, then its
the first endpoint being created with the queue name, that determines the size.
To make sure all endpoints use same size, then configure the size option on all
of them, or the first endpoint being created. From Camel 2.11 onwards, a
validation is taken place to ensure if using mixed queue sizes for the same
queue name, Camel would detect this and fail creating the endpoint.

concurrentConsumers Â 1 Number of concurrent threads processing exchanges.

waitForTaskToComplete Â IfReplyExpected

Option to specify whether the caller should wait for the async task to complete
or not before continuing. The following three options are supported: Always,
Never or IfReplyExpected. The first two values are self-explanatory. The last
value, IfReplyExpected, will only wait if the message is Request Reply based.
The default option is IfReplyExpected. See more information about Async
messaging.

timeout Â 30000

Timeout (in milliseconds) before a SEDA producer will stop waiting for an
asynchronous task to complete. See waitForTaskToComplete and Async for
more details. In Camel 2.2 you can now disable timeout by using 0 or a
negative value.

multipleConsumers 2.2 false

Specifies whether multiple consumers are allowed. If enabled, you can use
SEDA for Publish-Subscribe messaging. That is, you can send a message to the
SEDA queue and have each consumer receive a copy of the message. When
enabled, this option should be specified on every consumer endpoint.

limitConcurrentConsumers 2.3 true
Whether to limit the number of concurrentConsumers to the maximum of 500.
By default, an exception will be thrown if a SEDA endpoint is configured with a
greater number. You can disable that check by turning this option off.

blockWhenFull 2.9 false

Whether a thread that sends messages to a full SEDA queue will block until the
queue's capacity is no longer exhausted. By default, an exception will be
thrown stating that the queue is full. By enabling this option, the calling thread
will instead block and wait until the message can be accepted.

queueSize 2.9 Â
Component only: The maximum default size (capacity of the number of
messages it can hold) of the SEDA queue. This option is used if size is not in
use.

pollTimeout 2.9.3 1000
Consumer only â€“ The timeout used when polling. When a timeout occurs, the
consumer can check whether it is allowed to continue running. Setting a lower
value allows the consumer to react more quickly upon shutdown.

Use of Request Reply
The SEDA component supports using Request Reply, where the caller will
wait for the Async route to complete. For instance:

from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input").to("bean:processInput").to("bean:createResponse");

In the route above, we have a TCP listener on port 9876 that accepts
incoming requests. The request is routed to the seda:input queue. As it is a
Request Reply message, we wait for the response. When the consumer on
the seda:input queue is complete, it copies the response to the original
message response.

CHAPTER 11 - COMPONENT APPENDIX 935

http://camel.apache.org/request-reply.html
http://camel.apache.org/async.html
http://camel.apache.org/async.html
http://camel.apache.org/seda.html
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
http://camel.apache.org/seda.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/async.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/direct.html

until 2.2: Works only with 2 endpoints
Using Request Reply over SEDA or VM only works with 2 endpoints.
You cannot chain endpoints by sending to A -> B -> C etc. Only
between A -> B. The reason is the implementation logic is fairly
simple. To support 3+ endpoints makes the logic much more
complex to handle ordering and notification between the waiting
threads properly.

This has been improved in Camel 2.3 onwards, which allows you to chain
as many endpoints as you like.

Concurrent consumers
By default, the SEDA endpoint uses a single consumer thread, but you can
configure it to use concurrent consumer threads. So instead of thread pools
you can use:

from("seda:stageName?concurrentConsumers=5").process(...)

As for the difference between the two, note a thread pool can increase/shrink
dynamically at runtime depending on load, whereas the number of
concurrent consumers is always fixed.

Thread pools
Be aware that adding a thread pool to a SEDA endpoint by doing something
like:

from("seda:stageName").thread(5).process(...)

Can wind up with two BlockQueues: one from the SEDA endpoint, and one
from the workqueue of the thread pool, which may not be what you want.
Instead, you might wish to configure a Direct endpoint with a thread pool,
which can process messages both synchronously and asynchronously. For
example:

from("direct:stageName").thread(5).process(...)

You can also directly configure number of threads that process messages on
a SEDA endpoint using the concurrentConsumers option.

936 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/direct.html
http://camel.apache.org/request-reply.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html

Sample
In the route below we use the SEDA queue to send the request to this async
queue to be able to send a fire-and-forget message for further processing in
another thread, and return a constant reply in this thread to the original
caller.

public void configure() throws Exception {
from("direct:start")

// send it to the seda queue that is async
.to("seda:next")
// return a constant response
.transform(constant("OK"));

from("seda:next").to("mock:result");
}

Here we send a Hello World message and expects the reply to be OK.

Object out = template.requestBody("direct:start", "Hello World");
assertEquals("OK", out);

The "Hello World" message will be consumed from the SEDA queue from
another thread for further processing. Since this is from a unit test, it will be
sent to a mock endpoint where we can do assertions in the unit test.

Using multipleConsumers
Available as of Camel 2.2

In this example we have defined two consumers and registered them as
spring beans.

<!-- define the consumers as spring beans -->
<bean id="consumer1" class="org.apache.camel.spring.example.FooEventConsumer"/>

<bean id="consumer2" class="org.apache.camel.spring.example.AnotherFooEventConsumer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- define a shared endpoint which the consumers can refer to instead of using

url -->
<endpoint id="foo" uri="seda:foo?multipleConsumers=true"/>

</camelContext>

Since we have specified multipleConsumers=true on the seda foo
endpoint we can have those two consumers receive their own copy of the
message as a kind of pub-sub style messaging.

CHAPTER 11 - COMPONENT APPENDIX 937

As the beans are part of an unit test they simply send the message to a
mock endpoint, but notice how we can use @Consume to consume from the
seda queue.

public class FooEventConsumer {

@EndpointInject(uri = "mock:result")
private ProducerTemplate destination;

@Consume(ref = "foo")
public void doSomething(String body) {

destination.sendBody("foo" + body);
}

}

Extracting queue information.
If needed, information such as queue size, etc. can be obtained without using
JMX in this fashion:

SedaEndpoint seda = context.getEndpoint("seda:xxxx");
int size = seda.getExchanges().size();

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ VM
▪ Direct
▪ Async

SERVLET COMPONENT
The servlet: component provides HTTP based endpoints for consuming HTTP
requests that arrive at a HTTP endpoint that is bound to a published Servlet.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>

938 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/vm.html
http://camel.apache.org/direct.html
http://camel.apache.org/async.html
http://camel.apache.org/endpoint.html

<artifactId>camel-servlet</artifactId>
<version>x.x.x</version>
<\!-\- use the same version as your Camel core version \-->

</dependency>

URI format

servlet://relative_path[?options]

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

httpBindingRef null Reference to an org.apache.camel.component.http.HttpBinding in the Registry. A HttpBinding
implementation can be used to customize how to write a response.

matchOnUriPrefix false Whether or not the CamelServlet should try to find a target consumer by matching the URI prefix, if no
exact match is found.

servletName CamelServlet Specifies the servlet name that the servlet endpoint will bind to. This name should match the name you
define in web.xml file.

Message Headers
Camel will apply the same Message Headers as the HTTP component.

Camel will also populate all request.parameter and request.headers.
For example, if a client request has the URL, http://myserver/
myserver?orderid=123, the exchange will contain a header named orderid
with the value 123.

Usage
You can consume only from endpoints generated by the Servlet component.
Therefore, it should be used only as input into your Camel routes. To issue
HTTP requests against other HTTP endpoints, use the HTTP Component

Putting Camel JARs in the app server boot classpath
If you put the Camel JARs such as camel-core, camel-servlet, etc. in the
boot classpath of your application server (eg usually in its lib directory), then
mind that the servlet mapping list is now shared between multiple deployed
Camel application in the app server.

CHAPTER 11 - COMPONENT APPENDIX 939

http://camel.apache.org/registry.html
http://camel.apache.org/http.html
http://myserver/myserver?orderid=123
http://myserver/myserver?orderid=123
http://camel.apache.org/http.html

Stream
Servlet is stream based, which means the input it receives is
submitted to Camel as a stream. That means you will only be able
to read the content of the stream once. If you find a situation
where the message body appears to be empty or you need to
access the data multiple times (eg: doing multicasting, or redelivery
error handling) you should use Stream caching or convert the
message body to a String which is safe to be read multiple times.

Mind that putting Camel JARs in the boot classpath of the application
server is generally not best practice!

So in those situations you must define a custom and unique servlet name
in each of your Camel application, eg in the web.xml define:

<servlet>
<servlet-name>MySerlvet</servlet-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>MyServlet</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

And in your Camel endpoints then include the servlet name as well

<route>
<from uri="servlet://foo?servletName=MyServlet"/>
...

</route>

From Camel 2.11 onwards Camel will detect this duplicate and fail to start
the application. You can control to ignore this duplicate by setting the servlet
init-parameter ignoreDuplicateServletName to true as follows:

<servlet>
<servlet-name>CamelServlet</servlet-name>
<display-name>Camel Http Transport Servlet</display-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
<init-param>

<param-name>ignoreDuplicateServletName</param-name>

940 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/stream-caching.html

<param-value>true</param-value>
</init-param>

</servlet>

But its strongly advised to use unique servlet-name for each Camel
application to avoid this duplication clash, as well any unforeseen side-
effects.

Sample
In this sample, we define a route that exposes a HTTP service at
http://localhost:8080/camel/services/hello.
First, you need to publish the CamelHttpTransportServlet through the normal
Web Container, or OSGi Service.
Use the Web.xml file to publish the CamelHttpTransportServlet as follows:

<web-app>

<servlet>
<servlet-name>CamelServlet</servlet-name>
<display-name>Camel Http Transport Servlet</display-name>

<servlet-class>org.apache.camel.component.servlet.CamelHttpTransportServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>CamelServlet</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

</web-app>

Then you can define your route as follows:

from("servlet:///hello?matchOnUriPrefix=true").process(new Processor() {
public void process(Exchange exchange) throws Exception {

String contentType = exchange.getIn().getHeader(Exchange.CONTENT_TYPE,
String.class);

String path = exchange.getIn().getHeader(Exchange.HTTP_PATH, String.class);
assertEquals("Get a wrong content type", CONTENT_TYPE, contentType);
// assert camel http header
String charsetEncoding =

exchange.getIn().getHeader(Exchange.HTTP_CHARACTER_ENCODING, String.class);
assertEquals("Get a wrong charset name from the message heaer", "UTF-8",

charsetEncoding);
// assert exchange charset
assertEquals("Get a wrong charset naem from the exchange property", "UTF-8",

exchange.getProperty(Exchange.CHARSET_NAME));

CHAPTER 11 - COMPONENT APPENDIX 941

http://localhost:8080/camel/services/hello
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

From Camel 2.7 onwards it's easier to use Servlet in Spring web
applications. See Servlet Tomcat Example for details.

exchange.getOut().setHeader(Exchange.CONTENT_TYPE, contentType + ";
charset=UTF-8");

exchange.getOut().setHeader("PATH", path);
exchange.getOut().setBody("Hello World");

}
});

Sample when using Spring 3.x
See Servlet Tomcat Example

Sample when using Spring 2.x
When using the Servlet component in a Camel/Spring application it's often
required to load the Spring ApplicationContext after the Servlet component
has started. This can be accomplished by using Spring's
ContextLoaderServlet instead of ContextLoaderListener. In that case
you'll need to start ContextLoaderServlet after CamelHttpTransportServlet
like this:

<web-app>
<servlet>

<servlet-name>CamelServlet</servlet-name>
<servlet-class>

org.apache.camel.component.servlet.CamelHttpTransportServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>SpringApplicationContext</servlet-name>
<servlet-class>

org.springframework.web.context.ContextLoaderServlet
</servlet-class>
<load-on-startup>2</load-on-startup>

</servlet>
<web-app>

942 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/servlet-tomcat-example.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://camel.apache.org/servlet.html
http://camel.apache.org/servlet-tomcat-example.html

Specify the relative path for camel-servlet endpoint
Since we are binding the Http transport with a published servlet,
and we don't know the servlet's application context path, the
camel-servlet endpoint uses the relative path to specify the
endpoint's URL. A client can access the camel-servlet endpoint
through the servlet publish address: ("http://localhost:8080/
camel/services") + RELATIVE_PATH("/hello").

Sample when using OSGi
From Camel 2.6.0, you can publish the CamelHttpTransportServlet as an
OSGi service with help of SpringDM like this.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframework.org/

schema/osgi/spring-osgi.xsd">

<bean id="camelServlet"
class="org.apache.camel.component.servlet.CamelHttpTransportServlet">

</bean>

<!--
Enlist it in OSGi service registry
This will cause two things:
1) As the pax web whiteboard extender is running the CamelServlet will

be registered with the OSGi HTTP Service
2) It will trigger the HttpRegistry in other bundles so the servlet is

made known there too
-->
<osgi:service ref="camelServlet">

<osgi:interfaces>
<value>javax.servlet.Servlet</value>
<value>org.apache.camel.component.http.CamelServlet</value>

</osgi:interfaces>
<osgi:service-properties>

<entry key="alias" value="/camel/services" />
<entry key="matchOnUriPrefix" value="true" />
<entry key="servlet-name" value="CamelServlet"/>

</osgi:service-properties>
</osgi:service>

</beans>

Then use this service in your camel route like this:

CHAPTER 11 - COMPONENT APPENDIX 943

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi http://www.springframework.org/

schema/osgi/spring-osgi.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd">

<osgi:reference id="servletref"
interface="org.apache.camel.component.http.CamelServlet">

<osgi:listener bind-method="register" unbind-method="unregister">
<ref bean="httpRegistry"/>

</osgi:listener>
</osgi:reference>

<bean id="httpRegistry"
class="org.apache.camel.component.servlet.DefaultHttpRegistry"/>

<bean id="servlet"
class="org.apache.camel.component.servlet.ServletComponent">

<property name="httpRegistry" ref="httpRegistry" />
</bean>

<bean id="servletProcessor"
class="org.apache.camel.itest.osgi.servlet.ServletProcessor" />

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<!-- notice how we can use the servlet scheme which is that
osgi:reference above -->

<from uri="servlet:///hello"/>
<process ref="servletProcessor"/>

</route>
</camelContext>

</beans>

For versions prior to Camel 2.6 you can use an Activator to publish the
CamelHttpTransportServlet on the OSGi platform

import java.util.Dictionary;
import java.util.Hashtable;

import org.apache.camel.component.servlet.CamelHttpTransportServlet;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.service.http.HttpContext;

944 CHAPTER 11 - COMPONENT APPENDIX

http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

import org.osgi.service.http.HttpService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.osgi.context.BundleContextAware;

public final class ServletActivator implements BundleActivator, BundleContextAware {
private static final transient Logger LOG =

LoggerFactory.getLogger(ServletActivator.class);
private static boolean registerService;

/**
* HttpService reference.
*/

private ServiceReference httpServiceRef;

/**
* Called when the OSGi framework starts our bundle
*/

public void start(BundleContext bc) throws Exception {
registerServlet(bc);

}

/**
* Called when the OSGi framework stops our bundle
*/

public void stop(BundleContext bc) throws Exception {
if (httpServiceRef != null) {

bc.ungetService(httpServiceRef);
httpServiceRef = null;

}
}

protected void registerServlet(BundleContext bundleContext) throws Exception {
httpServiceRef =

bundleContext.getServiceReference(HttpService.class.getName());

if (httpServiceRef != null && !registerService) {
LOG.info("Register the servlet service");
final HttpService httpService =

(HttpService)bundleContext.getService(httpServiceRef);
if (httpService != null) {

// create a default context to share between registrations
final HttpContext httpContext =

httpService.createDefaultHttpContext();
// register the hello world servlet
final Dictionary<String, String> initParams = new Hashtable<String,

String>();
initParams.put("matchOnUriPrefix", "false");
initParams.put("servlet-name", "CamelServlet");
httpService.registerServlet("/camel/services", // alias

new CamelHttpTransportServlet(), // register servlet
initParams, // init params
httpContext // http context

);

CHAPTER 11 - COMPONENT APPENDIX 945

registerService = true;
}

}
}

public void setBundleContext(BundleContext bc) {
try {

registerServlet(bc);
} catch (Exception e) {

LOG.error("Cannot register the servlet, the reason is " + e);
}

}

}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ Servlet Tomcat Example
▪ Servlet Tomcat No Spring Example
▪ HTTP
▪ Jetty

SHIRO SECURITY COMPONENT
Available as of Camel 2.5

The shiro-security component in Camel is a security focused component,
based on the Apache Shiro security project.

Apache Shiro is a powerful and flexible open-source security framework
that cleanly handles authentication, authorization, enterprise session
management and cryptography. The objective of the Apache Shiro project is
to provide the most robust and comprehensive application security
framework available while also being very easy to understand and extremely
simple to use.

This camel shiro-security component allows authentication and
authorization support to be applied to different segments of a camel route.

Shiro security is applied on a route using a Camel Policy. A Policy in Camel
utilizes a strategy pattern for applying interceptors on Camel Processors. It
offering the ability to apply cross-cutting concerns (for example. security,
transactions etc) on sections/segments of a camel route.

946 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/servlet-tomcat-example.html
http://camel.apache.org/servlet-tomcat-no-spring-example.html
http://camel.apache.org/http.html
http://camel.apache.org/jetty.html

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-shiro</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

Shiro Security Basics
To employ Shiro security on a camel route, a ShiroSecurityPolicy object must
be instantiated with security configuration details (including users,
passwords, roles etc). This object must then be applied to a camel route. This
ShiroSecurityPolicy Object may also be registered in the Camel registry (JNDI
or ApplicationContextRegistry) and then utilized on other routes in the Camel
Context.

Configuration details are provided to the ShiroSecurityPolicy using an Ini
file (properties file) or an Ini object. The Ini file is a standard Shiro
configuration file containing user/role details as shown below

[users]
user 'ringo' with password 'starr' and the 'sec-level1' role
ringo = starr, sec-level1
george = harrison, sec-level2
john = lennon, sec-level3
paul = mccartney, sec-level3

[roles]
'sec-level3' role has all permissions, indicated by the
wildcard '*'
sec-level3 = *

The 'sec-level2' role can do anything with access of permission
readonly (*) to help
sec-level2 = zone1:*

The 'sec-level1' role can do anything with access of permission
readonly
sec-level1 = zone1:readonly:*

Instantiating a ShiroSecurityPolicy Object
A ShiroSecurityPolicy object is instantiated as follows

CHAPTER 11 - COMPONENT APPENDIX 947

private final String iniResourcePath = "classpath:shiro.ini";
private final byte[] passPhrase = {

(byte) 0x08, (byte) 0x09, (byte) 0x0A, (byte) 0x0B,
(byte) 0x0C, (byte) 0x0D, (byte) 0x0E, (byte) 0x0F,
(byte) 0x10, (byte) 0x11, (byte) 0x12, (byte) 0x13,
(byte) 0x14, (byte) 0x15, (byte) 0x16, (byte) 0x17};

List<permission> permissionsList = new ArrayList<permission>();
Permission permission = new WildcardPermission("zone1:readwrite:*");
permissionsList.add(permission);

final ShiroSecurityPolicy securityPolicy =
new ShiroSecurityPolicy(iniResourcePath, passPhrase, true,

permissionsList);

ShiroSecurityPolicy Options

Name Default
Value Type Description

iniResourcePath or
ini none Resource String or Ini Object

A mandatory Resource String for the iniResourcePath or an
instance of an Ini object must be passed to the security
policy. Resources can be acquired from the file system,
classpath, or URLs when prefixed with "file:, classpath:, or
url:" respectively. For e.g "classpath:shiro.ini"

passPhrase An AES 128
based key byte[] A passPhrase to decrypt ShiroSecurityToken(s) sent along

with Message Exchanges

alwaysReauthenticate true boolean
Setting to ensure re-authentication on every individual
request. If set to false, the user is authenticated and locked
such than only requests from the same user going forward
are authenticated.

permissionsList none List<Permission>

A List of permissions required in order for an authenticated
user to be authorized to perform further action i.e continue
further on the route. If no Permissions list is provided to the
ShiroSecurityPolicy object, then authorization is deemed as
not required

cipherService AES org.apache.shiro.crypto.CipherService
Shiro ships with AES & Blowfish based CipherServices. You
may use one these or pass in your own Cipher
implementation

Applying Shiro Authentication on a Camel Route
The ShiroSecurityPolicy, tests and permits incoming message exchanges
containing a encrypted SecurityToken in the Message Header to proceed
further following proper authentication. The SecurityToken object contains a
Username/Password details that are used to determine where the user is a
valid user.

protected RouteBuilder createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =

new ShiroSecurityPolicy("classpath:shiro.ini", passPhrase);

return new RouteBuilder() {
public void configure() {

948 CHAPTER 11 - COMPONENT APPENDIX

onException(UnknownAccountException.class).
to("mock:authenticationException");

onException(IncorrectCredentialsException.class).
to("mock:authenticationException");

onException(LockedAccountException.class).
to("mock:authenticationException");

onException(AuthenticationException.class).
to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

}
};

}

Applying Shiro Authorization on a Camel Route
Authorization can be applied on a camel route by associating a Permissions
List with the ShiroSecurityPolicy. The Permissions List specifies the
permissions necessary for the user to proceed with the execution of the route
segment. If the user does not have the proper permission set, the request is
not authorized to continue any further.

protected RouteBuilder createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =

new ShiroSecurityPolicy("./src/test/resources/securityconfig.ini",
passPhrase);

return new RouteBuilder() {
public void configure() {

onException(UnknownAccountException.class).
to("mock:authenticationException");

onException(IncorrectCredentialsException.class).
to("mock:authenticationException");

onException(LockedAccountException.class).
to("mock:authenticationException");

onException(AuthenticationException.class).
to("mock:authenticationException");

from("direct:secureEndpoint").
to("log:incoming payload").
policy(securityPolicy).
to("mock:success");

}
};

}

CHAPTER 11 - COMPONENT APPENDIX 949

Creating a ShiroSecurityToken and injecting it into a Message
Exchange
A ShiroSecurityToken object may be created and injected into a Message
Exchange using a Shiro Processor called ShiroSecurityTokenInjector. An
example of injecting a ShiroSecurityToken using a ShiroSecurityTokenInjector
in the client is shown below

ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo", "starr");
ShiroSecurityTokenInjector shiroSecurityTokenInjector =

new ShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

from("direct:client").
process(shiroSecurityTokenInjector).
to("direct:secureEndpoint");

Sending Messages to routes secured by a ShiroSecurityPolicy
Messages and Message Exchanges sent along the camel route where the
security policy is applied need to be accompanied by a SecurityToken in the
Exchange Header. The SecurityToken is an encrypted object that holds a
Username and Password. The SecurityToken is encrypted using AES 128 bit
security by default and can be changed to any cipher of your choice.

Given below is an example of how a request may be sent using a
ProducerTemplate in Camel along with a SecurityToken

@Test
public void testSuccessfulShiroAuthenticationWithNoAuthorization() throws

Exception {
//Incorrect password
ShiroSecurityToken shiroSecurityToken = new ShiroSecurityToken("ringo",

"stirr");

// TestShiroSecurityTokenInjector extends ShiroSecurityTokenInjector
TestShiroSecurityTokenInjector shiroSecurityTokenInjector =

new TestShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);

successEndpoint.expectedMessageCount(1);
failureEndpoint.expectedMessageCount(0);

template.send("direct:secureEndpoint", shiroSecurityTokenInjector);

successEndpoint.assertIsSatisfied();
failureEndpoint.assertIsSatisfied();

}

950 CHAPTER 11 - COMPONENT APPENDIX

SIP COMPONENT
Available as of Camel 2.5

The sip component in Camel is a communication component, based on
the Jain SIP implementation (available under the JCP license).

Session Initiation Protocol (SIP) is an IETF-defined signaling protocol,
widely used for controlling multimedia communication sessions such as voice
and video calls over Internet Protocol (IP).The SIP protocol is an Application
Layer protocol designed to be independent of the underlying transport layer;
it can run on Transmission Control Protocol (TCP), User Datagram Protocol
(UDP) or Stream Control Transmission Protocol (SCTP).

The Jain SIP implementation supports TCP and UDP only.
The Camel SIP component only supports the SIP Publish and Subscribe

capability as described in the RFC3903 - Session Initiation Protocol (SIP)
Extension for Event

This camel component supports both producer and consumer endpoints.
Camel SIP Producers (Event Publishers) and SIP Consumers (Event

Subscribers) communicate event & state information to each other using an
intermediary entity called a SIP Presence Agent (a stateful brokering entity).

For SIP based communication, a SIP Stack with a listener must be
instantiated on both the SIP Producer and Consumer (using separate ports if
using localhost). This is necessary in order to support the handshakes &
acknowledgements exchanged between the SIP Stacks during
communication.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-sip</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
The URI scheme for a sip endpoint is as follows:

sip://johndoe@localhost:99999[?options]
sips://johndoe@localhost:99999/[?options]

This component supports producer and consumer endpoints for both TCP and
UDP.

CHAPTER 11 - COMPONENT APPENDIX 951

http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3903.txt

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
The SIP Component offers an extensive set of configuration options &
capability to create custom stateful headers needed to propagate state via
the SIP protocol.

Name Default
Value Description

stackName NAME_NOT_SET Name of the SIP Stack instance associated with an SIP Endpoint.

transport tcp Setting for choice of transport potocol. Valid choices are "tcp" or "udp".

fromUser Â Username of the message originator. Mandatory setting unless a registry based custom
FromHeader is specified.

fromHost Â Hostname of the message originator. Mandatory setting unless a registry based
FromHeader is specified

fromPort Â Port of the message originator. Mandatory setting unless a registry based FromHeader is
specified

toUser Â Username of the message receiver. Mandatory setting unless a registry based custom
ToHeader is specified.

toHost Â Hostname of the message receiver. Mandatory setting unless a registry based ToHeader is
specified

toPort Â Portname of the message receiver. Mandatory setting unless a registry based ToHeader is
specified

maxforwards 0 the number of intermediaries that may forward the message to the message receiver. Optional
setting. May alternatively be set using as registry based MaxForwardsHeader

eventId Â Setting for a String based event Id. Mandatory setting unless a registry based FromHeader
is specified

eventHeaderName Â Setting for a String based event Id. Mandatory setting unless a registry based FromHeader
is specified

maxMessageSize 1048576 Setting for maximum allowed Message size in bytes.

cacheConnections false Should connections be cached by the SipStack to reduce cost of connection creation. This is useful
if the connection is used for long running conversations.

consumer false This setting is used to determine whether the kind of header (FromHeader,ToHeader etc) that
needs to be created for this endpoint

automaticDialogSupport off Setting to specify whether every communication should be associated with a dialog.

contentType text Setting for contentType can be set to any valid MimeType.

contentSubType xml Setting for contentSubType can be set to any valid MimeSubType.

receiveTimeoutMillis 10000 Setting for specifying amount of time to wait for a Response and/or Acknowledgement can be
received from another SIP stack

useRouterForAllUris false This setting is used when requests are sent to the Presence Agent via a proxy.

msgExpiration 3600 The amount of time a message received at an endpoint is considered valid

presenceAgent false
This setting is used to distingish between a Presence Agent & a consumer. This is due to the fact
that the SIP Camel component ships with a basic Presence Agent (for testing purposes only).
Consumers have to set this flag to true.

Registry based Options
SIP requires a number of headers to be sent/received as part of a request.
These SIP header can be enlisted in the Registry, such as in the Spring XML
file.

The values that could be passed in, are the following:

952 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/registry.html

Name Description
fromHeader a custom Header object containing message originator settings. Must implement the type javax.sip.header.FromHeader

toHeader a custom Header object containing message receiver settings. Must implement the type javax.sip.header.ToHeader

viaHeaders List of custom Header objects of the type javax.sip.header.ViaHeader. Each ViaHeader containing a proxy address for
request forwarding. (Note this header is automatically updated by each proxy when the request arrives at its listener)

contentTypeHeader a custom Header object containing message content details. Must implement the type
javax.sip.header.ContentTypeHeader

callIdHeader a custom Header object containing call details. Must implement the type javax.sip.header.CallIdHeader

maxForwardsHeader a custom Header object containing details on maximum proxy forwards. This header places a limit on the viaHeaders
possible. Must implement the type javax.sip.header.MaxForwardsHeader

eventHeader a custom Header object containing event details. Must implement the type javax.sip.header.EventHeader

contactHeader an optional custom Header object containing verbose contact details (email, phone number etc). Must implement the
type javax.sip.header.ContactHeader

expiresHeader a custom Header object containing message expiration details. Must implement the type javax.sip.header.ExpiresHeader

extensionHeader a custom Header object containing user/application specific details. Must implement the type
javax.sip.header.ExtensionHeader

Sending Messages to/from a SIP endpoint

Creating a Camel SIP Publisher
In the example below, a SIP Publisher is created to send SIP Event
publications to
a user "agent@localhost:5152". This is the address of the SIP Presence Agent
which acts as a broker between the SIP Publisher and Subscriber

• using a SIP Stack named client
• using a registry based eventHeader called evtHdrName
• using a registry based eventId called evtId
• from a SIP Stack with Listener set up as user2@localhost:3534
• The Event being published is EVENT_A
• A Mandatory Header called REQUEST_METHOD is set to

Request.Publish thereby setting up the endpoint as a Event
publisher"

producerTemplate.sendBodyAndHeader(

"sip://agent@localhost:5152?stackName=client&eventHeaderName=evtHdrName&eventId=evtid&fromUser=user2&fromHost=localhost&fromPort=3534",
"EVENT_A",
"REQUEST_METHOD",
Request.PUBLISH);

CHAPTER 11 - COMPONENT APPENDIX 953

Creating a Camel SIP Subscriber
In the example below, a SIP Subscriber is created to receive SIP Event
publications sent to
a user "johndoe@localhost:5154"

• using a SIP Stack named Subscriber
• registering with a Presence Agent user called agent@localhost:5152
• using a registry based eventHeader called evtHdrName. The

evtHdrName contains the Event which is se to "Event_A"
• using a registry based eventId called evtId

@Override
protected RouteBuilder createRouteBuilder() throws Exception {

return new RouteBuilder() {
@Override
public void configure() throws Exception {

// Create PresenceAgent

from("sip://agent@localhost:5152?stackName=PresenceAgent&presenceAgent=true&eventHeaderName=evtHdrName&eventId=evtid")
.to("mock:neverland");

// Create Sip Consumer(Event Subscriber)

from("sip://johndoe@localhost:5154?stackName=Subscriber&toUser=agent&toHost=localhost&toPort=5152&eventHeaderName=evtHdrName&eventId=evtid")
.to("log:ReceivedEvent?level=DEBUG")
.to("mock:notification");

}
};

}

The Camel SIP component also ships with a Presence Agent that is
meant to be used for Testing and Demo purposes only. An example of
instantiating a Presence Agent is given above.

Note that the Presence Agent is set up as a user agent@localhost:5152
and is capable of communicating with both Publisher as well as Subscriber. It
has a separate SIP stackName distinct from Publisher as well as Subscriber.
While it is set up as a Camel Consumer, it does not actually send any
messages along the route to the endpoint "mock:neverland".

SMPP COMPONENT
Available as of Camel 2.2

This component provides access to an SMSC (Short Message Service
Center) over the SMPP protocol to send and receive SMS. The JSMPP is used.

Starting with Camel 2.9, you are also able to execute ReplaceSm,
QuerySm, SubmitMulti, CancelSm and DataSm.

954 CHAPTER 11 - COMPONENT APPENDIX

http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-smpp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

smpp://[username@]hostname[:port][?options]
smpps://[username@]hostname[:port][?options]

If no username is provided, then Camel will provide the default value
smppclient.
If no port number is provided, then Camel will provide the default value
2775.
Camel 2.3: If the protocol name is "smpps", camel-smpp with try to use
SSLSocket to init a connection to the server.

You can append query options to the URI in the following format,
?option=value&option=value&...

URI Options

Name Default
Value Description

password password Specifies the password to use to log in to the SMSC.

systemType cp This parameter is used to categorize the type of ESME (External Short Message Entity) that is
binding to the SMSC (max. 13 characters).

dataCoding 0

Camel 2.11 Defines the data coding according the SMPP 3.4 specification, section 5.2.19. (Prior to
Camel 2.9, this option is also supported.) Example data encodings are:
0: SMSC Default Alphabet
3: Latin 1 (ISO-8859-1)
4: Octet unspecified (8-bit binary)
8: UCS2 (ISO/IEC-10646)
13: Extended Kanji JIS(X 0212-1990)

alphabet 0

Camel 2.5 Defines encoding of data according the SMPP 3.4 specification, section 5.2.19. This
option is mapped to Alphabet.java and used to create the byte[] which is send to the SMSC.
Example alphabets are:
0: SMSC Default Alphabet
4: 8 bit Alphabet
8: UCS2 Alphabet

encoding ISO-8859-1 only for SubmitSm, ReplaceSm and SubmitMulti Defines the encoding scheme of the short
message user data.

enquireLinkTimer 5000 Defines the interval in milliseconds between the confidence checks. The confidence check is used
to test the communication path between an ESME and an SMSC.

transactionTimer 10000
Defines the maximum period of inactivity allowed after a transaction, after which an SMPP entity
may assume that the session is no longer active. This timer may be active on either
communicating SMPP entity (i.e. SMSC or ESME).

CHAPTER 11 - COMPONENT APPENDIX 955

http://code.google.com/p/jsmpp/source/browse/tags/2.1.0/src/java/main/org/jsmpp/bean/Alphabet.java

initialReconnectDelay 5000 Defines the initial delay in milliseconds after the consumer/producer tries to reconnect to the
SMSC, after the connection was lost.

reconnectDelay 5000 Defines the interval in milliseconds between the reconnect attempts, if the connection to the SMSC
was lost and the previous was not succeed.

registeredDelivery 1

only for SubmitSm, ReplaceSm, SubmitMulti and DataSm Is used to request an SMSC
delivery receipt and/or SME originated acknowledgements. The following values are defined:
0: No SMSC delivery receipt requested.
1: SMSC delivery receipt requested where final delivery outcome is success or failure.
2: SMSC delivery receipt requested where the final delivery outcome is delivery failure.

serviceType CMT

The service type parameter can be used to indicate the SMS Application service associated with
the message. The following generic service_types are defined:
CMT: Cellular Messaging
CPT: Cellular Paging
VMN: Voice Mail Notification
VMA: Voice Mail Alerting
WAP: Wireless Application Protocol
USSD: Unstructured Supplementary Services Data

sourceAddr 1616 Defines the address of SME (Short Message Entity) which originated this message.

destAddr 1717 only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the destination SME
address. For mobile terminated messages, this is the directory number of the recipient MS.

sourceAddrTon 0

Defines the type of number (TON) to be used in the SME originator address parameters. The
following TON values are defined:
0: Unknown
1: International
2: National
3: Network Specific
4: Subscriber Number
5: Alphanumeric
6: Abbreviated

destAddrTon 0
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the type of number (TON)
to be used in the SME destination address parameters. Same as the sourceAddrTon values defined
above.

sourceAddrNpi 0

Defines the numeric plan indicator (NPI) to be used in the SME originator address parameters. The
following NPI values are defined:
0: Unknown
1: ISDN (E163/E164)
2: Data (X.121)
3: Telex (F.69)
6: Land Mobile (E.212)
8: National
9: Private
10: ERMES
13: Internet (IP)
18: WAP Client Id (to be defined by WAP Forum)

destAddrNpi 0
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the numeric plan indicator
(NPI) to be used in the SME destination address parameters. Same as the sourceAddrNpi values
defined above.

priorityFlag 1

only for SubmitSm and SubmitMulti Allows the originating SME to assign a priority level to the
short message. Four Priority Levels are supported:
0: Level 0 (lowest) priority
1: Level 1 priority
2: Level 2 priority
3: Level 3 (highest) priority

replaceIfPresentFlag 0

only for SubmitSm and SubmitMulti Used to request the SMSC to replace a previously
submitted message, that is still pending delivery. The SMSC will replace an existing message
provided that the source address, destination address and service type match the same fields in
the new message. The following replace if present flag values are defined:
0: Don't replace
1: Replace

typeOfNumber 0 Defines the type of number (TON) to be used in the SME. Use the sourceAddrTon values defined
above.

numberingPlanIndicator 0 Defines the numeric plan indicator (NPI) to be used in the SME. Use the sourceAddrNpi values
defined above.

lazySessionCreation false

Camel 2.8 onwards Sessions can be lazily created to avoid exceptions, if the SMSC is not
available when the Camel producer is started.
Camel 2.11 onwards Camel will check the in message headers 'CamelSmppSystemId' and
'CamelSmppPassword' of the first exchange. If they are present, Camel will use these data to
connect to the SMSC.

httpProxyHost null Camel 2.9.1: If you need to tunnel SMPP through a HTTP proxy, set this attribute to the hostname
or ip address of your HTTP proxy.

httpProxyPort 3128 Camel 2.9.1: If you need to tunnel SMPP through a HTTP proxy, set this attribute to the port of
your HTTP proxy.

956 CHAPTER 11 - COMPONENT APPENDIX

httpProxyUsername null Camel 2.9.1: If your HTTP proxy requires basic authentication, set this attribute to the username
required for your HTTP proxy.

httpProxyPassword null Camel 2.9.1: If your HTTP proxy requires basic authentication, set this attribute to the password
required for your HTTP proxy.

sessionStateListener null Camel 2.9.3: You can refer to a org.jsmpp.session.SessionStateListener in the Registry to
receive callbacks when the session state changed.

addressRange ""
Camel 2.11: You can specify the address range for the SmppConsumer as defined in section 5.2.7
of the SMPP 3.4 specification. The SmppConsumer will receive messages only from SMSC's which
target an address (MSISDN or IP address) within this range.

You can have as many of these options as you like.

smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer

Producer Message Headers
The following message headers can be used to affect the behavior of the
SMPP producer
Header Type Description

CamelSmppDestAddr List/String
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the destination SME
address(es). For mobile terminated messages, this is the directory number of the recipient
MS. Is must be a List<String> for SubmitMulti and a String otherwise.

CamelSmppDestAddrTon Byte
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the type of number
(TON) to be used in the SME destination address parameters. Use the sourceAddrTon URI
option values defined above.

CamelSmppDestAddrNpi Byte
only for SubmitSm, SubmitMulti, CancelSm and DataSm Defines the numeric plan
indicator (NPI) to be used in the SME destination address parameters. Use the URI option
sourceAddrNpi values defined above.

CamelSmppSourceAddr String Defines the address of SME (Short Message Entity) which originated this message.

CamelSmppSourceAddrTon Byte Defines the type of number (TON) to be used in the SME originator address parameters. Use
the sourceAddrTon URI option values defined above.

CamelSmppSourceAddrNpi Byte Defines the numeric plan indicator (NPI) to be used in the SME originator address
parameters. Use the URI option sourceAddrNpi values defined above.

CamelSmppServiceType String The service type parameter can be used to indicate the SMS Application service associated
with the message. Use the URI option serviceType settings above.

CamelSmppRegisteredDelivery Byte
only for SubmitSm, ReplaceSm, SubmitMulti and DataSm Is used to request an SMSC
delivery receipt and/or SME originated acknowledgements. Use the URI option
registeredDelivery settings above.

CamelSmppPriorityFlag Byte only for SubmitSm and SubmitMulti Allows the originating SME to assign a priority level
to the short message. Use the URI option priorityFlag settings above.

CamelSmppScheduleDeliveryTime Date

only for SubmitSm, SubmitMulti and ReplaceSm This parameter specifies the
scheduled time at which the message delivery should be first attempted. It defines either
the absolute date and time or relative time from the current SMSC time at which delivery of
this message will be attempted by the SMSC. It can be specified in either absolute time
format or relative time format. The encoding of a time format is specified in chapter 7.1.1.
in the smpp specification v3.4.

CamelSmppValidityPeriod String/Date

only for SubmitSm, SubmitMulti and ReplaceSm The validity period parameter
indicates the SMSC expiration time, after which the message should be discarded if not
delivered to the destination. If it's provided as Date, it's interpreted as absolute time.
Camel 2.9.1 onwards: It can be defined in absolute time format or relative time format if
you provide it as String as specified in chapter 7.1.1 in the smpp specification v3.4.

CamelSmppReplaceIfPresentFlag Byte

only for SubmitSm and SubmitMulti The replace if present flag parameter is used to
request the SMSC to replace a previously submitted message, that is still pending delivery.
The SMSC will replace an existing message provided that the source address, destination
address and service type match the same fields in the new message. The following values
are defined:
0: Don't replace
1: Replace

CamelSmppAlphabet /
CamelSmppDataCoding Byte

Camel 2.5 For SubmitSm, SubmitMulti and ReplaceSm (Prior to Camel 2.9 use
CamelSmppDataCoding instead of CamelSmppAlphabet.) The data coding according to the
SMPP 3.4 specification, section 5.2.19. Use the URI option alphabet settings above.

CHAPTER 11 - COMPONENT APPENDIX 957

The following message headers are used by the SMPP producer to set the
response from the SMSC in the message header
Header Type Description

CamelSmppId List<String>/String
The id to identify the submitted short message(s) for later use. From Camel 2.9.0: In
case of a ReplaceSm, QuerySm, CancelSm and DataSm this header vaule is a String.
In case of a SubmitSm or SubmitMultiSm this header vaule is a List<String>.

CamelSmppSentMessageCount Integer From Camel 2.9 onwards only for SubmitSm and SubmitMultiSm The total
number of messages which has been sent.

CamelSmppError
Map<String,
List<Map<String,
Object>>>

From Camel 2.9 onwards only for SubmitMultiSm The errors which occurred by
sending the short message(s) the form Map<String, List<Map<String, Object>>>
(messageID : (destAddr : address, error : errorCode)).

Consumer Message Headers
The following message headers are used by the SMPP consumer to set the
request data from the SMSC in the message header
Header Type Description

CamelSmppSequenceNumber Integer
only for AlertNotification, DeliverSm and DataSm A sequence number
allows a response PDU to be correlated with a request PDU. The associated SMPP
response PDU must preserve this field.

CamelSmppCommandId Integer
only for AlertNotification, DeliverSm and DataSm The command id field
identifies the particular SMPP PDU. For the complete list of defined values see
chapter 5.1.2.1 in the smpp specification v3.4.

CamelSmppSourceAddr String only for AlertNotification, DeliverSm and DataSm Defines the address of
SME (Short Message Entity) which originated this message.

CamelSmppSourceAddrNpi Byte
only for AlertNotification and DataSm Defines the numeric plan indicator
(NPI) to be used in the SME originator address parameters. Use the URI option
sourceAddrNpi values defined above.

CamelSmppSourceAddrTon Byte
only for AlertNotification and DataSm Defines the type of number (TON) to
be used in the SME originator address parameters. Use the sourceAddrTon URI
option values defined above.

CamelSmppEsmeAddr String only for AlertNotification Defines the destination ESME address. For mobile
terminated messages, this is the directory number of the recipient MS.

CamelSmppEsmeAddrNpi Byte
only for AlertNotification Defines the numeric plan indicator (NPI) to be used
in the ESME originator address parameters. Use the URI option sourceAddrNpi
values defined above.

CamelSmppEsmeAddrTon Byte
only for AlertNotification Defines the type of number (TON) to be used in the
ESME originator address parameters. Use the sourceAddrTon URI option values
defined above.

CamelSmppId String only for smsc DeliveryReceipt and DataSm The message ID allocated to the
message by the SMSC when originally submitted.

CamelSmppDelivered Integer
only for smsc DeliveryReceipt Number of short messages delivered. This is
only relevant where the original message was submitted to a distribution list.The
value is padded with leading zeros if necessary.

CamelSmppDoneDate Date only for smsc DeliveryReceipt The time and date at which the short message
reached it's final state. The format is as follows: YYMMDDhhmm.

CamelSmppFinalStatus DeliveryReceiptState

only for smsc DeliveryReceipt: The final status of the message. The following
values are defined:
DELIVRD: Message is delivered to destination
EXPIRED: Message validity period has expired.
DELETED: Message has been deleted.
UNDELIV: Message is undeliverable
ACCEPTD: Message is in accepted state (i.e. has been manually read on behalf of
the subscriber by customer service)
UNKNOWN: Message is in invalid state
REJECTD: Message is in a rejected state

CamelSmppCommandStatus Integer only for DataSm The Command status of the message.

CamelSmppError String
only for smsc DeliveryReceipt Where appropriate this may hold a Network
specific error code or an SMSC error code for the attempted delivery of the
message. These errors are Network or SMSC specific and are not included here.

958 CHAPTER 11 - COMPONENT APPENDIX

CamelSmppSubmitDate Date

only for smsc DeliveryReceipt The time and date at which the short message
was submitted. In the case of a message which has been replaced, this is the
date that the original message was replaced. The format is as follows:
YYMMDDhhmm.

CamelSmppSubmitted Integer
only for smsc DeliveryReceipt Number of short messages originally
submitted. This is only relevant when the original message was submitted to a
distribution list.The value is padded with leading zeros if necessary.

CamelSmppDestAddr String only for DeliverSm and DataSm: Defines the destination SME address. For
mobile terminated messages, this is the directory number of the recipient MS.

CamelSmppScheduleDeliveryTime String

only for DeliverSm: This parameter specifies the scheduled time at which the
message delivery should be first attempted. It defines either the absolute date
and time or relative time from the current SMSC time at which delivery of this
message will be attempted by the SMSC. It can be specified in either absolute
time format or relative time format. The encoding of a time format is specified in
Section 7.1.1. in the smpp specification v3.4.

CamelSmppValidityPeriod String

only for DeliverSm The validity period parameter indicates the SMSC
expiration time, after which the message should be discarded if not delivered to
the destination. It can be defined in absolute time format or relative time format.
The encoding of absolute and relative time format is specified in Section 7.1.1 in
the smpp specification v3.4.

CamelSmppServiceType String only for DeliverSm and DataSm The service type parameter indicates the
SMS Application service associated with the message.

CamelSmppRegisteredDelivery Byte only for DataSm Is used to request an delivery receipt and/or SME originated
acknowledgements. Same values as in Producer header list above.

CamelSmppDestAddrNpi Byte only for DataSm Defines the numeric plan indicator (NPI) in the destination
address parameters. Use the URI option sourceAddrNpi values defined above.

CamelSmppDestAddrTon Byte only for DataSm Defines the type of number (TON) in the destination address
parameters. Use the sourceAddrTon URI option values defined above.

CamelSmppMessageType String

Camel 2.6 onwards: Identifies the type of an incoming message:
AlertNotification: an SMSC alert notification
DataSm: an SMSC data short message
DeliveryReceipt: an SMSC delivery receipt
DeliverSm: an SMSC deliver short message

Exception handling
This component supports the general Camel exception handling capabilities.
Camel 2.8 onwards: When the SMPP consumer receives a DeliverSm or
DataSm short message and the processing of these messages fails, you can
also throw a ProcessRequestException instead of handle the failure. In this
case, this exception is forwarded to the underlying JSMPP library which will
return the included error code to the SMSC. This feature is useful to e.g.
instruct the SMSC to resend the short message at a later time. This could be
done with the following lines of code:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer")
.doTry()

.to("bean:dao?method=updateSmsState")
.doCatch(Exception.class)

.throwException(new ProcessRequestException("update of sms state failed", 100))
.end();

Please refer to the SMPP specification for the complete list of error codes and
their meanings.

CHAPTER 11 - COMPONENT APPENDIX 959

http://code.google.com/p/jsmpp/
http://smsforum.net/SMPP_v3_4_Issue1_2.zip

JSMPP library
See the documentation of the JSMPP Library for more details about
the underlying library.

Samples
A route which sends an SMS using the Java DSL:

from("direct:start")
.to("smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=producer");

A route which sends an SMS using the Spring XML DSL:

<route>
<from uri="direct:start"/>
<to uri="smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=producer"/>
</route>

A route which receives an SMS using the Java DSL:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer")
.to("bean:foo");

A route which receives an SMS using the Spring XML DSL:

<route>
<from uri="smpp://smppclient@localhost:2775?

password=password&enquireLinkTimer=3000&transactionTimer=5000&systemType=consumer"/>
<to uri="bean:foo"/>

</route>

Debug logging
This component has log level DEBUG, which can be helpful in debugging
problems. If you use log4j, you can add the following line to your
configuration:

log4j.logger.org.apache.camel.component.smpp=DEBUG

960 CHAPTER 11 - COMPONENT APPENDIX

http://code.google.com/p/jsmpp/

SMSC simulator
If you need an SMSC simulator for your test, you can use the
simulator provided by Logica.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SNMP COMPONENT
Available as of Camel 2.1

The snmp: component gives you the ability to poll SNMP capable devices
or receiving traps.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-snmp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

snmp://hostname[:port][?Options]

The component supports polling OID values from an SNMP enabled device
and receiving traps.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

CHAPTER 11 - COMPONENT APPENDIX 961

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator

type none
The type of action you want to perform. Actually you can enter here POLL or TRAP. The value POLL will instruct
the endpoint to poll a given host for the supplied OID keys. If you put in TRAP you will setup a listener for
SNMP Trap Events.

protocol udp Here you can select which protocol to use. You can use either udp or tcp.

retries 2 Defines how often a retry is made before canceling the request.

timeout 1500 Sets the timeout value for the request in millis.

snmpVersion
0 (which
means
SNMPv1)

Sets the snmp version for the request.

snmpCommunity public Sets the community octet string for the snmp request.

delay 60 seconds Defines the delay in seconds between to poll cycles.

oids none
Defines which values you are interested in. Please have a look at the Wikipedia to get a better understanding.
You may provide a single OID or a coma separated list of OIDs. Example:
oids="1.3.6.1.2.1.1.3.0,1.3.6.1.2.1.25.3.2.1.5.1,1.3.6.1.2.1.25.3.5.1.1.1,1.3.6.1.2.1.43.5.1.1.11.1"

The result of a poll
Given the situation, that I poll for the following OIDs:

Listing 1. OIDs

1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.25.3.2.1.5.1
1.3.6.1.2.1.25.3.5.1.1.1
1.3.6.1.2.1.43.5.1.1.11.1

The result will be the following:
Listing 1. Result of toString conversion

<?xml version="1.0" encoding="UTF-8"?>
<snmp>

<entry>
<oid>1.3.6.1.2.1.1.3.0</oid>
<value>6 days, 21:14:28.00</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.25.3.2.1.5.1</oid>
<value>2</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.25.3.5.1.1.1</oid>
<value>3</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.43.5.1.1.11.1</oid>
<value>6</value>

</entry>
<entry>

<oid>1.3.6.1.2.1.1.1.0</oid>
<value>My Very Special Printer Of Brand Unknown</value>

</entry>
</snmp>

962 CHAPTER 11 - COMPONENT APPENDIX

http://en.wikipedia.org/wiki/Object_identifier

As you maybe recognized there is one more result than
requested....1.3.6.1.2.1.1.1.0.
This one is filled in by the device automatically in this special case. So it may
absolutely happen, that you receive more than you requested...be prepared.

Examples
Polling a remote device:

snmp:192.168.178.23:161?protocol=udp&type=POLL&oids=1.3.6.1.2.1.1.5.0

Setting up a trap receiver (Note that no OID info is needed here!):

snmp:127.0.0.1:162?protocol=udp&type=TRAP

From Camel 2.10.0, you can get the community of SNMP TRAP with
message header 'securityName',
peer address of the SNMP TRAP with message header 'peerAddress'.

Routing example in Java: (converts the SNMP PDU to XML String)

from("snmp:192.168.178.23:161?protocol=udp&type=POLL&oids=1.3.6.1.2.1.1.5.0").
convertBodyTo(String.class).
to("activemq:snmp.states");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SPRING INTEGRATION COMPONENT
The spring-integration: component provides a bridge for Camel
components to talk to spring integration endpoints.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-integration</artifactId>
<version>x.x.x</version>

CHAPTER 11 - COMPONENT APPENDIX 963

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.springsource.org/spring-integration

<!-- use the same version as your Camel core version -->
</dependency>

URI format

spring-integration:defaultChannelName[?options]

Where defaultChannelName represents the default channel name which is
used by the Spring Integration Spring context. It will equal to the
inputChannel name for the Spring Integration consumer and the
outputChannel name for the Spring Integration provider.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Name Type Description
inputChannel String The Spring integration input channel name that this endpoint wants to consume from, where the specified channel

name is defined in the Spring context.

outputChannel String The Spring integration output channel name that is used to send messages to the Spring integration context.

inOut String The exchange pattern that the Spring integration endpoint should use. If inOut=true then a reply channel is
expected, either from the Spring Integration Message header or configured on the endpoint.

Usage
The Spring integration component is a bridge that connects Camel endpoints
with Spring integration endpoints through the Spring integration's input
channels and output channels. Using this component, we can send Camel
messages to Spring Integration endpoints or receive messages from Spring
integration endpoints in a Camel routing context.

Examples

Using the Spring integration endpoint
You can set up a Spring integration endpoint using a URI, as follows:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="

964 CHAPTER 11 - COMPONENT APPENDIX

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/
spring/camel-spring.xsd">

<!-- spring integration channels -->
<channel id="inputChannel"/>
<channel id="outputChannel"/>
<channel id="onewayChannel"/>

<!-- spring integration service activators -->
<service-activator input-channel="inputChannel" ref="helloService"

method="sayHello"/>
<service-activator input-channel="onewayChannel" ref="helloService"

method="greet"/>

<!-- custom bean -->
<beans:bean id="helloService"

class="org.apache.camel.component.spring.integration.HelloWorldService"/>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:twowayMessage"/>
<to

uri="spring-integration:inputChannel?inOut=true&inputChannel=outputChannel"/>
</route>
<route>

<from uri="direct:onewayMessage"/>
<to uri="spring-integration:onewayChannel?inOut=false"/>

</route>
</camelContext>

<!-- spring integration channels -->
<channel id="requestChannel"/>
<channel id="responseChannel"/>

<!-- cusom Camel processor -->
<beans:bean id="myProcessor"
class="org.apache.camel.component.spring.integration.MyProcessor"/>

<!-- Camel route -->
<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from

uri="spring-integration://requestChannel?outputChannel=responseChannel&inOut=true"/>
<process ref="myProcessor"/>

</route>
</camelContext>

Or directly using a Spring integration channel name:

CHAPTER 11 - COMPONENT APPENDIX 965

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/

spring/camel-spring.xsd">

<!-- spring integration channel -->
<channel id="outputChannel"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="outputChannel"/>
<to uri="mock:result"/>

</route>
</camelContext>

The Source and Target adapter
Spring integration also provides the Spring integration's source and target
adapters, which can route messages from a Spring integration channel to a
Camel endpoint or from a Camel endpoint to a Spring integration channel.

This example uses the following namespaces:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:camel-si="http://camel.apache.org/schema/spring/integration"
xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/

schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring/integration http://camel.apache.org/

schema/spring/integration/camel-spring-integration.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/

camel-spring.xsd
">

You can bind your source or target to a Camel endpoint as follows:

<!-- Create the camel context here -->
<camelContext id="camelTargetContext" xmlns="http://camel.apache.org/schema/spring">

<route>

966 CHAPTER 11 - COMPONENT APPENDIX

<from uri="direct:EndpointA" />
<to uri="mock:result" />

</route>
<route>

<from uri="direct:EndpointC"/>
<process ref="myProcessor"/>

</route>
</camelContext>

<!-- We can bind the camelTarget to the camel context's endpoint by specifying the
camelEndpointUri attribute -->
<camel-si:camelTarget id="camelTargetA" camelEndpointUri="direct:EndpointA"
expectReply="false">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetB" camelEndpointUri="direct:EndpointC"
replyChannel="channelC" expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetD" camelEndpointUri="direct:EndpointC"
expectReply="true">

<camel-si:camelContextRef>camelTargetContext</camel-si:camelContextRef>
</camel-si:camelTarget>

<beans:bean id="myProcessor"
class="org.apache.camel.component.spring.integration.MyProcessor"/>

<!-- spring integration channels -->
<channel id="channelA"/>
<channel id="channelB"/>
<channel id="channelC"/>

<!-- spring integration service activator -->
<service-activator input-channel="channelB" output-channel="channelC"
ref="helloService" method="sayHello"/>

<!-- custom bean -->
<beans:bean id="helloService"
class="org.apache.camel.component.spring.integration.HelloWorldService"/>

<camelContext id="camelSourceContext" xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:OneWay"/>
<to uri="direct:EndpointB"/>

</route>
<route>

<from uri="direct:TwoWay"/>
<to uri="direct:EndpointC"/>

</route>
</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 967

<!-- camelSource will redirect the message coming for direct:EndpointB to the spring
requestChannel channelA -->
<camel-si:camelSource id="camelSourceA" camelEndpointUri="direct:EndpointB"

requestChannel="channelA" expectReply="false">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>

</camel-si:camelSource>

<!-- camelSource will redirect the message coming for direct:EndpointC to the spring
requestChannel channelB

then it will pull the response from channelC and put the response message back
to direct:EndpointC -->

<camel-si:camelSource id="camelSourceB" camelEndpointUri="direct:EndpointC"
requestChannel="channelB" replyChannel="channelC"

expectReply="true">
<camel-si:camelContextRef>camelSourceContext</camel-si:camelContextRef>

</camel-si:camelSource>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SPRING LDAP COMPONENT
available since: 2.11

The spring-ldap: component provides a Camel wrapper for Spring LDAP.
Maven users will need to add the following dependency to their pom.xml

for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-ldap</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

spring-ldap:springLdapTemplate[?options]

968 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.springsource.org/ldap

Where springLdapTemplate is the name of the Spring LDAP Template bean.
In this bean, you configure the URL and the credentials for your LDAP access.

Options
Name Type Description
operation String The LDAP operation to be performed. Must be one of search, bind, or unbind.

scope String The scope of the search operation. Must be one of object, onelevel, or subtree, see also http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol#Search_and_Compare

If an unsupported value is specified for some option, the component throws
an UnsupportedOperationException.

Usage
The component supports producer endpoint only. An attempt to create a
consumer endpoint will result in an UnsupportedOperationException.
The body of the message must be a map (an instance of java.util.Map).
This map must contain at least an entry with the key dn that specifies the
root node for the LDAP operation to be performed. Other entries of the map
are operation-specific (see below).

The body of the message remains unchanged for the bind and unbind
operations. For the search operation, the body is set to the result of the
search, see http://static.springsource.org/spring-ldap/site/apidocs/org/
springframework/ldap/core/
LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29.

Search
The message body must have an entry with the key filter. The value must
be a String representing a valid LDAP filter, see http://en.wikipedia.org/wiki/
Lightweight_Directory_Access_Protocol#Search_and_Compare.

Bind
The message body must have an entry with the key attributes. The value
must be an instance of javax.naming.directory.Attributes This entry specifies
the LDAP node to be created.

Unbind
No further entries necessary, the node with the specified dn is deleted.

Key definitions

CHAPTER 11 - COMPONENT APPENDIX 969

http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29
http://static.springsource.org/spring-ldap/site/apidocs/org/springframework/ldap/core/LdapTemplate.html#search%28java.lang.String,%20java.lang.String,%20int,%20org.springframework.ldap.core.AttributesMapper%29
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol#Search_and_Compare
http://docs.oracle.com/javase/6/docs/api/javax/naming/directory/Attributes.html

In order to avoid spelling errors, the following constants are defined in
org.apache.camel.springldap.SpringLdapProducer:

• public static final String DN = "dn"
• public static final String FILTER = "filter"
• public static final String ATTRIBUTES = "attributes"

SPRING WEB SERVICES COMPONENT
Available as of Camel 2.6

The spring-ws: component allows you to integrate with Spring Web
Services. It offers both client-side support, for accessing web services, and
server-side support for creating your own contract-first web services.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring-ws</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format
The URI scheme for this component is as follows

spring-ws:[mapping-type:]address[?options]

To expose a web service mapping-type needs to be set to any of the
following:
Mapping
type Description

rootqname Offers the option to map web service requests based on the qualified name of the root element contained in the message.

soapaction Used to map web service requests based on the SOAP action specified in the header of the message.

uri In order to map web service requests that target a specific URI.

xpathresult Used to map web service requests based on the evaluation of an XPath expression against the incoming message. The
result of the evaluation should match the XPath result specified in the endpoint URI.

beanname
Allows you to reference an org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher object in order to
integrate with existing (legacy) endpoint mappings like PayloadRootQNameEndpointMapping, SoapActionEndpointMapping,
etc

As a consumer the address should contain a value relevant to the specified
mapping-type (e.g. a SOAP action, XPath expression). As a producer the
address should be set to the URI of the web service your calling upon.

970 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping

Dependencies
As of Camel 2.8 this component ships with Spring-WS 2.0.x which
(like the rest of Camel) requires Spring 3.0.x.

Earlier Camel versions shipped Spring-WS 1.5.9 which is compatible with
Spring 2.5.x and 3.0.x. In order to run earlier versions of camel-spring-ws
on Spring 2.5.x you need to add the spring-webmvc module from Spring
2.5.x. In order to run Spring-WS 1.5.9 on Spring 3.0.x you need to exclude
the OXM module from Spring 3.0.x as this module is also included in
Spring-WS 1.5.9 (see this post)

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Name Required? Description
soapAction No SOAP action to include inside a SOAP request when accessing remote web services

wsAddressingAction No WS-Addressing 1.0 action header to include when accessing web services. The To header is set
to the address of the web service as specified in the endpoint URI (default Spring-WS behavior).

expression
Only when
mapping-type is
xpathresult

XPath expression to use in the process of mapping web service requests, should match the
result specified by xpathresult

timeout No

Camel 2.10: Sets the socket read timeout (in milliseconds) while invoking a webservice using
the producer, see URLConnection.setReadTimeout() and
CommonsHttpMessageSender.setReadTimeout(). Â This option works when using the built-in
message sender
implementations:Â CommonsHttpMessageSenderÂ andÂ HttpUrlConnectionMessageSender.
Â One of these implementations will be used by default for HTTP based services unless you
customize the Spring WS configuration options supplied to the component. Â If you are using a
non-standard sender, it is assumed that you will handle your own timeout configuration.

sslContextParameters No

Camel 2.10:Â Reference to anÂ org.apache.camel.util.jsse.SSLContextParameters
inÂ theÂ Registry. Â SeeÂ Using the JSSE Configuration Utility. Â This option works when using
the built-in message sender
implementations:Â CommonsHttpMessageSenderÂ andÂ HttpUrlConnectionMessageSender.
Â One of these implementations will be used by default for HTTP based services unless you
customize the Spring WS configuration options supplied to the component. Â If you are using a
non-standard sender, it is assumed that you will handle your own TLS configuration.

Registry based options
The following options can be specified in the registry (most likely a Spring
ApplicationContext) and referenced from the endpoint URI using the #
notation.
Name Required? Description

webServiceTemplate No
Option to provide a custom WebServiceTemplate. This allows for full control over client-side web
services handling; like adding a custom interceptor or specifying a fault resolver, message sender
or message factory.

messageSender No Option to provide a custom WebServiceMessageSender. For example to perform authentication or
use alternative transports

CHAPTER 11 - COMPONENT APPENDIX 971

http://docs.oracle.com/javase/6/docs/api/java/net/URLConnection.html#setReadTimeout(int)
http://static.springsource.org/spring-ws/site/apidocs/org/springframework/ws/transport/http/CommonsHttpMessageSender.html#setReadTimeout(int)
http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/client/core/WebServiceTemplate.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/transport/WebServiceMessageSender.html
http://stackoverflow.com/questions/3313314/can-spring-ws-1-5-be-used-with-spring-3

messageFactory No Option to provide a custom WebServiceMessageFactory. For example when you want Apache
Axiom to handle web service messages instead of SAAJ

transformerFactory No Option to override default TransformerFactory. The provided transformer factory must be of type
javax.xml.transform.TransformerFactory

endpointMapping

Only when
mapping-type is
rootqname,
soapaction, uri
or xpathresult

Reference to an instance of
org.apache.camel.component.spring.ws.bean.CamelEndpointMapping in the Registry/
ApplicationContext. Only one bean is required in the registry to serve all Camel/Spring-WS
endpoints. This bean is auto-discovered by the MessageDispatcher and used to map requests to
Camel endpoints based on characteristics specified on the endpoint (like root QName, SOAP action,
etc)

messageFilter No Option to provide a custom MessageFilter since 2.10.3. For example when you want to process
your headers or attachments by your own.

Message headers
Name Type Description
CamelSpringWebserviceEndpointUri String URI of the web service your accessing as a client, overrides address part of the

endpoint URI

CamelSpringWebserviceSoapAction String Header to specify the SOAP action of the message, overrides soapAction option if
present

CamelSpringWebserviceAddressingAction URI Use this header to specify the WS-Addressing action of the message, overrides
wsAddressingAction option if present

ACCESSING WEB SERVICES
To call a web service at http://foo.com/bar simply define a route:

from("direct:example").to("spring-ws:http://foo.com/bar")

And sent a message:

template.requestBody("direct:example", "<foobar xmlns=\"http://foo.com\"><msg>test
message</msg></foobar>");

Remember if it's a SOAP service you're calling you don't have to include
SOAP tags. Spring-WS will perform the XML-to-SOAP marshaling.

Sending SOAP and WS-Addressing action headers
When a remote web service requires a SOAP action or use of the WS-
Addressing standard you define your route as:

from("direct:example")
.to("spring-ws:http://foo.com/
bar?soapAction=http://foo.com&wsAddressingAction=http://bar.com")

Optionally you can override the endpoint options with header values:

972 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/WebServiceMessageFactory.html
http://static.springsource.org/spring-ws/sites/1.5/apidocs/org/springframework/ws/server/MessageDispatcher.html
http://foo.com/bar

template.requestBodyAndHeader("direct:example",
"<foobar xmlns=\"http://foo.com\"><msg>test message</msg></foobar>",
SpringWebserviceConstants.SPRING_WS_SOAP_ACTION, "http://baz.com");

The header and attachment propagation
Spring WS Camel supports propagation of the headers and attachments into
Spring-WS WebServiceMessage response since version 2.10.3.
The endpoint will use so called "hook" the MessageFilter (default
implementation is provided by BasicMessageFilter) to propagate the
exchange headers and attachments into WebSdrviceMessage response.
Now you can use

exchange.getOut().getHeaders().put("myCustom","myHeaderValue")
exchange.getIn().addAttachment("myAttachment", new DataHandler(...))

Note: If the exchange header in the pipeline contains text, it generates
Qname(key)=value attribute in the soap header.
Recommended is to create a QName class directly and put into any key into
header.

How to use MTOM attachments
The BasicMessageFilter provides all required information for Apache Axiom in
order to produce MTOM message. If you want to use Apache Camel Spring
WS within Apache Axiom, here is an example:
1. Simply define the messageFactory as is bellow and spring-ws will use
MTOM strategy to populate your SOAP message with optimized attachments.

<bean id="axiomMessageFactory"
class="org.springframework.ws.soap.axiom.AxiomSoapMessageFactory">
<property name="payloadCaching" value="false" />
<property name="attachmentCaching" value="true" />
<property name="attachmentCacheThreshold" value="1024" />
</bean>

2. Add into your pom.xml the following dependencies

<dependency>
<groupId>org.apache.ws.commons.axiom</groupId>
<artifactId>axiom-api</artifactId>
<version>1.2.13</version>
</dependency>
<dependency>

CHAPTER 11 - COMPONENT APPENDIX 973

<groupId>org.apache.ws.commons.axiom</groupId>
<artifactId>axiom-impl</artifactId>
<version>1.2.13</version>
<scope>runtime</scope>
</dependency>

3. Add your attachment into the pipeline, for example using a Processor
implementation.

private class Attachement implements Processor {
public void process(Exchange exchange) throws Exception
{ exchange.getOut().copyFrom(exchange.getIn()); File file = new
File("testAttachment.txt"); exchange.getOut().addAttachment("test", new
DataHandler(new FileDataSource(file))); }
}

4. Define endpoint (producer) as ussual, for example like this:

from("direct:send")
.process(new Attachement())
.to("spring-ws:http://localhost:8089/
mySoapService?soapAction=mySoap&messageFactory=axiomMessageFactory");

5. Now, your producer will generate MTOM message with otpmized
attachments.

The custom header and attachment filtering
If you need to provide your custome processing of either headers or
attachments, extend existing BasicMessageFilter and override the
approchiate methods or write a brand new implementation of the
MessageFilter interface.
To use your custom filter, add this into your spring context:
You can specify either a global a or a local message filter as follows:
a) the global custome filter that provides the global configuration for all
spring-ws endpoints

<bean id="messageFilter" class="your.domain.myMessageFiler" scope="singleton" />

or
b) the local messageFilter directly on the endpoint as follows:

to("spring-ws:http://yourdomain.com?messageFilter=#myEndpointSpecificMessageFilter");

974 CHAPTER 11 - COMPONENT APPENDIX

For more information see CAMEL-5724
If you want to create your own MessageFilter, consider overrideing the

following methods in the default implementation of MessageFilter in class
BasicMessageFilter:

protected void doProcessSoapHeader(Message inOrOut, SoapMessage soapMessage)
{your code /*no need to call super*/ }
protected void doProcessSoapAttachements(Message inOrOut, SoapMessage response)
{ your code /*no need to call super*/ }

Using a custom MessageSender and MessageFactory
A custom message sender or factory in the registry can be referenced like
this:

from("direct:example")
.to("spring-ws:http://foo.com/
bar?messageFactory=#messageFactory&messageSender=#messageSender")

Spring configuration:

<!-- authenticate using HTTP Basic Authentication -->
<bean id="messageSender"
class="org.springframework.ws.transport.http.CommonsHttpMessageSender">

<property name="credentials">
<bean

class="org.apache.commons.httpclient.UsernamePasswordCredentials">
<constructor-arg index="0" value="admin"/>
<constructor-arg index="1" value="secret"/>

</bean>
</property>

</bean>

<!-- force use of Sun SAAJ implementation, http://static.springsource.org/spring-ws/
sites/1.5/faq.html#saaj-jboss -->
<bean id="messageFactory"
class="org.springframework.ws.soap.saaj.SaajSoapMessageFactory">

<property name="messageFactory">
<bean

class="com.sun.xml.messaging.saaj.soap.ver1_1.SOAPMessageFactory1_1Impl"></bean>
</property>

</bean>

EXPOSING WEB SERVICES
In order to expose a web service using this component you first need to set-
up a MessageDispatcher to look for endpoint mappings in a Spring XML file. If

CHAPTER 11 - COMPONENT APPENDIX 975

https://issues.apache.org/jira/browse/CAMEL-5724
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html

you plan on running inside a servlet container you probably want to use a
MessageDispatcherServlet configured in web.xml.

By default the MessageDispatcherServlet will look for a Spring XML
named /WEB-INF/spring-ws-servlet.xml. To use Camel with Spring-WS the
only mandatory bean in that XML file is CamelEndpointMapping. This bean
allows the MessageDispatcher to dispatch web service requests to your
routes.

web.xml

<web-app>
<servlet>

<servlet-name>spring-ws</servlet-name>

<servlet-class>org.springframework.ws.transport.http.MessageDispatcherServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>spring-ws</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>
</web-app>

spring-ws-servlet.xml

<bean id="endpointMapping"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointMapping" />

<bean id="wsdl" class="org.springframework.ws.wsdl.wsdl11.DefaultWsdl11Definition">
<property name="schema">

<bean class="org.springframework.xml.xsd.SimpleXsdSchema">
<property name="xsd" value="/WEB-INF/foobar.xsd"/>

</bean>
</property>
<property name="portTypeName" value="FooBar"/>
<property name="locationUri" value="/"/>
<property name="targetNamespace" value="http://example.com/"/>

</bean>

More information on setting up Spring-WS can be found in Writing Contract-
First Web Services. Basically paragraph 3.6 "Implementing the Endpoint" is
handled by this component (specifically paragraph 3.6.2 "Routing the
Message to the Endpoint" is where CamelEndpointMapping comes in). Also
don't forget to check out the Spring Web Services Example included in the
Camel distribution.

976 CHAPTER 11 - COMPONENT APPENDIX

http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html
http://static.springsource.org/spring-ws/sites/1.5/reference/html/tutorial.html
http://camel.apache.org/spring-ws-example.html

Endpoint mapping in routes
With the XML configuration in-place you can now use Camel's DSL to define
what web service requests are handled by your endpoint:

The following route will receive all web service requests that have a root
element named "GetFoo" within the http://example.com/ namespace.

from("spring-ws:rootqname:{http://example.com/
}GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The following route will receive web service requests containing the
http://example.com/GetFoo SOAP action.

from("spring-ws:soapaction:http://example.com/
GetFoo?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The following route will receive all requests sent to http://example.com/
foobar.

from("spring-ws:uri:http://example.com/foobar?endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

The route below will receive requests that contain the element
<foobar>abc</foobar> anywhere inside the message (and the default
namespace).

from("spring-ws:xpathresult:abc?expression=//foobar&endpointMapping=#endpointMapping")
.convertBodyTo(String.class).to(mock:example)

Alternative configuration, using existing endpoint mappings
For every endpoint with mapping-type beanname one bean of type
CamelEndpointDispatcher with a corresponding name is required in the
Registry/ApplicationContext. This bean acts as a bridge between the Camel
endpoint and an existing endpoint mapping like
PayloadRootQNameEndpointMapping.
An example of a route using beanname:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="spring-ws:beanname:QuoteEndpointDispatcher" />
<to uri="mock:example" />

CHAPTER 11 - COMPONENT APPENDIX 977

http://example.com/
http://example.com/GetFoo
http://example.com/foobar
http://example.com/foobar
http://static.springsource.org/spring-ws/sites/1.5/reference/html/server.html#server-endpoint-mapping

The use of the beanname mapping-type is primarily meant for
(legacy) situations where you're already using Spring-WS and have
endpoint mappings defined in a Spring XML file. The beanname
mapping-type allows you to wire your Camel route into an existing
endpoint mapping. When you're starting from scratch it's
recommended to define your endpoint mappings as Camel URI's (as
illustrated above with endpointMapping) since it requires less
configuration and is more expressive. Alternatively you could use
vanilla Spring-WS with the help of annotations.

</route>
</camelContext>

<bean id="legacyEndpointMapping"
class="org.springframework.ws.server.endpoint.mapping.PayloadRootQNameEndpointMapping">

<property name="mappings">
<props>

<prop key="{http://example.com/}GetFuture">FutureEndpointDispatcher</prop>
<prop key="{http://example.com/}GetQuote">QuoteEndpointDispatcher</prop>

</props>
</property>

</bean>

<bean id="QuoteEndpointDispatcher"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher" />
<bean id="FutureEndpointDispatcher"
class="org.apache.camel.component.spring.ws.bean.CamelEndpointDispatcher" />

POJO (UN)MARSHALLING
Camel's pluggable data formats offer support for pojo/xml marshalling using
libraries such as JAXB, XStream, JibX, Castor and XMLBeans. You can use
these data formats in your route to sent and receive pojo's, to and from web
services.

When accessing web services you can marshal the request and unmarshal
the response message:

JaxbDataFormat jaxb = new JaxbDataFormat(false);
jaxb.setContextPath("com.example.model");

from("direct:example").marshal(jaxb).to("spring-ws:http://foo.com/
bar").unmarshal(jaxb);

978 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/data-format.html

Similarly when providing web services, you can unmarshal XML requests to
POJO's and marshal the response message back to XML:

from("spring-ws:rootqname:{http://example.com/
}GetFoo?endpointMapping=#endpointMapping").unmarshal(jaxb)
.to("mock:example").marshal(jaxb);

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

STREAM COMPONENT
The stream: component provides access to the System.in, System.out and
System.err streams as well as allowing streaming of file and URL.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-stream</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

stream:in[?options]
stream:out[?options]
stream:err[?options]
stream:header[?options]

In addition, the file and url endpoint URIs are supported:

stream:file?fileName=/foo/bar.txt
stream:url[?options]

If the stream:header URI is specified, the stream header is used to find the
stream to write to. This option is available only for stream producers (that is,
it cannot appear in from()).

CHAPTER 11 - COMPONENT APPENDIX 979

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

You can append query options to the URI in the following format,
?option=value&option=value&...

Options

Name Default
Value Description

delay 0 Initial delay in milliseconds before consuming or producing the stream.

encoding JVM Default You can configure the encoding (is a charset name) to use text-based streams (for example, message
body is a String object). If not provided, Camel uses the JVM default Charset.

promptMessage null Message prompt to use when reading from stream:in; for example, you could set this to Enter a
command:

promptDelay 0 Optional delay in milliseconds before showing the message prompt.

initialPromptDelay 2000
Initial delay in milliseconds before showing the message prompt. This delay occurs only once. Can be
used during system startup to avoid message prompts being written while other logging is done to the
system out.

fileName null When using the stream:file URI format, this option specifies the filename to stream to/from.

url null When using the stream:url URI format, this option specifies the URL to stream to/from. The input/
output stream will be opened using the JDK URLConnection facility.

scanStream false To be used for continuously reading a stream such as the unix tail command.
Camel 2.4 to Camel 2.6: will retry opening the file if it is overwritten, somewhat like tail --retry

retry false Camel 2.7: will retry opening the file if it's overwritten, somewhat like tail --retry

scanStreamDelay 0 Delay in milliseconds between read attempts when using scanStream.

groupLines 0 Camel 2.5: To group X number of lines in the consumer. For example to group 10 lines and therefore
only spit out an Exchange with 10 lines, instead of 1 Exchange per line.

autoCloseCount 0
Camel 2.10.0: (2.9.3 and 2.8.6) Number of messages to process before closing stream on Producer
side. Never close stream by default (only when Producer is stopped). If more messages are sent, the
stream is reopened for another autoCloseCount batch.

Message content
The stream: component supports either String or byte[] for writing to
streams. Just add either String or byte[] content to the message.in.body.
Messages sent to the stream: producer in binary mode are not followed by
the newline character (as opposed to the String messages). Message with
null body will not be appended to the output stream.
The special stream:header URI is used for custom output streams. Just add a
java.io.OutputStream object to message.in.header in the key header.
See samples for an example.

Samples
In the following sample we route messages from the direct:in endpoint to
the System.out stream:

// Route messages to the standard output.
from("direct:in").to("stream:out");

// Send String payload to the standard output.

980 CHAPTER 11 - COMPONENT APPENDIX

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html
http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html#defaultCharset()
http://docs.oracle.com/javase/6/docs/api/java/net/URLConnection.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

// Message will be followed by the newline.
template.sendBody("direct:in", "Hello Text World");

// Send byte[] payload to the standard output.
// No newline will be added after the message.
template.sendBody("direct:in", "Hello Bytes World".getBytes());

The following sample demonstrates how the header type can be used to
determine which stream to use. In the sample we use our own output stream,
MyOutputStream.

private OutputStream mystream = new MyOutputStream();
private StringBuilder sb = new StringBuilder();

@Test
public void testStringContent() {

template.sendBody("direct:in", "Hello");
// StreamProducer appends \n in text mode
assertEquals("Hello\n", sb.toString());

}

@Test
public void testBinaryContent() {

template.sendBody("direct:in", "Hello".getBytes());
// StreamProducer is in binary mode so no \n is appended
assertEquals("Hello", sb.toString());

}

protected RouteBuilder createRouteBuilder() {
return new RouteBuilder() {

public void configure() {
from("direct:in").setHeader("stream", constant(mystream)).

to("stream:header");
}

};
}

private class MyOutputStream extends OutputStream {

public void write(int b) throws IOException {
sb.append((char)b);

}
}

The following sample demonstrates how to continuously read a file stream
(analogous to the UNIX tail command):

from("stream:file?fileName=/server/logs/
server.log&scanStream=true&scanStreamDelay=1000").to("bean:logService?method=parseLogLine");

CHAPTER 11 - COMPONENT APPENDIX 981

One gotcha with scanStream (pre Camel 2.7) or scanStream + retry is the file
will be re-opened and scanned with each iteration of scanStreamDelay. Until
NIO2 is available we cannot reliably detect when a file is deleted/recreated.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

STRING TEMPLATE
The string-template: component allows you to process a message using a
String Template. This can be ideal when using Templating to generate
responses for requests.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-stringtemplate</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

string-template:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke;
or the complete URL of the remote template.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Option Default Description

contentCache false
Cache for the resource content when its loaded.
Note : as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's
clearContentCache operation.

982 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.stringtemplate.org/
http://camel.apache.org/templating.html

Headers
Camel will store a reference to the resource in the message header with key,
org.apache.camel.stringtemplate.resource. The Resource is an
org.springframework.core.io.Resource object.

Hot reloading
The string template resource is by default hot-reloadable for both file and
classpath resources (expanded jar). If you set contentCache=true, Camel
loads the resource only once and hot-reloading is not possible. This scenario
can be used in production when the resource never changes.

StringTemplate Attributes
Camel will provide exchange information as attributes (just a
java.util.Map) to the string template. The Exchange is transfered as:
key value
exchange The Exchange itself.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).

response The Out message (only for InOut message exchange pattern).

Samples
For example you could use a string template as follows in order to formulate
a response to a message:

from("activemq:My.Queue").
to("string-template:com/acme/MyResponse.tm");

The Email Sample
In this sample we want to use a string template to send an order
confirmation email. The email template is laid out in StringTemplate as:

Dear $headers.lastName$, $headers.firstName$

Thanks for the order of $headers.item$.

CHAPTER 11 - COMPONENT APPENDIX 983

Regards Camel Riders Bookstore
$body$

And the java code is as follows:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

@Test
public void testVelocityLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus! Thanks for the order of Camel in

Action. Regards Camel Riders Bookstore PS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("string-template:org/apache/camel/component/

stringtemplate/letter.tm").to("mock:result");
}

};
}

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

SQL COMPONENT
The sql: component allows you to work with databases using JDBC queries.
The difference between this component and JDBC component is that in case

984 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jdbc.html

of SQL the query is a property of the endpoint and it uses message payload
as parameters passed to the query.

This component uses spring-jdbc behind the scenes for the actual SQL
handling.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-sql</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

The SQL component also supports:
▪ a JDBC based repository for the Idempotent Consumer EIP pattern.

See further below.
▪ a JDBC based repository for the Aggregator EIP pattern. See further

below.

URI format
The SQL component uses the following endpoint URI notation:

sql:select * from table where id=# order by name[?options]

From Camel 2.11 onwards you can use named parameters by using #:name
style as shown:

sql:select * from table where id=:#myId order by name[?options]

When using named parameters, Camel will lookup the names from, in the
given precedence:
1. from message body if its a java.util.Map
2. from message headers

If a named parameter cannot be resolved, then an exception is thrown.
Notice that the standard ? symbol that denotes the parameters to an SQL

query is substituted with the # symbol, because the ? symbol is used to
specify options for the endpoint. The ? symbol replacement can be
configured on endpoint basis.

You can append query options to the URI in the following format,
?option=value&option=value&...

CHAPTER 11 - COMPONENT APPENDIX 985

http://camel.apache.org/idempotent-consumer.html
http://camel.apache.org/aggregator2.html

In Camel 2.10 or older the SQL component can only be used as
producer.
From Camel 2.11 onwards this component can also be a consumer,
eg from().

This component can be used as a Transactional Client.

Options
Option Type Default Description

batch boolean false
Camel 2.7.5, 2.8.4 and 2.9: Execute SQL batch update statements. See
notes below on how the treatment of the inbound message body changes
if this is set to true.

dataSourceRef String null Reference to a DataSource to look up in the registry.

placeholder String #

Camel 2.4: Specifies a character that will be replaced to ? in SQL query.
Notice, that it is simple String.replaceAll() operation and no SQL
parsing is involved (quoted strings will also change). This replacement is
only happening if the endpoint is created using the SqlComponent. If you
manually create the endpoint, then use the expected ? sign instead.

template.<xxx> Â null
Sets additional options on the Spring JdbcTemplate that is used behind
the scenes to execute the queries. For instance, template.maxRows=10.
For detailed documentation, see the JdbcTemplate javadoc documentation.

allowNamedParameters boolean true Camel 2.11: Whether to allow using named parameters in the queries.

processingStrategy Â Â
Camel 2.11: SQL consumer only: Allows to plugin to use a custom
org.apache.camel.component.sql.SqlProcessingStrategy to execute
queries when the consumer has processed the rows/batch.

prepareStatementStrategy Â Â
Camel 2.11: Allows to plugin to use a custom
org.apache.camel.component.sql.SqlPrepareStatementStrategy to
control preparation of the query and prepared statement.

consumer.delay long 500 Camel 2.11: SQL consumer only: Delay in milliseconds between each
poll.

consumer.initialDelay long 1000 Camel 2.11: SQL consumer only: Milliseconds before polling starts.

consumer.useFixedDelay boolean false
Camel 2.11: SQL consumer only: Set to true to use fixed delay
between polls, otherwise fixed rate is used. See ScheduledExecutorService
in JDK for details.

maxMessagesPerPoll int 0
Camel 2.11: SQL consumer only: An integer value to define the
maximum number of messages to gather per poll. By default, no maximum
is set.

consumer.useIterator boolean true
Camel 2.11: SQL consumer only: If true each row returned when
polling will be processed individually. If false the entire java.util.List
of data is set as the IN body.

consumer.routeEmptyResultSet boolean false Camel 2.11: SQL consumer only: Whether to route a single empty
Exchange if there was no data to poll.

consumer.onConsume String null
Camel 2.11: SQL consumer only: After processing each row then this
query can be executed, if the Exchange was processed successfully, for
example to mark the row as processed. The query can have parameter.

consumer.onConsumeFailed String null
Camel 2.11: SQL consumer only: After processing each row then this
query can be executed, if the Exchange failed, for example to mark the
row as failed. The query can have parameter.

consumer.onConsumeBatchComplete String null
Camel 2.11: SQL consumer only: After processing the entire batch, this
query can be executed to bulk update rows etc. The query cannot have
parameters.

consumer.expectedUpdateCount int -1
Camel 2.11: SQL consumer only: If using consumer.onConsume then
this option can be used to set an expected number of rows being updated.
Typically you may set this to 1 to expect one row to be updated.

986 CHAPTER 11 - COMPONENT APPENDIX

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/transactional-client.html

consumer.breakBatchOnConsumeFail boolean false
Camel 2.11: SQL consumer only: If using consumer.onConsume and it
fails, then this option controls whether to break out of the batch or
continue processing the next row from the batch.

Treatment of the message body
The SQL component tries to convert the message body to an object of
java.util.Iterator type and then uses this iterator to fill the query
parameters (where each query parameter is represented by a # symbol (or
configured placeholder) in the endpoint URI). If the message body is not an
array or collection, the conversion results in an iterator that iterates over
only one object, which is the body itself.

For example, if the message body is an instance of java.util.List, the
first item in the list is substituted into the first occurrence of # in the SQL
query, the second item in the list is substituted into the second occurrence of
#, and so on.

If batch is set to true, then the interpretation of the inbound message
body changes slightly â€“ instead of an iterator of parameters, the
component expects an iterator that contains the parameter iterators; the size
of the outer iterator determines the batch size.

Result of the query
For select operations, the result is an instance of List<Map<String,
Object>> type, as returned by the JdbcTemplate.queryForList() method. For
update operations, the result is the number of updated rows, returned as an
Integer.

Header values
When performing update operations, the SQL Component stores the update
count in the following message headers:
Header Description

CamelSqlUpdateCount The number of rows updated for update
operations, returned as an Integer object.

CamelSqlRowCount The number of rows returned for select
operations, returned as an Integer object.

CamelSqlQuery

Camel 2.8: Query to execute. This query takes
precedence over the query specified in the
endpoint URI. Note that query parameters in the
header are represented by a ? instead of a #
symbol

CHAPTER 11 - COMPONENT APPENDIX 987

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)

Configuration
You can now set a reference to a DataSource in the URI directly:

sql:select * from table where id=# order by name?dataSourceRef=myDS

Sample
In the sample below we execute a query and retrieve the result as a List of
rows, where each row is a Map<String, Object and the key is the column
name.

First, we set up a table to use for our sample. As this is based on an unit
test, we do it in java:

// this is the database we create with some initial data for our unit test
db = new EmbeddedDatabaseBuilder()

.setType(EmbeddedDatabaseType.DERBY).addScript("sql/
createAndPopulateDatabase.sql").build();

The SQL script createAndPopulateDatabase.sql we execute looks like as
described below:

create table projects (id integer primary key, project varchar(10), license
varchar(5));
insert into projects values (1, 'Camel', 'ASF');
insert into projects values (2, 'AMQ', 'ASF');
insert into projects values (3, 'Linux', 'XXX');

Then we configure our route and our sql component. Notice that we use a
direct endpoint in front of the sql endpoint. This allows us to send an
exchange to the direct endpoint with the URI, direct:simple, which is
much easier for the client to use than the long sql: URI. Note that the
DataSource is looked up up in the registry, so we can use standard Spring
XML to configure our DataSource.

from("direct:simple")
.to("sql:select * from projects where license = # order by id?dataSourceRef=jdbc/

myDataSource")
.to("mock:result");

And then we fire the message into the direct endpoint that will route it to
our sql component that queries the database.

988 CHAPTER 11 - COMPONENT APPENDIX

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);

// send the query to direct that will route it to the sql where we will execute the
query
// and bind the parameters with the data from the body. The body only contains one
value
// in this case (XXX) but if we should use multi values then the body will be iterated
// so we could supply a List<String> instead containing each binding value.
template.sendBody("direct:simple", "XXX");

mock.assertIsSatisfied();

// the result is a List
List<?> received = assertIsInstanceOf(List.class,
mock.getReceivedExchanges().get(0).getIn().getBody());

// and each row in the list is a Map
Map<?, ?> row = assertIsInstanceOf(Map.class, received.get(0));

// and we should be able the get the project from the map that should be Linux
assertEquals("Linux", row.get("PROJECT"));

We could configure the DataSource in Spring XML as follows:

<jee:jndi-lookup id="myDS" jndi-name="jdbc/myDataSource"/>

Using named parameters
Available as of Camel 2.11

In the given route below, we want to get all the projects from the projects
table. Notice the SQL query has 2 named parameters, :#lic and :#min.
Camel will then lookup for these parameters from the message body or
message headers. Notice in the example above we set two headers with
constant value
for the named parameters:

from("direct:projects")
.setHeader("lic", constant("ASF"))
.setHeader("min", constant(123))
.to("sql:select * from projects where license = :#lic and id > :#min order by

id")

Though if the message body is a java.util.Map then the named parameters
will be taken from the body.

CHAPTER 11 - COMPONENT APPENDIX 989

from("direct:projects")
.to("sql:select * from projects where license = :#lic and id > :#min order by

id")

Using the JDBC based idempotent repository
Available as of Camel 2.7: In this section we will use the JDBC based
idempotent repository.
First we have to create the database table which will be used by the
idempotent repository. For Camel 2.7, we use the following schema:

CREATE TABLE CAMEL_MESSAGEPROCESSED (
processorName VARCHAR(255),
messageId VARCHAR(100)

)

In Camel 2.8, we added the createdAt column:

CREATE TABLE CAMEL_MESSAGEPROCESSED (
processorName VARCHAR(255),
messageId VARCHAR(100),
createdAt TIMESTAMP

)

We recommend to have a unique constraint on the columns processorName
and messageId. Because the syntax for this constraint differs for database to
database, we do not show it here.

Second we need to setup a javax.sql.DataSource in the spring XML file:

<jdbc:embedded-database id="dataSource" type="DERBY" />

And finally we can create our JDBC idempotent repository in the spring XML
file as well:

<bean id="messageIdRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">

<constructor-arg ref="dataSource" />
<constructor-arg value="myProcessorName" />

</bean>

<camel:camelContext>
<camel:errorHandler id="deadLetterChannel" type="DeadLetterChannel"

deadLetterUri="mock:error">
<camel:redeliveryPolicy maximumRedeliveries="0"

maximumRedeliveryDelay="0" logStackTrace="false" />

990 CHAPTER 11 - COMPONENT APPENDIX

Abstract class
From Camel 2.9 onwards there is an abstract class
org.apache.camel.processor.idempotent.jdbc.AbstractJdbcMessageIdRepository
you can extend to build custom JDBC idempotent repository.

</camel:errorHandler>

<camel:route id="JdbcMessageIdRepositoryTest"
errorHandlerRef="deadLetterChannel">

<camel:from uri="direct:start" />
<camel:idempotentConsumer

messageIdRepositoryRef="messageIdRepository">
<camel:header>messageId</camel:header>
<camel:to uri="mock:result" />

</camel:idempotentConsumer>
</camel:route>

</camel:camelContext>

Customize the JdbcMessageIdRepository
Starting with Camel 2.9.1 you have a few options to tune the
org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
for your needs:
Parameter Default Value Description

createTableIfNotExists true
Defines whether or not
Camel should try to
create the table if it
doesn't exist.

tableExistsString
SELECT 1 FROM
CAMEL_MESSAGEPROCESSED
WHERE 1 = 0

This query is used to
figure out whether the
table already exists or
not. It must throw an
exception to indicate
the table doesn't exist.

CHAPTER 11 - COMPONENT APPENDIX 991

createString

CREATE TABLE
CAMEL_MESSAGEPROCESSED
(processorName
VARCHAR(255), messageId
VARCHAR(100), createdAt
TIMESTAMP)

The statement which
is used to create the
table.

queryString
SELECT COUNT(*) FROM
CAMEL_MESSAGEPROCESSED
WHERE processorName = ?
AND messageId = ?

The query which is
used to figure out
whether the message
already exists in the
repository (the result
is not equals to '0'). It
takes two parameters.
This first one is the
processor name
(String) and the
second one is the
message id (String).

insertString
INSERT INTO
CAMEL_MESSAGEPROCESSED
(processorName, messageId,
createdAt) VALUES (?, ?, ?)

The statement which
is used to add the
entry into the table. It
takes three parameter.
The first one is the
processor name
(String), the second
one is the message id
(String) and the third
one is the timestamp
(java.sql.Timestamp)
when this entry was
added to the
repository.

deleteString
DELETE FROM
CAMEL_MESSAGEPROCESSED
WHERE processorName = ?
AND messageId = ?

The statement which
is used to delete the
entry from the
database. It takes two
parameter. This first
one is the processor
name (String) and
the second one is the
message id (String).

992 CHAPTER 11 - COMPONENT APPENDIX

A customized
org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
could look like:

<bean id="messageIdRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">

<constructor-arg ref="dataSource" />
<constructor-arg value="myProcessorName" />
<property name="tableExistsString" value="SELECT 1 FROM

CUSTOMIZED_MESSAGE_REPOSITORY WHERE 1 = 0" />
<property name="createString" value="CREATE TABLE

CUSTOMIZED_MESSAGE_REPOSITORY (processorName VARCHAR(255), messageId VARCHAR(100),
createdAt TIMESTAMP)" />

<property name="queryString" value="SELECT COUNT(*) FROM
CUSTOMIZED_MESSAGE_REPOSITORY WHERE processorName = ? AND messageId = ?" />

<property name="insertString" value="INSERT INTO
CUSTOMIZED_MESSAGE_REPOSITORY (processorName, messageId, createdAt) VALUES (?, ?, ?)"
/>

<property name="deleteString" value="DELETE FROM
CUSTOMIZED_MESSAGE_REPOSITORY WHERE processorName = ? AND messageId = ?" />
</bean>

Using the JDBC based aggregation repository
Available as of Camel 2.6
JdbcAggregationRepository is an AggregationRepository which on the fly
persists the aggregated messages. This ensures that you will not loose
messages, as the default aggregator will use an in memory only
AggregationRepository.
The JdbcAggregationRepository allows together with Camel to provide
persistent support for the Aggregator.

It has the following options:
Option Type Description

dataSource DataSource Mandatory: The javax.sql.DataSource to use for accessing the
database.

repositoryName String Mandatory: The name of the repository.

transactionManager TransactionManager

Mandatory: The
org.springframework.transaction.PlatformTransactionManager
to mange transactions for the database. The TransactionManager
must be able to support databases.

lobHandler LobHandler
A org.springframework.jdbc.support.lob.LobHandler to handle
Lob types in the database. Use this option to use a vendor specific
LobHandler, for example when using Oracle.

CHAPTER 11 - COMPONENT APPENDIX 993

http://camel.apache.org/aggregator2.html

Using JdbcAggregationRepository in Camel 2.6
In Camel 2.6, the JdbcAggregationRepository is provided in the
camel-jdbc-aggregator component. From Camel 2.7 onwards, the
JdbcAggregationRepository is provided in the camel-sql
component.

returnOldExchange boolean
Whether the get operation should return the old existing Exchange if
any existed. By default this option is false to optimize as we do not
need the old exchange when aggregating.

useRecovery boolean
Whether or not recovery is enabled. This option is by default true.
When enabled the Camel Aggregator automatic recover failed
aggregated exchange and have them resubmitted.

recoveryInterval long
If recovery is enabled then a background task is run every x'th time
to scan for failed exchanges to recover and resubmit. By default this
interval is 5000 millis.

maximumRedeliveries int

Allows you to limit the maximum number of redelivery attempts for a
recovered exchange. If enabled then the Exchange will be moved to
the dead letter channel if all redelivery attempts failed. By default
this option is disabled. If this option is used then the deadLetterUri
option must also be provided.

deadLetterUri String
An endpoint uri for a Dead Letter Channel where exhausted
recovered Exchanges will be moved. If this option is used then the
maximumRedeliveries option must also be provided.

storeBodyAsText boolean
Camel 2.11: Whether to store the message body as String which is
human readable. By default this option is false storing the body in
binary format.

headersToStoreAsText List<String>
Camel 2.11: Allows to store headers as String which is human
readable. By default this option is disabled, storing the headers in
binary format.

What is preserved when persisting
JdbcAggregationRepository will only preserve any Serializable
compatible data types. If a data type is not such a type its dropped and a
WARN is logged. And it only persists the Message body and the Message
headers. The Exchange properties are not persisted.

994 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/aggregator2.html
http://camel.apache.org/dead-letter-channel.html

From Camel 2.11 onwards you can store the message body and select(ed)
headers as String in separate columns.

Recovery
The JdbcAggregationRepository will by default recover any failed
Exchange. It does this by having a background tasks that scans for failed
Exchanges in the persistent store. You can use the checkInterval option to
set how often this task runs. The recovery works as transactional which
ensures that Camel will try to recover and redeliver the failed Exchange. Any
Exchange which was found to be recovered will be restored from the
persistent store and resubmitted and send out again.

The following headers is set when an Exchange is being recovered/
redelivered:
Header Type Description

Exchange.REDELIVERED Boolean
Is set to true to indicate the
Exchange is being
redelivered.

Exchange.REDELIVERY_COUNTER Integer The redelivery attempt,
starting from 1.

Only when an Exchange has been successfully processed it will be marked as
complete which happens when the confirm method is invoked on the
AggregationRepository. This means if the same Exchange fails again it will
be kept retried until it success.

You can use option maximumRedeliveries to limit the maximum number
of redelivery attempts for a given recovered Exchange. You must also set the
deadLetterUri option so Camel knows where to send the Exchange when
the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-sql, for example this
test.

Database
To be operational, each aggregator uses two table: the aggregation and
completed one. By convention the completed has the same name as the
aggregation one suffixed with "_COMPLETED". The name must be configured
in the Spring bean with the RepositoryName property. In the following
example aggregation will be used.

The table structure definition of both table are identical: in both case a
String value is used as key (id) whereas a Blob contains the exchange

CHAPTER 11 - COMPONENT APPENDIX 995

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java

serialized in byte array.
However one difference should be remembered: the id field does not have
the same content depending on the table.
In the aggregation table id holds the correlation Id used by the component to
aggregate the messages. In the completed table, id holds the id of the
exchange stored in corresponding the blob field.

Here is the SQL query used to create the tables, just replace
"aggregation" with your aggregator repository name.

CREATE TABLE aggregation (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_pk PRIMARY KEY (id)

);
CREATE TABLE aggregation_completed (

id varchar(255) NOT NULL,
exchange blob NOT NULL,
constraint aggregation_completed_pk PRIMARY KEY (id)

);

Storing body and headers as text
Available as of Camel 2.11

You can configure the JdbcAggregationRepository to store message
body and select(ed) headers as String in separate columns. For example to
store the body, and the following two headers companyName and
accountName use the following SQL:

CREATE TABLE aggregationRepo3 (
id varchar(255) NOT NULL,
exchange blob NOT NULL,
body varchar(1000),
companyName varchar(1000),
accountName varchar(1000),
constraint aggregationRepo3_pk PRIMARY KEY (id)

);
CREATE TABLE aggregationRepo3_completed (

id varchar(255) NOT NULL,
exchange blob NOT NULL,
body varchar(1000),
companyName varchar(1000),
accountName varchar(1000),
constraint aggregationRepo3_completed_pk PRIMARY KEY (id)

);

And then configure the repository to enable this behavior as shown below:

996 CHAPTER 11 - COMPONENT APPENDIX

<bean id="repo3"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">

<property name="repositoryName" value="aggregationRepo3"/>
<property name="transactionManager" ref="txManager3"/>
<property name="dataSource" ref="dataSource3"/>
<!-- configure to store the message body and following headers as text in the

repo -->
<property name="storeBodyAsText" value="true"/>
<property name="headersToStoreAsText">

<list>
<value>companyName</value>

<value>accountName</value>
</list>

</property>
</bean>

Codec (Serialization)
Since they can contain any type of payload, Exchanges are not serializable
by design. It is converted into a byte array to be stored in a database BLOB
field. All those conversions are handled by the JdbcCodec class. One detail of
the code requires your attention: the
ClassLoadingAwareObjectInputStream.

The ClassLoadingAwareObjectInputStream has been reused from the
Apache ActiveMQ project. It wraps an ObjectInputStream and use it with the
ContextClassLoader rather than the currentThread one. The benefit is to
be able to load classes exposed by other bundles. This allows the exchange
body and headers to have custom types object references.

Transaction
A Spring PlatformTransactionManager is required to orchestrate
transaction.

Service (Start/Stop)
The start method verify the connection of the database and the presence of
the required tables. If anything is wrong it will fail during starting.

Aggregator configuration
Depending on the targeted environment, the aggregator might need some
configuration. As you already know, each aggregator should have its own

CHAPTER 11 - COMPONENT APPENDIX 997

http://activemq.apache.org/

repository (with the corresponding pair of table created in the database) and
a data source. If the default lobHandler is not adapted to your database
system, it can be injected with the lobHandler property.

Here is the declaration for Oracle:

<bean id="lobHandler"
class="org.springframework.jdbc.support.lob.OracleLobHandler">

<property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>

<bean id="nativeJdbcExtractor"
class="org.springframework.jdbc.support.nativejdbc.CommonsDbcpNativeJdbcExtractor"/>

<bean id="repo"
class="org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">

<property name="transactionManager" ref="transactionManager"/>
<property name="repositoryName" value="aggregation"/>
<property name="dataSource" ref="dataSource"/>
<!-- Only with Oracle, else use default -->
<property name="lobHandler" ref="lobHandler"/>

</bean>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ JDBC

TEST COMPONENT
Testing of distributed and asynchronous processing is notoriously difficult.
The Mock, Test and DataSet endpoints work great with the Camel Testing
Framework to simplify your unit and integration testing using Enterprise
Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.
The test component extends the Mock component to support pulling
messages from another endpoint on startup to set the expected message
bodies on the underlying Mock endpoint. That is, you use the test endpoint in
a route and messages arriving on it will be implicitly compared to some
expected messages extracted from some other location.

So you can use, for example, an expected set of message bodies as files.
This will then set up a properly configured Mock endpoint, which is only valid

998 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/jdbc.html
http://camel.apache.org/testing.html
http://camel.apache.org/mock.html
http://camel.apache.org/test.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/testing.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/components.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html
http://camel.apache.org/mock.html

if the received messages match the number of expected messages and their
message payloads are equal.

Maven users will need to add the following dependency to their pom.xml
for this component when using Camel 2.8 or older:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the Test component is provided directly in the
camel-core.

URI format

test:expectedMessagesEndpointUri

Where expectedMessagesEndpointUri refers to some other Component
URI that the expected message bodies are pulled from before starting the
test.

Example
For example, you could write a test case as follows:

from("seda:someEndpoint").
to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertIsSatisfied(camelContext)
method, your test case will perform the necessary assertions.

To see how you can set other expectations on the test endpoint, see the
Mock component.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Spring Testing

CHAPTER 11 - COMPONENT APPENDIX 999

http://camel.apache.org/test.html
http://camel.apache.org/component.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://camel.apache.org/mock.html
http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/spring-testing.html

TIMER COMPONENT
The timer: component is used to generate message exchanges when a timer
fires You can only consume events from this endpoint.

URI format

timer:name[?options]

Where name is the name of the Timer object, which is created and shared
across endpoints. So if you use the same name for all your timer endpoints,
only one Timer object and thread will be used.

You can append query options to the URI in the following format,
?option=value&option=value&...

Note: The IN body of the generated exchange is null. So
exchange.getIn().getBody() returns null.

Options

Name Default
Value Description

time null A java.util.Date the first event should be generated. If using the URI, the pattern expected is: yyyy-MM-dd
HH:mm:ss or yyyy-MM-dd'T'HH:mm:ss.

pattern null Allows you to specify a custom Date pattern to use for setting the time option using URI syntax.

period 1000 If greater than 0, generate periodic events every period milliseconds.

delay 0 / 1000
The number of milliseconds to wait before the first event is generated. Should not be used in conjunction with
the time option. The default value has been changed to 1000 from Camel 2.11 onwards. In older releases the
default value is 0.

fixedRate false Events take place at approximately regular intervals, separated by the specified period.

daemon true Specifies whether or not the thread associated with the timer endpoint runs as a daemon.

repeatCount 0 Camel 2.8: Specifies a maximum limit of number of fires. So if you set it to 1, the timer will only fire once. If
you set it to 5, it will only fire five times. A value of zero or negative means fire forever.

Exchange Properties
When the timer is fired, it adds the following information as properties to the
Exchange:
Name Type Description
Exchange.TIMER_NAME String The value of the name option.

Exchange.TIMER_TIME Date The value of the time option.

Exchange.TIMER_PERIOD long The value of the period option.

Exchange.TIMER_FIRED_TIME Date The time when the consumer fired.

Exchange.TIMER_COUNTER Long Camel 2.8: The current fire counter. Starts from 1.

1000 CHAPTER 11 - COMPONENT APPENDIX

Advanced Scheduler
See also the Quartz component that supports much more advanced
scheduling.

Specify time in human friendly format
In Camel 2.3 onwards you can specify the time in human friendly
syntax.

Message Headers
When the timer is fired, it adds the following information as headers to the IN
message
Name Type Description
Exchange.TIMER_FIRED_TIME java.util.Date The time when the consumer fired

Sample
To set up a route that generates an event every 60 seconds:

from("timer://foo?fixedRate=true&period=60000").to("bean:myBean?method=someMethodName");

The above route will generate an event and then invoke the someMethodName
method on the bean called myBean in the Registry such as JNDI or Spring.

And the route in Spring DSL:

<route>
<from uri="timer://foo?fixedRate=true&period=60000"/>
<to uri="bean:myBean?method=someMethodName"/>

</route>

Firing only once
Available as of Camel 2.8

You may want to fire a message in a Camel route only once, such as when
starting the route. To do that you use the repeatCount option as shown:

CHAPTER 11 - COMPONENT APPENDIX 1001

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/quartz.html
http://camel.apache.org/how-do-i-specify-time-period-in-a-human-friendly-syntax.html
http://camel.apache.org/how-do-i-specify-time-period-in-a-human-friendly-syntax.html

Instead of 60000 you can use period=60s which is more friendly to
read.

<route>
<from uri="timer://foo?repeatCount=1"/>
<to uri="bean:myBean?method=someMethodName"/>

</route>

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
• Quartz

VALIDATION COMPONENT
The Validation component performs XML validation of the message body
using the JAXP Validation API and based on any of the supported XML schema
languages, which defaults to XML Schema

Note that the Jing component also supports the following useful schema
languages:

• RelaxNG Compact Syntax
• RelaxNG XML Syntax

The MSV component also supports RelaxNG XML Syntax.

URI format

validator:someLocalOrRemoteResource

Where someLocalOrRemoteResource is some URL to a local resource on
the classpath or a full URL to a remote resource or resource on the file
system which contains the XSD to validate against. For example:

• msv:org/foo/bar.xsd
• msv:file:../foo/bar.xsd
• msv:http://acme.com/cheese.xsd
• validator:com/mypackage/myschema.xsd

1002 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/quartz.html
http://www.w3.org/XML/Schema
http://camel.apache.org/jing.html
http://relaxng.org/compact-tutorial-20030326.html
http://relaxng.org/
http://camel.apache.org/msv.html
http://relaxng.org/
../foo/bar.xsd
http://acme.com/cheese.xsd

Maven users will need to add the following dependency to their pom.xml for
this component when using Camel 2.8 or older:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the Validation component is provided directly in the
camel-core.

Options
Option Default Description
resourceResolver null Camel 2.9: Reference to a org.w3c.dom.ls.LSResourceResolver in the Registry.

useDom false Whether DOMSource/DOMResult or SaxSource/SaxResult should be used by the validator.

useSharedSchema true Camel 2.3: Whether the Schema instance should be shared or not. This option is introduced to work
around a JDK 1.6.x bug. Xerces should not have this issue.

failIfNoBody true Camel 2.9.5/2.10.3: Whether to fail if no body exists.

Example
The following example shows how to configure a route from endpoint
direct:start which then goes to one of two endpoints, either mock:valid or
mock:invalid based on whether or not the XML matches the given schema
(which is supplied on the classpath).

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>
<doTry>

<to uri="validator:org/apache/camel/component/validator/schema.xsd"/>
<to uri="mock:valid"/>
<doCatch>

<exception>org.apache.camel.ValidationException</exception>
<to uri="mock:invalid"/>

</doCatch>
<doFinally>

<to uri="mock:finally"/>
</doFinally>

</doTry>
</route>

</camelContext>

CHAPTER 11 - COMPONENT APPENDIX 1003

http://camel.apache.org/validation.html
http://camel.apache.org/registry.html
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6773084
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/validator/camelContext.xml

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

VELOCITY
The velocity: component allows you to process a message using an Apache
Velocity template. This can be ideal when using Templating to generate
responses for requests.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-velocity</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

velocity:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke;
or the complete URL of the remote template (eg: file://folder/myfile.vm).

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Option Default Description
loaderCache true Velocity based file loader cache.

contentCache true
Cache for the resource content when it is loaded.
Note : as of Camel 2.9 cached resource content can be cleared via JMX using the endpoint's
clearContentCache operation.

encoding null Character encoding of the resource content.

propertiesFile null New option in Camel 2.1: The URI of the properties file which is used for VelocityEngine initialization.

1004 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://velocity.apache.org/
http://velocity.apache.org/
http://camel.apache.org/templating.html
/folder/myfile.vm

Message Headers
The velocity component sets a couple headers on the message (you can't set
these yourself and from Camel 2.1 velocity component will not set these
headers which will cause some side effect on the dynamic template support):
Header Description
CamelVelocityResourceUri The templateName as a String object.

Headers set during the Velocity evaluation are returned to the message and
added as headers. Then its kinda possible to return values from Velocity to
the Message.

For example, to set the header value of fruit in the Velocity template
.tm:

$in.setHeader('fruit', 'Apple')

The fruit header is now accessible from the message.out.headers.

Velocity Context
Camel will provide exchange information in the Velocity context (just a Map).
The Exchange is transfered as:
key value
exchange The Exchange itself.

exchange.properties The Exchange properties.

headers The headers of the In message.

camelContext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).

response The Out message (only for InOut message exchange pattern).

Hot reloading
The Velocity template resource is, by default, hot reloadable for both file and
classpath resources (expanded jar). If you set contentCache=true, Camel
will only load the resource once, and thus hot reloading is not possible. This
scenario can be used in production, when the resource never changes.

Dynamic templates
Available as of Camel 2.1
Camel provides two headers by which you can define a different resource
location for a template or the template content itself. If any of these headers

CHAPTER 11 - COMPONENT APPENDIX 1005

is set then Camel uses this over the endpoint configured resource. This
allows you to provide a dynamic template at runtime.
Header Type Description
CamelVelocityResourceUri String Camel 2.1: A URI for the template resource to use instead of the endpoint configured.

CamelVelocityTemplate String Camel 2.1: The template to use instead of the endpoint configured.

Samples
For example you could use something like

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

To use a Velocity template to formulate a response to a message for InOut
message exchanges (where there is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to
another destination, you could use the following route:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

And to use the content cache, e.g. for use in production, where the .vm
template never changes:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

And a file based resource:

from("activemq:My.Queue").
to("velocity:file://myfolder/MyResponse.vm?contentCache=true").
to("activemq:Another.Queue");

In Camel 2.1 it's possible to specify what template the component should
use dynamically via a header, so for example:

from("direct:in").
setHeader("CamelVelocityResourceUri").constant("path/to/my/template.vm").
to("velocity:dummy");

In Camel 2.1 it's possible to specify a template directly as a header the
component should use dynamically via a header, so for example:

1006 CHAPTER 11 - COMPONENT APPENDIX

from("direct:in").
setHeader("CamelVelocityTemplate").constant("Hi this is a velocity template that

can do templating ${body}").
to("velocity:dummy");

The Email Sample
In this sample we want to use Velocity templating for an order confirmation
email. The email template is laid out in Velocity as:

Dear ${headers.lastName}, ${headers.firstName}

Thanks for the order of ${headers.item}.

Regards Camel Riders Bookstore
${body}

And the java code:

private Exchange createLetter() {
Exchange exchange = context.getEndpoint("direct:a").createExchange();
Message msg = exchange.getIn();
msg.setHeader("firstName", "Claus");
msg.setHeader("lastName", "Ibsen");
msg.setHeader("item", "Camel in Action");
msg.setBody("PS: Next beer is on me, James");
return exchange;

}

@Test
public void testVelocityLetter() throws Exception {

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
mock.expectedBodiesReceived("Dear Ibsen, Claus\n\nThanks for the order of Camel

in Action.\n\nRegards Camel Riders Bookstore\nPS: Next beer is on me, James");

template.send("direct:a", createLetter());

mock.assertIsSatisfied();
}

protected RouteBuilder createRouteBuilder() throws Exception {
return new RouteBuilder() {

public void configure() throws Exception {
from("direct:a").to("velocity:org/apache/camel/component/velocity/

letter.vm").to("mock:result");
}

};
}

CHAPTER 11 - COMPONENT APPENDIX 1007

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

VM COMPONENT
The vm: component provides asynchronous SEDA behavior, exchanging
messages on a BlockingQueue and invoking consumers in a separate thread
pool.

This component differs from the SEDA component in that VM supports
communication across CamelContext instances - so you can use this
mechanism to communicate across web applications (provided that camel-
core.jar is on the system/boot classpath).

VM is an extension to the SEDA component.

URI format

vm:queueName[?options]

Where queueName can be any string to uniquely identify the endpoint within
the JVM (or at least within the classloader that loaded camel-core.jar)

You can append query options to the URI in the following format:
?option=value&option=value&...

Options
See the SEDA component for options and other important usage details as
the same rules apply to the VM component.

Samples
In the route below we send exchanges across CamelContext instances to a
VM queue named order.email:

from("direct:in").bean(MyOrderBean.class).to("vm:order.email");

And then we receive exchanges in some other Camel context (such as
deployed in another .war application):

1008 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/seda.html
http://camel.apache.org/seda.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html

Before Camel 2.3 - Same URI must be used for both
producer and consumer
An exactly identical VM endpoint URI must be used for both the
producer and the consumer endpoint. Otherwise, Camel will create
a second VM endpoint despite that the queueName portion of the
URI is identical. For example:

from("direct:foo").to("vm:bar?concurrentConsumers=5");

from("vm:bar?concurrentConsumers=5").to("file://output");

Notice that we have to use the full URI, including options in both the
producer and consumer.

In Camel 2.4 this has been fixed so that only the queue name must
match. Using the queue name bar, we could rewrite the previous exmple
as follows:

from("direct:foo").to("vm:bar");

from("vm:bar?concurrentConsumers=5").to("file://output");

from("vm:order.email").bean(MyOrderEmailSender.class);

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started
▪ SEDA

XMPP COMPONENT
The xmpp: component implements an XMPP (Jabber) transport.

Maven users will need to add the following dependency to their pom.xml
for this component:

CHAPTER 11 - COMPONENT APPENDIX 1009

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/seda.html
http://camel.apache.org/vm.html
http://camel.apache.org/vm.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-xmpp</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

xmpp://[login@]hostname[:port][/participant][?Options]

The component supports both room based and private person-person
conversations.
The component supports both producer and consumer (you can get
messages from XMPP or send messages to XMPP). Consumer mode supports
rooms starting.

You can append query options to the URI in the following format,
?option=value&option=value&...

Options
Name Description

room

If this option is specified, the component will connect to MUC (Multi User Chat). Usually, the domain name for MUC
is different from the login domain. For example, if you are superman@jabber.org and want to join the krypton
room, then the room URL is krypton@conference.jabber.org. Note the conference part.
It is not a requirement to provide the full room JID. If the room parameter does not contain the @ symbol, the
domain part will be discovered and added by Camel

user User name (without server name). If not specified, anonymous login will be attempted.

password Password.

resource XMPP resource. The default is Camel.

createAccount If true, an attempt to create an account will be made. Default is false.

participant JID (Jabber ID) of person to receive messages. room parameter has precedence over participant.

nickname Use nickname when joining room. If room is specified and nickname is not, user will be used for the nickname.

serviceName The name of the service you are connecting to. For Google Talk, this would be gmail.com.

testConnectionOnStartup

Camel 2.11 Specifies whether to test the connection on startup. This is used to ensure that the XMPP client has a
valid connection to the XMPP server when the route starts. Camel throws an exception on startup if a connection
cannot be established. When this option is set to false, Camel will attempt to establish a "lazy" connection when
needed by a producer, and will poll for a consumer connection until the connection is established. Default is true.

connectionPollDelay
Camel 2.11 The amount of time in seconds between polls to verify the health of the XMPP connection, or
between attempts to establish an initial consumer connection. Camel will try to re-establish a connection if it has
become inactive. Default is 10 seconds.

Headers and setting Subject or Language
Camel sets the message IN headers as properties on the XMPP message. You
can configure a HeaderFilterStategy if you need custom filtering of
headers.

1010 CHAPTER 11 - COMPONENT APPENDIX

The Subject and Language of the XMPP message are also set if they are
provided as IN headers.

Examples
User superman to join room krypton at jabber server with password,
secret:

xmpp://superman@jabber.org/?room=krypton@conference.jabber.org&password=secret

User superman to send messages to joker:

xmpp://superman@jabber.org/joker@jabber.org?password=secret

Routing example in Java:

from("timer://kickoff?period=10000").
setBody(constant("I will win!\n Your Superman.")).
to("xmpp://superman@jabber.org/joker@jabber.org?password=secret");

Consumer configuration, which writes all messages from joker into the
queue, evil.talk.

from("xmpp://superman@jabber.org/joker@jabber.org?password=secret").
to("activemq:evil.talk");

Consumer configuration, which listens to room messages:

from("xmpp://superman@jabber.org/
?password=secret&room=krypton@conference.jabber.org").
to("activemq:krypton.talk");

Room in short notation (no domain part):

from("xmpp://superman@jabber.org/?password=secret&room=krypton").
to("activemq:krypton.talk");

When connecting to the Google Chat service, you'll need to specify the
serviceName as well as your credentials:

// send a message from fromuser@gmail.com to touser@gmail.com
from("direct:start").

to("xmpp://talk.google.com:5222/

CHAPTER 11 - COMPONENT APPENDIX 1011

touser@gmail.com?serviceName=gmail.com&user=fromuser&password=secret").
to("mock:result");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

XQUERY
The xquery: component allows you to process a message using an XQuery
template. This can be ideal when using Templating to generate respopnses
for requests.

Maven users will need to add the following dependency to their pom.xml
for this component:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-saxon</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

URI format

xquery:templateName

Where templateName is the classpath-local URI of the template to invoke;
or the complete URL of the remote template.

For example you could use something like this:

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery");

To use an XQuery template to formulate a response to a message for InOut
message exchanges (where there is a JMSReplyTo header).

If you want to use InOnly, consume the message, and send it to another
destination, you could use the following route:

1012 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://camel.apache.org/xquery.html
http://camel.apache.org/templating.html

from("activemq:My.Queue").
to("xquery:com/acme/mytransform.xquery").
to("activemq:Another.Queue");

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

XSLT
The xslt: component allows you to process a message using an XSLT
template. This can be ideal when using Templating to generate respopnses
for requests.

URI format

xslt:templateName[?options]

Where templateName is the classpath-local URI of the template to invoke;
or the complete URL of the remote template. Refer to the Spring
Documentation for more detail of the URI syntax

You can append query options to the URI in the following format,
?option=value&option=value&...

Here are some example URIs
URI Description

xslt:com/acme/mytransform.xsl refers to the file com/acme/mytransform.xsl on the classpath

xslt:file:///foo/bar.xsl refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/foo.xsl refers to the remote http resource

Maven users will need to add the following dependency to their pom.xml for
this component when using Camel 2.8 or older:

CHAPTER 11 - COMPONENT APPENDIX 1013

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html
http://www.w3.org/TR/xslt
http://camel.apache.org/templating.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>x.x.x</version>
<!-- use the same version as your Camel core version -->

</dependency>

From Camel 2.9 onwards the XSLT component is provided directly in the
camel-core.

Options

Name Default
Value Description

converter null Option to override default XmlConverter. Will lookup for the converter in the Registry. The
provided converted must be of type org.apache.camel.converter.jaxp.XmlConverter.

transformerFactory null
Option to override default TransformerFactory. Will lookup for the transformerFactory in the
Registry. The provided transformer factory must be of type
javax.xml.transform.TransformerFactory.

transformerFactoryClass null Option to override default TransformerFactory. Will create a TransformerFactoryClass instance and
set it to the converter.

uriResolver null
Camel 2.3: Allows you to use a custom javax.xml.transformation.URIResolver. Camel will by
default use its own implementation org.apache.camel.builder.xml.XsltUriResolver which is
capable of loading from classpath.

resultHandlerFactory null
Camel 2.3: Allows you to use a custom
org.apache.camel.builder.xml.ResultHandlerFactory which is capable of using custom
org.apache.camel.builder.xml.ResultHandler types.

failOnNullBody true Camel 2.3: Whether or not to throw an exception if the input body is null.

deleteOutputFile false
Camel 2.6: If you have output=file then this option dictates whether or not the output file
should be deleted when the Exchange is done processing. For example suppose the output file is
a temporary file, then it can be a good idea to delete it after use.

output string

Camel 2.3: Option to specify which output type to use. Possible values are: string, bytes,
DOM, file. The first three options are all in memory based, where as file is streamed directly to
a java.io.File. For file you must specify the filename in the IN header with the key
Exchange.XSLT_FILE_NAME which is also CamelXsltFileName. Also any paths leading to the
filename must be created beforehand, otherwise an exception is thrown at runtime.

contentCache true

Camel 2.6: Cache for the resource content (the stylesheet file) when it is loaded. If set to false
Camel will reload the stylesheet file on each message processing. This is good for development.
Note: from Camel 2.9 a cached stylesheet can be forced to reload at runtime via JMX using the
clearCachedStylesheet operation.

allowStAX false Camel 2.8.3/2.9: Whether to allow using StAX as the javax.xml.transform.Source.

transformerCacheSize 0 Camel 2.9.3/2.10.1: The number of javax.xml.transform.Transformer object that are cached
for reuse to avoid calls to Template.newTransformer().

Using XSLT endpoints
For example you could use something like

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl");

To use an XSLT template to formulate a response for a message for InOut
message exchanges (where there is a JMSReplyTo header).

1014 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/xslt.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/exchange.html

If you want to use InOnly and consume the message and send it to
another destination you could use the following route:

from("activemq:My.Queue").
to("xslt:com/acme/mytransform.xsl").
to("activemq:Another.Queue");

Getting Parameters into the XSLT to work with
By default, all headers are added as parameters which are available in the
XSLT.
To do this you will need to declare the parameter so it is then useable.

<setHeader headerName="myParam"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl: >

<xsl:param name="myParam"/>

<xsl:template ...>

Spring XML versions
To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
<route>

<from uri="activemq:My.Queue"/>
<to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
<to uri="activemq:Another.Queue"/>

</route>
</camelContext>

There is a test case along with its Spring XML if you want a concrete
example.

Using xsl:include
Camel 2.2 or older
If you use xsl:include in your XSL files then in Camel 2.2 or older it uses the

CHAPTER 11 - COMPONENT APPENDIX 1015

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

default javax.xml.transform.URIResolver which means it can only lookup
files from file system, and its does that relative from the JVM starting folder.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will lookup the staff_tempkalte.xsl file from the starting folder where the
application was started.

Camel 2.3 or newer
Now Camel provides its own implementation of URIResolver which allows
Camel to load included files from the classpath and more intelligent than
before.

For example this include:

<xsl:include href="staff_template.xsl"/>

Will now be located relative from the starting endpoint, which for example
could be:

.to("xslt:org/apache/camel/component/xslt/staff_include_relative.xsl")

Which means Camel will locate the file in the classpath as org/apache/
camel/component/xslt/staff_template.xsl.
This allows you to use xsl include and have xsl files located in the same
folder such as we do in the example org/apache/camel/component/xslt.

You can use the following two prefixes classpath: or file: to instruct
Camel to look either in classpath or file system. If you omit the prefix then
Camel uses the prefix from the endpoint configuration. If that neither has
one, then classpath is assumed.

You can also refer back in the paths such as

<xsl:include href="../staff_other_template.xsl"/>

Which then will resolve the xsl file under org/apache/camel/component.

Using xsl:include and default prefix
When using xsl:include such as:

<xsl:include href="staff_template.xsl"/>

1016 CHAPTER 11 - COMPONENT APPENDIX

Then in Camel 2.10.3 and older, then Camel will use "classpath:" as the
default prefix, and load the resource from the classpath. This works for most
cases, but if you configure the starting resource to load from file,

.to("xslt:file:etc/xslt/staff_include_relative.xsl")

.. then you would have to prefix all your includes with "file:" as well.

<xsl:include href="file:staff_template.xsl"/>

From Camel 2.10.4 onwards we have made this easier as Camel will use the
prefix from the endpoint configuration as the default prefix. So from Camel
2.10.4 onwards you can do:

<xsl:include href="staff_template.xsl"/>

Which will load the staff_template.xsl resource from the file system, as the
endpoint was configured with "file:" as prefix.
You can still though explicit configure a prefix, and then mix and match. And
have both file and classpath loading. But that would be unusual, as most
people either use file or classpath based resources.

Dynamic stylesheets
Available as of Camel 2.9
Camel provides the CamelXsltResourceUri header which you can use to
define a stylesheet to use instead of what is configured on the endpoint URI.
This allows you to provide a dynamic stylesheet at runtime.

Notes on using XSLT and Java Versions
Here are some observations from Sameer, a Camel user, which he kindly
shared with us:

In case anybody faces issues with the XSLT endpoint please review
these points.

I was trying to use an xslt endpoint for a simple transformation
from one xml to another using a simple xsl. The output xml kept
appearing (after the xslt processor in the route) with outermost xml
tag with no content within.

No explanations show up in the DEBUG logs. On the TRACE logs
however I did find some error/warning indicating that the
XMLConverter bean could no be initialized.

CHAPTER 11 - COMPONENT APPENDIX 1017

After a few hours of cranking my mind, I had to do the following
to get it to work (thanks to some posts on the users forum that gave
some clue):

1. Use the transformerFactory option in the route ("xslt:my-
transformer.xsl?transformerFactory=tFactory") with the
tFactory bean having bean defined in the spring context for
class="org.apache.xalan.xsltc.trax.TransformerFactoryImpl".
2. Added the Xalan jar into my maven pom.

My guess is that the default xml parsing mechanism supplied
within the JDK (I am using 1.6.0_03) does not work right in this
context and does not throw up any error either. When I switched to
Xalan this way it works. This is not a Camel issue, but might need a
mention on the xslt component page.

Another note, jdk 1.6.0_03 ships with JAXB 2.0 while Camel needs
2.1. One workaround is to add the 2.1 jar to the jre/lib/endorsed
directory for the jvm or as specified by the container.

Hope this post saves newbie Camel riders some time.

See Also
• Configuring Camel
• Component
• Endpoint
• Getting Started

1018 CHAPTER 11 - COMPONENT APPENDIX

http://camel.apache.org/configuring-camel.html
http://camel.apache.org/component.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

	Apache Camel
	User Guide
	Version 2.10.4

	Table of Contents
	Introduction
	Quickstart
	Walk through an Example Code
	What happens?
	Walk through another example
	Introduction
	Pipes and filters
	Using Camel Components
	Conclusion
	See also

	Getting Started with Apache Camel
	The Enterprise Integration Patterns (EIP) book
	The Camel project
	Online documentation for Camel
	A useful tip for navigating the online documentation

	Online Javadoc documentation
	Concepts and terminology fundamental to Camel
	Endpoint
	CamelContext
	CamelTemplate
	The Meaning of URL, URI, URN and IRI
	Components
	Message and Exchange
	Processor
	Routes, RouteBuilders and Java DSL
	Introduction to Java DSL
	Critique of Java DSL

	Continue Learning about Camel

	Architecture
	URIs
	Current Supported URIs
	URI's for external components

	Enterprise Integration Patterns
	Pattern Index
	Messaging Systems
	Messaging Channels
	Message Construction
	Message Routing
	Message Transformation
	Messaging Endpoints
	System Management

	CookBook
	Bean Integration
	Annotations
	Bean Component
	Spring Remoting
	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy

	Bean Binding
	Choosing the method to invoke
	Parameter binding
	Binding Annotations
	Examples
	@Handler

	Parameter binding using method option
	Using type qualifiers to select among overloaded methods
	Bean Injection
	Parameter Binding Annotations
	Example
	Using the DSL to invoke the bean method

	Annotation Based Expression Language
	Example:
	Advanced example using @Bean
	Example using Groovy
	@Consume

	Using context option to apply only a certain CamelContext
	Using an explicit route
	Use the Bean endpoint
	Using a property to define the endpoint
	Which approach to use?
	@EndpointInject

	Hiding the Camel APIs from your code using @Produce

	@RecipientList Annotation
	Simple Example using @Consume and @RecipientList
	How it works
	More Complex Example Using DSL

	Using Exchange Pattern Annotations
	Specifying InOnly methods
	Class level annotations
	Overloading a class level annotation
	Using your own annotations
	How to decouple from middleware APIs

	Visualisation
	How to generate
	For OS X users

	Business Activity Monitoring
	How Camel BAM Works
	Simple Example
	Complete Example
	Use Cases

	Extract Transform Load (ETL)
	Mock Component
	URI format
	Options
	Simple Example
	Using assertPeriod

	Setting expectations
	Adding expectations to specific messages

	Mocking existing endpoints
	Mocking existing endpoints using the camel-test component
	Mocking existing endpoints with XML DSL
	Mocking endpoints and skip sending to original endpoint

	Limiting the number of messages to keep
	Testing with arrival times
	See Also

	Testing
	Testing mechanisms
	Camel Test Example
	Spring Test with XML Config Example
	Spring Test with Java Config Example
	Spring Test with XML Config and Declarative Configuration Example
	Blueprint Test

	Testing endpoints
	Stubbing out physical transport technologies
	Testing existing routes

	Camel Test
	Adding to your pom.xml
	JUnit
	TestNG

	Writing your test
	Features Provided by CamelTestSupport

	JNDI
	Dynamically assigning ports
	Setup CamelContext once per class, or per every test method
	See Also

	Spring Testing
	CamelSpringTestSupport
	Plain Spring Test
	Plain Spring Test using JUnit 3.x with XML Config Example
	Plain Spring Test using JUnit 4.x with Java Config Example
	Plain Spring Test using JUnit 4.x Runner with XML Config

	Camel Enhanced Spring Test
	Adding more Mock expectations
	Further processing the received messages
	Sending and receiving messages
	See Also

	Camel Guice
	Dependency Injecting Camel with Guice
	Bootstrapping with JNDI
	Configuring Component, Endpoint or RouteBuilder instances
	Creating multiple RouteBuilder instances per type
	See Also

	Templating
	Example
	See Also

	Database
	Database endpoints
	Database pattern implementations

	Parallel Processing and Ordering
	How to achieve parallel processing
	Concurrency issues
	Ordering issues

	Recommendations
	Using Message Groups with Camel

	Asynchronous Processing
	Overview
	When to Use
	Interface Details
	Implementing Processors that Use the AsyncProcessor API
	Asynchronous Route Sequence Scenarios
	Mixing Synchronous and Asynchronous Processors
	Staying synchronous in an AsyncProcessor

	Implementing Virtual Topics on other JMS providers
	What's the Camel Transport for CXF
	Integrate Camel into CXF transport layer
	Setting up the Camel Transport in Spring
	Integrating the Camel Transport in a programmatic way

	Configure the destination and conduit with Spring
	Namespace
	The destination element
	The conduit element

	Configure the destination and conduit with Blueprint
	Example Using Camel as a load balancer for CXF
	Complete Howto and Example for attaching Camel to CXF
	Introduction
	Using a Producer

	Tutorials
	Tutorial on Spring Remoting with JMS
	Preface
	Prerequisites
	Distribution
	About
	Create the Camel Project
	Update the POM with Dependencies

	Writing the Server
	Create the Spring Service
	Define the Camel Routes
	Configure Spring
	Run the Server

	Writing The Clients
	Client Using The ProducerTemplate
	Client Using Spring Remoting
	Client Using Message Endpoint EIP Pattern
	Run the Clients

	Using the Camel Maven Plugin
	Using Camel JMX
	See Also
	Tutorial - camel-example-reportincident
	Introduction
	Motivation for this tutorial
	The use-case
	In EIP patterns

	Parts
	Links
	Part 1
	Prerequisites
	Initial Project Setup
	Developing the WebService
	CXF wsdl2java
	Configuration of the web.xml
	Getting rid of the old jsp world
	Configuration of CXF
	Implementing the ReportIncidentEndpoint
	Running our webservice
	Hitting the webservice
	Remote Debugging
	Adding a unit test

	End of part 1
	Resources
	Links
	Part 2
	Adding Camel
	Logging the "Hello World"
	Write to file - easy with the same code style
	Fully java based configuration of endpoints
	Lessons learned
	Reducing code lines
	Reducing even more code lines
	Message Translation
	First part of the solution
	End of part 2
	Links
	Part 3
	Recap
	Adding the Event Driven Consumer
	Sending the email
	Unit testing mail
	Adding new unit test
	End of part 3
	Links
	Part 4
	Introduction
	Routing
	RouteBuilder
	Adding the RouteBuilder

	Unit testing
	Adding the File Backup
	Setting the filename
	Using Bean Language to compute the filename

	Sending the email
	Using a script language to set the filename

	Conclusion
	Links
	Better JMS Transport for CXF Webservice using Apache Camel
	So how to connect Apache Camel and CXF
	How is JMS configured in Camel
	Setting up the CXF client
	Setting up the CamelContext
	Running the Example
	Conclusion

	Tutorial using Axis 1.4 with Apache Camel
	Prerequisites
	Distribution
	Introduction
	Setting up the project to run Axis
	Maven 2
	wsdl
	Configuring Axis
	Running the Example

	Integrating Spring
	Using Spring

	Integrating Camel
	CamelContext
	Store a file backup

	Running the example
	Unit Testing
	Smarter Unit Testing with Spring

	Unit Test calling WebService
	Annotations
	The End
	See Also

	Tutorial on using Camel in a Web Application
	Step1: Edit your web.xml
	Step 2: Create a /WEB-INF/applicationContext.xml file
	Hints and Tips

	Tutorial Business Partners
	Background and Introduction
	Business Background
	Tutorial Background
	High-Level Diagram
	Tutorial Tasks

	Let's Get Started!
	Step 1: Initial Maven build
	Step 2: Get Sample Files
	Step 3: XSD and JAXB Beans for the Canonical XML Format
	Generating JAXB Beans

	Step 4: Initial Work on Customer 1 Input (XML over FTP)
	Create an XSLT template
	Create a unit test
	Set Up a Skeletal Camel/Spring Unit Test
	Flesh Out the Unit Test

	Step 5: Initial Work on Customer 2 Input (CSV over HTTP)
	Create a CSV-handling POJO
	Create a unit test

	Step 6: Initial Work on Customer 3 Input (Excel over e-mail)
	Create an Excel-handling POJO
	Create a unit test

	Step 7: Put this all together into Camel routes for the Customer Input
	Step 8: Create a unit test for the Customer Input Routes

	Languages Supported Appendix
	Bean Language
	Using Bean Expressions from the Java DSL
	Using Bean Expressions from XML
	Writing the expression bean
	Non registry beans
	Other examples
	Dependencies

	Constant Expression Language
	Example usage
	Dependencies

	EL
	Variables
	Samples
	Dependencies

	Header Expression Language
	Example usage
	Dependencies

	JXPath
	Variables
	Using XML configuration
	Examples

	JXPath injection
	Loading script from external resource
	Dependencies

	Mvel
	Variables
	Samples
	Loading script from external resource
	Dependencies

	OGNL
	Variables
	Samples
	Loading script from external resource
	Dependencies

	Property Expression Language
	Example usage
	Dependencies

	Scripting Languages
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	See Also
	BeanShell
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	JavaScript
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Groovy
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Python
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	PHP
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Ruby
	Example
	ScriptContext
	Attributes
	Any scripting language
	Additional arguments to ScriptingEngine
	Using properties function
	Loading script from external resource
	Dependencies

	Simple Expression Language
	Variables
	OGNL expression support
	Operator support
	Using and / or

	Samples
	Referring to constants or enums

	Using new lines or tabs in XML DSLs
	Setting result type
	Changing function start and end tokens
	Loading script from external resource
	Dependencies

	File Expression Language
	Syntax
	File token example
	Relative paths
	Absolute paths

	Samples
	Using Spring PropertyPlaceholderConfigurer together with the File component
	Dependencies

	SQL Language
	Variables
	Loading script from external resource

	XPath
	Namespaces
	Variables
	Namespace given
	No namespace given

	Functions
	Using XML configuration
	Setting result type
	Using XPath on Headers
	Examples

	XPath injection
	Using XPathBuilder without an Exchange
	Using Saxon with XPathBuilder
	Setting a custom XPathFactory using System Property
	Enabling Saxon from Spring DSL
	Namespace auditing to aid debugging
	Logging the Namespace Context of your XPath expression/predicate
	Auditing namespaces

	Loading script from external resource
	Dependencies

	XQuery
	Options
	Examples
	Variables
	Using XML configuration
	Using XQuery as an endpoint
	Examples
	Learning XQuery
	Loading script from external resource
	Dependencies

	Data Format Appendix
	Data Format
	Unmarshalling
	Marshalling
	Using Spring XML

	Serialization
	Dependencies

	JAXB
	Using the Java DSL
	Using Spring XML
	Partial marshalling/unmarshalling
	Fragment
	Ignoring the NonXML Character
	Working with the ObjectFactory
	Setting encoding
	Controlling namespace prefix mapping
	Dependencies

	XmlBeans
	Dependencies

	XStream
	XMLInputFactory and XMLOutputFactory
	How to set the XML encoding in Xstream DataFormat?
	Dependencies

	CSV
	Options
	Marshalling a Map to CSV
	Unmarshalling a CSV message into a Java List
	Marshalling a List<Map> to CSV
	File Poller of CSV, then unmarshaling
	Marshaling with a pipe as delimiter
	Using autogenColumns, configRef and strategyRef attributes inside XML DSL
	Using skipFirstLine option while unmarshaling
	Unmarshaling with a pipe as delimiter
	Dependencies
	Options
	Marshal
	Unmarshal
	Dependencies
	HL7 DataFormat

	EDI DataFormat
	Flatpack DataFormat
	Options
	Usage
	Dependencies

	JSON
	Using JSON data format with the XStream library
	Using JSON data format with the Jackson library
	Using JSON data format with the GSON library
	Using JSON in Spring DSL

	Excluding POJO fields from marshalling
	Dependencies for XStream
	Dependencies for Jackson
	Dependencies for GSON
	Options
	Marshal
	Unmarshal
	Dependencies

	TidyMarkup
	Java DSL Example
	Spring XML Example
	Dependencies

	Bindy
	Annotations
	1. CsvRecord
	2. Link
	3. DataField
	
	4. FixedLengthRecord
	5. Message
	6. KeyValuePairField
	7. Section
	8. OneToMany
	Using the Java DSL
	Unmarshaling
	Marshaling

	Unit test
	Using Spring XML
	Dependencies

	XMLSecurity Data Format
	Basic Options
	Asymmetric Encryption Options
	Marshal
	Unmarshal
	Examples
	Full Payload encryption/decryption
	Partial Payload Content Only encryption/decryption*
	Partial Multi Node Payload Content Only encryption/decryption*
	Partial Payload Content Only encryption/decryption with choice of passPhrase(password)*
	Partial Payload Content Only encryption/decryption with passPhrase(password) and Algorithm*Â
	Partial Paryload Content with Namespace support
	Java DSL
	Spring XML

	Asymmetric Key Encryption
	Spring XML Sender
	Spring XML Recipient

	Dependencies
	Options
	Marshal
	Unmarshal
	Dependencies

	Castor
	Using the Java DSL
	Using Spring XML
	Options
	Dependencies

	Protobuf - Protocol Buffers
	Protobuf overview
	Defining the proto format
	Generating Java classes

	Java DSL
	Spring DSL
	Dependencies

	SOAP DataFormat
	ElementNameStrategy
	Using the Java DSL
	Using SOAP 1.2

	Multi-part Messages
	Multi-part Request
	Multi-part Response
	Holder Object mapping

	Examples
	Webservice client
	Webservice Server

	Dependencies

	Crypto
	Options
	Basic Usage
	Specifying the Encryption Algorithm
	Specifying an Initialization Vector
	Hashed Message Authentication Codes (HMAC)
	Supplying Keys Dynamically
	PGPDataFormat Options
	PGPDataFormat Message Headers
	Encrypting with PGPDataFormat
	To work with the previous example you need the following
	Managing your keyring

	Dependencies
	See Also

	Syslog DataFormat
	RFC3164 Syslog protocol
	Exposing a Syslog listener
	Sending syslog messages to a remote destination

	See Also

	Pattern Appendix
	Messaging Systems
	Message Channel
	Using This Pattern

	Message
	Using This Pattern

	Pipes and Filters
	Using Routing Logic
	Using This Pattern

	Message Router
	Choice without otherwise
	Using This Pattern

	Message Translator
	Using This Pattern

	Message Endpoint
	Using This Pattern

	Messaging Channels
	Point to Point Channel
	Using This Pattern

	Publish Subscribe Channel
	Using Routing Logic
	Using This Pattern

	Dead Letter Channel
	Redelivery
	About moving Exchange to dead letter queue and using handled
	About moving Exchange to dead letter queue and using the original message
	OnRedelivery
	Redelivery default values
	Redeliver Delay Pattern

	Redelivery header
	Which endpoint failed

	Which route failed
	Control if redelivery is allowed during stopping/shutdown
	Samples
	How can I modify the Exchange before redelivery?
	Using This Pattern

	Guaranteed Delivery
	Using This Pattern

	Message Bus
	Using This Pattern

	Message Construction

	Event Message
	Explicitly specifying InOnly
	Using This Pattern

	Request Reply
	Explicitly specifying InOut
	Using This Pattern

	Correlation Identifier
	See Also

	Return Address
	Using This Pattern

	Message Routing
	Content Based Router
	Using This Pattern

	Message Filter
	Using stop
	Knowing if Exchange was filtered or not
	Using This Pattern

	Dynamic Router
	Options
	Dynamic Router in Camel 2.5 onwards
	Java DSL
	Spring XML
	@DynamicRouter annotation

	Dynamic Router in Camel 2.4 or older
	Using This Pattern

	Recipient List
	Options
	Static Recipient List
	Dynamic Recipient List
	Iteratable value
	Using delimiter in Spring XML

	Sending to multiple recipients in parallel
	Stop continuing in case one recipient failed
	Ignore invalid endpoints
	Using custom AggregationStrategy
	Using custom thread pool
	Using method call as recipient list
	Using timeout
	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Splitter
	Options
	Exchange properties
	Examples
	Using Tokenizer from Spring XML Extensions*
	What the Splitter returns
	Parallel execution of distinct 'parts'
	Stream based
	Streaming big XML payloads using Tokenizer language
	Splitting files by grouping N lines together
	Specifying a custom aggregation strategy
	Specifying a custom ThreadPoolExecutor
	Using a Pojo to do the splitting
	Split aggregate request/reply sample

	Stop processing in case of exception
	Using onPrepare to execute custom logic when preparing messages
	Sharing unit of work
	Using This Pattern

	Aggregator
	Aggregator options
	Exchange Properties
	About AggregationStrategy
	About completion
	Persistent AggregationRepository
	Examples
	Using completionTimeout
	Using TimeoutAwareAggregationStrategy
	Using CompletionAwareAggregationStrategy
	Using completionSize
	Using completionPredicate
	Using dynamic completionTimeout
	Using dynamic completionSize
	Using This Pattern
	Manually Force the Completion of All Aggregated Exchanges Immediately
	Using a List<V> in AggregationStrategy

	See also
	Resequencer
	Batch Resequencing
	Allow Duplicates
	Reverse
	Resequence JMS messages based on JMSPriority
	Ignore invalid exchanges
	Reject Old Exchanges

	Stream Resequencing
	Further Examples
	Using This Pattern

	Composed Message Processor
	Example using both Splitter and Aggregator
	Example using only Splitter
	Using This Pattern

	Scatter-Gather
	Dynamic Scatter-Gather Example
	Static Scatter-Gather Example
	Using This Pattern

	Routing Slip
	Options
	Example
	Configuration options

	Ignore invalid endpoints
	Expression supporting
	Further Examples
	Using This Pattern

	Throttler
	Options
	Examples
	Camel 2.7.x or older
	Camel 2.8 onwards

	Dynamically changing maximum requests per period
	Asynchronous delaying
	Using This Pattern

	Sampling Throttler
	Options
	Samples
	Using This Pattern

	See Also
	Delayer
	Options
	Spring DSL

	Asynchronous delaying
	From Java DSL
	From Spring XML

	Creating a custom delay
	Using This Pattern

	See Also
	Load Balancer
	Built-in load balancing policies
	Round Robin
	Failover
	Using failover in Spring DSL
	Using failover in round robin mode

	Weighted Round-Robin and Random Load Balancing
	Using Weighted round-robin & random load balancing

	Custom Load Balancer
	Using This Pattern

	Multicast
	Options
	Example

	Stop processing in case of exception
	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Loop
	Options
	Exchange properties
	Examples
	Using copy mode
	Using This Pattern

	Message Transformation
	Content Enricher
	Content enrichment using a Message Translator or a Processor

	Content enrichment using the enrich DSL element
	Enrich Options
	Aggregation strategy is optional

	Content enrichment using pollEnrich
	PollEnrich Options
	Example
	Using This Pattern

	Content Filter
	Using This Pattern

	Claim Check
	Example
	Using This Pattern

	Normalizer
	Example
	See Also
	Using This Pattern

	Sort
	Options
	Using from Java DSL
	Using from Spring DSL
	Using This Pattern

	Messaging Endpoints
	Messaging Mapper
	See also
	Using This Pattern

	Event Driven Consumer
	Using This Pattern

	Polling Consumer
	ConsumerTemplate
	Using ConsumerTemplate with Spring DSL
	Timer based polling consumer

	Scheduled Poll Components
	ScheduledPollConsumer Options
	About error handling and scheduled polling consumers
	Controlling the error handling using PollingConsumerPollStrategy
	Configuring an Endpoint to use PollingConsumerPollStrategy
	Using This Pattern

	See Also
	Competing Consumers
	Enabling Competing Consumers with JMS
	Using This Pattern

	Message Dispatcher
	See Also
	Using This Pattern

	Selective Consumer
	Using This Pattern

	Durable Subscriber
	See Also
	Using This Pattern

	Idempotent Consumer
	Options
	Using the Fluent Builders
	Spring XML example
	How to handle duplicate messages in the route
	How to handle duplicate message in a clustered environment with a data grid
	Using This Pattern

	Transactional Client
	Transaction Policies
	OSGi Blueprint

	Database Sample
	JMS Sample

	Using multiple routes with different propagation behaviors
	See Also
	Using This Pattern
	Messaging Gateway
	See Also
	Using This Pattern

	Service Activator
	See Also
	Using This Pattern

	System Management
	Detour
	Example
	Using This Pattern

	Wire Tap
	Options
	WireTap thread pool
	WireTap node
	Sending a copy (traditional wiretap)
	Sending a new Exchange
	Further Example

	Sending a new Exchange and set headers in DSL
	Java DSL
	XML DSL

	Using onPrepare to execute custom logic when preparing messages
	Using This Pattern

	Log
	Using log DSL
	Using log DSL from Spring
	Using slf4j Marker
	Using This Pattern

	Component Appendix
	ActiveMQ Component
	URI format
	Options
	Configuring the Connection Factory
	Configuring the Connection Factory using Spring XML
	Using connection pooling
	Invoking MessageListener POJOs in a Camel route
	Using ActiveMQ Destination Options
	Consuming Advisory Messages
	Getting Component JAR
	See Also

	ActiveMQ Journal Component
	URI format
	Options
	Expected Exchange Data Types
	See Also

	AMQP
	URI format
	See Also

	SQS Component
	URI Format
	URI Options
	Batch Consumer
	Usage
	Message headers set by the SQS producer
	Message headers set by the SQS consumer
	Advanced AmazonSQSClient configuration

	Dependencies
	See Also

	Atom Component
	URI format
	Options
	Exchange data format
	Message Headers
	Samples
	See Also

	Bean Component
	URI format
	Options
	Using
	Bean as endpoint
	Java DSL bean syntax
	Bean Binding
	See Also

	Bean Validation Component
	URI format
	URI Options
	ServiceMix4/OSGi Deployment.
	Example
	See Also

	Browse Component
	URI format
	Sample
	See Also

	Cache Component
	URI format
	Options
	Sending/Receiving Messages to/from the cache
	Message Headers up to Camel 2.7
	Message Headers Camel 2.8+
	Cache Producer
	Cache Consumer
	Cache Processors

	Cache Usage Samples
	Example 1: Configuring the cache
	Example 2: Adding keys to the cache
	Example 2: Updating existing keys in a cache
	Example 3: Deleting existing keys in a cache
	Example 4: Deleting all existing keys in a cache
	Example 5: Notifying any changes registering in a Cache to Processors and other Producers
	Example 6: Using Processors to selectively replace payload with cache values
	Example 7: Getting an entry from the Cache
	Example 8: Checking for an entry in the Cache

	Management of EHCache
	Cache replication Camel 2.8+
	Example: JMS cache replication

	Class Component
	URI format
	Options
	Using

	Setting properties on the created instance
	See Also

	Cometd Component
	URI format
	Examples
	Options
	Authentication
	Setting up SSL for Cometd Component
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	See Also

	Context Component
	URI format
	Example
	Defining the context component
	Using the context component
	Naming endpoints

	Crypto component for Digital Signatures
	Introduction
	URI format
	Options
	Using
	1) Raw keys
	2) KeyStores and Aliases.
	3) Changing JCE Provider and Algorithm
	4) Changing the Signature Mesasge Header
	5) Changing the buffersize
	6) Supplying Keys dynamically.

	See Also

	CXF Component
	URI format
	Options
	The descriptions of the dataformats
	How to enable CXF's LoggingOutInterceptor in MESSAGE mode

	Description of relayHeaders option
	Available only in POJO mode
	Changes since Release 2.0

	Configure the CXF endpoints with Spring
	Configuring the CXF Endpoints with Apache Aries Blueprint.
	How to make the camel-cxf component use log4j instead of java.util.logging
	How to let camel-cxf response message with xml start document
	How to consume a message from a camel-cxf endpoint in POJO data format
	How to prepare the message for the camel-cxf endpoint in POJO data format
	How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
	How to get and set SOAP headers in POJO mode
	How to get and set SOAP headers in PAYLOAD mode
	SOAP headers are not available in MESSAGE mode
	How to throw a SOAP Fault from Camel
	How to propagate a camel-cxf endpoint's request and response context
	Attachment Support
	Streaming Support in PAYLOAD mode
	See Also

	CXF Bean Component
	URI format
	Options
	Headers
	A Working Sample

	CXFRS Component
	URI format
	Options
	How to configure the REST endpoint in Camel
	How to consume the REST request in Camel
	How to invoke the REST service through camel-cxfrs producer

	DataSet Component
	URI format
	Options
	Configuring DataSet
	Example
	Properties on SimpleDataSet
	See Also

	Db4o Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	Direct Component
	URI format
	Options
	Samples
	See Also

	DNS
	URI format
	Options
	Headers
	Examples
	IP lookup
	DNS lookup
	DNS Dig

	See Also

	EJB Component
	URI format
	Options
	Bean Binding
	Examples
	Using Java DSL
	Using Spring XML

	See Also

	Esper
	URI format
	Options
	Demo
	See Also

	Event Component
	URI format
	See Also

	File Component
	URI format
	URI Options
	Common
	Consumer
	Default behavior for file consumer
	Producer
	Default behavior for file producer

	Move and Delete operations
	Fine grained control over Move and PreMove option
	About moveFailed

	Message Headers
	File producer only
	File consumer only

	Batch Consumer
	Exchange Properties, file consumer only

	Using charset
	Common gotchas with folder and filenames
	Filename Expression
	Consuming files from folders where others drop files directly
	Using done files
	Writing done files
	Samples
	Read from a directory and write to another directory
	Read from a directory and write to another directory using a overrule dynamic name
	Reading recursively from a directory and writing to another
	Using flatten

	Reading from a directory and the default move operation
	Read from a directory and process the message in java
	Writing to files
	Write to subdirectory using Exchange.FILE_NAME
	Using expression for filenames

	Avoiding reading the same file more than once (idempotent consumer)
	Using a file based idempotent repository
	Using a JPA based idempotent repository

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher

	Sorting using Comparator
	Sorting using sortBy
	Using GenericFileProcessStrategy
	Using filter
	How to use the Camel error handler to deal with exceptions triggered outside the routing engine
	Using consumer.bridgeErrorHandler

	Debug logging
	See Also

	Flatpack Component
	URI format
	URI Options
	Examples
	Message Headers
	Message Body
	Header and Trailer records
	Using the endpoint

	Flatpack DataFormat
	Options
	Usage
	Dependencies
	See Also

	FreeMarker
	URI format
	Options
	Headers
	FreeMarker Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	FTP/SFTP/FTPS Component
	URI format
	URI Options
	More URI options
	Examples
	Default when consuming files
	limitations

	Message Headers
	About timeouts
	Using Local Work Directory
	Stepwise changing directories
	Using stepwise=true (default mode)
	Using stepwise=false

	Samples
	Consuming a remote FTPS server (implicit SSL) and client authentication
	Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	Filter using org.apache.camel.component.file.GenericFileFilter
	Filtering using ANT path matcher
	Debug logging
	See Also

	Camel Components for Google App Engine
	Camel context
	Camel 2.1
	Camel 2.2 or higher

	The web.xml

	Hazelcast Component
	URI format
	Sections
	Usage of Map
	map cache producer - to("hazelcast:map:foo")
	Sample for put:
	Sample for get:
	Sample for update:
	Sample for delete:
	Sample for query

	map cache consumer - from("hazelcast:map:foo")
	Usage of Multi Map
	multimap cache producer - to("hazelcast:multimap:foo")

	
	Sample for put:
	Sample for get:
	Sample for update:
	Sample for delete:
	Sample for query
	map cache consumer - from("hazelcast:map:foo")
	Usage of Multi Map
	multimap cache producer - to("hazelcast:multimap:foo")
	Sample for put:
	Sample for removevalue:
	Sample for get:
	Sample for delete:

	multimap cache consumer - from("hazelcast:multimap:foo")

	Usage of Queue
	Queue producer â�� to(â��hazelcast:queue:fooâ��)
	Sample for add:
	Sample for put:
	Sample for poll:
	Sample for peek:
	Sample for offer:
	Sample for removevalue:

	Queue consumer â�� from(â��hazelcast:queue:fooâ��)

	Usage of List
	List producer â�� to(â��hazelcast:list:fooâ��)
	Sample for add:
	Sample for get:
	Sample for setvalue:
	Sample for removevalue:

	List consumer â�� from(â��hazelcast:list:fooâ��)

	Usage of SEDA
	SEDA producer â�� to(â��hazelcast:seda:fooâ��)
	SEDA consumer â�� from(â��hazelcast:seda:fooâ��)

	Usage of Atomic Number
	atomic number producer - to("hazelcast:atomicnumber:foo")
	Sample for set:
	Sample for get:
	Sample for increment:
	Sample for decrement:
	Sample for destroy

	cluster support
	instance consumer - from("hazelcast:instance:foo")

	HDFS Component
	URI format
	Options
	KeyType and ValueType

	Splitting Strategy
	Controlling to close file stream
	Using this component in OSGi

	Hibernate Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	See Also

	HL7 Component
	HL7 MLLP protocol
	Exposing a HL7 listener

	HL7 Model using java.lang.String
	HL7v2 Model using HAPI
	HL7 DataFormat
	Message Headers
	Options
	Dependencies
	Terser language (Camel 2.11)
	HL7 Validation predicate (Camel 2.11)
	HL7 Acknowledgement expression (Camel 2.11)
	More Samples
	Sample using plain String objects

	See Also

	HTTP Component
	URI format
	Examples
	HttpEndpoint Options
	Authentication and Proxy
	HttpComponent Options
	Message Headers
	Message Body
	Response code
	HttpOperationFailedException
	Calling using GET or POST
	How to get access to HttpServletRequest and HttpServletResponse
	Using client timeout - SO_TIMEOUT

	More Examples
	Configuring a Proxy
	Using proxy settings outside of URI

	Configuring charset
	Sample with scheduled poll
	Getting the Response Code
	Using throwExceptionOnFailure=false to get any response back
	Disabling Cookies
	Advanced Usage
	Setting MaxConnectionsPerHost
	Using preemptive authentication
	Accepting self signed certificates from remote server
	Setting up SSL for HTTP Client
	Using the JSSE Configuration Utility
	Configuring Apache HTTP Client Directly

	See Also

	iBATIS
	URI format
	Options
	Message Headers
	Message Body
	Samples
	Using StatementType for better control of IBatis
	Scheduled polling example
	Using onConsume

	See Also

	IRC Component
	URI format
	Options
	SSL Support
	Using the JSSE Configuration Utility
	Programmatic configuration of the endpoint
	Spring DSL based configuration of endpoint

	Using the legacy basic configuration options

	Using keys
	See Also

	Jasypt component
	Tooling
	Tooling dependencies for Camel 2.5 and 2.6
	Tooling dependencies for Camel 2.7 or better

	URI Options
	Protecting the master password
	Example with Java DSL
	Example with Spring XML
	See Also

	JavaSpace Component
	URI format
	Options
	Examples
	Sending and Receiving Entries
	Sending and receiving serializable objects
	Using JavaSpace as a remote invocation transport

	See Also

	JBI Component
	URI format
	Examples

	URI options
	Examples

	Using Stream bodies
	Creating a JBI Service Unit
	See Also

	JCR Component
	URI format
	Usage
	Producer
	Consumer

	Example
	See Also

	JDBC Component
	URI format
	Options
	Result
	Message Headers

	Generated keys
	Samples
	Sample - Polling the database every minute
	See Also

	Jetty Component
	URI format
	Options
	Message Headers
	Usage
	Component Options
	Producer Example
	Consumer Example
	Session Support
	SSL Support (HTTPS)
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	Configuring Jetty Directly
	Configuring general SSL properties
	How to obtain reference to the X509Certificate
	Configuring general HTTP properties

	Default behavior for returning HTTP status codes
	Customizing HttpBinding
	Jetty handlers and security configuration
	How to return a custom HTTP 500 reply message
	Multi-part Form support
	Jetty JMX support
	See Also

	Jing Component
	URI format
	Options
	Example
	See Also

	JMS Component
	URI format
	Notes
	Using ActiveMQ
	Transactions and Cache Levels
	Durable Subscriptions
	Message Header Mapping

	Options
	Most commonly used options
	All the other options

	Message Mapping between JMS and Camel
	Disabling auto-mapping of JMS messages
	Using a custom MessageConverter
	Controlling the mapping strategy selected

	Message format when sending
	Message format when receiving
	About using Camel to send and receive messages and JMSReplyTo
	JmsProducer
	JmsConsumer

	Reuse endpoint and send to different destinations computed at runtime
	Configuring different JMS providers
	Using JNDI to find the ConnectionFactory

	Concurrent Consuming
	Request-reply over JMS
	Request-reply over JMS and using a shared fixed reply queue
	Request-reply over JMS and using an exclusive fixed reply queue

	Synchronizing clocks between senders and receivers
	About time to live
	Enabling Transacted Consumption
	Using JMSReplyTo for late replies
	Using a request timeout
	Samples
	Receiving from JMS
	Sending to a JMS
	Using Annotations
	Spring DSL sample
	Other samples
	Using JMS as a Dead Letter Queue storing Exchange
	Using JMS as a Dead Letter Channel storing error only

	Sending an InOnly message and keeping the JMSReplyTo header
	Setting JMS provider options on the destination
	See Also

	JMX Component
	Standard JMX Consumer Configuration
	URI Format
	URI Options
	ObjectName Construction
	Domain with Name property
	Domain with Hashtable
	Example

	Monitor Type Consumer
	Example
	URI Options for Monitor Type

	See Also

	JPA Component
	Sending to the endpoint
	Consuming from the endpoint
	URI format
	Options
	Message Headers
	Configuring EntityManagerFactory
	Configuring TransactionManager
	Using a consumer with a named query
	Using a consumer with a query
	Using a consumer with a native query
	Example
	Using the JPA based idempotent repository
	See Also

	JT/400 Component
	URI format
	URI options
	Usage
	Connection pool
	Remote program call (Camel 2.7)

	Example
	Remote program call example (Camel 2.7)
	Writing to keyed data queues
	Reading from keyed data queues

	See Also

	Language
	URI format
	URI Options
	Message Headers
	Examples
	Loading scripts from resources
	See Also

	LDAP Component
	URI format
	Options
	Result
	DirContext
	Samples
	Binding using credentials

	See Also

	Log Component
	URI format
	Options
	Formatting
	Regular logger sample
	Regular logger with formatter sample
	Throughput logger with groupSize sample
	Throughput logger with groupInterval sample
	See Also

	Lucene (Indexer and Search) Component
	URI format
	Insert Options
	Query Options
	Sending/Receiving Messages to/from the cache
	Message Headers
	Lucene Producers
	Lucene Processor

	Lucene Usage Samples
	Example 1: Creating a Lucene index
	Example 2: Loading properties into the JNDI registry in the Camel Context
	Example 2: Performing searches using a Query Producer
	Example 3: Performing searches using a Query Processor

	Mail Component
	URI format
	Sample endpoints
	Default ports

	Options
	SSL support
	Using the JSSE Configuration Utility
	Programmatic configuration of the endpoint
	Spring DSL based configuration of endpoint

	Configuring JavaMail Directly

	Mail Message Content
	Headers take precedence over pre-configured recipients
	Multiple recipients for easier configuration
	Setting sender name and email
	SUN JavaMail
	Samples
	Sending mail with attachment sample
	SSL sample
	Consuming mails with attachment sample
	How to split a mail message with attachments
	Using custom SearchTerm
	See Also

	MINA Component
	URI format
	Options
	Using a custom codec
	Sample with sync=false
	Sample with sync=true
	Sample with Spring DSL
	Configuring Mina endpoints using Spring bean style
	Closing Session When Complete
	Get the IoSession for message
	Configuring Mina filters
	See Also

	Mock Component
	URI format
	Options
	Simple Example
	Using assertPeriod

	Setting expectations
	Adding expectations to specific messages

	Mocking existing endpoints
	Mocking existing endpoints using the camel-test component
	Mocking existing endpoints with XML DSL
	Mocking endpoints and skip sending to original endpoint

	Limiting the number of messages to keep
	Testing with arrival times
	See Also

	MSV Component
	URI format
	Options
	Example
	See Also

	MyBatis
	URI format
	Options
	Message Headers
	Message Body
	Samples
	Using StatementType for better control of MyBatis
	Using InsertList StatementType
	Using UpdateList StatementType
	Using DeleteList StatementType
	Notice on InsertList, UpdateList and DeleteList StatementTypes
	Scheduled polling example
	Using onConsume
	Participating in transactions

	See Also

	Nagios
	URI format
	Options
	Headers
	Sending message examples
	Using NagiosEventNotifer
	See Also

	Netty Component
	URI format
	Options
	Registry based Options
	Using non shareable encoders or decoders

	Sending Messages to/from a Netty endpoint
	Netty Producer
	Netty Consumer

	Usage Samples
	A UDP Netty endpoint using Request-Reply and serialized object payload
	A TCP based Netty consumer endpoint using One-way communication
	An SSL/TCP based Netty consumer endpoint using Request-Reply communication
	Using the JSSE Configuration Utility
	Programmatic configuration of the component
	Spring DSL based configuration of endpoint

	Using Basic SSL/TLS configuration on the Jetty Component

	Using Multiple Codecs

	Closing Channel When Complete
	Adding custom channel pipeline factories to gain complete control over a created pipeline
	See Also

	NMR Component
	Installing in Apache Servicemix
	Installing in plain Apache Karaf
	Configuration
	NMR consumer and producer endpoints
	URI format
	URI Options
	Examples

	Using Stream bodies
	Testing

	See Also

	Quartz Component
	URI format
	Options
	Configuring quartz.properties file
	Starting the Quartz scheduler
	Clustering
	Message Headers
	Using Cron Triggers
	Specifying time zone
	See Also

	QuickFIX/J Component
	URI format

	Endpoints
	Exchange Format
	QuickFIX/J Configuration Extensions
	Communication Connectors
	Logging
	Message Store
	Message Factory
	JMX
	Other Defaults
	Minimal Initiator Configuration Example

	Using the InOut Message Exchange Pattern
	Implementing InOut Exchanges for Consumers
	Implementing InOut Exchanges for Producers
	Example

	Spring Configuration
	Exception handling
	FIX Sequence Number Management
	Route Examples

	QuickFIX/J Component Prior to Camel 2.5
	URI format
	Exchange data format
	Samples
	See Also

	Printer Component
	URI format
	Options
	Sending Messages to a Printer
	Printer Producer

	Usage Samples
	Example 1: Printing text based payloads on a Default printer using letter stationary and one-sided mode
	Example 2: Printing GIF based payloads on a Remote printer using A4 stationary and one-sided mode
	Example 3: Printing JPEG based payloads on a Remote printer using Japanese Postcard stationary and one-sided mode

	Properties Component
	URI format
	Options

	Using PropertyPlaceholder
	Syntax
	PropertyResolver
	Defining location
	Using system and environment variables in locations

	Configuring in Java DSL
	Configuring in Spring XML
	Using a Properties from the Registry
	Examples using properties component
	Examples
	Example with Simple language
	Additional property placeholder supported in Spring XML
	Overriding a property setting using a JVM System Property
	Using property placeholders for any kind of attribute in the XML DSL
	Using property placeholder in the Java DSL
	Using Blueprint property placeholder with Camel routes
	Overriding Blueprint property placeholders outside CamelContext
	Using .cfg or .properties file for Blueprint property placeholders
	Using .cfg file and overriding properties for Blueprint property placeholders

	Bridging Spring and Camel property placeholders
	Overriding properties from Camel test kit
	See Also

	Ref Component
	URI format
	Runtime lookup
	Sample
	See Also

	Restlet Component
	URI format
	Options
	Component Options
	Message Headers
	Message Body
	Samples
	Restlet Endpoint with Authentication
	Single restlet endpoint to service multiple methods and URI templates
	Using Restlet API to populate response
	Using the Restlet servlet within a webapp

	See Also

	RMI Component
	URI format
	Options
	Using
	See Also

	RSS Component
	URI format
	Options
	Exchange data types
	Message Headers
	RSS Dataformat
	Filtering entries
	See Also

	SEDA Component
	URI format
	Options
	Use of Request Reply
	Concurrent consumers
	Thread pools
	Sample
	Using multipleConsumers
	Extracting queue information.
	See Also

	Servlet Component
	URI format
	Options
	Message Headers
	Usage
	Putting Camel JARs in the app server boot classpath
	Sample
	Sample when using Spring 3.x
	Sample when using Spring 2.x
	Sample when using OSGi

	See Also

	Shiro Security Component
	Shiro Security Basics
	Instantiating a ShiroSecurityPolicy Object
	ShiroSecurityPolicy Options
	Applying Shiro Authentication on a Camel Route
	Applying Shiro Authorization on a Camel Route
	Creating a ShiroSecurityToken and injecting it into a Message Exchange
	Sending Messages to routes secured by a ShiroSecurityPolicy

	SIP Component
	URI format
	Options
	Registry based Options
	Sending Messages to/from a SIP endpoint
	Creating a Camel SIP Publisher
	Creating a Camel SIP Subscriber

	SMPP Component
	URI format
	URI Options
	Producer Message Headers
	Consumer Message Headers
	Exception handling
	Samples
	Debug logging
	See Also

	SNMP Component
	URI format
	Options
	The result of a poll
	Examples
	See Also

	Spring Integration Component
	URI format
	Options
	Usage
	Examples
	Using the Spring integration endpoint
	The Source and Target adapter

	See Also

	Spring LDAP Component
	URI format
	Options
	Usage
	Search
	Bind
	Unbind

	Spring Web Services Component
	URI format
	Options
	Registry based options

	Message headers

	Accessing web services
	Sending SOAP and WS-Addressing action headers
	The header and attachment propagation
	How to use MTOM attachments
	The custom header and attachment filtering
	Using a custom MessageSender and MessageFactory

	Exposing web services
	Endpoint mapping in routes
	Alternative configuration, using existing endpoint mappings

	POJO (un)marshalling
	See Also

	Stream Component
	URI format
	Options
	Message content
	Samples
	See Also

	String Template
	URI format
	Options
	Headers
	Hot reloading
	StringTemplate Attributes
	Samples
	The Email Sample
	See Also

	SQL Component
	URI format
	Options
	Treatment of the message body
	Result of the query
	Header values
	Configuration
	Sample
	Using named parameters

	Using the JDBC based idempotent repository
	Customize the JdbcMessageIdRepository

	Using the JDBC based aggregation repository
	What is preserved when persisting
	Recovery
	Database
	Storing body and headers as text
	Codec (Serialization)
	Transaction
	Service (Start/Stop)
	Aggregator configuration

	See Also

	Test Component
	URI format
	Example
	See Also

	Timer Component
	URI format
	Options
	Exchange Properties
	Message Headers
	Sample
	Firing only once

	See Also

	Validation Component
	URI format
	Options
	Example
	See Also

	Velocity
	URI format
	Options
	Message Headers
	Velocity Context
	Hot reloading
	Dynamic templates
	Samples
	The Email Sample
	See Also

	VM Component
	URI format
	Options
	Samples
	See Also

	XMPP Component
	URI format
	Options
	Headers and setting Subject or Language
	Examples
	See Also

	XQuery
	URI format
	See Also

	XSLT
	URI format
	Options
	Using XSLT endpoints
	Getting Parameters into the XSLT to work with
	Spring XML versions
	Using xsl:include
	Using xsl:include and default prefix

	Dynamic stylesheets
	Notes on using XSLT and Java Versions
	See Also

