
MVC 1.0
Model-View-Controller Specification

Ivar Grimstad, Christian Kaltepoth

Version 1.0 Final Draft, December 2019

Table of Contents
License. 1

1. Introduction. 7

1.1. Goals. 7

1.2. Non-Goals . 7

1.3. Additional Information . 8

1.4. Terminology . 8

1.5. Conventions . 8

1.6. Specification Leads. 9

1.7. Expert Group Members. 9

1.8. Contributors . 9

1.9. Acknowledgements . 10

2. Models, Views and Controllers . 11

2.1. Controllers . 11

2.2. Models . 14

2.3. Views . 16

3. Data Binding . 19

3.1. Introduction. 19

3.2. @MvcBinding annotation. 20

3.3. Error handling with BindingResult . 20

3.4. Converting to Java types . 21

4. Security . 23

4.1. Introduction. 23

4.2. Cross-site Request Forgery . 23

4.3. Cross-site Scripting . 25

5. Events . 26

5.1. Observers . 26

6. Applications. 35

6.1. MVC Applications . 35

6.2. MVC Context. 35

6.3. Providers in MVC . 35

6.4. Annotation Inheritance. 36

6.5. Configuration in MVC . 36

7. View Engines . 37

7.1. Introduction. 37

7.2. Selection Algorithm . 38

7.3. FacesServlet . 39

8. Internationalization . 40

8.1. Introduction. 40

8.2. Resolving Algorithm . 40

8.3. Default Locale Resolver. 42

Appendix A: Summary of Annotations . 43

Bibliography . 44

License
This specification is dual licensed under the JCP License and the Apache 2.0 License.

JCP License

IVAR GRIMSTAD IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT. PLEASE
READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY DOWNLOADING THIS
SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU ARE
NOT WILLING TO BE BOUND BY IT, SELECT THE "DECLINE" BUTTON AT THE BOTTOM OF THIS
PAGE.

Specification: JSR-371 MVC ("Specification")
Version: 1.0
Status: Final Release
Specification Lead: Ivar Grimstad ("Specification Lead")
Release: Final Release

Copyright 2019 JSR 371 expert group and contributors
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-
exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under
Specification Lead’s applicable intellectual property rights to view, download, use and
reproduce the Specification only for the purpose of internal evaluation. This includes (i)
developing applications intended to run on an implementation of the Specification, provided
that such applications do not themselves implement any portion(s) of the Specification, and (ii)
discussing the Specification with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the Specification provided that
such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a
perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited
license (without the right to sublicense) under any applicable copyrights or, subject to the
provisions of subsection 4 below, patent rights it may have covering the Specification to create
and/or distribute an Independent Implementation of the Specification that: (a) fully implements
the Specification including all its required interfaces and functionality; (b) does not modify,
subset, superset or otherwise extend the Licensor Name Space, or include any public or
protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space
other than those required/authorized by the Specification or Specifications being implemented;
and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition,
the foregoing license is expressly conditioned on your not acting outside its scope. No license is
granted hereunder for any other purpose (including, for example, modifying the Specification,
other than to the extent of your fair use rights, or distributing the Specification to third parties).
Also, no right, title, or interest in or to any trademarks, service marks, or trade names of

1

Specification Lead or Specification Lead’s licensors is granted hereunder. Java, and Java-related
logos, marks and names are trademarks or registered trademarks of Oracle America, Inc. in the
U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph
or any other particular "pass through" requirements in any license You grant concerning the
use of your Independent Implementation or products derived from it. However, except with
respect to Independent Implementations (and products derived from them) that satisfy
limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass
through to your licensees any licenses under Specification Lead’s applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning their
implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2
above that would be infringed by all technically feasible implementations of the
Specification, such license is conditioned upon your offering on fair, reasonable and non-
discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-
transferable, worldwide license under Your patent rights which are or would be infringed
by all technically feasible implementations of the Specification to develop, distribute and
use a Compliant Implementation.

b. With respect to any patent claims owned by Specification Lead and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided in a
technically feasible manner when implementing the Specification, such license shall
terminate with respect to such claims if You initiate a claim against Specification Lead that it
has, in the course of performing its responsibilities as the Specification Lead, induced any
other entity to infringe Your patent rights.

c. Also with respect to any patent claims owned by Specification Lead and covered by the
license granted under subparagraph 2 above, where the infringement of such claims can be
avoided in a technically feasible manner when implementing the Specification such license,
with respect to such claims, shall terminate if You initiate a claim against Specification Lead
that its making, having made, using, offering to sell, selling or importing a Compliant
Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an
implementation of the Specification that neither derives from any of Specification Lead’s source
code or binary code materials nor, except with an appropriate and separate license from
Specification Lead, includes any of Specification Lead’s source code or binary code materials;
"Licensor Name Space" shall mean the public class or interface declarations whose names begin
with "java", "javax", "com.<Specification Lead>" or their equivalents in any subsequent naming
convention adopted by Oracle through the Java Community Process, or any recognized
successors or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the
test suite and accompanying TCK User’s Guide provided by Specification Lead which
corresponds to the Specification and that was available either (i) from Specification Lead’s 120
days before the first release of Your Independent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 days from such release but against which
You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach

2

the Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS
A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not
represent any commitment to release or implement any portion of the Specification in any product.
In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS
LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
OR RELATED IN ANY WAY TO YOUR HAVING, IMPELEMENTING OR OTHERWISE USING USING THE
SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. You will indemnify, hold harmless, and defend Specification
Lead and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii)
the use or distribution of your Java application, applet and/or implementation; and/or (iii) any
claims that later versions or releases of any Specification furnished to you are incompatible with
the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or
by a U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights
in the Software and accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully
paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to
incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal
law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import
regulations in other countries. Licensee agrees to comply strictly with all such laws and regulations

3

and acknowledges that it has the responsibility to obtain such licenses to export, re-export or
import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior
or contemporaneous oral or written communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of any quote, order,
acknowledgment, or other communication between the parties relating to its subject matter during
the term of this Agreement. No modification to this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

Rev. April, 2006

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined
by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50 outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of
a Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes of
this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

4

http://www.apache.org/licenses/

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or
by combination of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted to
You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License;
and

b. You must cause any modified files to carry prominent notices stating that You changed the
files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may

5

add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including,
without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,
indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

6

Chapter 1. Introduction
Model-View-Controller, or MVC for short, is a common pattern in Web frameworks where it is used
predominantly to build HTML applications. The model refers to the application’s data, the view to
the application’s data presentation and the controller to the part of the system responsible for
managing input, updating models and producing output.

Web UI frameworks can be categorized as action-based or component-based. In an action-based
framework, HTTP requests are routed to controllers where they are turned into actions by
application code; in a component-based framework, HTTP requests are grouped and typically
handled by framework components with little or no interaction from application code. In other
words, in a component-based framework, the majority of the controller logic is provided by the
framework instead of the application.

The API defined by this specification falls into the action-based category and is, therefore, not
intended to be a replacement for component-based frameworks such as JavaServer Faces (JSF) [1],
but simply a different approach to building Web applications on the Java EE platform.

1.1. Goals
The following are goals of the API:

Goal 1

Leverage existing Java EE technologies like CDI [2] and Bean Validation [3].

Goal 2

Define a solid core to build MVC applications without necessarily supporting all the features in
its first version.

Goal 3

Build on top of JAX-RS for the purpose of re-using its matching and binding layers.

Goal 4

Provide built-in support for JSPs and Facelets view languages.

1.2. Non-Goals
The following are non-goals of the API:

Non-Goal 1

Define a new view (template) language and processor.

Non-Goal 2

Support standalone implementations of MVC running outside of Java EE.

Non-Goal 3

Support REST services not based on JAX-RS.

7

Non-Goal 4

Provide built-in support for view languages that are not part of Java EE.

It is worth noting that, even though a standalone implementation of MVC that runs outside of Java
EE is a non-goal, this specification shall not intentionally prevent implementations to run in other
environments, provided that those environments include support for all the EE technologies
required by MVC.

1.3. Additional Information
The issue tracking system for this specification can be found at:

https://github.com/mvc-spec/mvc-spec/issues

The corresponding Javadocs can be found online at:

https://www.mvc-spec.org/spec/

The reference implementation can be obtained from:

https://www.mvc-spec.org/krazo/

The expert group seeks feedback from the community on any aspect of this specification, please
send comments to:

jsr371-users@googlegroups.com

1.4. Terminology
Most of the terminology used in this specification is borrowed from other specifications such as
JAX-RS and CDI. We use the terms per-request and request-scoped as well as per-application and
application-scoped interchangeably.

1.5. Conventions
The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD NOT’,
‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described in
RFC 2119 [4].

Java code and sample data fragments are formatted as shown below:

1 package com.example.hello;
2
3 public class Hello {
4 public static void main(String args[]){
5 System.out.println("Hello World");
6 }
7 }

8

https://github.com/mvc-spec/mvc-spec/issues
https://www.mvc-spec.org/spec/
https://www.mvc-spec.org/krazo/
mailto:jsr371-users@googlegroups.com

URIs of the general form http://example.org/… and http://example.com/… represent application or
context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections
explicitly marked as ‘Non-Normative’. Non-normative notes are formatted as shown below.

Note

This is a note.

1.6. Specification Leads
The following table lists the current and former specification leads:

Ivar Grimstad (Individual Member) (Jan 2017 - present)

Christian Kaltepoth (ingenit GmbH & Co. KG) (May 2017 - present)

Santiago Pericas-Geertsen (Oracle) (Aug 2014 - Jan 2017)

Manfred Riem (Oracle) (Aug 2014 - Jan 2017)

1.7. Expert Group Members
This specification is being developed as part of JSR 371 under the Java Community Process. The
following are the present expert group members:

Ivar Grimstad (Individual Member) Neil Griffin (Liferay, Inc)

Joshua Wilson (RedHat) Rodrigo Turini (Caelum)

Stefan Tilkov (innoQ Deutschland GmbH) Frank Caputo (Individual Member)

Christian Kaltepoth (ingenit GmbH & Co. KG) Woong-ki Lee (TmaxSoft, Inc.)

Paul Nicolucci (IBM) Kito D. Mann (Individual Member)

Rahman Usta (Individual Member) Florian Hirsch (adorsys GmbH & Co KG)

Santiago Pericas-Geertsen (Oracle) Manfred Riem (Oracle)

The following are former members of the expert group:

Guilherme de Azevedo Silveira (Individual
Member)

1.8. Contributors
The following are the contributors of the specification:

Daniel Dias dos Santos Phillip Krüger

Andreas Badelt

9

http://example.org/
http://example.com/
https://jcp.org/en/jsr/detail?id=371

1.9. Acknowledgements
During the course of this JSR we received many excellent suggestions. Special thanks to Marek
Potociar, Dhiru Pandey and Ed Burns, all from Oracle. In addition, to everyone in the user’s alias
that followed the expert discussions and provided feedback, including Peter Pilgrim, Ivar Grimstad,
Jozef Hartinger, Florian Hirsch, Frans Tamura, Rahman Usta, Romain Manni-Bucau, Alberto Souza,
among many others.

10

Chapter 2. Models, Views and Controllers
This chapter introduces the three components that comprise the architectural pattern: models,
views and controllers.

2.1. Controllers
An MVC controller is a JAX-RS [5] resource method decorated by @Controller. If this annotation is
applied to a class, then all resource methods in it are regarded as controllers. Using the
@Controller annotation on a subset of methods defines a hybrid class in which certain methods are
controllers and others are traditional JAX-RS resource methods.

A simple hello-world controller can be defined as follows:

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @GET
 5 @Controller
 6 public String hello(){
 7 return "hello.jsp";
 8 }
 9 }

In this example, hello is a controller method that returns a path to a JavaServer Page (JSP). The
semantics of controller methods differ slightly from JAX-RS resource methods; in particular, a
return type of String is interpreted as a view path rather than text content. Moreover, the default
media type for a response is assumed to be text/html, but otherwise can be declared using
@Produces just like in JAX-RS.

A controller’s method return type determines how its result is processed:

void

A controller method that returns void is REQUIRED to be decorated by @View.

String

A string returned is interpreted as a view path.

Response

A JAX-RS Response whose entity’s type is one of the above.

The following class defines equivalent controller methods:

11

 1 @Controller
 2 @Path("hello")
 3 public class HelloController {
 4
 5 @GET @Path("void")
 6 @View("hello.jsp")
 7 public void helloVoid() {
 8 }
 9
10 @GET @Path("string")
11 public String helloString() {
12 return "hello.jsp";
13 }
14
15 @GET @Path("response")
16 public Response helloResponse() {
17 return Response.status(Response.Status.OK)
18 .entity("hello.jsp")
19 .build();
20 }
21 }

Controller methods that return a non-void type may also be decorated with @View as a way to
specify a default view for the controller. The default view MUST be used only when such a non-void
controller method returns a null value.

Note that, even though controller methods return types are restricted as explained above,
MVC does not impose any restrictions on parameter types available to controller methods: i.e., all
parameter types injectable in JAX-RS resources are also available in controllers. Likewise, injection
of fields and properties is unrestricted and fully compatible with JAX-RS. Note the restrictions
explained in Section Controller Instances.

Controller methods handle a HTTP request directly. Sub-resource locators as described in the JAX-
RS Specification [5] are not supported by MVC.

2.1.1. Controller Instances

Unlike in JAX-RS where resource classes can be native (created and managed by JAX-RS), CDI beans,
managed beans or EJBs, MVC classes are REQUIRED to be CDI-managed beans only. It follows that a
hybrid class that contains a mix of JAX-RS resource methods and MVC controllers must also be CDI
managed.

Like in JAX-RS, the default resource class instance lifecycle is per-request. Implementations MAY
support other lifecycles via CDI; the same caveats that apply to JAX-RS classes in other lifecycles
applied to MVC classes. In particular, CDI may need to create proxies when, for example, a per-
request instance is as a member of a per-application instance. See [5] for more information on
lifecycles and their caveats.

12

2.1.2. Response

Returning a Response object gives applications full access to all the parts in a response, including the
headers. For example, an instance of Response can modify the HTTP status code upon encountering
an error condition; JAX-RS provides a fluent API to build responses as shown next.

 1 @GET
 2 @Controller
 3 public Response getById(@PathParam("id") String id) {
 4 if (id.length() == 0) {
 5 return Response.status(Response.Status.BAD_REQUEST)
 6 .entity("error.jsp")
 7 .build();
 8 }
 9 //...
10 }

Direct access to Response enables applications to override content types, set character encodings, set
cache control policies, trigger an HTTP redirect, etc. For more information, the reader is referred to
the Javadoc for the Response class.

2.1.3. Redirect and @RedirectScoped

As stated in the previous section, controllers can redirect clients by returning a Response instance
using the JAX-RS API. For example,

1 @GET
2 @Controller
3 public Response redirect() {
4 return Response.seeOther(URI.create("see/here")).build();
5 }

Given the popularity of the POST-redirect-GET pattern, MVC implementations are REQUIRED to
support view paths prefixed by redirect: as a more concise way to trigger a client redirect. Using
this prefix, the controller shown above can be re-written as follows:

1 @GET
2 @Controller
3 public String redirect() {
4 return "redirect:see/here";
5 }

In either case, relative paths are resolved relative to the JAX-RS application path - for more
information please refer to the Javadoc for the seeOther method. It is worth noting that redirects
require client cooperation (all browsers support it, but certain CLI clients may not) and result in a
completely new request-response cycle in order to access the intended controller. If a controller

13

returns a redirect: view path, MVC implementations SHOULD use the 303 (See other) status code
for the redirect, but MAY prefer 302 (Found) if HTTP 1.0 compatibility is required.

MVC applications can leverage CDI by defining beans in scopes such as request and session. A bean
in request scope is available only during the processing of a single request, while a bean in session
scope is available throughout an entire web session which can potentially span tens or even
hundreds of requests.

Sometimes it is necessary to share data between the request that returns a redirect instruction and
the new request that is triggered as a result. That is, a scope that spans at most two requests and
thus fits between a request and a session scope. For this purpose, the MVC API defines a new CDI
scope identified by the annotation @RedirectScoped. CDI beans in this scope are automatically
created and destroyed by correlating a redirect and the request that follows. The exact mechanism
by which requests are correlated is implementation dependent, but popular techniques include
URL rewrites and cookies.

Let us assume that MyBean is annotated by @RedirectScoped and given the name mybean, and consider
the following controller:

 1 @Controller
 2 @Path("submit")
 3 public class MyController {
 4
 5 @Inject
 6 private MyBean myBean;
 7
 8 @POST
 9 public String post() {
10 myBean.setValue("Redirect about to happen");
11 return "redirect:/submit";
12 }
13
14 @GET
15 public String get() {
16 return "mybean.jsp"; // mybean.value accessed in JSP
17 }
18 }

The bean myBean is injected in the controller and available not only during the first POST, but also
during the subsequent GET request, enabling communication between the two interactions; the
creation and destruction of the bean is under control of CDI, and thus completely transparent to the
application just like any other built-in scope.

2.2. Models
MVC controllers are responsible for combining data models and views (templates) to produce web
application pages. This specification supports two kinds of models: the first is based on CDI
@Named beans, and the second on the Models interface which defines a map between names and

14

objects. MVC provides view engines for JSP and Facelets out of the box, which support both types.
For all other view engines supporting the Models interface is mandatory, support for CDI
@Named beans is OPTIONAL but highly RECOMMENDED.

Let us now revisit our hello-world example, this time also showing how to update a model. Since we
intend to show the two ways in which models can be used, we define the model as a CDI
@Named bean in request scope even though this is only necessary for the CDI case:

 1 @Named("greeting")
 2 @RequestScoped
 3 public class Greeting {
 4
 5 private String message;
 6
 7 public String getMessage() {
 8 return message;
 9 }
10
11 public void setMessage(String message) {
12 this.message = message;
13 }
14 //...
15 }

Given that the view engine for JSPs supports @Named beans, all the controller needs to do is fill out
the model and return the view. Access to the model is straightforward using CDI injection:

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @Inject
 5 private Greeting greeting;
 6
 7 @GET
 8 @Controller
 9 public String hello() {
10 greeting.setMessage("Hello there!");
11 return "hello.jsp";
12 }
13 }

This will allow the view to access the greeting using the EL expression ${hello.greeting}.

Instead of using CDI beans annotated with @Named, controllers can also use the Models map to pass
data to the view:

15

 1 @Path("hello")
 2 public class HelloController {
 3
 4 @Inject
 5 private Models models;
 6
 7 @GET
 8 @Controller
 9 public String hello() {
10 models.put("greeting", new Greeting("Hello there!"));
11 return "hello.jsp";
12 }
13 }

In this example, the model is given the same name as that in the @Named annotation above, but using
the injectable Models map instead.

For more information about view engines see the View Engines section.

2.3. Views
A view, sometimes also referred to as a template, defines the structure of the output page and can
refer to one or more models. It is the responsibility of a view engine to process (render) a view by
extracting the information in the models and producing the output page.

Here is the JSP page for the hello-world example:

 1 <!DOCTYPE html>
 2 <html>
 3 <head>
 4 <title>Hello</title>
 5 </head>
 6 <body>
 7 <h1>${greeting.message}</h1>
 8 </body>
 9 </html>

In a JSP, model properties are accessible via EL [6]. In the example above, the property message is
read from the greeting model whose name was either specified in a @Named annotation or used as a
key in the Models map, depending on which controller from the Models section triggered this view’s
processing.

Here is the corresponding example using Facelets instead of JSP:

16

 1 <!DOCTYPE html>
 2 <html lang="en" xmlns:h="http://xmlns.jcp.org/jsf/html">
 3 <h:head>
 4 <title>Hello</title>
 5 </h:head>
 6 <h:body>
 7 <h:outputText value="#{greeting.message}" />
 8 </h:body>
 9 </html>

2.3.1. Building URIs in a View

A typical application requires to build URIs for the view, which often refer to controller methods
within the same application. Typical examples for such URIs include HTML links and form actions.
As building URIs manually is difficult and duplicating path patterns between the controller class
and the view is error prone, MVC provides a simple way to generate URIs using the MvcContext class.

See the following controller as an example:

 1 @Controller
 2 @Path("books")
 3 public class BookController {
 4
 5 @GET
 6 public String list() {
 7 // ...
 8 }
 9
10 @GET
11 @Path("{id}")
12 public String detail(@PathParam("id") long id) {
13 // ...
14 }
15
16 }

Assuming the application is deployed with the context path /myapp and is using the application path
/mvc, URIs for these controller methods can be created with an EL expression like this:

<!-- /myapp/mvc/books -->
${mvc.uri('BookController#list')}

<!-- /myapp/mvc/books/1234 -->
${mvc.uri('BookController#detail', { 'isbn': 1234 })}

The controller method is referenced using the simple name of the controller class and the
corresponding method name separated by #. If the URI contains path, query or matrix parameters,

17

concrete values can be supplied using a map. Please note that the keys of this map must match the
parameter name used in the @PathParam, @QueryParam or @MatrixParam annotation. MVC
implementations MUST apply the corresponding URI encoding rules depending on whether the
value is used in a query, path or matrix parameter.

The syntax used above to reference the controller method works well in most cases. However,
because of the simple nature of this reference style, it will require controller class names to be
unique. Also, the references may break if the controller class or method name changes as part of a
refactoring.

Therefore, applications can use the @UriRef annotation to define a stable and unique name for a
controller method.

 1 @Controller
 2 @Path("books")
 3 public class BookController {
 4
 5 @GET
 6 @UriRef("book-list")
 7 public String list() {
 8 // ...
 9 }
10
11 // ...
12
13 }

Given such a controller class, the view can generate a matching URI by referencing the controller
method using this reference.

<!-- /myapp/mvc/books -->
${mvc.uri('book-list')}

Please note that this feature will work with JSP, Facelets and all view engines which support
invoking methods on CDI model objects.

18

Chapter 3. Data Binding
This chapter discusses data binding in the MVC API. Data binding is based on the underlying
mechanism provided by JAX-RS, but with additional support for i18n requirements and for
handling data binding errors within the controller.

3.1. Introduction
JAX-RS provides support for binding request parameters (like form/query parameters) to resource
fields or resource method parameters. Starting with JAX-RS 2.0, developers can also specify
validation constraints using Bean Validation annotations. In this case submitted values are
automatically validated against the given constraints and rejected if validation fails.

Let’s have a look at the following resource for an example:

 1 @Path("form")
 2 public class FormResource {
 3
 4 @FormParam("age")
 5 @Min(18)
 6 private int age;
 7
 8 @POST
 9 public Response handlePost() {
10 // ...
11 }
12 }

This resource uses a @FormParam annotation to bind the value of the age form parameter to a
resource field. It also uses the Bean Validation annotation @Min to specify a constraint on the value.

When JAX-RS binds the submitted data to the field, two types of errors are possible:

Binding Error

This type occurs if JAX-RS is unable to convert the submitted value into the desired target Java
type. For the resource shown above, such an error will be thrown if the user submits some
arbitrary string like foobar which cannot be converted into an integer.

Validation Error

If the submitted value can be converted into the target type, JAX-RS will validate the data
according to the Bean Validation constraints. In our example submitting the value 16 would be
considered invalid and therefore result in a constraint violation.

Unfortunately the JAX-RS data binding mechanism doesn’t work well for web applications:

• Both binding and validation errors will cause JAX-RS to throw an exception which can only be
handled by an ExceptionMapper. Especially JAX-RS won’t execute the resource method if errors
were detected. This is problematic, because typically web applications will want to display the

19

submitted form again and include a message explaining why the submission failed.
Implementing such a requirement using an ExceptionMapper is not feasible.

• The JAX-RS data binding is not locale-aware. This is a problem especially for numeric data types
containing fraction digits (like double, float, BigDecimal, etc). By default, JAX-RS will always
assume the US number format.

3.2. @MvcBinding annotation
MVC addresses the shortcomings of the standard JAX-RS data binding by providing a special data
binding mode optimized for web applications. You can enable the MVC specific data binding by
adding a @MvcBinding annotation to the corresponding controller field or method parameter.

The following example shows a controller which uses a MVC binding on a controller field.

 1 @Controller
 2 @Path("form")
 3 public class FormController {
 4
 5 @MvcBinding
 6 @FormParam("age")
 7 @Min(18)
 8 private int age;
 9
10 @POST
11 public String processForm() {
12 // ...
13 }
14 }

Please note that usually @MvcBinding will be used with @FormParam and @QueryParam bindings, as they
are very common in web application. However, depending on the specific use case, it may also be
useful to use it with other parameter binding types. Therefore, MVC implementations MUST
support @MvcBinding with all JAX-RS binding annotations.

The following sections will describe the differences from traditional JAX-RS data binding in detail.

3.3. Error handling with BindingResult
As mentioned in the first section, JAX-RS data binding aborts request processing for any binding or
validation error. This means, that a resource method will only be invoked if all bindings were
successful.

MVC bindings handle such errors in a different way. An MVC implementation is required to invoke
the matched controller method even if binding or validation errors occurred. Controllers can inject
a request-scoped instance of BindingResult to access details about potential data binding errors.
This allows controllers to handle such errors themselves, which typically means that human-
readable error messages are presented to the user when the next view is rendered.

20

The following example shows a controller which uses BindingResult to handle data binding errors:

 1 @Controller
 2 @Path("form")
 3 public class FormController {
 4
 5 @MvcBinding
 6 @FormParam("age")
 7 @Min(18)
 8 private int age;
 9
10 @Inject
11 private BindingResult bindingResult;
12
13 @Inject
14 private Models models;
15
16 @POST
17 public String processForm() {
18
19 if(bindingResult.isFailed()) {
20 models.put("errors", bindingResult.getAllMessages());
21 return "form.jsp";
22 }
23
24 // process the form request
25
26 }
27 }

Please note that it is very important for a controller to actually check the BindingResult for errors if
it uses MVC bindings. If a binding failed and the controller processes the value without checking for
errors, the bound value may be empty or contain an invalid value.

MVC implementations SHOULD log a warning if a request created data binding errors but the
controller didn’t invoke any method on BindingResult.

3.4. Converting to Java types
The standard JAX-RS data binding doesn’t work very well for web application, because it isn’t
locale-aware and some standard HTML form elements submit data which cannot easily be bound to
matching Java types (e.g. checkboxes are submitting on if checked and JAX-RS is expecting true for
boolean values).

MVC implementations are required to apply the following data conversion rules if a binding is
annotated with @MvcBinding.

21

3.4.1. Numeric types

Implementations MUST support int, long, float, double, BigDecimal, BigInteger and corresponding
wrapper types for MVC bindings. Support for other numeric types is optional. When converting
values to these numeric Java types, MVC implementations MUST use the current request locale for
parsing non-empty strings. Typically, an implementation will use a NumberFormat instance initialized
with the corresponding locale for converting the data. Empty strings are either converted to null or
to the default value of the corresponding primitive data type. Please refer to the
Internationalization section for details about the MVC request locale.

3.4.2. Boolean type

When an MVC implementation converts a non-empty string to a boolean primitive type or the
java.lang.Boolean wrapper type, it MUST convert both true and on to the boolean true and all others
strings to false. Empty strings are converted to false in case of the primitive boolean type and to
null for the wrapper type.

3.4.3. Other types

The conversion rules for all other Java types are implementation-specific.

22

Chapter 4. Security

4.1. Introduction
Guarding against malicious attacks is a great concern for web application developers. In particular,
MVC applications that accept input from a browser are often targetted by attackers. Two of the
most common forms of attacks are cross-site request forgery (CSRF) and cross-site scripting (XSS).
This chapter explores techniques to prevent these type of attacks with the aid of the MVC API.

4.2. Cross-site Request Forgery
Cross-site Request Forgery (CSRF) is a type of attack in which a user, who has a trust relationship
with a certain site, is mislead into executing some commands that exploit the existence of such a
trust relationship. The canonical example for this attack is that of a user unintentionally carrying
out a bank transfer while visiting another site.

The attack is based on the inclusion of a link or script in a page that accesses a site to which the
user is known or assumed to have been authenticated (trusted). Trust relationships are often stored
in the form of cookies that may be active while the user is visiting other sites. For example, such a
malicious site could include the following HTML snippet:

This will result in the browser executing a bank transfer in an attempt to load an image.

In practice, most sites require the use of form posts to submit requests such as bank transfers. The
common way to prevent CSRF attacks is by embedding additional, difficult-to-guess data fields in
requests that contain sensible commands. This additional data, known as a token, is obtained from
the trusted site but unlike cookies it is never stored in the browser.

MVC implementations provide CSRF protection using the Csrf object and the @CsrfProtected
annotation. The Csrf object is available to applications via the injectable MvcContext type or in EL as
mvc.csrf. For more information about MvcContext, please refer to the MVC Context section.

Applications may use the Csrf object to inject a hidden field in a form that can be validated upon
submission. Consider the following JSP:

23

 1 <html>
 2 <head>
 3 <title>CSRF Protected Form</title>
 4 </head>
 5 <body>
 6 <form action="csrf" method="post" accept-charset="utf-8">
 7 <input type="submit" value="Click here"/>
 8 <input type="hidden" name="${mvc.csrf.name}"
 9 value="${mvc.csrf.token}"/>
10 </form>
11 </body>
12 </html>

The hidden field will be submitted with the form, giving the MVC implementation the opportunity
to verify the token and ensure the validity of the post request.

Another way to convey this information to and from the client is via an HTTP header. MVC
implementations are REQUIRED to support CSRF tokens both as form fields (with the help of the
application developer as shown above) and as HTTP headers.

The application-level property javax.mvc.security.CsrfProtection enables CSRF protection when set
to one of the possible values defined in javax.mvc.security.Csrf.CsrfOptions. The default value of
this property is CsrfOptions.EXPLICIT. Any other value than CsrfOptions.OFF will automatically
inject a CSRF token as an HTTP header. The actual name of the header can be configured via the
Csrf.CSRF_HEADER_NAME configuration property. The default name of the header is
Csrf.DEFAULT_CSRF_HEADER_NAME.

Automatic validation is enabled by setting this property to CsrfOptions.IMPLICIT, in which case all
post requests must include either an HTTP header or a hidden field with the correct token. Finally,
if the property is set to CsrfOptions.EXPLICIT then application developers must annotate controllers
using @CsrfProtected to manually enable validation as shown in the following example.

 1 @Path("csrf")
 2 @Controller
 3 public class CsrfController {
 4
 5 @GET
 6 public String getForm() {
 7 return "csrf.jsp"; // Injects CSRF token
 8 }
 9
10 @POST
11 @CsrfProtected // Required for CsrfOptions.EXPLICIT
12 public void postForm(@FormParam("greeting") String greeting) {
13 // Process greeting
14 }
15 }

24

MVC implementations are required to support CSRF validation of tokens for controllers annotated
with @POST and consuming the media type x-www-form-urlencoded; other media types and scenarios
may also be supported but are OPTIONAL.

If CSRF protection is enabled for a controller method and the CSRF validation fails (because the
token is either missing or invalid), the MVC implementation MUST throw a
javax.mvc.security.CsrfValidationException. The implementation MUST provide a default
exception mapper for this exception which handles it by responding with a 403 (Forbidden) status
code. Applications MAY provide a custom exception mapper for CsrfValidationException to change
this default behavior.

4.3. Cross-site Scripting
Cross-site scripting (XSS) is a type of attack in which snippets of scripting code are injected and later
executed when returned back from a server. The typical scenario is that of a website with a search
field that does not validate its input, and returns an error message that includes the value that was
submitted. If the value includes a snippet of the form <script>...</script> then it will be executed
by the browser when the page containing the error is rendered.

There are lots of different variations of this the XSS attack, but most can be prevented by ensuring
that the data submitted by clients is properly sanitized before it is manipulated, stored in a
database, returned to the client, etc. Data escaping/encoding is the recommended way to deal with
untrusted data and prevent XSS attacks.

MVC applications can gain access to encoders through the MvcContext object; the methods defined
by javax.mvc.security.Encoders can be used by applications to contextually encode data in an
attempt to prevent XSS attacks. The reader is referred to the Javadoc for this type for further
information.

25

Chapter 5. Events
This chapter introduces a mechanism by which MVC applications can be informed of important
events that occur while processing a request. This mechanism is based on CDI events that can be
fired by implementations and observed by applications.

5.1. Observers
The package javax.mvc.event defines a number of event types that MUST be fired by
implementations during the processing of a request. Implementations MAY extend this set and also
provide additional information on any of the events defined by this specification. The reader is
referred to the implementation’s documentation for more information on event support.

Observing events can be useful for applications to learn about the lifecycle of a request, perform
logging, monitor performance, etc. The events BeforeControllerEvent and AfterControllerEvent are
fired around the invocation of a controller. Please note that AfterControllerEvent is always fired,
even if the controller fails with an exception.

26

 1 /**
 2 * <p>Event fired before a controller is called but after it has been matched.</p>
 3 *
 4 * <p>For example:
 5 * <pre><code> public class EventObserver {
 6 * public void beforeControllerEvent(@Observes BeforeControllerEvent e) {
 7 * ...
 8 * }
 9 * }</code></pre>
10 *
11 * @author Santiago Pericas-Geertsen
12 * @see javax.enterprise.event.Observes
13 * @since 1.0
14 */
15 public interface BeforeControllerEvent extends MvcEvent {
16
17 /**
18 * Access to the current request URI information.
19 *
20 * @return URI info.
21 * @see javax.ws.rs.core.UriInfo
22 */
23 UriInfo getUriInfo();
24
25 /**
26 * Access to the current request controller information.
27 *
28 * @return resources info.
29 * @see javax.ws.rs.container.ResourceInfo
30 */
31 ResourceInfo getResourceInfo();
32 }

27

 1 /**
 2 * <p>Event fired after a controller method returns. This event is always fired,
 3 * even if the controller methods fails with an exception. Must be fired after
 4 * {@link javax.mvc.event.BeforeControllerEvent}.</p>
 5 *
 6 * <p>For example:
 7 * <pre><code> public class EventObserver {
 8 * public void afterControllerEvent(@Observes AfterControllerEvent e) {
 9 * ...
10 * }
11 * }</code></pre>
12 *
13 * @author Santiago Pericas-Geertsen
14 * @author Christian Kaltepoth
15 * @see javax.enterprise.event.Observes
16 * @since 1.0
17 */
18 public interface AfterControllerEvent extends MvcEvent {
19
20 /**
21 * Access to the current request URI information.
22 *
23 * @return URI info.
24 * @see javax.ws.rs.core.UriInfo
25 */
26 UriInfo getUriInfo();
27
28 /**
29 * Access to the current request controller information.
30 *
31 * @return resources info.
32 * @see javax.ws.rs.container.ResourceInfo
33 */
34 ResourceInfo getResourceInfo();
35 }

Applications can monitor these events using an observer as shown next.

28

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 public void onBeforeController(@Observes BeforeControllerEvent e) {
 5 System.out.println("URI: " + e.getUriInfo().getRequestUri());
 6 }
 7
 8 public void onAfterController(@Observes AfterControllerEvent e) {
 9 System.out.println("Controller: " +
10 e.getResourceInfo().getResourceMethod());
11 }
12 }

Observer methods in CDI are defined using the @Observes annotation on a parameter position. The
class EventObserver is a CDI bean in application scope whose methods onBeforeController and
onAfterController are called before and after a controller is called.

Each event includes additional information that is specific to the event; for example, the events
shown in the example above allow applications to get information about the request URI and the
resource (controller) selected.

The View Engines section describes the algorithm used by implementations to select a specific view
engine for processing; after a view engine is selected, the method processView is called. The events
BeforeProcessViewEvent and AfterProcessViewEvent are fired around this call. Please note that
AfterProcessViewEvent is always fired, even if the view engine fails with an exception.

29

 1 /**
 2 * <p>Event fired after a view engine has been selected but before its
 3 * {@link javax.mvc.engine.ViewEngine#processView(javax.mvc.engine.ViewEngineContext)}
 4 * method is called. Must be fired after {@link javax.mvc.event.ControllerRedirectEvent},
 5 * or if that event is not fired, after {@link javax.mvc.event.AfterControllerEvent}.</p>
 6 *
 7 * <p>For example:
 8 * <pre><code> public class EventObserver {
 9 * public void beforeProcessView(@Observes BeforeProcessViewEvent e) {
10 * ...
11 * }
12 * }</code></pre>
13 *
14 * @author Santiago Pericas-Geertsen
15 * @see javax.enterprise.event.Observes
16 * @since 1.0
17 */
18 public interface BeforeProcessViewEvent extends MvcEvent {
19
20 /**
21 * Returns the view being processed.
22 *
23 * @return the view.
24 */
25 String getView();
26
27 /**
28 * Returns the {@link javax.mvc.engine.ViewEngine} selected by the implementation.
29 *
30 * @return the view engine selected.
31 */
32 Class<? extends ViewEngine> getEngine();
33 }

30

 1 /**
 2 * <p>Event fired after the view engine method
 3 * {@link javax.mvc.engine.ViewEngine#processView(javax.mvc.engine.ViewEngineContext)}
 4 * returns. This event is always fired, even if the view engine fails with an exception.
 5 * Must be fired after {@link javax.mvc.event.BeforeProcessViewEvent}.</p>
 6 *
 7 * <p>For example:
 8 * <pre><code> public class EventObserver {
 9 * public void afterProcessView(@Observes AfterProcessViewEvent e) {
10 * ...
11 * }
12 * }</code></pre>
13 *
14 * @author Santiago Pericas-Geertsen
15 * @author Christian Kaltepoth
16 * @see javax.enterprise.event.Observes
17 * @since 1.0
18 */
19 public interface AfterProcessViewEvent extends MvcEvent {
20
21 /**
22 * Returns the view being processed.
23 *
24 * @return the view.
25 */
26 String getView();
27
28 /**
29 * Returns the {@link javax.mvc.engine.ViewEngine} selected by the implementation.
30 *
31 * @return the view engine selected.
32 */
33 Class<? extends ViewEngine> getEngine();
34 }

These events can be observed in a similar manner:

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 5 // ...
 6 }
 7
 8 public void onAfterProcessView(@Observes AfterProcessViewEvent e) {
 9 // ...
10 }
11 }

To complete the example, let us assume that the information about the selected view engine needs

31

to be conveyed to the client. To ensure that this information is available to a view returned to the
client, the EventObserver class can inject and update the same request-scope bean accessed by such
a view:

 1 @ApplicationScoped
 2 public class EventObserver {
 3
 4 @Inject
 5 private EventBean eventBean;
 6
 7 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 8 eventBean.setView(e.getView());
 9 eventBean.setEngine(e.getEngine());
10 }
11 // ...
12 }

For more information about the interaction between views and models, the reader is referred to
the Models section.

The last event supported by MVC is ControllerRedirectEvent, which is fired just before the MVC
implementation returns a redirect status code. Please note that this event MUST be fired after
AfterControllerEvent.

32

 1 /**
 2 * <p>Event fired when a controller triggers a redirect. Only the
 3 * status codes 301 (moved permanently), 302 (found), 303 (see other) and
 4 * 307 (temporary redirect) are REQUIRED to be reported. Note that the
 5 * JAX-RS methods
 6 * {@link javax.ws.rs.core.Response#seeOther(java.net.URI)}} and
 7 * {@link javax.ws.rs.core.Response#temporaryRedirect(java.net.URI)}}
 8 * use the status codes to 303 and 307, respectively. Must be
 9 * fired after {@link javax.mvc.event.AfterControllerEvent}.</p>
10 *
11 * <p>For example:
12 * <pre><code> public class EventObserver {
13 * public void onControllerRedirect(@Observes ControllerRedirectEvent e) {
14 * ...
15 * }
16 * }</code></pre>
17 *
18 * @author Santiago Pericas-Geertsen
19 * @see javax.enterprise.event.Observes
20 * @since 1.0
21 */
22 public interface ControllerRedirectEvent extends MvcEvent {
23
24 /**
25 * Access to the current request URI information.
26 *
27 * @return URI info.
28 * @see javax.ws.rs.core.UriInfo
29 */
30 UriInfo getUriInfo();
31
32 /**
33 * Access to the current request controller information.
34 *
35 * @return resources info.
36 * @see javax.ws.rs.container.ResourceInfo
37 */
38 ResourceInfo getResourceInfo();
39
40 /**
41 * The target of the redirection.
42 *
43 * @return URI of redirection.
44 */
45 URI getLocation();
46 }

CDI events fired by implementations are synchronous, so it is recommended that applications carry
out only simple tasks in their observer methods, avoiding long-running computations as well as
blocking calls. For a complete list of events, the reader is referred to the Javadoc for the

33

javax.mvc.event package.

Event reporting requires the MVC implementations to create event objects before firing. In high-
throughput systems without any observers the number of unnecessary objects created may not be
insignificant. For this reason, it is RECOMMENDED for implementations to consider smart firing
strategies when no observers are present.

34

Chapter 6. Applications
This chapter introduces the notion of an MVC application and explains how it relates to a JAX-RS
application.

6.1. MVC Applications
An MVC application consists of one or more JAX-RS resources that are annotated with @Controller
and, just like JAX-RS applications, zero or more providers. If no resources are annotated with
@Controller, then the resulting application is a JAX-RS application instead. In general, everything
that applies to a JAX-RS application also applies to an MVC application. Some MVC applications may
be hybrid and include a mix of MVC controllers and JAX-RS resource methods.

The controllers and providers that make up an application are configured via an application-
supplied subclass of Application from JAX-RS. An implementation MAY provide alternate
mechanisms for locating controllers, but as in JAX-RS, the use of an Application subclass is the only
way to guarantee portability.

The path in the application’s URL space in which MVC controllers live must be specified either
using the @ApplicationPath annotation on the application subclass or in the web.xml as part of the
url-pattern element. MVC applications SHOULD use a non-empty path or pattern: i.e., "/" or "/*"
should be avoided whenever possible. The reason for this is that MVC implementations often
forward requests to the Servlet container, and the use of the aforementioned values may result in
the unwanted processing of the forwarded request by the JAX-RS servlet once again.

6.2. MVC Context
MVC applications can inject an instance of MvcContext to access configuration, security and path-
related information. Instances of MvcContext are provided by implementations and are always in
request scope. For convenience, the MvcContext instance is also available using the name mvc in EL.

As an example, a view can refer to a controller by using the base path available in the MvcContext
object as follows:

Click here

For more information on security see the Chapter on Security; for more information about the
MvcContext in general, refer to the Javadoc for the type.

6.3. Providers in MVC
Implementations are free to use their own providers in order to modify the standard JAX-RS
pipeline for the purpose of implementing the MVC semantics. Whenever mixing implementation
and application providers, care should be taken to ensure the correct execution order using
priorities.

35

6.4. Annotation Inheritance
MVC applications MUST follow the annotation inheritance rules defined by JAX-RS. Namely, MVC
annotations may be used on methods of a super-class or an implemented interface. Such
annotations are inherited by a corresponding sub-class or implementation class method provided
that the method does not have any MVC or JAX-RS annotations of its own: i.e., if a subclass or
implementation method has any MVC or JAX-RS annotations then all of the annotations on the
superclass or interface method are ignored.

Annotations on a super-class take precedence over those on an implemented interface. The
precedence over conflicting annotations defined in multiple implemented interfaces is
implementation dependent. Note that, in accordance to the JAX-RS rules, inheritance of class or
interface annotations is not supported.

6.5. Configuration in MVC
Implementations MUST support configuration via the native JAX-RS configuration mechanism but
MAY support other configuration sources.

There are concrete configurations, that all MVC the implementations are REQUIRED the support such
as:

• ViewEngine.VIEW_FOLDER

• Csrf.CSRF_PROTECTION

• Csrf.CSRF_HEADER_NAME

Here’s a simple example of how you can configure a custom location for the view folder other than
the /WEB-INF/views, simply by overwriting the getProperties method of the subclass Application:

 1 @ApplicationPath("resources")
 2 public class MyApplication extends Application {
 3
 4 @Override
 5 public Map<String, Object> getProperties() {
 6 final Map<String, Object> map = new HashMap<>();
 7 map.put(ViewEngine.VIEW_FOLDER, "/jsp/");
 8 return map;
 9 }
10 }

36

Chapter 7. View Engines
This chapter introduces the notion of a view engine as the mechanism by which views are
processed in MVC. The set of available view engines is extensible via CDI, enabling applications as
well as other frameworks to provide support for additional view languages.

7.1. Introduction
A view engine is responsible for processing views. In this context, processing entails (i) locating and
loading a view (ii) preparing any required models and (iii) rendering the view and writing the
result back to the client.

Implementations MUST provide built-in support for JSPs and Facelets view engines. Additional
engines may be supported via an extension mechanism based on CDI. Namely, any CDI bean that
implements the javax.mvc.engine.ViewEngine interface MUST be considered as a possible target for
processing by calling its supports method, discarding the engine if this method returns false.

This is the interface that must be implemented by all MVC view engines:

 1 /**

 2 * <p>View engines are responsible for processing views and are discovered

 3 * using CDI. Implementations must look up all instances of this interface,

 4 * and process a view as follows:

 5 *

 6 * Gather the set of candidate view engines by calling {@link #supports(String)}

 7 * and discarding engines that return <code>false</code>.

 8 * Sort the resulting set of candidates using priorities. View engines

 9 * can be decorated with {@link javax.annotation.Priority} to indicate

10 * their priority; otherwise the priority is assumed to be {@link ViewEngine#PRIORITY_APPLICATION}.

11 * If more than one candidate is available, choose one in an

12 * implementation-defined manner.

13 * Fire a {@link javax.mvc.event.BeforeProcessViewEvent} event.

14 * Call method {@link #processView(ViewEngineContext)} to process view.

15 * Fire a {@link javax.mvc.event.AfterProcessViewEvent} event.

16 *

17 * <p>The default view engines for JSPs and Facelets use file extensions to determine

18 * support. Namely, the default JSP view engine supports views with extensions <code>jsp</code>

19 * and <code>jspx</code>, and the one for Facelets supports views with extension

20 * <code>xhtml</code>.</p>

21 *

22 * @author Santiago Pericas-Geertsen

23 * @see javax.annotation.Priority

24 * @see javax.mvc.event.BeforeProcessViewEvent

25 * @since 1.0

26 */

27 @SuppressWarnings("unused")

28 public interface ViewEngine {

29

30 /**

31 * Name of property that can be set to override the root location for views in an archive.

32 *

33 * @see javax.ws.rs.core.Application#getProperties()

34 */

35 String VIEW_FOLDER = "javax.mvc.engine.ViewEngine.viewFolder";

36

37

37 /**

38 * Default value for property {@link #VIEW_FOLDER}.

39 */

40 String DEFAULT_VIEW_FOLDER = "/WEB-INF/views/";

41

42 /**

43 * Priority for all built-in view engines.

44 */

45 int PRIORITY_BUILTIN = 1000;

46

47 /**

48 * Recommended priority for all view engines provided by frameworks built

49 * on top of MVC implementations.

50 */

51 int PRIORITY_FRAMEWORK = 2000;

52

53 /**

54 * Recommended priority for all application-provided view engines (default).

55 */

56 int PRIORITY_APPLICATION = 3000;

57

58 /**

59 * Returns <code>true</code> if this engine can process the view or <code>false</code>

60 * otherwise.

61 *

62 * @param view the view.

63 * @return outcome of supports test.

64 */

65 boolean supports(String view);

66

67 /**

68 * <p>Process a view given a {@link javax.mvc.engine.ViewEngineContext}. Processing

69 * a view involves <i>merging</i> the model and template data and writing

70 * the result to an output stream.</p>

71 *

72 * <p>Following the Java EE threading model, the underlying view engine implementation

73 * must support this method being called by different threads. Any resources allocated

74 * during view processing must be released before the method returns.</p>

75 *

76 * @param context the context needed for processing.

77 * @throws ViewEngineException if an error occurs during processing.

78 */

79 void processView(ViewEngineContext context) throws ViewEngineException;

80 }

7.2. Selection Algorithm
Implementations should perform the following steps while trying to find a suitable view engine for
a view.

1. Lookup all instances of javax.mvc.engine.ViewEngine available via CDI.

2. Call supports on every view engine found in the previous step, discarding those that return
false.

3. If the resulting set is empty, return null.

4. Otherwise, sort the resulting set in descending order of priority using the integer value from the
@Priority annotation decorating the view engine class or the default value

38

ViewEngine.PRIORITY_APPLICATION if the annotation is not present.

5. Return the first element in the resulting sorted set, that is, the view engine with the highest
priority that supports the given view.

If a view engine that can process a view is not found, implementations SHOULD throw a
corresponding exception and stop to process the request.

The processView method has all the information necessary for processing in the ViewEngineContext,
including the view, a reference to Models, as well as the underlying OutputStream that can be used to
send the result to the client.

Prior to the view render phase, all entries available in Models MUST be bound in such a way that
they become available to the view being processed. The exact mechanism for this depends on the
actual view engine implementation. In the case of the built-in view engines for JSPs and Facelets,
entries in Models must be bound by calling HttpServletRequest.setAttribute(String, Object).
Calling this method ensures access to the named models from EL expressions.

A view returned by a controller method represents a path within an application archive. If the path
is relative, does not start with /, implementations MUST resolve view paths relative to the view
folder, which defaults to /WEB-INF/views/. If the path is absolute, no further processing is required.
It is recommended to use relative paths and a location under WEB-INF to prevent direct access to
views as static resources.

7.3. FacesServlet
Because Facelets support is not enabled by default, MVC applications that use Facelets are required
to package a web.xml deployment descriptor with the following entry mapping the extension *.xhtml
as shown next:

 1 <servlet>
 2 <servlet-name>Faces Servlet</servlet-name>
 3 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 4 <load-on-startup>1</load-on-startup>
 5 </servlet>
 6 <servlet-mapping>
 7 <servlet-name>Faces Servlet</servlet-name>
 8 <url-pattern>*.xhtml</url-pattern>
 9 </servlet-mapping>

Alternatively to a web.xml deployment descriptor an empty faces-config.xml file can be placed in
the WEB-INF folder to enable Facelets support.

It is worth noting that if you opt to use Facelets as a view technology for your MVC application,
regular JSF post-backs will not be processed by the MVC runtime. The usage of <h:form /> and
depending form components like <h:inputText /> is not recommended as they would be the entry
point to a real JSF application.

39

Chapter 8. Internationalization
This chapter introduces the notion of a request locale and describes how MVC handles
internationalization and localization.

8.1. Introduction
Internationalization and localization are very important concepts for any web application
framework. Therefore MVC has been designed to make supporting multiple languages and regional
differences in applications very easy.

MVC defines the term request locale as the locale which is used for any locale-dependent operation
within the lifecycle of a request. The request locale MUST be resolved exactly once for each request
using the resolving algorithm described in the Resolving Algorithm section.

These locale-dependent operations include, but are not limited to:

1. Data type conversion as part of the data binding mechanism.

2. Formatting of data when rendering it to the view.

3. Generating binding and validation error messages in the specific language.

The request locale is available from MvcContext and can be used by controllers, view engines and
other components to perform operations which depend on the current locale. The example below
shows a controller that uses the request locale to create a NumberFormat instance.

 1 @Controller
 2 @Path("/foobar")
 3 public class MyController {
 4
 5 @Inject
 6 private MvcContext mvc;
 7
 8 @GET
 9 public String get() {
10 Locale locale = mvc.getLocale();
11 NumberFormat format = NumberFormat.getInstance(locale);
12 }
13 }

The following sections will explain the locale resolving algorithm and the default resolver provided
by the MVC implementation.

8.2. Resolving Algorithm
The locale resolver is responsible to detect the request locale for each request processed by the
MVC runtime. A locale resolver MUST implement the javax.mvc.locale.LocaleResolver interface
which is defined like this:

40

 1 /**

 2 * <p>Locale resolvers are used to determine the locale of the current request and are discovered

 3 * using CDI.</p>

 4 *

 5 * <p>The MVC implementation is required to resolve the locale for each request following this

 6 * algorithm:</p>

 7 *

 8 *

 9 * Gather the set of all implementations of this interface available for injection via

10 * CDI.

11 * Sort the set of implementations using priorities in descending order. Locale resolvers

12 * can be decorated with {@link javax.annotation.Priority} to indicate their priority. If no

13 * priority is explicitly defined, the priority is assumed to be <code>1000</code>.

14 * Call the method {@link #resolveLocale(LocaleResolverContext)}. If the resolver returns

15 * a valid locale, use this locale as the request locale. If the resolver returns

16 * <code>null</code>, proceed with the next resolver in the ordered set.

17 *

18 *

19 * <p>Controllers, view engines and other components can access the resolved locale by calling

20 * {@link MvcContext#getLocale()}.</p>

21 *

22 * <p>The MVC implementation is required to provide a default locale resolver with a priority

23 * of <code>0</code> which uses the <code>Accept-Language</code> request header to obtain the

24 * locale. If resolving the locale this way isn't possible, the default resolver must return

25 * {@link Locale#getDefault()}.</p>

26 *

27 * @author Christian Kaltepoth

28 * @see javax.mvc.locale.LocaleResolverContext

29 * @see MvcContext#getLocale()

30 * @see java.util.Locale

31 * @since 1.0

32 */

33 public interface LocaleResolver {

34

35 /**

36 * <p>Resolve the locale of the current request given a {@link LocaleResolverContext}.</p>

37 *

38 * <p>If the implementation is able to resolve the locale for the request, the corresponding

39 * locale must be returned. If the implementation cannot resolve the locale, it must return

40 * <code>null</code>. In this case the resolving process will continue with the next

41 * resolver.</p>

42 *

43 * @param context the context needed for processing.

44 * @return The resolved locale or <code>null</code>.

45 */

46 Locale resolveLocale(LocaleResolverContext context);

47

48 }

There may be more than one locale resolver for a MVC application. Locale resolvers are discovered
using CDI. Every CDI bean implementing the LocaleResolver interface and visible to the application
participates in the locale resolving algorithm.

Implementations MUST use the following algorithm to resolve the request locale for each request:

41

1. Obtain a list of all CDI beans implementing the LocaleResolver interface visible to the
application’s BeanManager.

2. Sort the list of locale resolvers in descending order of priority using the integer value from the
@Priority annotation decorating the resolver class.
If no @Priority annotation is present, assume a default priority of 1000.

3. Call resolveLocale() on the first resolver in the list. If the resolver returns null, continue with
the next resolver in the list.
If a resolver returns a non-null result, stop the algorithm and use the returned locale as the
request locale.

Applications can either rely on the default locale resolver which is described in the Default Locale
Resolver section or provide a custom resolver which implements some other strategy for resolving
the request locale. A custom strategy could for example track the locale using the session, a query
parameter or the server’s hostname.

8.3. Default Locale Resolver
Every MVC implementation MUST provide a default locale resolver with a priority of 0 which
resolves the request locale according to the following algorithm:

1. First check whether the client provided an Accept-Language request header. If this is the case,
the locale with the highest quality factor is returned as the result.

2. If the previous step was not successful, return the system default locale of the server.

Please note that applications can customize the locale resolving process by providing a custom
locale resolver with a priority higher than 0. See the Resolving Algorithm section for details.

42

Appendix A: Summary of Annotations
Annotation Target Description

Controller Type or method Defines a resource method as an MVC controller.
If specified at the type level, it defines all
methods in a class as controllers.

View Type or method Declares a view for a controller method that
returns void. If specified at the type level, it
applies to all controller methods that return void
in a class.

CsrfValid Method States that a CSRF token must be validated
before invoking the controller. Failure to
validate the CSRF token results in a
ForbiddenException thrown.

RedirectScoped Type, method or field Specifies that a certain bean is in redirect scope.

UriRef Method Defines a symbolic name for a controller
method.

MvcBinding Field, method or
parameter

Declares that constraint violations will be
handled by a controller through BindingResult
instead of triggering a
ConstraintViolationException.

43

Bibliography
[1]

Edward Burns. JavaServer Faces 2.2. JSR, JCP, May 2013
http://jcp.org/en/jsr/detail?id=344

[2]

Pete Muir. Context and Dependency Injection for Java EE 1.1 MR. JSR, JCP, April 2014
http://jcp.org/en/jsr/detail?id=346

[3]

Emmanuel Bernard. Bean Validation 1.1. JSR, JCP, March 2013
http://jcp.org/en/jsr/detail?id=349

[4]

S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF,
March 1997
http://www.ietf.org/rfc/rfc2119.txt

[5]

Santiago Pericas-Geertsen and Marek Potociar. The Java API for RESTful Web Services 2.0 MR.
JSR, JCP, October 2014
http://jcp.org/en/jsr/detail?id=339

[6]

Kin man Chung. Expression Language 3.0. JSR, JCP, May 2013
http://jcp.org/en/jsr/detail?id=341

44

http://jcp.org/en/jsr/detail?id=344
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=349
http://www.ietf.org/rfc/rfc2119.txt
http://jcp.org/en/jsr/detail?id=339
http://jcp.org/en/jsr/detail?id=341

	MVC 1.0: Model-View-Controller Specification
	Table of Contents
	License
	Chapter 1. Introduction
	1.1. Goals
	1.2. Non-Goals
	1.3. Additional Information
	1.4. Terminology
	1.5. Conventions
	1.6. Specification Leads
	1.7. Expert Group Members
	1.8. Contributors
	1.9. Acknowledgements

	Chapter 2. Models, Views and Controllers
	2.1. Controllers
	2.2. Models
	2.3. Views

	Chapter 3. Data Binding
	3.1. Introduction
	3.2. @MvcBinding annotation
	3.3. Error handling with BindingResult
	3.4. Converting to Java types

	Chapter 4. Security
	4.1. Introduction
	4.2. Cross-site Request Forgery
	4.3. Cross-site Scripting

	Chapter 5. Events
	5.1. Observers

	Chapter 6. Applications
	6.1. MVC Applications
	6.2. MVC Context
	6.3. Providers in MVC
	6.4. Annotation Inheritance
	6.5. Configuration in MVC

	Chapter 7. View Engines
	7.1. Introduction
	7.2. Selection Algorithm
	7.3. FacesServlet

	Chapter 8. Internationalization
	8.1. Introduction
	8.2. Resolving Algorithm
	8.3. Default Locale Resolver

	Appendix A: Summary of Annotations
	Bibliography

