Reactor RabbitMQ Reference Guide

Arnaud Cogoluégnes, Pawel Mackowski

Version 1.5.4, 2021-11-09

Table of Contents

Introduction

1. Overview

1.1. RabbitMQ
1.2. Project Reactor
1.3. Reactive API for RabbitMQ

2. Motivation

2.1. Functional interface for RabbitMQ
2.2. Non-blocking Back-pressure
2.3. End-to-end Reactive Pipeline

2.4. Comparisons with other RabbitMQ Java libraries

2.4.1. RabbitMQ Java Client
2.4.2. Spring AMQP

3. Getting Started

3.1. Requirements
3.2. Quick Start
3.2.1. Start RabbitMQ
3.2.2. Run Reactor RabbitMQ Samples
Sample Sender
Sample Receiver
Sample Spring Boot Application
3.2.3. Building Reactor RabbitMQ Applications
3.2.4. Versioning

4. Additional Resources

4.1. Getting help
4.2. Resources

5. New & Noteworthy

5.1. What’s new in Reactor RabbitMQ 1.4.1
5.2. What’s new in Reactor RabbitMQ 1.4
5.3. What’s new in Reactor RabbitMQ 1.3
5.4. What’s new in Reactor RabbitMQ 1.2
5.5. What’s new in Reactor RabbitMQ 1.1
5.6. What’s new in Reactor RabbitMQ 1.0

Reference Documentation
6. Reactor RabbitMQ API

6.1. Overview
6.2. Reactive RabbitMQ Sender

6.2.1. Managing resources (exchanges, queues, and bindings)
6.2.2. Reliable publishing with publisher confirms

© 00 N o U1 U1 U1 U1 U1 U1 WW W W W W w N DNDDNDDN e

g Yy
< U R R W N R R R R R R0 o0 O

6.2.3. Threading model

6.2.4. Closing the Sender

6.2.5. Error handling during publishing
6.2.6. Request/reply

6.3. Reactive RabbitMQ Receiver

6.3.1. Consuming options
6.3.2. Acknowledgment
6.3.3. Closing the Receiver

6.3.4. Connection failure

6.4. Advanced features

6.4.1. Customizing connection creation
Creating a connection with a supplier
Creating a connection with a custom Mono
6.4.2. Sharing the same connection between Sender and Receiver
6.4.3. Creating channels with a custom Mono in Sender
6.4.4. Threading considerations for resource management
6.4.5. Channel pooling in Sender

6.4.6. Retry configuration on connection opening

18
18
19
19
21
22
22
23
23
24
24
25
25
26
26
27
27
28

Introduction

Chapter 1. Overview

1.1. RabbitMQ

With more than 35,000 production deployments world-wide at small startups and large enterprises,
RabbitMQ is the most popular open source message broker.

RabbitMQ is lightweight and easy to deploy on premises and in the cloud. It supports multiple
messaging protocols. RabbitMQ can be deployed in distributed and federated configurations to
meet high-scale, high-availability requirements.

1.2. Project Reactor

Reactor is a highly optimized reactive library for building efficient, non-blocking applications on
the JVM based on the Reactive Streams Specification. Reactor based applications can sustain very
high throughput message rates and operate with a very low memory footprint, making it suitable
for building efficient event-driven applications using the microservices architecture.

Reactor implements two publishers Flux<T> and Mono<T>, both of which support non-blocking
back-pressure. This enables exchange of data between threads with well-defined memory usage,
avoiding unnecessary intermediate buffering or blocking.

1.3. Reactive API for RabbitMQ

Reactor RabbitMQ is a reactive API for RabbitMQ based on Reactor and RabbitMQ Java Client.
Reactor RabbitMQ API enables messages to be published to RabbitMQ and consumed from
RabbitMQ using functional APIs with non-blocking back-pressure and very low overheads. This
enables applications using Reactor to use RabbitMQ as a message bus or streaming platform and
integrate with other systems to provide an end-to-end reactive pipeline.

https://rabbitmq.com/
https://projectreactor.io
https://github.com/reactive-streams/reactive-streams-jvm
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
../api/index.html
https://www.rabbitmq.com/api-guide.html

Chapter 2. Motivation

2.1. Functional interface for RabbitMQ

Reactor RabbitMQ is a functional Java API for RabbitMQ. For applications that are written in
functional style, this API enables RabbitMQ interactions to be integrated easily without requiring
non-functional produce or consume APIs to be incorporated into the application logic.

2.2. Non-blocking Back-pressure

The Reactor RabbitMQ API benefits from non-blocking back-pressure provided by Reactor. For
example, in a pipeline, where messages received from an external source (e.g. an HTTP proxy) are
published to RabbitMQ, back-pressure can be applied easily to the whole pipeline, limiting the
number of messages in-flight and controlling memory usage. Messages flow through the pipeline as
they are available, with Reactor taking care of limiting the flow rate to avoid overflow, keeping
application logic simple.

2.3. End-to-end Reactive Pipeline

The value proposition for Reactor RabbitMQ is the efficient utilization of resources in applications
with multiple external interactions where RabbitMQ is one of the external systems. End-to-end
reactive pipelines benefit from non-blocking back-pressure and efficient use of threads, enabling a
large number of concurrent requests to be processed efficiently. The optimizations provided by
Project Reactor enable development of reactive applications with very low overheads and
predictable capacity planning to deliver low-latency, high-throughput pipelines.

2.4. Comparisons with other RabbitMQ Java libraries

Reactor RabbitMQ is not intended to replace any of the existing Java libraries. Instead, it is aimed at
providing an alternative API for reactive event-driven applications.

2.4.1. RabbitMQ Java Client

For non-reactive applications, RabbitMQ Java Client provides the most complete API to manage
resources, publish messages to and consume messages from RabbitMQ. Note Reactor RabbitMQ is
based on RabbitMQ Java Client.

Applications using RabbitMQ as a message bus using this API may consider switching to Reactor
RabbitMQ if the application is implemented in a functional style.

2.4.2. Spring AMQP

Spring AMQP applies core Spring Framework concepts to the development of AMQP-based
messaging solutions. It provides a "template" as a high-level abstraction for sending and receiving
messages. It also provides support for Message-driven POJOs with a "listener container". These
libraries facilitate management of AMQP resources while promoting the use of dependency

https://www.rabbitmq.com/api-guide.html
https://projects.spring.io/spring-amqp/
https://projects.spring.io/spring-framework/

injection and declarative configuration. Spring AMQP is based on RabbitMQ Java Client.

Chapter 3. Getting Started

3.1. Requirements

You need Java JRE installed (Java 8 or later).

You also need to install RabbitMQ. Follow the instructions from the website. Note you should use
RabbitMQ 3.6.x or later.

3.2. Quick Start

This quick start tutorial sets up a single node RabbitMQ and runs the sample reactive sender and
consumer.

3.2.1. Start RabbitMQ

Start RabbitMQ on your local machine with all the defaults (e.g. AMQP port is 5672).

3.2.2. Run Reactor RabbitMQ Samples

Download Reactor RabbitMQ from github.com/reactor/reactor-rabbitmay/.

> git clone https://github.com/reactor/reactor-rabbitmq
> cd reactor-rabbitmq

Sample Sender

The SampleSender code is on GitHub.

Run the sample sender:

https://www.rabbitmq.com/download.html
https://github.com/reactor/reactor-rabbitmq/
https://github.com/reactor/reactor-rabbitmq/blob/main/reactor-rabbitmq-samples/src/main/java/reactor/rabbitmq/samples/SampleSender.java

> ./gradlew -q sender

10:20:12.590 INFO r.rabbitmq.samples.SampleSender - Message Message_1 sent
successfully

10:20:12.596 INFO r.rabbitmq.samples.SampleSender - Message Message_2 sent
successfully

10:20:12.596 INFO r.rabbitmg.samples.SampleSender - Message Message_3 sent
successfully

10:20:12.596 INFO r.rabbitmg.samples.SampleSender - Message Message_4 sent
successfully

10:20:12.596 INFO r.rabbitmq.samples.SampleSender - Message Message_5 sent
successfully

10:20:12.596 INFO r.rabbitmq.samples.SampleSender - Message Message_6 sent
successfully

10:20:12.596 INFO r.rabbitmq.samples.SampleSender - Message Message_7 sent
successfully

10:20:12.596 INFO r.rabbitmg.samples.SampleSender - Message Message_8 sent
successfully

10:20:12.596 INFO r.rabbitmg.samples.SampleSender - Message Message_9 sent
successfully

10:20:12.597 INFO r.rabbitmg.samples.SampleSender - Message Message_10 sent
successfully

10:20:12.597 INFO r.rabbitmq.samples.SampleSender - Message Message_11 sent
successfully

10:20:12.597 INFO r.rabbitmq.samples.SampleSender - Message Message_12 sent
successfully

10:20:12.599 INFO r.rabbitmq.samples.SampleSender - Message Message_13 sent
successfully

10:20:12.600 INFO r.rabbitmg.samples.SampleSender - Message Message_14 sent
successfully

10:20:12.600 INFO r.rabbitmg.samples.SampleSender - Message Message_15 sent
successfully

10:20:12.600 INFO r.rabbitmg.samples.SampleSender - Message Message_16 sent
successfully

10:20:12.600 INFO r.rabbitmq.samples.SampleSender - Message Message_17 sent
successfully

10:20:12.600 INFO r.rabbitmq.samples.SampleSender - Message Message_18 sent
successfully

10:20:12.601 INFO r.rabbitmq.samples.SampleSender - Message Message_19 sent
successfully

10:20:12.601 INFO r.rabbitmg.samples.SampleSender - Message Message_20 sent
successfully

The SampleSender sends 20 messages to the demo-queue queue, with publisher confirms enabled. The
log line for a given message is printed to the console when the publisher confirmation is received
from the broker.

Sample Receiver

The SampleReceiver code is on GitHub.

https://github.com/reactor/reactor-rabbitmq/blob/main/reactor-rabbitmq-samples/src/main/java/reactor/rabbitmq/samples/SampleReceiver.java

Run the sample receiver:

> ./gradlew -q receiver

10:22:43.568 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_]1

10:22:43.575 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_2

10:22:43.576 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_3

10:22:43.576 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_4

10:22:43.576 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_b

10:22:43.576 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_6

10:22:43.576 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_7

10:22:43.576 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_8

10:22:43.577 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_9

10:22:43.577 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_10
10:22:43.577 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_11
10:22:43.577 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_12
10:22:43.577 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_13
10:22:43.577 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_14
10:22:43.577 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_15
10:22:43.578 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_16
10:22:43.578 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_17
10:22:43.578 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_18
10:22:43.578 INFO r.rabbitmq.samples.SampleReceiver - Received message Message_19
10:22:43.578 INFO r.rabbitmg.samples.SampleReceiver - Received message Message_20

The SampleReceiver consumes messages from the demo-queue queue and logs the message content in
the console.

Sample Spring Boot Application

The SpringBootSample code is on GitHub.

Run the sample Spring Boot application:

> ./gradlew -q springboot

11:47:43.837 INFO
11:47:43.846 INFO
11:47:43.849 INFO
11:47:43.850 INFO
11:47:43.850 INFO
11:47:43.851 INFO
11:47:43.851 INFO
11:47:43.851 INFO
11:47:43.851 INFO
11:47:43.851 INFO
11:47:43.851 INFO

.rabbitmg.samples.SpringBootSample - Sending messages...
.rabbitmg.samples.SpringBootSample - Received message Message_1
.rabbitmqg.samples.SpringBootSample - Received message Message_2
.rabbitmg.samples.SpringBootSample - Received message Message_3
.rabbitmg.samples.SpringBootSample - Received message Message_4
.rabbitmg.samples.SpringBootSample - Received message Message_5
.rabbitmg.samples.SpringBootSample - Received message Message_6
.rabbitmqg.samples.SpringBootSample - Received message Message_7
.rabbitmq.samples.SpringBootSample - Received message Message_8
.rabbitmg.samples.SpringBootSample - Received message Message_9
.rabbitmq.samples.SpringBootSample - Received message Message_10

b T T T T . A e H e B B |

The Spring Boot sample publishes messages with a Sender and consumes them with a Receiver. This
application illustrates how to configure Reactor RabbitMQ in a Spring Boot environment.

https://github.com/reactor/reactor-rabbitmq/blob/main/reactor-rabbitmq-samples/src/main/java/reactor/rabbitmq/samples/SpringBootSample.java

3.2.3. Building Reactor RabbitMQ Applications

To build your own application using the Reactor RabbitMQ API, you need to include a dependency
to Reactor RabbitMQ.

For Gradle:

dependencies {
compile "io.projectreactor.rabbitmg:reactor-rabbitmq:1.5.4"

}
For Maven:
<dependency>
<groupld>io.projectreactor.rabbitmg</groupId>
<artifactId>reactor-rabbitmg</artifactId>
<version>1.5.4</version>
</dependency>

When using a milestone or a release candidate, you need to add the Spring IO milestone
repository.

For Gradle:

repositories {
maven { url 'https://repo.spring.io/milestone’ }
mavenCentral()

}

For Maven:

<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>

When using a snapshot, you need to add the Spring IO snapshots repository.

For Gradle:

repositories {
maven { url 'https://repo.spring.io/libs-snapshot' }
mavenCentral()

}

For Maven:

<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/libs-snapshot</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>

3.2.4. Versioning

Reactor RabbitMQ used semantic versioning from version 1.0 to version 1.4, but switched to
another scheme for consistency with Reactor Core and the other Reactor libraries.

Starting from 1.4, Reactor RabbitMQ uses a GENERATION.MAJOR.MINOR scheme, whereby an increment
in:

* GENERATION marks a change of library generation. Expect improvements, new features, bug fixes,
and incompatible API changes.

* MAJOR marks a significant release. Expect new features, bug fixes, and small incompatible API
changes.

* MINOR marks a maintenance release. Expect new features and bug fixes, but no incompatible API
changes.

https://semver.org/
https://github.com/reactor/reactor-core/

Chapter 4. Additional Resources

4.1. Getting help

If you are having trouble with Reactor RabbitMQ, you can ask for help on RabbitMQ community
mailing list.

Report bugs in Reactor RabbitMQ at github.com/reactor/reactor-rabbitmgy/issues.

Reactor Rabbitmq is open source and the code and documentation are available at github.com/
reactor/reactor-rabbitmq.

4.2. Resources

* Reactor RabbitMQ on github

* RabbitMQ

* Project Reactor

* Reactor Core

» Reactive Streams Specification
* Understanding Reactive types
» Lite Rx API Hands-on

» Reactor by Example

10

https://groups.google.com/forum/#!forum/rabbitmq-users
https://groups.google.com/forum/#!forum/rabbitmq-users
https://github.com/reactor/reactor-rabbitmq/issues
https://github.com/reactor/reactor-rabbitmq
https://github.com/reactor/reactor-rabbitmq
https://github.com/reactor/reactor-rabbitmq
https://www.rabbitmq.com/documentation.html
https://projectreactor.io/
https://github.com/reactor/reactor-core
https://github.com/reactive-streams/reactive-streams-jvm
https://spring.io/blog/2016/04/19/understanding-reactive-types
https://github.com/reactor/lite-rx-api-hands-on
https://www.infoq.com/articles/reactor-by-example

Chapter 5. New & Noteworthy

5.1. What’s new in Reactor RabbitMQ 1.4.1

» Support exchange-to-exchange binding and unbinding

* Change in versioning scheme: Reactor RabbitMQ does not follow semantic versioning anymore,
it uses now a GENERATION.MAJOR.MINOR scheme, for consistency with the other Reactor libraries

5.2. What’s new in Reactor RabbitMQ 1.4

e Add @NonNul1Api and @Nullable annotations

* Add Sender#sendWithTypedPublishConfirms to be able to publish OutboundMessage instances of a
custom class and get them back in the flux of OutboundMessageResult

¢ Use Reactor 3.3.1.RELEASE

5.3. What’s new in Reactor RabbitMQ 1.3

* Use Reactor 3.3.0.RELEASE
* Allow passive exchange and queue declaration
* Emit exception on server-initiated channel closing in publish confirms flow

* Add support for handling returned (undeliverable) messages in Sender

Add hook to configure Mono<Connection>

Support client-generated consumer tags

» Cache connections and channels only on success

Use Java client 5.7.3

5.4. What’s new in Reactor RabbitMQ 1.2

* Limit in-flight records in publisher confirms if requested
* Implement back pressure in publisher confirms support

e Use Reactor 3.2.8.RELEASE

5.5. What’s new in Reactor RabbitMQ 1.1

* Let user provide Mono<Channel> for sending messages
* Add optional channel pooling for sending messages
* Automatically retry on ack and nack

e Use Reactor 3.2.5.RELEASE

Use Java client 5.6.0

11

5.6. What’s new in Reactor RabbitMQ 1.0

* Introduction of the Sender and Receiver API

» Support for request/reply

* Exception handling

* Let user provide Mono<Channel> for resource management

* Complete receiving flux on channel termination

* Handle error signal of connectionMono subscription to enable proper error handling
* Use Reactor 3.2.3.RELEASE

* Use Java client 5.5.1

12

Reference Documentation

13

Chapter 6. Reactor RabbitMQ API

6.1. Overview

This section describes the reactive API for producing and consuming messages using RabbitMQ.
There are two main classes in Reactor RabbitMQ:
1. reactor.rabbitmq.Sender for publishing messages to RabbitMQ

2. reactor.rabbitmq.Receiver for consuming messages from RabbitMQ
Full API for Reactor RabbitMQ is available in the javadocs.

The project uses Reactor Core to expose a "Reactive Streams" APIL.

6.2. Reactive RabbitMQ Sender

Outbound messages are sent to RabbitMQ using reactor.rabbitmq.Sender. A Sender is associated
with one RabbitMQ Connection that is used to transport messages to the broker. A Sender can also
manage resources (exchanges, queues, bindings).

A Sender is created with an instance of sender configuration options
reactor.rabbitmq.SenderOptions. The properties of SenderOptions contains the ConnectionFactory that
creates connections to the broker and a Reactor Scheduler used by the Sender.

ConnectionFactory connectionFactory = new ConnectionFactory();
connectionFactory.useNio();

SenderOptions senderOptions = new SenderOptions()
.connectionFactory(connectionFactory) ©)
.resourceManagementScheduler(Schedulers.boundedElastic()); @)

@ Specify connection factory
@ Specify scheduler for resource management

Note you <can control the creation of the Connection thanks to the
connectionSupplier(ConnectionFactory) method:

SenderOptions senderOptions = new SenderOptions()

.connectionFactory(connectionFactory)

.connectionSupplier(cf -> cf.newConnection(O)
new Address[] {new Address("192.168.0.1"), new Address("192.168.0.2")},
"reactive-sender"))

.resourceManagementScheduler(Schedulers.boundedElastic());

@ Specify array of addresses and connection name

In the snippet above the connection can be created from 2 different nodes (useful for failover) and

14

../api/index.html
https://github.com/reactor/reactor-core
https://github.com/reactive-streams/reactive-streams-jvm

the connection name is set up.

If TLS is required, it must be configured with the Java client’s ConnectionFactory, see the TLS section
in the client documentation and the TLS guide for more information.

Once the required options have been configured on the options instance, a new Sender instance can
be created with the options already configured in senderOptions.

Sender sender = RabbitFlux.createSender(senderOptions);

The Sender is now ready to send messages to RabbitMQ. At this point, a Sender instance has been
created, but no connections to RabbitMQ have been made yet. The underlying Connection instance
is created lazily when a first call is made to create a resource or to send messages.

Let’s now create a sequence of messages to send to RabbitMQ. Each outbound message to be sent to
RabbitMQ is represented as a OutboundMessage. An OutboundMessage contains routing information
(exchange to send to and routing key) as well as the message itself (properties and body).

A Flux<OutboundMessage> of messages is created for sending to RabbitMQ. For beginners, Lite Rx
API Hands-on provides a hands-on tutorial on using the Reactor classes Flux and Mono.

Flux<OutboundMessage> outboundFlux =
Flux.range(1, 10)
.map(i -> new OutboundMessage(
"amq.direct",
"routing.key", ("Message " + i).getBytes()
));

The code segment above creates a sequence of messages to send to RabbitMQ. The outbound Flux
can now be sent to RabbitMQ using the Sender created earlier.

The code segment below sends the messages to RabbitMQ. The final subscribe() in the code block
requests upstream to send the messages to RabbitMQ.

sender.send(outboundFlux) ©)
.doOnError(e -> log.error("Send failed", e)) @
.subscribe(); ®

@ Reactive send operation for the outbound Flux
@ If the sending fails, log an error

® Subscribe to trigger the actual flow of records from outboundFlux to RabbitMQ.

See SampleSender for a full code listing for a Sender.

6.2.1. Managing resources (exchanges, queues, and bindings)

The Sender is also able to declare and delete AMQP resources the reactive way. You can learn more

15

https://www.rabbitmq.com/api-guide.html#tls
https://www.rabbitmq.com/api-guide.html#tls
https://www.rabbitmq.com/ssl.html#java-client
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/reactor/reactor-rabbitmq/blob/main/reactor-rabbitmq-samples/src/main/java/reactor/rabbitmq/samples/SampleSender.java

about the AMQP model on RabbitMQ website.

Sender has a declare* method for each type of resource (exchange, binding, and queue) and there’s
also a respective *Specification class to describe each creation.

Mono<AMQP.Exchange.DeclareOk> exchange = sender.declareExchange(
ExchangeSpecification.exchange("my.exchange")

)i

Mono<AMQP.Queue.DeclareOk> queue = sender.declareQueue(
QueueSpecification.queue("my.queue")

)i

Mono<AMQP.Queue.BindOk> binding = sender.bind(
BindingSpecification.binding().exchange("my.exchange")

.queue("my.queue").routingKey("a.b")

);

Note the Sender#ideclare* methods return their respective AMQP results wrapped into a Mono.

For queue creation, note that if a queue specification has a null name, the queue to
be created will have a server-generated name and will be non-durable, exclusive,

o and auto-delete. If you want a queue to have a server-generated name but other
parameters, specify an empty name "" and set the parameters accordingly on the
QueueSpecification instance. For more information about queues, see the official
documentation.

One can also use the ResourcesSpecification factory class with a static import to reduce boilerplate
code. Combined with Mono chaining and Sender#declare shortcuts, it allows for condensed syntax:

import static reactor.rabbitmq.ResourcesSpecification.*;

sender .declare(exchange("my.exchange"))
.then(sender.declare(queue("my.queue")))
.then(sender.bind(binding("my.exchange", "a.b", "my.queue")))
.subscribe(r -> System.out.println("Exchange and queue declared and bound"));

Sender has delete* and delete methods as well. Here is an example with the short method forms:

import static reactor.rabbitmq.ResourcesSpecification.*;

sender.unbind(binding("my.exchange", "a.b", "my.queue"))
.then(sender.delete(exchange("my.exchange")))
.then(sender.delete(queue("my.queue")))
.subscribe(r -> System.out.println("Exchange and queue unbound and deleted"));

16

https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/queues.html
https://www.rabbitmq.com/queues.html

6.2.2. Reliable publishing with publisher confirms

Sender offers also the sendWithPublishConfirms method to send messages and receive publisher
confirms to make sure the broker has taken into account the outbound messages.

Flux<OutboundMessage> outboundFlux = Flux.range(1, 10)
.map(i -> new OutboundMessage(
"amq.direct",
"routing.key", "hello".getBytes()

)
sender.sendWithPublishConfirms(outboundFlux)

.subscribe(outboundMessageResult -> {
if (outboundMessageResult.isAck()) {
@
}
o

® Outbound message has reached the broker

Sender#sendWithPublishConfirms returns a Flux<OutboundMessageResult> that can be subscribed to to
know that outbound messages have successfully reached the broker.

It is also possible to know about unroutable messages, that is messages not routed to any queue
because they do not match any routing rule. Tracking of unroutable messages is disabled by
default, it can be enabled by using the Sender#sendWithPublishConfirms(Publisher<QutboundMessage>,
SendOptions) method and set the trackReturned flag on SendOptions:

Flux<OutboundMessage> outboundFlux = Flux.range(1, 10)
.map(i -> new OutboundMessage(
"amq.direct",
“routing.key", "hello".getBytes()

)i
sender.sendWithPublishConfirms(outboundFlux, new SendOptions().trackReturned(true))

®
.subscribe(outboundMessageResult -> {
if (outboundMessageResult.isReturned()) {
@
+
b

@ Track unroutable messages

@ Outbound message was not routed to any queue

The OutboundMessageResult#isReturned method then tells whether a message has been routed
somewhere or not. This method always returns false if unroutable messages are not tracked. Note
the OutboundMessageResult#isAck method returns true for unroutable messages, because the broker
considered they have been taken care of (i.e. confirmed). So if you are interested in unroutable
messages, the returned status should always be checked before the confirmed status.

17

https://www.rabbitmq.com/confirms.html#publisher-confirms
https://www.rabbitmq.com/confirms.html#publisher-confirms
https://www.rabbitmq.com/publishers.html#unroutable

Note it is possible to publish OutboundMessage instances of a custom class and get them back in the
flux of OutboundMessageResult. To do so, use the sendWithTypedPublishConfirms method:

Flux<CorrelableOutboundMessage<Integer>> outboundFlux = Flux.range(1, 10)
.map(i -> new CorrelableOutboundMessage<>(

@
"amq.direct",
"routing.key", "hello".getBytes(),
.i

@
D)
sender.sendWithTypedPublishConfirms(outboundFlux)
.subscribe(confirmation -> {
CorrelableOutboundMessage<Integer> message = confirmation.getOutboundMessage(
) ®
Integer confirmedBusinessData = message.getCorrelationMetadata();
@
9k

@ Use a subclass of OutboundMessage

@ Provide some extra information in the outbound message

® Get the original message

@ Retrieve the extra information

The previous sample uses the provided CorrelableOutboundMessage class, but it could be any subclass
of OutboundMessage. The OutboundMessageResult instances of the confirmation flux are typed with the

original message class, so the extra information is available. This allows to perform any useful
processing on this extra information when the outbound message is confirmed.

6.2.3. Threading model

Reactor RabbitMQ configure by default the Java Client to use NIO, i.e. there’s only one thread that
deals with IO. This can be changed by specifying a ConnectionFactory in the SenderOptions.

The Sender uses 2 Reactor’s Scheduler: one for the subscription when creating the connection and
another one for resources management. The Sender defaults to 2 bounded elastic schedulers, this
can be overriden in the SenderOptions. The Sender takes care of disposing the default schedulers
when closing. If not using the default schedulers, it’s developer’s job to dispose schedulers they
passed in to the SenderOptions.

6.2.4. Closing the Sender

When the Sender is no longer required, the instance can be closed. The underlying Connection is
closed, as well as the default schedulers if none has been explicitly provided.

sender.close();

18

6.2.5. Error handling during publishing

The send and sendWithPublishConfirms methods can take an additional SendOptions parameter to
specify the behavior to adopt if the publishing of a message fails. The default behavior is to retry
every 200 milliseconds for 10 seconds in case of connection failure. As automatic connection
recovery is enabled by default, the connection is likely to be re-opened after a network glitch and
the flux of outbound messages should stall only during connection recovery before restarting
automatically. This default behavior tries to find a trade-off between reactivity and robustness.

You can customize the retry by settings your own instance of RetrySendingExceptionHandler in the
SendOptions, e.g. to retry for 20 seconds every 500 milliseconds:

Sender sender = RabbitFlux.createSender();
sender.send(outboundFlux, new SendOptions().exceptionHandler(
new ExceptionHandlers.RetrySendingExceptionHandler (
Duration.ofSeconds(20), Duration.ofMillis(500),
ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE
)
));

The RetrySendingExceptionHandler uses a Predicate<Throwable> to decide whether an exception
should trigger a retry or not. If the exception isn’t retryable, the exception handler wraps the
exception in a RabbitFluxException and throws it.

For consistency sake, the retry exception handler used with
ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE (the default) will trigger retry attempts for the
same conditions as connection recovery triggering. This means that if connection recovery has
kicked in, publishing will be retried at least for the retry timeout configured (10 seconds by default).

Note the exception handler is a BiConsumer<Sender.SendContext, Exception>, ~where
Sender.SendContext is a class providing access to the OutboundMessage and the underlying AMQP
Channel. This makes it easy to customize the default behavior: logging BiConsumer#andThen retrying,
only logging, trying to send the message somewhere else, etc.

6.2.6. Request/reply

Reactor RabbitMQ supports reactive request/reply. From RabbitMQ documentation:

RPC (request/reply) is a popular pattern to implement with a messaging
broker like RabbitMQ. [...] The typical way to do this is for RPC clients to
send requests that are routed to a long lived (known) server queue. The RPC
server(s) consume requests from this queue and then send replies to each
client using the queue named by the client in the reply-to header.

For performance reason, Reactor RabbitMQ builds on top direct reply-to. The next snippet shows
the usage of the Rpc(lient class:

19

https://www.rabbitmq.com/api-guide.html#recovery
https://www.rabbitmq.com/api-guide.html#recovery
https://www.rabbitmq.com/direct-reply-to.html

String queue = "rpc.server.queue";

Sender sender = RabbitFlux.createSender();

RpcClient rpcClient = sender.rpcClient("", queue);

Mono<Delivery> reply = rpcClient.rpc(Mono.just(
new RpcClient.RpcRequest("hello".getBytes())

));
rpcClient.close();

@ Create RpcClient instance from a Sender

@ Send request and get reply

® Close RpcClient when done

In the example above, a consumer waits on the rpc.server.queue to process requests. A RpcClient is
created from a Sender, it will send requests to a given exchange with a given routing key. The
RpcClient handles the machinery to send the request and wait on a reply queue the result
processed on the server queue, wrapping everything up with reactive API. Note a RPC client isn’t
meant to be used for only 1 request, it can be a long-lived object handling different requests, as long
as they’re directed to the same destination (defined by the exchange and the routing key passed in

when the RpcClient is created).

A RpcClient uses a sequence of Long for correlation, but this can be changed by passing in a

Su

pplier<String> when creating the RpcClient:

String queue = "rpc.server.queue";

Supplier<String> correlationIdSupplier = () -> UUID.randomUUID().toString(); @

Sender sender = RabbitFlux.createSender();
RpcClient rpcClient = sender.rpcClient(
"", queue, correlationIdSupplier
)i
Mono<Delivery> reply = rpcClient.rpc(Mono.just(
new RpcClient.RpcRequest("hello".getBytes())
));
rpcClient.close();

@ Use random UUID correlation ID supplier

@ Pass in supplier on RpcClient creation

This can be useful e.g. when the RPC server can make sense of the correlation ID.

20

RpcClient#iclose() does not close the underlying Channel the RpcClient uses. When
creating the RpcClient with Sender#irpcClient the Sender instance provides a Channel
o that will be closed when the Sender is closed. It is possible to provide a given
Mono<Channel> by using the RpcClient constructor, but the Channel will then need to

be explicitly closed as well.

@

6.3. Reactive RabbitMQ Receiver

Messages stored in RabbitMQ queues are consumed wusing the reactive receiver
reactor.rabbitmg.Receiver. Each instance of Receiver is associated with a single instance of
Connection created by the options-provided ConnectionFactory.

A receiver is created with an instance of receiver configuration options
reactor.rabbitmg.ReceiverOptions. The properties of ReceiverOptions contains the ConnectionFactory
that creates connections to the broker and a Reactor Scheduler used for the connection creation.

ConnectionFactory connectionFactory = new ConnectionFactory();
connectionFactory.useNio();

ReceiverOptions receiverOptions = new ReceiverOptions()
.connectionFactory(connectionFactory) @D
.connectionSubscriptionScheduler(Schedulers.boundedElastic()); @

@ Specify connection factory

@ Specify scheduler for connection creation

Note you <can control the creation of the Connection thanks to the
connectionSupplier(ConnectionFactory) method:

SenderOptions senderOptions = new SenderOptions()

.connectionFactory(connectionFactory)

.connectionSupplier(cf -> cf.newConnection(©)
new Address[] {new Address("192.168.0.1"), new Address("192.168.0.2")},
"reactive-sender"))

.resourceManagementScheduler(Schedulers.boundedElastic());

@ Specify array of addresses and connection name

In the snippet above the connection can be created from 2 different nodes (useful for failover) and
the connection name is set up.

If TLS is required, it must be configured with the Java client’s ConnectionFactory, see the TLS section
in the client documentation and the TLS guide for more information.

Once the required configuration options have been configured on the options instance, a new
Receiver instance can be created with these options to consume inbound messages. The code
snippet below creates a receiver instance and an inbound Flux for the receiver. The underlying
Connection and Consumer instances are created lazily later when the inbound Flux is subscribed to.

Flux<Delivery> inboundFlux = RabbitFlux.createReceiver(receiverOptions)
.consumeNoAck("reactive.queue");

The inbound RabbitMQ Flux is ready to be consumed. Each inbound message delivered by the Flux

21

https://www.rabbitmq.com/api-guide.html#tls
https://www.rabbitmq.com/api-guide.html#tls
https://www.rabbitmq.com/ssl.html#java-client

is represented as a Delivery.

See SampleReceiver for a full code listing for a Receiver.

6.3.1. Consuming options

The Receiver class has different flavors of the receive* method and each of them can accept a
ConsumeOptions instance. Here are the different options:

» overflowStrategy: the OverflowStrategy used when creating the Flux of messages. Default is
BUFFER.

* gos: the prefetch count used when message acknowledgment is enabled. Default is 250.
» consumerTag: Consumer tag used to register the consumer. Default is server-generated identifier.

* hookBeforeEmitBiFunction: a BiFunction<Long, ? super Delivery, Boolean> to decide whether a
message should be emitted downstream or not. Default is to always emit.

» stopConsumingBiFunction: a BiFunction<Long, ? super Delivery, Boolean> to decide whether the
flux should be completed after the emission of the message. Default is to never complete.

6.3.2. Acknowledgment

Receiver has several receive* methods that differ on the way consumer are acknowledged back to
the broker. Acknowledgment mode can have profound impacts on performance and memory
consumption.

» consumeNoAck: the broker forgets about a message as soon as it has sent it to the consumer. Use
this mode if downstream subscribers are very fast, at least faster than the flow of inbound
messages. Messages will pile up in the JVM process memory if subscribers are not able to cope
with the flow of messages, leading to out-of-memory errors. Note this mode uses the auto-
acknowledgment mode when registering the RabbitMQ Consumer.

» consumeAutoAck: with this mode, messages are acknowledged right after their arrival, in the
Flux#doOnNext callback. This can help to cope with the flow of messages, avoiding the
downstream subscribers to be overwhelmed. Note this mode does not use the auto-
acknowledgment mode when registering the RabbitMQ Consumer. In this case, consumeAutoAck
means messages are automatically acknowledged by the library in one the Flux hooks.

* consumeManualAck: this method returns a Flux<AcknowledgableDelivery> and messages must be
manually acknowledged or rejected downstream with AcknowledgableDelivery#ack or
AcknowledgableDelivery#nack, respectively. This mode lets the developer acknowledge messages
in the most efficient way, e.g. by acknowledging several messages at the same time with
AcknowledgableDelivery#ack(true) and letting Reactor control the batch size with one of the
Flux#buffer methods.

To learn more on how the ConsumeOptions#qos setting can impact the behavior of
ReceiverffconsumeAutoAck and Receiver#iconsumeManualAck, have a look at this post about queuing
theory.

22

https://www.rabbitmq.com/releases/rabbitmq-java-client/current-javadoc/com/rabbitmq/client/Delivery.html
https://github.com/reactor/reactor-rabbitmq/blob/main/reactor-rabbitmq-samples/src/main/java/reactor/rabbitmq/samples/SampleReceiver.java
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.OverflowStrategy.html
https://www.rabbitmq.com/blog/2012/05/11/some-queuing-theory-throughput-latency-and-bandwidth/
https://www.rabbitmq.com/blog/2012/05/11/some-queuing-theory-throughput-latency-and-bandwidth/

6.3.3. Closing the Receiver

When the Receiver is no longer required, the instance can be closed. The underlying Connection is
closed, as well as the default scheduler if none has been explicitly provided.

receiver.close();

6.3.4. Connection failure

Network connection between the broker and the client can fail. This is transparent for consumers
thanks to RabbitMQ Java client automatic connection recovery. Connection failures affect sending
though, and acknowledgment is a sending operation.

When using ReceiverficonsumeAutoAck, acknowledgments are retried for 10 seconds every 200
milliseconds in case of connection failure. This can be changed by setting the
BiConsumer<Receiver.AcknowledgmentContext, Exception> exceptionHandler in the ConsumeOptions, e.g.
to retry for 20 seconds every 500 milliseconds:

Flux<Delivery> inboundFlux = RabbitFlux
.createReceiver()
.consumeAutoAck("reactive.queue", new ConsumeOptions()

.exceptionHandler(new ExceptionHandlers.RetryAcknowledgmentExceptionHandler (
Duration.ofSeconds(20), Duration.ofMillis(500), @
ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE

)

)i

@ Retry acknowledgment for 20 seconds every 500 milliseconds on connection failure

When using Receiver#iconsumeManualAck, acknowledgment is handled by the developer, who can do
pretty anything they want on acknowledgment failure.

AcknowledgableDelivery#ack and AcknowledgableDelivery#nack methods handle retry internally based
on BiConsumer<Receiver.AcknowledgmentContext, Exception> exceptionHandler in the ConsumeOptions.
Developer does not have to execute retry explicitly on acknowledgment failure and benefits from
Reactor RabbitMQ retry support when acknowledging a message:

23

https://www.rabbitmq.com/api-guide.html#recovery

Receiver receiver = RabbitFlux.createReceiver();
BiConsumer<Receiver.AcknowledgmentContext, Exception> exceptionHandler =
new ExceptionHandlers.RetryAcknowledgmentExceptionHandler(@
Duration.ofSeconds(20), Duration.ofMillis(500),
ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE
)i
receiver.consumeManualAck("queue",
new ConsumeOptions().exceptionHandler(exceptionHandler))
.subscribe(msg -> {
/] ...
msg.ack();

@O

b

@ Configure retry logic when exception occurs

@ Process message

® Send acknowledgment after business processing

Note the exception handler is a BiConsumer<Receiver.AcknowledgmentContext, Exception>. This means
acknowledgment failure can be handled in any way, here we choose to retry the acknowledgment.
Note also that by using ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE, we choose to retry only
on unexpected connection failures and rely on the AMQP Java client to automatically re-create a

new connection in the background. The decision to retry on a given exception can be customized by
providing a Predicate<Throwable> in place of ExceptionHandlers.CONNECTION_RECOVERY_PREDICATE.

6.4. Advanced features

This section covers advanced uses of the Reactor RabbitMQ API.

6.4.1. Customizing connection creation

It is possible to specify only a ConnectionFactory for Sender/ReceiverOptions and let Reactor
RabbitMQ create connection from this ConnectionFactory. Internally, Reactor RabbitMQ will create a
Mono<Connection> to perform its operations and the connection will be created only when needed.

When the developer lets Reactor RabbitMQ create a Mono<Connection>, the library will take
responsibility for the following actions for each instance of Sender and Receiver:
* using a cache to avoid creating several connections (by using Mono#icache())

* making the Mono<Connection> register on connectionSubscriptionScheduler (with
Mono#subscribeOn)

* closing the connection when Sender/Receiver#close() is closed

Reactor RabbitMQ provides 2 ways to have more control over the connection creation, e.g. to
provide a name or to connect to different nodes:

* using a connection supplier (simplest option, no Reactive API involved)

* using a custom Mono<Connection> (implies Reactive API but provides more control)

24

Creating a connection with a supplier

The following snippet shows how to create connections with a custom name:

ConnectionFactory connectionFactory = new ConnectionFactory(); ©)
connectionFactory.useNio();

Sender sender = RabbitFlux.createSender(new SenderOptions()
.connectionFactory(connectionFactory)
.connectionSupplier(cf -> cf.newConnection("sender")) @

)

Receiver receiver = RabbitFlux.createReceiver(new ReceiverOptions()
.connectionFactory(connectionFactory)
.connectionSupplier(cf -> cf.newConnection("receiver")) ®
)i
@ Create and configure connection factory
@ Create supplier that creates connection with a name
® Create supplier that creates connection with a name

When using a connection supplier, Reactor RabbitMQ will create a Mono<Connection> and will take
care of the operations mentioned above (caching, registering on a scheduler, and closing).

Creating a connection with a custom Mono

The following snippet shows how to provide custom Mono<Connection>:

ConnectionFactory connectionFactory = new ConnectionFactory();
@

connectionFactory.useNio();

Sender sender = RabbitFlux.createSender(new SenderOptions()
.connectionMono(
Mono.fromCallable(() -> connectionFactory.newConnection("sender")).cache())

@
)i
Receiver receiver = RabbitFlux.createReceiver(new ReceiverOptions()
.connectionMono(
Mono.fromCallable(() -> connectionFactory.newConnection("receiver")).cache())
®
)i

@ Create and configure connection factory
@ Create Mono that creates connection with a name

® Create Mono that creates connection with a name

Providing your own Mono<Connection> lets you take advantage of all the Reactor API (e.g. for

25

caching) but has some caveats: Reactor RabbitMQ will not cache the provided Mono<Connection>, will
not use it on a scheduler, and will not close it automatically. This is developer’s responsibility to
take care of these actions if they make sense in their context.

6.4.2. Sharing the same connection between Sender and Receiver

Sender and Receiver instances create their own Connection but it’s possible to use only one or a few
Connection instances to be able to use exclusive resources between a Sender and a Receiver or
simply to control the number of created connections.

Both SenderOptions and ReceiverOptions have a connectionSupplier method that can encapsulate any
logic to create the Connection the Sender or Receiver will end up using through a Mono<Connection>.
Reactor RabbitMQ provides a way to share the exact same connection instance between some
Sender and Receiver instances:

ConnectionFactory connectionFactory = new ConnectionFactory();

@

connectionFactory.useNio();

Utils.ExceptionFunction<ConnectionFactory, ? extends Connection> connectionsupplier =
Utils.singleConnectionSupplier(

@

connectionFactory, cf -> cf.newConnection()

)

Sender sender = RabbitFlux.createSender(
new SenderOptions().connectionSupplier(connectionsupplier)
®
)i
Receiver receiver = RabbitFlux.createReceiver(
new ReceiverOptions().connectionSupplier(connectionsupplier)

@
)i
@ Create and configure connection factory
@ Create supplier that re-uses the same connection instance
® Create sender with connection supplier
@ Create receiver with connection supplier

Be aware that closing the first Sender or Receiver will close the underlying AMQP connection for all
the others.

6.4.3. Creating channels with a custom Mono in Sender

SenderOptions provides a channelMono property that is called when creating the Channel used in
sending methods. This is a convenient way to provide any custom logic when creating the Channel,
e.g. retry logic.

26

6.4.4. Threading considerations for resource management

A Sender instance maintains a Mono<Channel> to manage resources and by default the underlying
Channel is cached. A new Channel is also automatically created in case of error. Channel creation is
not a cheap operation, so this default behavior fits most use cases. Each resource management
method provides a counterpart method with an additional ResourceManagementOptions argument.
This allows to provide a custom Mono<Channel> for a given resource operation. This can be useful
when multiple threads are using the same Sender instance, to avoid using the same Channel from
multiple threads.

Mono<Channel> channelMono = connectionMono.map(c -> {
try {
return c.createChannel();
} catch (Exception e) {
throw new RabbitFluxException(e);

}
}).cache(); ©)
ResourceManagementOptions options = new ResourceManagementOptions()
.channelMono(channelMono); @)
sender.declare(exchange("my.exchange"), options) ®
.then(sender.declare(queue("my.queue"), options)) ®

.then(sender.bind(binding("my.exchange", "a.b", "my.queue"), options)) @
.subscribe(r -> System.out.println("Exchange and queue declared and bound"));

@ Create Channel and cache it

@ Use the Mono<Channel> in ResourceManagementOptions

® Use Mono<Channel> for each operation

In the example above, each operation will use the same Channel as it is cached. This way these

operations won’t interfer with any other thread using the default resource management
Mono<Channel> in the Sender instance.

6.4.5. Channel pooling in Sender

By default, Sender#send* methods open a new Channel for every call. This is OK for long-running
calls, e.g. when the flux of outbound messages is infinite. For workloads whereby Sender#send* is
called often for finite, short flux of messages, opening a new Channel every time may not be optimal.

It is possible to use a pool of channels as part of the SendOptions when sending outbound messages
with Sender, as illustrated in the following snippet:

27

ChannelPool channelPool = ChannelPoolFactory.createChannelPool(O]
connectionMono,
new ChannelPoolOptions().maxCacheSize(5) @)
)i
sender.send(outboundFlux, new SendOptions().channelPool(channelPool)); ®
/] ...
channelPool.close(); @)

@ Create ChannelPool with factory
@ Set the maximum size to 5 channels
® Use a channel from the pool to send messages

@ Close the pool when no longer needed

Note it is developer’s responsibility to close the pool when it is no longer necessary, typically at
application shutdown.

Micro-benchmarks revealed channel pooling performs much better for sending short sequence of
messages (1 to 10) repeatedly, without publisher confirms. With longer sequence of messages (100
or more), channel pooling can perform worse than without pooling at all. According to the same
micro-benchmarks, channel pooling does not make sending with publisher confirms perform
better, it appears to perform even worse. Don’t take these conclusions for granted, you should
always make your own benchmarks depending on your workloads.

6.4.6. Retry configuration on connection opening

Some applications may want to fail fast and throw an exception when the broker is unavailable.
Other applications may want to retry connection opening when it fails.

Both SenderOptions and ReceiverOptions provide a Function<Mono<? extends Connection>, Mono<?
extends Connection>> connectionMonoConfigurator, which is a hook in the Mono<Connection> creation
of the Sender or Receiver instance. This is a good place to customize the Mono<Connection> to
configure a retry policy.

The following snippet shows how to configure retry with an inline connectionMonoConfigurator for a

Sender:

Receiver receiver = RabbitFlux.createReceiver(new ReceiverOptions()
.connectionMonoConfigurator(
cm -> cm.retryWhen(RetrySpec.backoff(3, Duration.ofSeconds(5))) ©)

));

@ Set up retry on connection opening

Please read the Reactor Core documentation for more information about retry, retry with
exponential backoff, and retry support in Reactor-Extra.

28

https://github.com/reactor/reactor-rabbitmq/tree/main/src/jmh/java/reactor/rabbitmq
https://projectreactor.io/docs/core/release/reference/#_retrying
https://projectreactor.io/docs/core/release/reference/#faq.exponentialBackoff
https://projectreactor.io/docs/core/release/reference/#faq.exponentialBackoff
https://projectreactor.io/docs/core/release/reference/#extra-repeat-retry

As connectionMonoConfigurator is simply a hook, operations the Sender/Receiver
performs on the final Mono<Connection> like caching still happen. But note the
connectionMonoConfigurator is not applied when a Mono<Connection> is provided to
the SenderOptions or ReceiverOptions.

29

	Reactor RabbitMQ Reference Guide
	Table of Contents
	Introduction
	Chapter 1. Overview
	1.1. RabbitMQ
	1.2. Project Reactor
	1.3. Reactive API for RabbitMQ

	Chapter 2. Motivation
	2.1. Functional interface for RabbitMQ
	2.2. Non-blocking Back-pressure
	2.3. End-to-end Reactive Pipeline
	2.4. Comparisons with other RabbitMQ Java libraries
	2.4.1. RabbitMQ Java Client
	2.4.2. Spring AMQP

	Chapter 3. Getting Started
	3.1. Requirements
	3.2. Quick Start
	3.2.1. Start RabbitMQ
	3.2.2. Run Reactor RabbitMQ Samples
	Sample Sender
	Sample Receiver
	Sample Spring Boot Application

	3.2.3. Building Reactor RabbitMQ Applications
	3.2.4. Versioning

	Chapter 4. Additional Resources
	4.1. Getting help
	4.2. Resources

	Chapter 5. New & Noteworthy
	5.1. What’s new in Reactor RabbitMQ 1.4.1
	5.2. What’s new in Reactor RabbitMQ 1.4
	5.3. What’s new in Reactor RabbitMQ 1.3
	5.4. What’s new in Reactor RabbitMQ 1.2
	5.5. What’s new in Reactor RabbitMQ 1.1
	5.6. What’s new in Reactor RabbitMQ 1.0

	Reference Documentation
	Chapter 6. Reactor RabbitMQ API
	6.1. Overview
	6.2. Reactive RabbitMQ Sender
	6.2.1. Managing resources (exchanges, queues, and bindings)
	6.2.2. Reliable publishing with publisher confirms
	6.2.3. Threading model
	6.2.4. Closing the Sender
	6.2.5. Error handling during publishing
	6.2.6. Request/reply

	6.3. Reactive RabbitMQ Receiver
	6.3.1. Consuming options
	6.3.2. Acknowledgment
	6.3.3. Closing the Receiver
	6.3.4. Connection failure

	6.4. Advanced features
	6.4.1. Customizing connection creation
	Creating a connection with a supplier
	Creating a connection with a custom Mono

	6.4.2. Sharing the same connection between Sender and Receiver
	6.4.3. Creating channels with a custom Mono in Sender
	6.4.4. Threading considerations for resource management
	6.4.5. Channel pooling in Sender
	6.4.6. Retry configuration on connection opening

