7.6. Mathematical Functions and Operators
Mathematical Operators
| Operator | Description |
|---|---|
+ |
Addition |
- |
Subtraction |
* |
Multiplication |
/ |
Division (integer division performs truncation) |
% |
Modulus (remainder) |
Mathematical Functions
-
abs(x) → [same as input] Returns the absolute value of
x.
-
cbrt(x) → double Returns the cube root of
x.
-
ceil(x) → [same as input] This is an alias for
ceiling().
-
ceiling(x) → [same as input] Returns
xrounded up to the nearest integer.
-
cosine_similarity(x, y) → double Returns the cosine similarity between the sparse vectors
xandy:SELECT cosine_similarity(MAP(ARRAY['a'], ARRAY[1.0]), MAP(ARRAY['a'], ARRAY[2.0])); -- 1.0
-
degrees(x) → double Converts angle
xin radians to degrees.
-
e() → double Returns the constant Euler’s number.
-
exp(x) → double Returns Euler’s number raised to the power of
x.
-
floor(x) → [same as input] Returns
xrounded down to the nearest integer.
-
from_base(string, radix) → bigint Returns the value of
stringinterpreted as a base-radixnumber.
-
inverse_normal_cdf(mean, sd, p) → double Compute the inverse of the Normal cdf with given mean and standard deviation (sd) for the cumulative probability (p): P(N < n). The mean must be a real value and the standard deviation must be a real and positive value. The probability p must lie on the interval (0, 1).
-
normal_cdf(mean, sd, v) → double Compute the Normal cdf with given mean and standard deviation (sd): P(N < v; mean, sd). The mean and value v must be real values and the standard deviation must be a real and positive value.
-
inverse_beta_cdf(a, b, p) → double Compute the inverse of the Beta cdf with given a, b parameters for the cumulative probability (p): P(N < n). The a, b parameters must be positive real values. The probability p must lie on the interval [0, 1].
-
beta_cdf(a, b, v) → double Compute the Beta cdf with given a, b parameters: P(N < v; a, b). The a, b parameters must be positive real numbers and value v must be a real value. The value v must lie on the interval [0, 1].
-
ln(x) → double Returns the natural logarithm of
x.
-
log(b, x) → double Returns the base
blogarithm ofx.
-
log2(x) → double Returns the base 2 logarithm of
x.
-
log10(x) → double Returns the base 10 logarithm of
x.
-
mod(n, m) → [same as input] Returns the modulus (remainder) of
ndivided bym.
-
pi() → double Returns the constant Pi.
-
pow(x, p) → double This is an alias for
power().
-
power(x, p) → double Returns
xraised to the power ofp.
-
radians(x) → double Converts angle
xin degrees to radians.
-
rand() → double This is an alias for
random().
-
random() → double Returns a pseudo-random value in the range 0.0 <= x < 1.0.
-
random(n) → [same as input] Returns a pseudo-random number between 0 and n (exclusive).
-
round(x) → [same as input] Returns
xrounded to the nearest integer.
-
round(x, d) → [same as input] Returns
xrounded toddecimal places.
-
sign(x) → [same as input] Returns the signum function of
x, that is:- 0 if the argument is 0,
- 1 if the argument is greater than 0,
- -1 if the argument is less than 0.
For double arguments, the function additionally returns:
- NaN if the argument is NaN,
- 1 if the argument is +Infinity,
- -1 if the argument is -Infinity.
-
sqrt(x) → double Returns the square root of
x.
-
to_base(x, radix) → varchar Returns the base-
radixrepresentation ofx.
-
truncate(x) → double Returns
xrounded to integer by dropping digits after decimal point.
-
width_bucket(x, bound1, bound2, n) → bigint Returns the bin number of
xin an equi-width histogram with the specifiedbound1andbound2bounds andnnumber of buckets.
-
width_bucket(x, bins) → bigint Returns the bin number of
xaccording to the bins specified by the arraybins. Thebinsparameter must be an array of doubles and is assumed to be in sorted ascending order.
Statistical Functions
-
wilson_interval_lower(successes, trials, z) → double Returns the lower bound of the Wilson score interval of a Bernoulli trial process at a confidence specified by the z-score
z.
-
wilson_interval_upper(successes, trials, z) → double Returns the upper bound of the Wilson score interval of a Bernoulli trial process at a confidence specified by the z-score
z.
Trigonometric Functions
All trigonometric function arguments are expressed in radians.
See unit conversion functions degrees() and radians().
-
acos(x) → double Returns the arc cosine of
x.
-
asin(x) → double Returns the arc sine of
x.
-
atan(x) → double Returns the arc tangent of
x.
-
atan2(y, x) → double Returns the arc tangent of
y / x.
-
cos(x) → double Returns the cosine of
x.
-
cosh(x) → double Returns the hyperbolic cosine of
x.
-
sin(x) → double Returns the sine of
x.
-
tan(x) → double Returns the tangent of
x.
-
tanh(x) → double Returns the hyperbolic tangent of
x.
Floating Point Functions
-
infinity() → double Returns the constant representing positive infinity.
-
is_finite(x) → boolean Determine if
xis finite.
-
is_infinite(x) → boolean Determine if
xis infinite.
-
is_nan(x) → boolean Determine if
xis not-a-number.
-
nan() → double Returns the constant representing not-a-number.